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Capítol 1

Introducció

1.1 El Model Estàndard: Un breu repàs

De què està feta la matèria? Quin tipus de forces dominen l’Univers? Quines són les
lleis fonamentals de la Natura? Aquestes grans preguntes han sigut de gran interés per a
molts científics en la història. Un dels principals objectius sempre ha sigut entendre com
es comporten els components bàsics de la matèria. De fet, quan a un conegut físic li van
preguntar sobre què deixaria com a llegat a una hipotètica nova civilització intel·ligent, en
cas de què el món fos destruït, ell va respondre que escriuria en un troç de paper menut
que “ la matèria està feta d’àtoms”. Açò se sap des de fa ja molts anys. Tots els àtoms
presents en la natura s’han entès i organitzat en una taula d’acord a les seues propietats.
Ara bé, també sabem que aquest no és el final, totes eixes espècies tenen una estructura
subatòmica formada per les anomenades partícules elementals, considerades per ara els
components més fonamentals de la matèria.

1



2 1.1. El Model Estàndard: Un breu repàs

Què són aquestes partícules i com interaccionen són qüestions que el Model Estàndard
de la Física de Partícules resol d’una manera prou exitosa. Les partícules elementals són
molt petites (∼ h) i molt ràpides (∼ c), el que implica que tant la Mecànica Quàntica com
la Relativitat Especial són necessàries alhora per tal de descriure el seu comportament,
λ = h/p. Però, només ajuntant ambdues teories no és sufiecient, per a un bon enteniment
de la “probabilitat”, la noció d’una teoria de camps també ha de ser introduïda. El Model
Estàndard (SM) és aleshores una teoria quàntica de camps que descriu la interacció elec-
trofeble i la forta (amb la teoria Electrofeble (EW) i la Cromodinàmica Quàntica (QCD)
respectivament), existents entre els quarks i els leptons. Aquestos són el contigut de ma-
tèria fermiònica i apareixen replicats en tres famílies (mireu la taula de dalt), amb l’única
diferència essent la massa i el número quàntic de sabor. Només els quarks interaccionen
fortament, ambdós, quarks i leptons, interaccionen dèbilment i, a més, els quarks i els
leptons carregats interaccionen electromagnèticament. En teoria de grups, les partícules
elementals són les representacions irreductibles del grup de Poincaré, que està format per
translacions, rotacions i boosts; les càrregues conservades d’aquesta simetria caracteritzen
a la perfecció les nostres partícules lliures, però no les interaccions. Per tant, és necessari
altre tipus de simetria per tal d’introduir les forces en la teoria. Aquesta és la simetria de
gauge local, la càrrega conservada de la qual és la càrrega de la interacció corresponent
i els generadors donen el nombre de partícules intermediàries requerides, que són camps
d’spin 1: huit gluons sense massa per a QCD, els massius W± i Z per a la interacció dèbil,
i un fotó sense massa per l’electromagnetisme. És per açò perquè el SM és una teoria de
gauge local basada en el grup de simetria G ≡ SU(3)QCD

C ⊗ [SU(2)L ⊗ U(1)Y ]EW.
Ara bé, els termes de massa per als camps en el Lagrangià trenquen aquesta simetria de

gauge local, volent dir que el model necessita un mecanisme ad-hoc per a generar partícules
massives, i.e. per a proporcionar resultats no simètrics en gauge però preservant la simetria
a nivell del Lagriangià. Aquesta doble condició es realitza fent ús del mecanisme de Higgs-
Kibble, que aplica el Teorema de Goldstone en el context de la teoria EW. El mecanisme
introdueix la idea del trencament espontani de la simetria (SSB), assumint un Lagrangià
simètric en gauge amb un buit no simètric que trenca la part EW del grup en el subgrup
Electromagnètic, G → SU(3)C ⊗ U(1)em. Açò s’implementa amb l’existència d’un camp
escalar doblet d’SU(2) amb càrrega elèctrica zero i hipercàrrega 1 la interacció del qual
amb el buit és no nul·la (adquireix un valor d’expectació en el buit), < 0|φ(0)|0 >= v/

√
2.

El camp escalar anomenat Higgs, després del trencament de la simetria gauge, es pot defi-
nir com una excitació del seu estat fonamental. La interacció del Higgs amb les partícules
fermiòniques, amb els bosons de gauge intermediaris a través de la derivada covariant i
amb ell mateix, és allò que proporciona les seues masses. Aquestes estan definides per
l’acoblament d’eixos camps, a través de la interacció que acabem d’indicar, amb el valor
d’expectació no nul del Higgs.

Amb aquesta descripció, el SM (per a una revisió mireu e.g. [1]) és capaç d’explicar la
majoria de les observacions experimentals, algunes d’elles amb moltes xifres de precisió.
A més, totes les partícules predites ja s’han observat, a exepció del Higgs. Nogensmenys,
malgrat l’enorme èxit en explicar la fenomenologia, el SM deixa moltes preguntes sense
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resposta, volent dir que encara que la teoria sembla correcta, està de segur incompleta. Hi
ha alguns grans “problemes” sense resoldre, com ara la implementació de la Gravetat dins
el mateix context de teoria gauge, la Gran Unificaió de totes les forces (no només de la
dèbil i l’electromagnètica) o la descripció del ∼ 96% de l’Univers que no està composat per
matèria ordinària (SM), sinó per matèria fosca (∼ 22%) i energia fosca (∼ 74%). Ara bé,
a part d’aquestes, hi ha altres qüestions (potser relacionades amb elles o potser no) que
afecten directament a l’estructura de sabor del model. Una primera qüestió seria per què
tres és el nombre de famílies i no més, i si en són més, quantes. També, per què el patró de
masses i mescles és com és, si totes elles venen de la mateixa interacció electrofeble amb el
Higgs. Com que aquest patró està directament relacionat amb el trencament espontani de
la simetria electrofeble, i.e. amb el sector escalar, està aquest sector escalar ocult ocultant
alguna cosa més? És només la massa allò que diferencia cada família? Què hi ha de la
massa dels neutrins? Pot existir una bona descripció dels fenòmens observats que violen
CP? Quin és l’origen del sabor? El sector de sabor fermiònic és la font de paràmetres
lliures més important en el SM, amb neutrins sense massa ja hi ha 9 masses, 3 angles de
mescla i 1 fase complexa. Si a més tenim en compte que són, de fet, massius, el nombre de
paràmetres augmenta almenys en 7. Mecanismes de nova física que puguen donar respostes
a totes estes preguntes són, per tant, necessaris d’investigar.

En particular, en aquesta tesi tenim l’objectiu d’estendre el sector escalar (ocult) més
enllà de la versió mínima donada al SM, ja que no hi ha res que no ho permeta, i analitzarem
l’impacte en l’estructura de sabor i els corresponents nous fenòmens.

1.2 Dinàmica de Sabor en la teoria Electrofeble

El SM organitza els fermions observats en tres famílies, còpies de la mateixa estructura
SU(2)L⊗U(1)Y , essent l’única diferència la massa i el sabor. Els camps levogirs són doblets
d’SU(2)L mentre que els dextrogirs són singlets d’SU(2)L,

(
u′

d′

)

L

,

(
ν ′

l

l′

)

L

, u′
R , d′

R , l′R , (1.1)

on u, d i l són vectors de tres dimensions en l’espai de sabor i la primera indica que són
autoestats de gauge. En el cas general d’NG generacions de fermions, u = u, c, t, u4, ..., uNG

,
d = d, s, b, d4, ..., dNG

i l = e, µ, τ, l4, ..., lNG
, el Lagrangià de Yukawa més general ve donat

per

LY = −
{(

ū′, d̄′)
L

[
cd φ d′

R + cu φ̃ u′
R

]
+

(
ν̄ ′

l , l̄
′)

L
cl φ l′R

}
+ h.c. , (1.2)

on cd, cu i cl són matrius NG ×NG generals de Yukawa complexes corresponents a l’acobla-
ment del doblet escalar φ als sectors fermiònics down, up i leptònic, i φ̃ = iσ2φ∗. Després
del SSB electrofeble, el doblet escalar es pot escriure com

φ =

(
φ(+)

φ(0)

)
SSB
=⇒ ei

σi
2 θi

[
0

1√
2
(v + h)

]
, (1.3)
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on θi i H són quatre camps reals. Tres dels quatre graus de llibertat es poden eliminar per
la invariància local d’SU(2)L del Lagrangià, θi, que no són més que els would-be bosons de
Goldstone associats amb el SSB. En aquest gauge, anomenat Gauge Unitary, el Lagrangià
de Yukawa resulta

LY = −
(

1 +
h

v

) [
d̄′

L M ′
d d′

R + ū′
L M ′

u u′
R + l̄′L M ′

l l′R
]

, (1.4)

on M ′
f ≡ v√

2
cf (f = u, d, l). En la base dels autoestats de massa dels fermions

fL = Sf f ′
L

fR = Sf Uf f ′
R , (1.5)

on Sf i Uf són matrius unitàries, el Lagrangià de Yukawa obté la següent forma:

LY = −
(

1 +
h

v

) [
d̄L Md dR + ūL Mu uR + l̄L Ml lR

]
, (1.6)

on Mf = SfM ′
fU

†
fS

†
f són les matrius diagonals de massa corresponents als tres sectors

fermiònics,

Mu = diag(mu, mc, mt, mu4 , ..., muNG
)

Md = diag(md, ms, mb, md4 , ..., mdNG
)

Ml = diag(me, mµ, mτ , ml4 , ..., mlNG
) . (1.7)

El Lagrangià de Yukawa (1.6) posa de manifest que qualsevol acoblament del camp de
Higgs als fermions és proporcional a les seues masses.

Quan anem des el Lagrangià d’autoestats de gauge al d’autoestats de massa en inter-
accions neutres, trobem en el model Electrofeble dos casos diferents:

• Interaccions neutres descrites per l’intercanvi de Zµ i Aµ (vector): L’estructura en
l’espai de sabor és necessàriament f̄ ′

Lf ′
L (no hi ha cap altra matriu de sabor enmig) o

f̄ ′
Rf ′

R. En el Lagrangià d’autoestats de massa estes estructures corresponen directa-
ment a f̄LfL i f̄RfR, respectivament. Per tant, no hi ha corrents neutres amb canvi
de sabor (FCNCs) a nivell arbre provinents d’interaccions vectorials.

• Interaccions neutres descrites per l’intercanvi d’h (escalar): L’estructura en l’espai de
sabor és sempre de la forma f̄ ′

L Xf f ′
R, on Xf és en el SM una única matriu de sabor

NG × NG no diagonal que ve de l’acoblament del doblet escalar al sector fermiònic
f . En el Lagrangià d’autoestats de massa l’estructura de sabor esdevé f̄L XD

f fR,
on XD

f ha sigut diagonalitzada pel canvi de base. Per tant, tampoc hi ha corrents
neutres amb canvi de sabor provinents de les interaccions escalars.
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Amb tot, els fenòmens FCNC estan prohibits per l’estructura de sabor en el SM (mecanisme
de GIM [2]), la qual cosa està totalment d’acord amb les dades experimentals.

Pel que fa a les interaccions carregades, només hi ha una possibilitat en el model
Electrofeble:

• Interaccions carregades descrites per l’intercanvi de Wµ (vector i vector-axial): Les
estructures en l’espai de sabor tenen la mateixa forma ū′

Ld′
L = ūLSuS

†
ddL = ūLV dL,

on V ≡ SuS
†
d és una matriu de mescla no diagonal complexa i unitària (en general

Su "= Sd), coneguda com la matriu de Cabibbo-Kobayashi-Maskawa (CKM) [3, 4], la
qual genera interaccions amb canvi de sabor en el sector carregat de quarks,

V =





Vud Vus Vub Vud4 . . . VudNG

Vcd Vcs Vcb Vcd4 . . . VcdNG

Vtd Vts Vtb Vtd4 . . . VtdNG

Vu4d Vu4s Vu4b Vu4d4 . . . Vu4dNG

. . . . . . . . . . . . . . . . . .
VuNG

d VuNG
s VuNG

b VuNG
d4 . . . VuNG

dNG




. (1.8)

Degut a l’absència de neutrins dextrogirs, els camps levogirs sempre es poden redefinir
com ν̄L = ν̄ ′

LS†
l i, conseqüentment, no hi ha una matriu de mescla anàloga a V en el

sector leptònic carregat, ν̄ ′
lLl′L = ν̄lLlL.

Les masses dels fermions i les mescles donades per V estan totes determinades pel Lagrangià
de Yukawa (1.2), però els elements de les matrius generals complexes cf són impredictibles
a partir model Electrofeble. Açò genera immediatament un fum de paràmetres lliures que
apareixen a través de la matriu V . En general, una matriu unitària NG ×NG té N2

G parà-
metres reals, NG(NG − 1)/2 mòduls i NG(NG + 1)/2 fases. Ara bé, en el cas de V , no tots
són rellevants, ja que està enmig de camps de quarks que sempre es poden redefinir per una
fase; en total, 2NG − 1 fases poden ser reabsorbides. Amb tot, el nombre de paràmetres
lliures físics reals es redueix a (NG−1)2, on NG(NG−1)/2 són mòduls i (NG−1)(NG−2)/2
són fases.

Del comptatge, és fàcil veure com el cas de dues generacions implica directament zero
fases, el que faria impossible per al SM explicar l’assimetria de CP observada, present,
per exemple, en el sistema de K. És per això que fins i tot abans de què el b i el τ
foren detectats, es va assumir l’existència d’una tercera generació. Si NG = 2, llavors V
es caracteritza per un únic paràmetre real i es pot escriure en la notació de la matriu de
rotació de Cabibbo [3] com

V =

(
cos θ sin θ
− sin θ cos θ

)
. (1.9)

En el SM (NG = 3), V té quatre graus de llibertat, tres angles i una fase, i normalment es
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parametritza com

V =




c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13



 , (1.10)

on cij ≡ cos θij i sij ≡ sin θij i i, j = 1, 2, 3 es refereixen a cada generació de quarks. δ13 és
per tant l’única fase complexa en el SM. Els angles θij es poden elegir tal que pertanyen
al primer quadrant, llavors sij, cij > 0. Experimentalment, hi ha una jerarquia manifesta
en les entrades de la matriu V : s13 # s23 # s12 # 1, i.e. els elements diagonals són
tots molt semblants a 1, els que connecten les dues primeres famílies són tots del mateix
ordre λ ∼ |Vus| = 0.2252 ± 0.0009 [5], la mescla entre la segona i la tercera generació és
en comparació ∼ λ2 i la primera i la tercera generació tenen una mescla ∼ λ3. Per tant,
pareix convenient exhibir aquest patró utilitzant la parametrització de Wolfenstein [6] per
a la matriu V com1

V =




1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 + O(λ4) , (1.11)

on s12 = λ = |Vus|/
√
|Vud|2 + |Vus|2, s23 = Aλ2 = λ |Vcb/Vcs| i s13eiδ3 = Aλ3(ρ + iη) = V ∗

ub

són les relacions per obtenir (1.11) a partir de (1.10) amb un desenvolupament de Taylor
en λ i, també, la connexió amb els parámetres originals de (1.8).

1.2.1 Determinació de Vij

Els elements de la matriu V són paràmetres fonamentals del SM i, per tant, és molt
important que es determinen amb precisió. Nogensmenys, aquesta tasca no és gaire fácil
perquè involucra l’estudi de les desintegracions hadròniques febles amb els corresponents
elements de matriu hadrònics, l’evaluació dels quals és un problema no pertorbatiu de QCD
i, necessàriament, introdueix errors teòrics. En [5] es pot trobar una discussió i revisió de
l’actual determinació de Vij a partir de diferents processos hadrònics. De la teoria, el fet
que la matriu V siga unitària imposa

VijV
∗
il = δjl , VijV

∗
kj = δik , (1.12)

on les sis combinacions que s’anul·len es poden representar per triangles en el pla complex.
Les àrees d’eixos triangles són totes iguals, la meitat de l’invariant de Jarlskog J , una

1Com que VtdVts ∼ λ5, seria necessaria una expansió de la part imaginària de V fins a λ5 per tal de
tenir en compte la violació de CP. En eixe cas, per unitarietat, V té la mateixa forma que (1.11) amb
exepció de tres elements que s’han de modificar: V13 = Aλ3(ρ − iη) + iηλ2/2, V22 = 1 − λ2/2 − iηAλ4 i
V23 = Aλ2(1 + iηλ2) [6]. La parametrització fins a λ5 en ambdues parts, la real i la imaginària, de V es
pot trobar a [5], CP violation in meson decays.
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quantitat independent de convencions de fase i que mesura la “quantitat” de violació de
CP. Es defineix com

Im[VijVklV
∗
il V

∗
kj] = J

∑

m,n

εikmεjln . (1.13)

Les relacions d’unitarietat que inclouen productes de files o columnes veïnes són quasi
degenerades, i.e. un costat és molt més curt que els altres. En el cas de les columnes,

V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = 0 ,

V ∗
usVub + V ∗

csVcb + V ∗
tsVtb = 0 ,

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 , (1.14)

podem veure com les dues primeres igualtats representen aqueix fet, les relacions entre els
costats són λ : λ : λ5 en el primer i λ4 : λ2 : λ2 en el segon, posant de manifest una supressió
en λ evident per a un dels costats. És per açò perquè la violació de CP és petita en sistemes
de K i, també, perquè algunes de les assimetries predites en sistemes Bs són insignificants
en el SM. En aquest sentit, el tercer triangle és més interessant, on tots els costats són
∼ λ3. Dividint cada costat per V ∗

cbVcd aquest triangle normalment es representa com en la
Figura 1.1. Els vèrtex són (0, 0), (1, 0) i (ρ̄, η̄) ≡ (1−λ2/2)(ρ, η). Moltes de les mesures en

Figura 1.1: Triangle d’unitarietat.

física de sabor es poden representar en el pla (ρ̄, η̄), donant importants determinations i
restriccions als elements de V ; aquestes mesures poden ser, o bé amplades de desintegració
i amplituds, o bé observables de violació de CP, relacionats amb els angles α, β i γ.

Violació de CP

Encara que les interaccions febles violen les simetries discretes C i P separadament, la
combinació de conjugació de càrrega i transformació de partitat, CP, és encara una bona
simetria. No només en la teoria, també en la majoria dels fenòmens de CP observats,
sembla romandre conservada. Malgrat això, alguns processos donen senyals no trivials
de violació de CP, com és el cas dels sistemes K i B. D’altra banda, hi ha una enorme
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assimetria entre matèria i antimatèria en l’Univers, cosa que implica que el rol de la violació
de CP és crucial a l’hora d’explicar la bariogènesi primordial.

La violació de CP està relacionada amb la presència de fases complexes entre ampli-
tuds d’interferència; el teorema CPT (on T es refereix a inversió temporal) assegura la
conservació del producte d’aquestes tres simetries discretes en qualsevol teoria quàntica
de camps invariant Lorentz (local) que preserve microcausalitat. Per tant, si es viola CP,
aleshores també es viola T. En aquest sentit, essent T una transformació antiunitària, ne-
cessàriament han d’aparèixer fases relatives. Siguen dues amplituds d’interferència per a
les transicions i → f i ı̄ → f̄ ,

A(i → f) = A1e
i(δ1+φ1) + A2e

i(δ2+φ2) ,

A(̄ı → f̄) = A1e
i(−δ1+φ1) + A2e

i(−δ2+φ2) , (1.15)

on la barra denota estats conjugats de CP, A1,2 són les parts reals de les amplituds, δ1,2 són
les fases febles (les úniques afectades per la conjugació de CP) i φ1,2 fases fortes, qualsevol
efecte de violació de CP es posarà de manifest en la següent quantitat

Γ(i → f) − Γ(̄ı → f̄)

Γ(i → f) + Γ(̄ı → f̄)
=

−2A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

|A1|2|A2|2 + 2A1A2 cos(δ1 − δ2) cos(φ1 − φ2)
. (1.16)

D’ací es poden deduir algunes condicions necessàries per a què esdevinga una asimetria de
CP directa: i) Es necessiten almenys dues amplituds d’interferència, ii) es requereixen dues
fases febles i fortes diferents i iii) per tal d’obtenir una assimetria significativa, ambdues
amplituds han de ser de la mateixa grandària, A1 ∼ A2.

En el SM l’única font de violació de CP és δ13, cosa que restringeix molt els fenòmens de
violació de CP predits per la teoria, imposant alhora condicions en l’estructura del sector
de sabor. Tal i com hem mencionat abans, són necessàries almenys tres generacions per a
tenir una fase complexa, també, tots els elements de la matriu V han de ser distints de zero
i els quarks de la mateixa càrrega no poden tenir la mateixa massa. Si qualsevol d’aquestes
condicions no s’acompleix, llavors δ13 pot ser reabsorbida pels camps dels quarks. És a dir,
els efectes de violació de CP són proporcionals al producte de tots els angles de la matriu
V i s’anul·len quan les masses de dos quarks amb la mateixa càrrega són degenerades.
Tot açò es pot resumir en la següent condició: La violació de CP és possible en el SM si
Im(det[M ′

uM
′†
u , M ′

dM
′†
d ]) $= 02.

Aquesta simple anàlisi dóna pistes clares sobre com de grans i on poden haver assi-
metries de CP en el SM. D’altra banda, l’invariant de Jarlskog, que apareix en qualsevol
observable de violació de CP, és en ordre de magnitud

J = c12 c23 c2
13 s12 s23 s13 sin δ13 ∼ A2λ6η < 10−4 , (1.17)

el que vol dir que en el SM les violacions de CP són sempre menudes. Per a assimetries
significatives, les amplades de desintegració deuen involucrar elements petits de la matriu

2Aquesta relació és per a un nombre imparell de famílies ng. Per a ng arbitrari la relació general és

tr[M ′
uM ′†

u , M ′
dM

′†
d ]3 $= 0 [7].
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V (desintegracions suprimides). Les desintegracions de B són en aquest sentit molt bones
candidates per exhibir violació de CP. A més a més, aquestos sistemes són els processos
amb més baixa massa on els quarks de les tres generacions juguen un paper directe (no
estan degenerats en massa).

Ajust global

La unitarietat retringeix significativament el rang d’alguns dels elements de la matriu V .
Nogensmenys, es poden determinar amb molta més precisió combinant aquestes restricci-
ons del SM (unitarietat) amb totes les mesures i les prediccions teòriques dels elements de
matriu hadrònics i els seus errors en un ajust global. Hi ha diferents propostes que imple-
menten aquesta combinació, els frequüentistes CKMfitter [8, 9] i [10], i UTfit [11, 12], que
utilitzen un mètode Bayesià. Ambdues propostes donen resultats similars. La Taula 1.1
mostra els valors per als paràmetres de Wolfenstein a partir de les propostes de CKMfitter
i UTfit.

λ A ρ̄ η̄
CKMfitter 0.2253 ± 0.0007 0.808+0.022

−0.015 0.132+0.022
−0.014 0.341 ± 0.013

UTfit 0.2246 ± 0.0011 0.832 ± 0.017 0.130 ± 0.018 0.350 ± 0.013

Taula 1.1: Resultats de l’ajust global de CKMfitter i UTfit per als paràmetres de Wolfens-
tein.

Els resultats per a les magnituds dels paràmetres de la matriu V a partir de l’ajust són [5],

V =




0.97428 ± 0.00015 0.2253 ± 0.0007 0.00347+0.00016

−0.00012

0.2252 ± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045



 , (1.18)

i J = (2.91+0.19
−0.11) × 10−5. Finalment, la Figura 1.2 mostra les restriccions de l’ajust global

en el pla (ρ̄, η̄) a partir de distintes mesures. Les regions amb color estan al 95% CL i es
superposen consistentment, encara que es poden observar algunes tensions interessants. El
valor de Vub i sin 2β posa de manifest una petita discrepància, deguda al valor actualitzat,
un poc més gran, de Br(B+ → τ+ν) i al valor un poc més petit de sin 2β resgistrat en
les factories de B [13]. També, una possible fase significativa en la mescla de Bs està sent
de gran interés des que D0 va mesurar la like-sign dimuon charge asymmetry [14]. La raó
d’aquestes tensions pot ser, o bé fluctuacions en les mesures experimentals, l’efecte dels
error de lattice QCD, o bé signes de nova física. En aquest sentit, la precisió en física
de sabor resulta una bona estratègia per a mirar més enllà del SM; mentre que la cerca
directa es fa al Tevatron i a l’LHC, efectes a baixa energia deurien ser també visibles en
els observables de sabor. Per tal d’això, és necessari tant un bon control dels errors com
una millora dels experiments.
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Figura 1.2: Restriccions en el pla (ρ̄, η̄) al 95% CL [5].

1.2.2 Perspectives

Com hem mencionat abans, malgrat la reeixida descripció per part del SM dels fenòmens
observats, hi ha encara moltes qüestions sense resposdre, una gran part de les quals estan
relacionades amb l’estructura de sabor en sí mateixa. El sector de gauge i l’escalar tenen
4 paràmetres lliures, αem, MZ , GF , els quals a més estan molt ben determinats, i la massa
del Higgs, Mh. De qualsevol forma, un model amb només 4 graus de llibertat permet
d’entrada fer prediccions prou acceptables. Ara bé, el sector de sabor fermiònic introdueix
13 més, amb 9 masses, 3 angles de mescla i 1 fase. I a més, tenint en compte que els
neutrins són, de fet, massius, cal afegir 3 masses, més la matriu de mescla corresponent
al sector leptònic (altres 4 paràmetres, més 2 fases noves si els neutrins són partícules de
Majorana). L’existència de tots aquests graus de llibertat ve dels desconeguts acoblaments
de Yukawa, l’origen i l’estructura dels quals conforma un trencaclosques de sabor que
encara no s’ha resolt. El sector escalar juga un paper important en aquesta estructura, ja
que la generació de masses està completament relacionada amb el SSB electrofeble, la part
més fosca del Lagrangià del SM. El SM incorpora un mecanisme de violació de CP amb
una única fase en la matriu V . Encara que explica (per ara) tots els fenòmens de violació
de CP observats en el laboratori, el mecanisme no és suficient per descriure l’assimetria
entre matèria i antimatèria de l’Univers. Per tant, una explicació fonamental de l’origen de
la violació de CP està encara absent. Les oscil·lacions de neutrins són el primer fenomen
cap a l’existència de nova física de sabor; en aquest sentit, la violació de sabor leptònic
obre una finestra a una dinàmica de sabor nova respecte al SM.
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A banda del mecanisme de GIM, no hi ha res restringint l’estructura del sector de sabor,
deixant molt d’espai per a propostes de nova física. Afegir una nova generació seria un
possible pas a implementar, però cal anar amb cura de preservar unitarietat en el triangle
estàndard, i.e. per a les tres primeres generacions. A més a més, LEP només ha observat
tres neutrins lleugers, llavors, afegir una quarta generació necessita també un mecanisme
que genere neutrins pesats. La modificació del sector escalar és igual de simple però més
versàtil, l’apropiada ampliació del qual origina moltes possibilitats dinàmiques noves, tot
i respectant les resctriccions del SM. En aquesta tesi tenim l’objectiu d’implementar una
anàlisi del model Electrofeble amb un sector escalar no mínim, en particular, estudiarem
diferents aspectes del Model de Dos Doblets de Higgs.





Chapter 2

Introduction

2.1 The Standard Model: Short overview

What is matter made of? Which kind of forces dominate the Universe? What are the
fundamental laws of Nature? These big questions have been of great interest for many
scientists in history. One of the most important aims have always been to understand how
the basic contents of matter behave. Actually, when a famous physicist was asked about
what he would leave as a legacy to a hypothetic new intelligent life civilization, just in
case the world was destroyed, he answered that he would write in a small piece of paper
“matter is made of atoms”. This is known already since many years ago. All the atoms
present in nature are well understood and organized in a table according to their properties.
However, we also know that this is not the end, all those species have a subatomic structure
composed by what are called elementary particles, which are considered by now the most
fundamental components of matter.

13
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What these particles are and how they interact are questions that the Standard Model
of Particle Physics addresses in a rather successful way. The elementary particles are very
small (∼ h) and very fast (∼ c), which means that both Quantum Mechanics and Special
Relativity are needed at the same time to describe their behaviour, λ = h/p. But just
joining both theories is not enough, for a good understanding of “probability” the notion
of a field theory needs to be introduced too. The Standard Model (SM) is then a quantum
field theory that describes the electroweak and strong interactions (with the Electroweak
(EW) theory and Quantum Chromodynamics (QCD) respectively) existing among quarks
and leptons. These are the fermionic matter content and appear replicated in three families
(see table above), with the only difference being the mass and the flavour number. Only
quarks interact strongly, both quarks and leptons interact weakly and quarks and charged
leptons also interact electromagnetically. In group theory, the elementary particles are
the irreducible representations of the Poincaré group, which is formed by translations,
rotations and boosts; the conserved charges of this symmetry perfectly characterize our
free particles but not their interactions. Therefore, another kind of symmetry is needed
in order to introduce the forces in the theory. This is the local gauge symmetry, whose
conserved charge is the charge of the corresponding interaction and the generators give
the number of the required intermediate particles, which are bosonic fields with spin 1:
eight massless gluons for QCD, the massive W± and Z for the weak interaction, and one
massless photon for electromagnetism. That is why the SM is a local gauge theory based
on the symmetry group G ≡ SU(3)QCD

C ⊗ [SU(2)L ⊗ U(1)Y ]EW.
However, mass terms for the fields in the Lagrangian break this local gauge symme-

try, meaning that the model needs an ad-hoc mechanism to generate massive particles,
i.e. to provide gauge non-symmetric results but preserving the symmetry at the level
of the Lagrangian. This is enforced by the Higgs-Kibble mechanism, which applies the
Goldstone Theorem in the EW theory framework. This mechanism introduces the idea
of spontaneous symmetry breaking (SSB), assuming a gauge symmetric Lagrangian with
a non-symmetric vacuum that breaks the EW part of the group to the Electromagnetic
subgroup, G → SU(3)C ⊗ U(1)em. This is implemented by the existence of an SU(2)
scalar doublet field with zero electric charge and hypercharge 1 whose interaction with the
vacuum is different from zero (it gets a vacuum expectation value), < 0|φ(0)|0 >= v/

√
2.

The scalar field called Higgs, after the gauge symmetry breaking, can be defined as an
excitation of its ground state. The interaction of the Higgs with the fermionic particles,
with intermediate gauge bosons through the covariant derivative and with itself, is what
provides their masses. These are defined by the coupling of these fields, through the latter
interaction, with the non-zero vacuum expectation value of the Higgs.

With such description the SM (for a review see e.g. [1]) is able to explain most of
the experimental observations, some of them with many digits of precision. Moreover,
all the predicted particles have already been observed, with the exception of the Higgs.
Nevertheless, despite this enormous success explaining the phenomenology, the SM leaves
unanswered many questions, meaning that, although the theory seems to be correct, it is
for sure incomplete. There are some unresolved big “problems” like the implementation of
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Gravity within the same gauge theory framework, the Grand Unification of all forces (not
only the weak and electromagnetic) or the description of the ∼ 96% of the Universe which
is not composed by ordinary matter (SM), but by dark matter (∼ 22%) and dark energy
(∼ 74%). However, apart from those, there some other questions (maybe related to them
or maybe not) that directly affect the flavour structure of the model. A first question would
be why three is the number of families and not more, and if more, how many. Also, why
the pattern of masses and mixing is like that, if they all come from the same electroweak
interaction with the Higgs. Since this pattern is directly related with the electroweak SSB,
i.e. with the scalar sector, is this hidden scalar sector hiding something else? Is only the
mass what distinguishes each family? What about neutrino masses? Could it exist a good
description of the observed CP violating phenomena? What is the origin of flavour? The
fermionic flavour sector is the main source of free parameters in the SM, with massless
neutrinos there are already 9 masses, 3 mixing angles and 1 complex phase. Taking into
account that they are actually massive, the number of parameters increases at least by 7.
New physics mechanisms that could give answers to all these questions are then necessary
to investigate.

Particularly, in this thesis we aim to extend the (hidden) scalar sector beyond the
minimal version given in the SM, since there is nothing that forbids it, and will analyze
the impact in the flavour structure and the corresponding new phenomena.

2.2 Flavour dynamics in the Electroweak theory

The SM organizes the observed fermions in three families, which are copies of the same
SU(2)L ⊗ U(1)Y structure, with the only difference being the mass and flavour. The
left-handed fields are SU(2)L doublets while the right-handed ones are SU(2)L singlets,

(
u′

d′

)

L

,

(
ν ′l
l′

)

L

, u′
R , d′

R , l′R , (2.1)

where u, d and l are vectors of three dimensions in flavour space and the prime indi-
cates that are gauge eigenstates. In the general case of NG generations of fermions,
u = u, c, t, u4, ..., uNG

, d = d, s, b, d4, ..., dNG
and l = e, µ, τ, l4, ..., lNG

, the most general
Yukawa Lagrangian is given by

LY = −
{(

ū′, d̄′)
L

[
cd φ d′

R + cu φ̃ u′
R

]
+

(
ν̄ ′l , l̄

′)
L

cl φ l′R

}
+ h.c. , (2.2)

where cd, cu and cl are NG × NG general complex Yukawa matrices correponding to the
coupling of the scalar doublet φ to the down, up and lepton fermion sectors, and φ̃ = iσ2φ∗.
After the electroweak SSB, the scalar doublet can be written as

φ =

(
φ(+)

φ(0)

)
SSB
=⇒ ei

σi
2 θi

[
0

1√
2
(v + h)

]
, (2.3)
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where θi and H are four real fields. Three of the four degrees of freedom are allowed to be
rotated away by the local SU(2)L invariance of the Lagrangian, θi, which are nothing but
the would-be Goldstone bosons associated with the SSB. In this gauge, called the Unitary
Gauge, the Yukawa Lagrangian results in

LY = −
(

1 +
h

v

) [
d̄′

L M ′
d d′

R + ū′
L M ′

u u′
R + l̄′L M ′

l l′R
]

, (2.4)

where M ′
f ≡ v√

2
cf (f = u, d, l). In the basis of fermion mass eigenstates

fL = Sf f ′
L

fR = Sf Uf f ′
R , (2.5)

where Sf and Uf are unitary matrices, the Yukawa Lagrangian takes the following form:

LY = −
(

1 +
h

v

) [
d̄L Md dR + ūL Mu uR + l̄L Ml lR

]
, (2.6)

where Mf = SfM ′
fU

†
fS†

f are the diagonal mass matrices corresponding to the three fermion
sectors,

Mu = diag(mu, mc, mt, mu4 , ..., muNG
)

Md = diag(md, ms, mb, md4 , ..., mdNG
)

Ml = diag(me, mµ, mτ , ml4 , ..., mlNG
) . (2.7)

The Yukawa Lagrangian (2.6) shows that any coupling of the Higgs field to fermions is
proportional to their masses.

When going from the gauge eigenstates to the mass eigenstates Lagrangian in neutral
interactions, two different cases are present in the Electroweak model:

• Neutral interactions described by the exchange of Zµ and Aµ (vector): The structure
in flavour space is necessarily f̄ ′

Lf ′
L (there is no other flavour matrix in between)

or f̄ ′
Rf ′

R. In the mass eigenstate Lagrangian these structures directly correspond to
f̄LfL and f̄RfR respectively. Therefore, there are no flavour-changing neutral currents
(FCNCs) at tree level coming from vector interactions.

• Neutral interactions described by the exchange of h (scalar): The structure in flavour
space is always of the form f̄ ′

L Xf f ′
R, where Xf is in the SM a single NG × NG

non-diagonal flavour matrix coming from the coupling of the scalar doublet to the
fermion sector f . In the mass eigenstate Lagrangian the flavour structure becomes
f̄L XD

f fR, where XD
f has been diagonalized by the basis change. Thus, there are no

flavour-changing neutral currents coming from scalar interactions either.
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Therefore, FCNC phenomena are forbidden by the flavour structure in the SM (GIM
mechanism [2]), which is in total agreement with the experimental data.

Regarding charged interactions only one possibility is present in the Electroweak model:

• Charged interactions described by the exchange of Wµ (vector and axial-vector): The
structures in flavour space have the same form ū′

Ld′
L = ūLSuS

†
ddL = ūLV dL, where

V ≡ SuS
†
d is a non-diagonal unitary complex mixing matrix (in general Su )= Sd),

known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [3, 4], which generates
flavour-chaging interactions in the charged quark sector,

V =





Vud Vus Vub Vud4 . . . VudNG

Vcd Vcs Vcb Vcd4 . . . VcdNG

Vtd Vts Vtb Vtd4 . . . VtdNG

Vu4d Vu4s Vu4b Vu4d4 . . . Vu4dNG

. . . . . . . . . . . . . . . . . .
VuNG

d VuNG
s VuNG

b VuNG
d4 . . . VuNG

dNG




. (2.8)

Due to the absence of right-handed neutrinos, the left-handed fields can always be
redefined as ν̄L = ν̄ ′LS†

l and consequently there is no mixing matrix analog to V in
the charged lepton sector, ν̄ ′lLl′L = ν̄lLlL.

The fermion masses and the mixings given by V are all determined by the Yukawa La-
grangian (2.2), but the elements of the general complex matrices cf are unpredictable by
the Electroweak model. This immediately generates a “bunch” of free parameters that ap-
pear through the V matrix. In general, a NG ×NG unitary matrix has N2

G real parameters,
NG(NG−1)/2 moduli and NG(NG+1)/2 phases. However, in the case of V , not all are rele-
vant, since it is in between of quark fields that can always be redefined by a phase; in total,
2NG − 1 phases can be reabsorbed. With this, the number of physical free real parameters
is reduced to (NG−1)2, where NG(NG−1)/2 are moduli and (NG−1)(NG−2)/2 are phases.

From the counting, it is easy to see how the case of two generations directly implies zero
phases, which would make it impossible for the SM to explain the observed CP asymmetry
present, for instance, in the K system. This is why even before b and τ were detected, a
third generation was assumed to exist. If NG = 2, V is then characterized by only one real
parameter and can be written in the notation of the Cabibbo rotation matrix [3] as

V =

(
cos θ sin θ

− sin θ cos θ

)
. (2.9)

In the SM (NG = 3), V has four degrees of freedom, three angles and one phase, and is
usually parametrized as

V =




c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13



 , (2.10)



18 2.2. Flavour dynamics in the Electroweak theory

where cij ≡ cos θij and sij ≡ sin θij and i, j = 1, 2, 3 refer to the each generation of
quarks. δ13 is therefore the only complex phase in the SM. The angles θij can be chosen
to lie in the first quadrant, so sij , cij > 0. Experimentally, there is a manifest hierarchy
for the entries of the V matrix: s13 * s23 * s12 * 1, i.e. the diagonal elements are
all very close to 1, the ones connecting the first two families are all of the same order
λ ∼ |Vus| = 0.2252 ± 0.0009 [5], the mixing between the second and third generations is
in comparison ∼ λ2 and the first and third generations have a mixing ∼ λ3. Then, it
seems convenient to exhibit this pattern using the Wolfenstein parametrization [6] for the
V matrix as1

V =




1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



 + O(λ4) , (2.11)

where s12 = λ = |Vus|/
√
|Vud|2 + |Vus|2, s23 = Aλ2 = λ |Vcb/Vcs| and s13eiδ3 = Aλ3(ρ+iη) =

V ∗
ub are the relations to obtain (2.11) from (2.10) by a Taylor expansion in λ and, also, the

connection with the original elements of (2.8).

2.2.1 Determination of Vij

The V matrix elements are fundamental parameters of the SM and, therefore, their pre-
cise determination is very important. However, this task is not easy because involves the
study of hadronic weak decays with the corresponding hadronic matrix elements, whose
evaluation is a non-perturbative QCD problem and necessarily introduces theoretical un-
certainties. A discussion and review of the current determination of Vij from different
hadronic processes can be found in [5]. From theory, the unitarity of the V matrix imposes

VijV
∗
il = δjl , VijV

∗
kj = δik , (2.12)

where the six vanishing combinations can be represented as triangles in the complex plane.
The areas of those triangles are all the same, half of the Jarlskog invariant J , a quantity
which is independent of phase conventions and measures the strength of CP violation. It
is defined as

Im[VijVklV
∗
il V

∗
kj] = J

∑

m,n

εikmεjln . (2.13)

1Since VtdVts ∼ λ5, an expansion of the imaginary part of the V matrix up to λ5 would be necessary
for CP violation. In that case, by unitarity V requires the same form as (2.11) with the exception of
three elements that are modified as follows: V13 = Aλ3(ρ − iη) + iηλ2/2, V22 = 1 − λ2/2 − iηAλ4 and
V23 = Aλ2(1+ iηλ2) [6]. The parametrization up to λ5 in both real and imaginary parts of V can be found
in [5], CP violation in meson decays.
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The unitarity relations involving products of neighbouring rows or columns are almost
degenerate, i.e. one side is much shorter than the others. In the case of columns,

V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = 0 ,

V ∗
usVub + V ∗

csVcb + V ∗
tsVtb = 0 ,

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 , (2.14)

we can see how the two first equalities represent that fact, the relations among the sides
are λ : λ : λ5 in the first one and λ4 : λ2 : λ2 in the second one, showing an evident
λ suppression for one of the sides. This is why CP violation is very small in K systems
and why some predicted asymmetries in Bs systems are tiny in the SM. In this sense,
the third triangle is more interesting, where all the sides are ∼ λ3. Dividing each side by
V ∗

cbVcd this triangle is usually represented as in Figure 2.1. The vertices are (0, 0), (1, 0)

Figure 2.1: Unitarity triangle.

and (ρ̄, η̄) ≡ (1 − λ2/2)(ρ, η). Many measurements in flavour physics can be displayed in
the (ρ̄, η̄) plane, giving important determinations and constraints for the V elements; these
measurements can be either decay rates and amplitudes or also CP violating observables
related to the angles α, β and γ.

CP violation

Although weak interactions violate the discrete symmetries C and P separately, the combi-
nation of charge conjugation and parity transformation, CP, is still a good symmetry. Not
only in theory, but also in the majority of observed phenomena CP seems to be conserved.
However, some processes give non trivial signals of CP violation, as is the case of K and B
systems. Apart from that, there is a huge asymmetry between matter and antimatter in
the Universe, which implies that the role of CP violation is crucial to explain the primordial
baryogenesis.
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CP violation is related to the presence of complex phases between interfering ampli-
tudes; the CPT theorem (where T refers to time reversal) ensures the conservation of the
product of those three discrete symmetries in any Lorentz invariant (local) quantum field
theory that preserves micro-causality. Therefore, if CP is violated, the same happens with
T. In this sense, being T an antiunitary transformation, relative phases need to be present.
Given two interfering amplitudes for the transitions i → f and ı̄ → f̄ ,

A(i → f) = A1e
i(δ1+φ1) + A2e

i(δ2+φ2) ,

A(̄ı → f̄) = A1e
i(−δ1+φ1) + A2e

i(−δ2+φ2) , (2.15)

where the bar denotes CP conjugated states, A1,2 are the real parts of the amplitudes, δ1,2

are weak phases (the only affected by the CP conjugation) and φ1,2 strong phases, any CP
violating effect can be accounted by the rate asymmetry as

Γ(i → f) − Γ(̄ı → f̄)

Γ(i → f) + Γ(̄ı → f̄)
=

−2A1A2 sin(δ1 − δ2) sin(φ1 − φ2)

|A1|2|A2|2 + 2A1A2 cos(δ1 − δ2) cos(φ1 − φ2)
. (2.16)

From this, some necessary conditions for a direct CP asymmetry can be read: i) At least
two interfering amplitudes are needed, ii) two different weak and strong phases are required
and iii) for a sizeable asymmetry, both amplitudes have to be of the same size, A1 ∼ A2.

In the SM, the only source of CP violation is δ13, constraining a lot the predicted CP
violating phenomena and imposing necessary conditions in the structure of the flavour
sector. As we mentioned before, at least three generations of quarks are necessary to
have a complex phase, also, all the V matrix elements need to be different from zero and
the quarks of the same charge cannot have equal masses. If any of these conditions is not
accomplished, then δ13 could be rotated away. That is, CP violation effects are proportional
to the product of all angles of the V matrix and vanish when the masses of two quarks
with the same charge are degenerate. All this is accounted by the following condition: CP
violation is possible in the SM if Im(det[M ′

uM
′†
u , M ′

dM
′†
d ]) )= 02.

This simple analysis gives clear hints on how big and where may be the predicted CP
asymmetries in the SM. On the other hand, the Jarlskog invariant, which will appear in
any CP violating observable, is in order of magnitude

J = c12 c23 c2
13 s12 s23 s13 sin δ13 ∼ A2λ6η < 10−4 , (2.17)

meaning that in the SM violations of the CP symmetry are always small. For a sizeable
asymmetry, the decay widths should involve small V matrix elements (suppressed decays).
B decays are in this sense very good candidates to exhibit CP violation. Moreover, these
systems are the lowest mass processes where the quarks of the three generations play a
direct role (not mass degenerate).

2This relation is given for an odd number of families ng. For an arbitrary ng the general relation is

tr[M ′
uM ′†

u , M ′
dM

′†
d ]3 )= 0 [7].
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Global fit

Unitarity significantly constraints the range for some of the V matrix elements. However
those can be most precisely determined by combining these SM constraints (unitarity) with
all the measurements and the theoretical predictions for the hadronic matrix elements
and their uncertainties in a global fit. There are several approaches that perform such
combination, the frequentists CKMfitter [8, 9] and [10], and UTfit [11, 12], that uses a
Bayesian method. Both approaches give similar results. Table 2.1 shows the values for
the Wolfenstein parameters from the CKMfitter and UTfit approach. The results for the

λ A ρ̄ η̄
CKMfitter 0.2253 ± 0.0007 0.808+0.022

−0.015 0.132+0.022
−0.014 0.341 ± 0.013

UTfit 0.2246 ± 0.0011 0.832 ± 0.017 0.130 ± 0.018 0.350 ± 0.013

Table 2.1: CKMfitter and UTfit globat fit results for Wolfenstein parameters.

magnitudes of the V matrix parameters from the fits are [5],

V =




0.97428 ± 0.00015 0.2253 ± 0.0007 0.00347+0.00016

−0.00012

0.2252 ± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045



 , (2.18)

and J = (2.91+0.19
−0.11)×10−5. Finally, Figure 2.2 shows the global fit constraints on (ρ̄, η̄) from

different measurements. The coloured regions are at 95% CL and overlap quite consistently,
although some interesting tensions are present. The value of Vub and sin 2β shows a slight
discrepancy, which is due to the larger Br(B+ → τ+ν) updated value and the smaller
sin 2β reported by B-factories [13]. Also, a possible large phase in Bs mixing has been of
great interest since D0 measured a like-sign dimuon charge asymmetry [14]. The reason
for these tensions could be either fluctuations of the experimental measurements, the effect
of lattice QCD uncertainties or a hint of new physics. In this sense, flavour precision data
is a good strategy to look for physics beyond SM; while the direct search is performed at
Tevatron and at the LHC, low energy effects should also be visible in flavour observables.
For that, a good control of uncertainties and improved experiments are necessary.

2.2.2 Prospects

As was mentioned before, despite the successful description of the observed phenomena
given by the SM, it leaves many questions unanswered, a big part of them related with
the flavour structure itself. The gauge and scalar sectors have 4 free parameters, αem,
MZ , GF , which are very well determined, and the mass of the Higgs, Mh. Anyway, a
model with only 4 degrees of freedom permits to make rather good predictions. However,
the fermionic flavour sector introduces 13 more, with 9 fermion masses, 3 mixings and 1
phase. And moreover, if one takes into account that neutrinos are actually massive, 3
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Figure 2.2: Constraints on the (ρ̄, η̄) at 95% CL [5].

more masses need to be added, plus the corresponding mixing matrix for the lepton sector
(other 4 parameters, plus 2 new phases if neutrinos are Majorana particles). The existence
of all these degrees of freedom comes from the unknown Yukawa couplings, the origin and
the structure of which conform an unresolved flavour puzzle. The scalar sector plays an
important role in its structure, since the generation of masses is completely related with the
electroweak SSB, the most obscure part of the SM Lagrangian. A CP violation mechanism
is incorporated by the SM through a single phase in the V matrix. Although it explains
(by now) all the observed CP violating phenomena in the laboratory, this mechanism is
not enough to describe the matter-antimatter asymmetry of the Universe. Therefore, a
fundamental explanation of the origin of CP violation is still absent. Neutrino oscillations
are the first phenomenon towards the existence of new flavour physics; in this sense, lepton
flavour violation opens a window to a new flavour dynamics lacking in the SM.

Apart from the GIM mechanism there is nothing constraining the structure of the
flavour sector, giving a lot of space for new physics proposals. Adding one more generation
would be a simple step to perform, but one should be worried about preserving unitarity
in the standard triangle, i.e. for the three standard generations. Moreover, LEP has only
observed three light neutrinos and, then, adding a fourth generation needs also a mechanism
that generates heavy neutrinos. As simple but more versatile is the modification of the
scalar sector, whose (appropriate) enlargement origins many new dynamical possibilities
while respecting the SM constraints. In this thesis we aim to perform an analysis of the
Electroweak model with a non-minimal scalar sector, in particular, we will study different
aspects of the two-Higgs-doublet Model.



Chapter 3

The two-Higgs-doublet model

3.1 Introduction

The enlargement of the scalar sector is one of the most versatile extensions of the SM [7,15].
There is no theoretical principle constraining the Higgs sector to its minimal realization
and, moreover, the extension results in a very economical choice; the idea of adding more
scalar fields results simple and fruitful when one goes beyond, in the sense that the theo-
retical commitment is very low while the range of new dynamical possibilities it generates
is very wide. Among these new dynamical features, the most relevant ones are i) the pos-
sibility of having Spontaneous CP violation, which cannot take place with only one Higgs
doublet, ii) the discussion of the Strong CP problem, that requires the enlargement of the
scalar sector in many of its solutions, including the Peccei-Quinn one, iii) the observed
baryon asymmetry in the Universe, that cannot be explained by the SM; on one hand, be-
cause the electroweak phase transition is not strongly first order and, therefore, the baryon
asymmetry created in the transition would be removed by unsuppressed baryon number
violating processes in the broken phase; on the other hand, the SM Kobayashi-Maskawa
mechanism provides CP violating effects that are too small. Thus, from Baryogenesis there
is the need of having extra sources of CP violation and for that, the enlargement of the
scalar sector is one of the simplest scenarios that could provide them. Finally, iv) within
the context of multi-Higgs models, dark matter candidates can be also accommodated.
Still in the motivations but as a more generic comment, it should be also noticed that
many new-physics scenarios, including supersymmetry, can lead to a low-energy spectrum
containing the SM fields plus additional scalar multiplets; in this sense, multi-Higgs models
play the role of being a very convenient effective field theory where the low-energy effects
of other high energy mechanisms can be studied.

There is a very important constraint in the way the scalar sector is enlarged, that is
the well known relationship between the masses of the W± and Z gauge bosons and the
weak mixing angle θw,

MW = cos θw MZ . (3.1)

In general, this holds at classical level if the added Higgs multiplets have isospin T and weak

23



24 3.2. The general two-Higgs-doublet model

hypercharge Y that accomplish T (T + 1) = 3Y 2 [7]. Therefore, the Higgs fields which get
a vacuum expectation value (VEV) should be either SU(2) ⊗ U(1) singlets or the neutral
components of SU(2) doublets. Solutions apart from T = Y = 0 and T = Y = 1/2 are
not usually considered because they correspond to large scalar multiplets without Yukawa
interactions with fermions. Almost any other neutral scalars having a VEV will spoil (3.1)
if these VEVs are not small enough.

In this thesis, we analyze the enlargement of the SM scalar sector by only one more
doublet in different scenarios and the phenomenological implications.

3.2 The general two-Higgs-doublet model

In its minimal version, the 2HDM [16] is an SU(3)C ⊗ SU(2)L ⊗ U(1)Y theory with the
same fermion content as the SM (without right-handed neutrinos) and two scalar doublets
φa (a = 1, 2) with hypercharge Y = 1

2 ,

φa =

[
ϕ(+)

a

ϕ(0)
a

]

, (3.2)

whose charge-conjugated fields φ̃a ≡ iσ2 φ∗
a are also SU(2) doublets with Y = −1

2 . After
the EW SSB, the neutral1 components of the scalar doublets acquire vacuum expectation
values 〈0|φT

a (x)|0〉 = 1√
2
(0 , va eiθa), and the eight real components can be parametrized as

follows,

φa = eiθa

[
ϕ+

a
1√
2
(va + ρa + iηa)

]
. (3.3)

Without loss of generality, we can enforce θ1 = 0 through an appropriate U(1)Y transfor-
mation, leaving the relative phase θ ≡ θ2 − θ1. The gauge boson masses, which receive
contributions from the two vacuum expectation values va, are given by the same expres-
sions than in the SM, with v ≡

√
v2
1 + v2

2.

The doublets φ1 and φ2 have identical flavour structures, so they are only distinguished
by their self-interactions described in the Higgs potential. Therefore, they can always be
redefined by an arbitrary complex transformation φa → φ′

a = Tabφb, with Tab being a
matrix that depends on eight real parameters. Four of them can be used to transform the
kinetic term of the scalar fields,

Lφa

K = c11 (Dµφ1)
†Dµφ1 + c22 (Dµφ2)

†Dµφ2 +
[
c12 (Dµφ1)

†Dµφ2 + h.c.
]

, (3.4)

where c11 and c22 are real while c12 is complex, into a canonical (renormalizable) form.
This non-unitary transformation T removes the four real degrees of freedom of c11, c22 and

1A vacuum preserving U(1)em is assumed.
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c12, setting c11 = c22 = 1 and c12 = 0. Then, the most general transformation that leaves
invariant the canonical kinetic term of the scalar doublets,

Lφa

K = (Dµφ1)
†Dµφ1 + (Dµφ2)

†Dµφ2 , (3.5)

is a global U(2) transformation φa → φ′
a = Uabφb in the scalar space (φ1, φ2) [17]. The

fact that the doublets can be freely transformed (we say that we can choose the scalar
basis) introduces a very important difference between the parameters in the model that
are invariant under such basis transformations and those that are not. The physics can-
not depend on the particular scalar basis that we choose, thus, only the parameters that
remain invariant are physical quantities, observables. In general, the expressions for the
mass matrix elements of the Higgs and their couplings will depend on this basis choice,
in particular, the famous parameter tan β that appears in the MSSM and in other types
of 2HDMs, is not a physical quantity in the most general 2HDM. This is why one should
take care about the real meaning of the bounds found for the parameters when analyzing
this kind of models, and it is also why a basis-invariant technology has been developed
by many authors, rewriting all the parameters in terms of scalar quantities (invariants)
under these U(2) transformations. The need of describing the model with invariants was
pointed out by [18, 19], references [7, 19] show how to construct invariants in a systematic
way for different models including the 2HDM, work on basis invariance within the context
of 2HDM has been deeply developed by [17, 20–23], and some alternative approaches can
be found in [24–30]. Although this basis-invariant technology should be always kept in
mind for a good understanding of the physical quantities, we present in the following the
model in terms of the usual parameters for a clearer understanding of the reader.

There is a particular U transformation that makes possible to define a basis for the
scalar doublets such that only one has a non-zero vacuum expectation value, that is the
so-called Higgs basis (tan β ≡ v2/v1):

(
Φ1

−Φ2

)
≡

[
cosβ sin β
sin β − cosβ

] (
φ1

e−iθ φ2

)
. (3.6)

This has the advantage that the VEV and the three Goldstone fields G±(x) and G0(x) get
isolated as components of Φ1, which resembles the SM Higgs doublet, while Φ2 contains
all the new fields:

Φ1 =

[
G+

1√
2
(v + S1 + iG0)

]
, Φ2 =

[
H+

1√
2
(S2 + iS3)

]
.

The Higgs basis is also interesting because the expressions for the Lagrangian parameters
are closely related to observables, as is demonstrated in [20]. The physical scalar spectrum
has five degrees of freedom: two charged fields H±(x) and three neutral scalars ϕ0

i (x) =
{h(x), H(x), A(x)}, which are related through an orthogonal transformation with the Si

fields: ϕ0
i (x) = RijSj(x). The form of the R matrix is fixed by the scalar potential, which

determines the neutral scalar mass matrix and the corresponding mass eigenstates.
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3.2.1 The potential

The most general renormalizable scalar potential invariant under the EW symmetry group
can be written as [7]

V =
2∑

a,b,c,d=1

[
Yab φ

†
aφb + Zabcd

(
φ†

aφb

) (
φ†

cφd

)]
, (3.7)

where Yab have dimensions of mass squared and Zabcd are dimensionless. Zabcd can be
assumed to be equal to Zcdab without loss of generality, and by hermiticity of V, Yab = Y ∗

ba

and Zabcd = Z∗
bacd. In total, there are 14 independent real parameters. The extremes of the

potential define the vacuum expectation values,

∂V
∂φ1

∣∣∣∣
φ1=<φ1>, φ2=<φ2>

= 0
∂V
∂φ2

∣∣∣∣
φ1=<φ1>, φ2=<φ2>

= 0 , (3.8)

where two different kind of solutions are possible: i) Both < φa >= 0, then the EW sym-
metry is preserved, and ii) the EW symmetry is spontaneously broken, either if < φ1 > )= 0
and < φ2 >= 0, or < φ1 >= 0 and < φ2 > )= 0 (equivalent cases) or < φ1 > )= 0 and
< φ2 > )= 0. Therefore, any of the second kind of solutions must be taken. The condition
for the extremum to become a minimum is that the eigenvalues of the mass squared matrix
of the neutral Higgs in that point have to be non-negative.

The scalar potential in the Higgs basis is

V = µ1Φ
†
1Φ1 + µ2Φ

†
2Φ2 + [µ12Φ

†
1Φ2 + h.c.]

+ λ1(Φ
†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+ [(λ5Φ
†
1Φ2 + λ6Φ

†
1Φ1 + λ7Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.] , (3.9)

where µ12, λ5, λ6 and λ7 are in general complex parameters while µ1, µ2 and λ1−4 are real.
In this basis, the stability point (3.8) of the potential arises when

∂V
∂Φ1

∣∣∣∣
Φ1=

v√
2
, Φ2=0

= 0
∂V
∂Φ2

∣∣∣∣
Φ1=

v√
2
, Φ2=0

= 0 , (3.10)

which gives the following relations between some of the parameters,

µ1 = −λ1v2 , µ12 = −λ6
2 v2 . (3.11)

The corresponding masses for the Higgs fields can be easily obtained from the quadratic
terms of the potential, taking (3.11) into account and rewriting (3.9) for the elements of
the doublets, those terms are:

V = · · ·+ M2
H± H+H− +

1

2

(
S1 S2 S3

)
M




S1

S2

S3



 + . . . (3.12)
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M2
H± = µ2 + v2

2 λ3 corresponds to the mass of the charged Higgs and M is a non-diagonal
symmetric matrix mixing the neutral Higgs fields,

M =




2v2λ1 v2λR

6 −v2λI
6

v2λR
6 M2

H± + (λ4 + 2λR
5 )v2

2 −v2λI
5

−v2λI
6 −v2λI

5 M2
H± + (λ4 − 2λR

5 )v2

2



 , (3.13)

where λR
5,6 and λI

5,6 are the real and imaginary parts of the complex parameters respectively.
For the neutral Higgs to be mass eigenstates, M has to be diagonalized by an orthogonal
matrix R,

D = RMRT =




M2

1 0 0
0 M2

2 0
0 0 M2

3



 , (3.14)

giving rise to the corresponding masses of the neutral scalars: M1, M2 and M3. R is
sometimes written as the product of three rotational matrices, R = R3R2R1, in terms of
three Euler angles αi ∈ [0, π] such as,

R1 =




c1 s1 0

−s1 c1 0
0 0 1



 R2 =




c2 0 s2

0 1 0
−s2 0 c2





R3 =




1 0 0
0 c3 s3

0 −s3 c3



 , (3.15)

where si ≡ sinαi and ci ≡ cosαi.

If CP is not an exact symmetry of the Lagrangian (general case), the CP-odd component
S3 mixes with the CP-even fields S1,2 and the resulting mass eigenstates hi,




h1

h2

h3



 = R




S1

S2

S3



 , (3.16)

do not have a definite CP quantum number. On the other hand, if CP is an exact symmetry
of the Lagrangian, the imaginary parts of the complex parameters vanish and the admixture
disappears. In this case A = S3 and therefore only R1 is needed to implement the rotation,
which can be conveniently written as

(
H
h

)
=

[
cos (α − β) sin (α − β)

− sin (α − β) cos (α − β)

] (
S1

S2

)
. (3.17)

Finally, notice that the following relation for the masses,

M2
1 + M2

2 + M2
3 = M2

h + M2
H + M2

A , (3.18)

is always accomplished because the trace of the matrix M is invariant under unitary
transformations.
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Theoretical constraints

The parameters of the Higgs potential have theoretical constraints coming from positivity
and minimum conditions, tree-level unitarity and perturbativity. Positivity means that the
potential must be positive (stable) for all values of the fields |φa|. The minimum condition
is the requirement for the extremum to be precisely a minimum. Both conditions give
lower bounds on the parameters. On the other hand, to preserve tree-level unitarity, the
quartic scalar self-interactions that contribute to different scattering amplitudes, scalar-
scalar, scalar-gauge or gauge-gauge bosons s-waves, have to be such that the corresponding
amplitude (partial wave) does not exceed the unitary limit. This condition gives upper and
lower bounds. In general, all these constraints have been analyzed in the literature (for
a review see [23] and references therein) for a CP conserving potential, where a Z2-type
discrete symmetry enforces µ12 = λ5 = λ6 = λ7 = 0. There are some other studies where
this symmetry is softly broken in the potential (µ12 )= 0, λ5 )= 0, λ6 = λ7 = 0), and only
for unitarity the study is extended for a general CP non-conserving potential [23]. These
constraints are summarized in the following in terms of the parameters of the potential in
the general basis (3.7), µ′

i and λ′
i (the equivalences with Yab and Zabcd and µi and λi are

given in the Appendix A).

• The positivity constraints in the case of soft Z2 violation are analyzed in [23,31–35].
For the potential to be bounded from below, only the quartic terms have to examined.
Assuming that directions in the fields space where V → −∞ do not exist and neither
flat directions for the quartic piece of the potential, the following conditions on λ′

i

are easily obtained [34],

λ′
1 > 0 , λ′

2 > 0 , λ′
3 > −

√
λ′

1 − λ′
2 ,

λ′
3 + λ′

4 − |λ′
5| >

√
λ1λ2 . (3.19)

• The minimum constraints ensure that the extremum of the potential is a minimum
for all directions in the scalar fields space. This happens if the mass matrix squared
(3.13) is defined positive, i.e. its eigenvalues are positive,

M2
1,2,3 > 0 M2

H± > 0 . (3.20)

• The tree-level unitarity constraint was first discussed by [36] in the SM framework.
This kind of constraints can be derived by constructing the tree-level scattering ma-
trices of all possible Higgs-Higgs, WL-WL, ZL-Higgs, etc. states at very high energies,
and diagonalizing them. Then the unitarity conditions are translated into limits to
the eigenvalues of these matrices, which are given in terms of the Higgs potential
parameters, as it is presented in [37], again in the SM. For a SM Higgs potential like
VSM = (λ/2)(φ†φ−v2/2)2 the condition arises as 3λ ≤ 8π, where the SM Higgs mass
is Mh = v

√
λ. The decay rate of the Higgs Γh is basically dominated by the Higgs

decay into the longitudinal components of the gauge bosons, WL and ZL, and grows
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as M3
h . Therefore, the unitary limit is realized when Γh ∼ Mh, where the physical

Higgs boson disappears. Above this limit (λ ≥ 8π at
√

s > v
√
λ ≥ v

√
8π ∼ 1.2

TeV) the self-interaction of the Higgs boson and the WL and ZL interactions become
strong (non-perturbative). The unitarity violation of a partial wave at tree-level in
a gauge theory is protected by higher order diagrams that will come to the rescue,
however, a strongly interacting field theory is an unresolved situation. The unitarity
limit is therefore a boundary limit in λ′s space between this unlikely regime and the
one that describes a physical Higgs boson with well known properties and no strong
effects in the Higgs sector.

In the 2HDM, this was derived for a CP conserving potential enforced by an exact Z2

symmetry in [38]. The cases of soft and complete Z2 violation in the potential were
analyzed in [35] and [39] respectively. We summarize below the unitarity conditions
given for the eigenvalues of the scattering matrices arising in the latter cases [39].
The generic limit is

|ΛZ2
Y σ±| < 8π , (3.21)

where initial states φaφb with different Z2 parity (even or odd), total hypercharge
and weak isospin, give different cases that accomplish the upper limit:

Λeven
21± =

(
λ′

1 + λ′
2 ±

√
(λ′

1 − λ′
2)

2 + 4|λ′
5|2

)
,

Λodd
21± = λ′

3 + λ′
4 ,

Λodd
20± = λ′

3 − λ′
4 ,

Λeven
01± =

(
λ′

1 + λ′
2 ±

√
(λ′

1 − λ′
2)

2 + 2|λ′
4|2

)
,

Λodd
01± = λ′

3 ± 2|λ′
5| ,

Λeven
00± = 3(λ′

1 + λ′
2) ±

√
9(λ′

1 − λ′
2)

2 + 2(2λ′
3 + λ′

4)
2 ,

Λodd
00± = λ′

3 + 2λ′
4 ± 6|λ′

5| . (3.22)

Indirect constraints on the Higgs masses can be obtained from these unitarity con-
ditions. All the masses are given in terms of λ′s and µ′R

12. Although µ′R
12 does not

get any limit from unitarity (only quartic couplings), some reasonable bounds on the
masses can be derived for particular values of µ′R

12. For example, for small values of
this quantity [23,39], the lightest Higgs can have a mass ∼ 120 GeV while the others
have an upper bound of ∼ 600 GeV, without tree-level unitarity violation. For large
values of µ′R

12, all the Higgs particles except the lightest one, do no have any upper
constraint on their masses coming from unitarity.

To end up with the theoretical constraints on the parameters of the potential, we make
a small comment about custodial symmetry. A first “disadvantage” of the general 2HDM is
that custodial symmetry could be broken by mass splittings between charged and neutral
Higgs. This already happens at one-loop level ((3.1) holds at tree-level in the 2HDM) and
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could be in conflict with electroweak precision data. Custodial symmetry is not an exact
symmetry in the SM, it is violated by hypercharge gauge interactions and by the Higgs
interactions with fermions in the Yukawa terms. However, the deviations generated by
these terms are within the errors of the electroweak precision data. In order not to exceed
these errors, further sources of custodial symmetry breaking apart from the latter should
be necessarily very small. The Higgs potential in the SM has an “accidental” symmetry,
SU(2)L × SU(2)R, that avoids the possibility of adding one more source to this custodial
symmetry violation, but it is not like that in the 2HDM anymore [40]. This problem can
be solved in some restricted regions of the parameter space, which are either fine-tuned or
implemented by imposing additional (discrete) symmetries on the potential. At the end,
the condition for the custodial symmetry to be preserved in this context, results in a set
of relations for the masses of the Higgs that need to accomplished [40].

Experimental constraints

The Particle Data Group [5] gives a collection of the current bounds on the scalar fields,
in supersymmetric models and also in general 2HDM frameworks. For charged Higgs H±

searches, the process e+e− → H+H− provides a very efficient way without referring to
any specific Yukawa structure. Assuming that Br(H+ → cs̄) + Br(H+ → τ+ντ ) = 1,
the combined LEP data constrain MH± > 78.6 GeV (95% CL) [41]. The limit slightly
improves if particular values of Bτ ≡ Br(H+ → τ+ντ ) are assumed. The weakest limit
of 78.6 GeV is obtained for Bτ ∼ 0.4–0.5, improving to 81.0 (89.6) for Bτ = 0 (1).
These limits could be avoided by some types of 2HDMs (e.g. the inert model [42–45])
in some regions of the parameter space. In such a case, the charged scalar could be
detected by the decay mode H± → W±A, if it is kinematically allowed. Assuming a CP-
conserving scalar potential, OPAL finds the (95% CL) constraints MH± > 56.5 (64.8) GeV
for 12 (15) GeV < MA < MH± − MW± [46]. CDF [47] and D0 [48] have searched for
t → H+b decays with negative results. CDF assumes Br(H+ → cs̄) = 1, while D0 adopts
the opposite hypothesis Br(H+ → τ+ντ ) = 1. Both experiments find upper bounds on
Br(t → H+b) around 0.2 (95% CL) for charged scalar masses between 60 to 155 GeV.
Searches in e+e− collisions at and above the Z pole have ruled out the existence of a
charged Higgs in the region MH± ≤ 45 GeV [5].

For neutral Higgs, the experiments in e+e− collisions mostly focus in the processes
e+e− → hZ, HZ (Higgs-strahlung) in the channels used for SM Higgs searches, and e+e− →
hA, HA with final states bb̄bb̄ and bb̄τ−τ+. In pp̄ collision experiments there are much
more possibilities; the main Higgs production processes are the gluon fusion, gg → h, the
Higgs production with a vector boson, W±h, Zh, or with a top quark pair, ht̄t, and the
vector boson fusion resulting in qqh or qq̄h. These different processes together with a large
integrated luminosity (LHC) provide a variety of search channels.

For a general 2HDM with CP violation the neutral sector is composed by h1, h2 and
h3, which are mass eigenstates with no defined CP parity. The PDG [5] collects some mass
limits for a “generic” h in extended Higgs models not necessarily belonging to a SUSY
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framework. For example, a search for Higgs bosons decaying into τ+τ− [49] in 2HDMs in
1.8 fb−1 of pp̄ collisions at Ecm = 1.96 TeV gives a lower bound for a neutral Higgs mass of
106 GeV at 95% CL. Apart from this, some other analysis are summarized in [5] (Searches
for Higgs Bosons), all of them give lower bounds from different processes on a neutral
Higgs boson mass around 100 GeV at 95%. Particular examples of this kind of analysis
from D0, DELPHI and OPAL can be found in [50–54].

A comment on Spontaneous CP violation

Spontaneous CP violation (SCPV) happens when a CP conserving Lagrangian becomes
CP violating after the SSB, i.e. CP is a symmetry of the original Lagrangian but it is
not for the vacuum. In the SM this phenomenon cannot occur because the complex VEV
can always be redefined as a CP invariant number [7]. A natural framework for SCPV is
the Weinberg model [55] when CP is assumed to be only spontaneously broken (Branco
model [7]). This is a three-Higgs-doublet model where CP is imposed at the Lagrangian
level through a discrete symmetry which is broken by the vacuum. In such a case, the
V matrix is real and CP violation comes from scalar particles exchanges. SCPV can also
be generated in a 2HDM. Provided that CP is imposed at the Lagrangian level, it can be
spontaneously broken if no other discrete symmetry is present; this is called Lee’s model
(see [7] for a complete review). The Yukawa couplings are real in the original Lagrangian,
but the relative phase between the VEVs of the two scalars appears in the quark mass
matrices generating a complex V .

3.2.2 Gauge boson interactions

The gauge structure in the 2HDM is the same as in the SM but just adding the interaction
of the second doublet. Actually, the gauge sector structure of the SM is easily recovered
by neglecting the interactions with the second doublet fields in the following formulation,
where the Higgs basis is used and the first doublet resembles the SM one.

The kinetic term in the Lagrangian of the scalar doublets (3.5) defines their interaction
with the gauge bosons through the covariant derivative,

Dµ ≡ ∂µ + igW̃µ + ig′Y Bµ, (3.23)

where W̃µ = σi

2 W i
µ, being σi the Pauli matrices, g and g′ are the usual weak coupling

constants which are related to each other and to the electromagnetic coupling constant by
the weak mixing angle: g sin θw = g′ cos θw = e. All the possible interactions between the
gauge and scalar fields can be written together as

LK + Lξ +
∑

a

(DµΦa)
† DµΦa = LV 2 + LΦ2 + LΦV + LΦ2V + LΦV 2 + LΦ2V 2 , (3.24)

where V indicates a gauge (vector) boson, LK is the usual gauge boson kinetic Lagrangian,

LK = −
1

4
BµνB

µν −
1

4
W i

µνW
µν
i (3.25)
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with Bµν = ∂µBν − ∂νBµ and W i
µν = ∂µW i

ν − ∂νW i
µ − gεijkW j

µW k
ν , and Lξ is the gauge

fixing term, which is convenient to take it as follows (ξ = 1),

Lξ = −
1

2
(∂µAµ)2 −

1

2

(
∂µZµ + MZG0

)2 −
(
∂µW †

µ + iMW G+
) (
∂νW

ν − iMW G−)
.(3.26)

The quadratic mixing terms between the gauge and Goldstone bosons generated by the
covariant derivative are exactly cancelled by (3.26), making LΦV = 0 and generating the
Goldstone bosons with masses MG± = MW = gv/2 and MG0 = MZ = MW / cos θw. The
other quadratic terms are,

LV 2 = −
1

2
(∂µAµ)2 −

1

2
(∂µZ

µ)2 − ∂µW †
µ ∂νW

ν +
1

2
M2

ZZµZ
µ + M2

W W †
µW µ , (3.27)

and

LΦ2 =
1

2
(∂µH ∂µH + ∂µh ∂µh + ∂µA ∂µA) + ∂µH

+ ∂µH−

+
1

2
∂µG0 ∂µG0 −

1

2
M2

Z

(
G0

)2
+ ∂µG+ ∂µG− − M2

W G+G− . (3.28)

The interaction terms between the gauge and scalar fields are then cubic and quartic:

LΦ2V = ie (Aµ + cot(2θw)Zµ)
[(

H+
↔
∂µ H−

)
+

(
G+

↔
∂µ G−

)]

+
e

sin(2θw)
Zµ

[(
G0

↔
∂µ S1

)
+

(
S3

↔
∂µ S2

)]

+
g

2

{
W µ†

[(
H− ↔

∂µ S3

)
− i

(
H− ↔

∂µ S2

)
+

(
G− ↔

∂µ G0
)

− i
(
G− ↔

∂µ S1

)]

+ h.c.} , (3.29)

LΦV 2 =
2

v
S1

(
1

2
M2

ZZµZ
µ + M2

W W †
µW µ

)

+
(
eMW Aµ − gMZ sin2 θwZµ

) (
G+Wµ + G−W †

µ

)
, (3.30)

and

LΦ2V 2 =
1

v2

(
1

2
M2

ZZµZ
µ + M2

W W †
µW µ

) (
H2 + h2 + A2 +

(
G0

)2
)

+

(
e2 [Aµ + cot(2θw)Zµ]2 +

g2

2
W †

µW µ

) (
G+G− + H+H−)

+
eg

2
(Aµ − tan θwZµ)

[
S1

(
G+Wµ + G−W †

µ

)
+ S2

(
H+Wµ + H−W †

µ

)]
.(3.31)
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3.2.3 Yukawa interactions

The most general Yukawa Lagrangian is given by

LY = − Q̄′
L(Γ1φ1 + Γ2φ2) d′

R − Q̄′
L(∆1φ̃1 +∆2φ̃2) u′

R

− L̄′
L(Π1φ1 +Π2φ2) l′R + h.c. , (3.32)

where Q′
L and L′

L denote the left-handed quark and lepton doublets and the prime indicates
that they are gauge eigenstates. All fermionic fields are written as NG-dimensional flavour
vectors; i.e., d′

R = (d′
R, s′R, b′R, · · · ) and similarly for u′

R, l′R, Q′
L and L′

L. The couplings
Γa, ∆a and Πa are NG × NG complex matrices in flavour space. In the Higgs basis, the
Lagrangian takes the form

LY = −
√

2

v

{
Q̄′

L(M ′
dΦ1 + Y ′

dΦ2)d
′
R + Q̄′

L(M ′
uΦ̃1 + Y ′

uΦ̃2)u
′
R

+ L̄′
L(M ′

lΦ1 + Y ′
l Φ2) l′R + h.c.

}
, (3.33)

where M ′
f (f = u, d, l) are the non-diagonal fermion mass matrices, while the matrices Y ′

f

contain the Yukawa couplings to the scalar doublet with zero vacuum expectation value.
In the basis of fermion mass eigenstates (see equation (2.5)) the Yukawa Lagrangian

can be written as

LY = −
{
ūLMuuR + d̄LMddR + l̄LMllR

+
1

v

(
ūLMuuR + d̄LMddR + l̄LMllR

)
S1

+
1

v
ūLYuuR (S2 − iS3) −

√
2

v
d̄LV †YuuR H−

+

√
2

v
ūLV YddR H+ +

1

v
d̄LYddR (S2 + iS3)

+

√
2

v
ν̄LYllR H+ +

1

v
l̄LYllR (S2 + iS3)

+ h.c.} , (3.34)

where Xf = SfX ′
fU

†
fS

†
f but now X ′ = M ′, Y ′, differently from the SM where X ′ was a single

matrix. Again, V ≡ SuS
†
d corresponds to the usual Cabibbo-Kobayashi-Maskawa mixing

matrix2. The unitary matrices Sf and Uf can be chosen such that Mf is a diagonal matrix
whose elements correspond to the masses of the fermions; however, Y ′

f are not necessarily
diagonalized simultaneously by the same choice, therefore Yf are in general non-diagonal
matrices and unrelated to the fermion masses, introducing a mixing also in the neutral sec-
tor. In this way, flavour-changing neutral couplings are naturally generated by the model

2In the 2HDM there are not right-handed neutrinos either, thus the left-handed fields can also be
redefined as ν̄L = ν̄′

LS†
l and consequently there is no mixing matrix analog to V in the charged lepton

sector.
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(non-suppressed) without any dynamical restriction. This represents a contradiction with
the experimental data, where FCNC phenomena appear strongly constrained, and there-
fore constitutes a second “disadvantage” of the general 2HDM: unbounded flavour-changing
interactions of the neutral scalars are allowed because the flavour structure of the model cou-
ples two different Yukawa matrices at the same time to a given right-handed fermion sector.

As was argued for the custodial symmetry, the problem is solved in some regions of the
parameter space, either fine-tunning those couplings or implementing ad-hoc dynamical
restrictions in the Lagrangian to guarantee their suppression at the required level. To this
aim, many models have been developed and can be classified in four main groups:

• Type III 2HDM

The use of some flavour symmetry generating a certain texture in the Yukawa matri-
ces leads to a phenomenologically viable model [56–62]. The most famous example
of this kind of approaches is the so-called Sher-Cheng approximation [57], where the
off-diagonal elements of the Yukawa matrices are forced to be proportional to the
mean of the fermion masses,

gij ∝ √
mimj . (3.35)

These models allow the discussion of suppressed FCNC phenomena, incorporating in
some cases possible new CP violating sources generated by the complex numbers in
the Yukawa matrices. The work developed in [63] shows the explicit form of a flavour
symmetry for generating different textures.

• Decoupling limit

Another obvious possibility is to require the new scalar bosons to be heavy enough to
suppress FCNCs at low energies. Although in this framework the phenomenological
impact is reduced, it is considered the most “natural” scenario for the general 2HDM.

• Z2-type models (I, II, X, Y and inert)

The standard way to avoid the FCNC problem is forcing one of the two Yukawa
matrices to be zero; i.e., imposing that only one scalar doublet couples to a given
right-handed fermion field [36]. This can be enforced implementing a discrete Z2

symmetry, such that

φ1 → φ1, φ2 → −φ2, QL → QL, LL → LL , (3.36)

and selecting appropriate transformation properties for the right-handed fermion
fields. There are four non-equivalent possible choices, giving rise to the so-called
type I (only φ2 couples to fermions) [64, 65], type II (φ1 couples to d and l, while φ2

couples to u) [65, 66], leptophilic or type X (φ1 couples to leptons and φ2 to quarks)
and type Y (φ1 couples to d, while φ2 couples to u and l) models [67–73]. All these



The two-Higgs-doublet model 35

cases make also the potential CP conserving. The explicit implementation of the Z2

symmetry differentiates one doublet from the other and, therefore, is not scalar-basis
invariant. In particular, if the Z2 symmetry is imposed in the Higgs basis, all fermions
are forced to couple to the field Φ1 in order to get non-vanishing masses. This inert
doublet model provides a natural frame for dark matter [42–45]; note however that
although Φ2 does not couple to fermions, it does have electroweak interactions.

The minimal supersymmetric extension of the SM corresponds at tree level with the
type II 2HDM, which is the default version adopted in the majority of phenomeno-
logical analyses. The use of discrete symmetries guarantees the absence of FCNCs in
the Yukawa sector, but eliminates at the same time the possibility to have additional
CP-violating phases beyond the SM.

• Aligned 2HDM

A softer and more general way to avoid tree-level FCNC interactions is to require
the alignment in flavour space of the Yukawa couplings of the two scalar doublets
[74]. While this is also an ad-hoc constraint, lacking a proper dynamical explanation
(probably coming from a more fundamental high-energy theory), it leads to a much
more general framework which contains as particular cases all known 2HDMs based
on Z2 symmetries. All possible freedom in the Yukawa sector gets parametrized in
terms of three complex couplings; their phases being possible new sources of CP
violation.

In this thesis we will first present some features about the general 2HDM in Chapter
4, in particular, we will perform a general discussion about lepton flavour violation (LFV),
which is allowed in this case. In Chapter 5 and Chapter 6, we will discuss further the
general structure of this new aligned 2HDM (A2HDM) together with some relevant phe-
nomenological implications. And finally, in Chapter 7, we will study also the 2HDM in the
presence of an extra U(1) gauge boson, generating a framework similar to the inert model.





Chapter 4

The general two-Higgs-doublet model:

LFV tests

4.1 Introduction

One of the most important features of the general 2HDM is the presence of flavour-changing
neutral currents (FCNCs) at tree level. Contrary to the SM, which predicts diagonal
neutral couplings in agreement with the experimental data (processes like µ → eee have
never been observed), the 2HDM has to deal with these strongly constrained phenomena.
However, under a different point of view, this “handicap” can also be interpreted as a
positive feature of the model. FCNC interactions do not seem to violate any fundamental
law of nature, they are only prohibited in the quark sector at tree level. Experimentally,
the constraints are very tight, but on the other hand, in the leptonic sector they are easier
to accommodate. Therefore, one can think that FCNCs make the model more versatile,
providing more freedom. If FCNC signals are detected, the SM will not be able to fit them,
while models like the general 2HDM would become a natural framework.

The up-to-date experimental bounds on these processes can be used to restrict the
parameter space of the general 2HDM. Such analysis has not been performed systematically,
but only taking the model to some limits (for an overview of the allowed parameter space in
these limits see [75–79] and references therein). This is due to the large amount of degrees
of freedom. In the quark sector it is rather difficult because there are two new Yukawa
matrices, Yu and Yd, involved (see the Yukawa interactions in equation (3.34)) and the
flavour structure is quite complicated. In the leptonic sector there is only one free Yukawa
matrix, Yl, due to the absence of right-handed neutrinos. Lepton flavour violation (LFV)
is therefore the simplest flavour-changing neutral phenomenon that can be found in the
model.

Motivated by that fact, we present in this chapter a general analysis [80] about LFV,
focused on the study of different operators (scalar, vector and dipole) that could describe
this kind of interactions. The analysis is of great interest for the general 2HDM, since
it contributes with the scalar operator. We exploit the possibility of having some experi-
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ments at low energies, whose results would allow us to discriminate among different models
(operators). Those experiments are based in the µ → e conversion in some nuclei.

4.2 The model discriminating power of µ → e conversion

in nuclei

Lepton flavour violating decays of charged leptons provide a theoretically clean probe of
physics beyond the Standard Model (SM), due to the un-observably small branching frac-
tions (∼ 10−50) within the SM, minimally extended to include massive neutrinos. Searches
for SM forbidden muon processes, such as µ → eγ, µ → eēe, and µ → e conversion
in nuclei, have provided so far the strongest constraints on LFV dynamics, with 90%
C.L. upper limits given by Bµ→eγ < 1.2 × 10−11 [81], Bµ+→e+e−e+ < 1.0 × 10−12 [82],
Bµ→e(Au) < 8 × 10−13 [83], Bµ→e(Ti) < 4.3 × 10−12 [84], Bµ→e(Pb) < 4.6 × 10−11 [85] 1.

It is a well known fact that while the decay µ → eγ is only sensitive to a transition
magnetic dipole operator, both µ → eēe and µ → e conversion in nuclei are sensitive
to transition charge radii operators as well as purely contact four-fermion interactions
induced by physics beyond the SM. In other words, different LFV decays have different
sensitivities to underlying LFV mechanisms (effective operators). This leads naturally to
ask the question whether one could infer the relative strength of these different operators
in a completely phenomenological and model-independent way. This would allow one to
discriminate among different underlying models of LFV and thus would provide valuable
input for model building.

In Ref. [86] it was pointed out that in principle, by combining the rates of µ → eγ and
µ → e conversion on different target nuclei, one could obtain information on underlying
models. There are three types of effective operators that contribute to the coherent µ → e
conversion process: the dipole, the vector, and the scalar operators. In the non-relativistic
approximation of the muon wave function, the three operators give the same form of
overlapping integrals among the wave functions of the initial muon and the final electron
and the nucleon density in the target nuclei. However, as the relativistic and finite nuclear
size effects become important for heavy nuclei [86–88], the transition amplitudes for the
three operators show different dependences on the atomic number Z. The relative numbers
of neutrons and protons also change as Z increases. This fact helps to find out if the lepton-
flavour-violating operators couples to up-type or down-type quarks again by looking at the
target atom dependence. In this work [80] we go back to this issue with the aim to:

• quantify the theoretical uncertainty induced by the quark scalar density matrix ele-
ments in the nucleon;

• quantify the experimental precision required to realistically infer useful information
on the underlying LFV mechanisms.

1Bµ→e(Z, A) represents the ratio of µ → e conversion rate over muon capture rate, namely Γconv(Z,A)
Γcapt(Z,A) .
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We organize our discussion as follows: in Section 4.3 we review the derivation of the µ →
e conversion rate starting from a general effective theory description of the LFV physics. In
Section 4.4 we explore the phenomenological consequence of the simplest possible models,
in which only one effective LFV operator dominates. We extend this analysis in Section
4.5 to the class of models in which two operators dominate. In Section 4.6 we specialize
our discussion to a supersymmetric (SUSY) model and summarize the conclusions of our
analysis in Section 4.7.

4.3 LFV effective interaction and the µ → e conversion

rate

In this section we review the procedure to calculate the rate of the µ → e conversion in
nuclei, starting from a general parameterization of new physics effects via effective operators
at a scale Λ larger than the electroweak scale v 2 174 GeV.

4.3.1 Effective Lagrangian

We start with the most general effective Lagrangian which describes LFV transitions be-
tween charged leptons of first and second families at the weak scale:

L(q)
eff = −

1

Λ2

[

(CDRmµ ēσρνPLµ + CDLmµ ēσρνPRµ) Fρν

+
∑

q

(
C(q)

V R ēγρPRµ + C(q)
V L ēγρPLµ

)
q̄γρq

+
∑

q

(
C(q)

SRmµmqGF ēPLµ + C(q)
SLmµmqGF ēPRµ

)
q̄q

+ (CGRmµGF ēPLµ + CGLmµGF ēPRµ)
βH

2g3
s

Gρν
a Ga

ρν + h.c.

]

. (4.1)

We have not included operators involving q̄γργ5q, q̄γ5q, or q̄σρνq since they do not contribute
to the coherent conversion processes. In the above expression Λ represents the scale where
new physics effects appear. We take Λ ≡ 1 TeV in this analysis. The CAB’s are dimension-
less constants containing information about the underlying theory; the subindexes R, L
correspond to the chirality of the final electron which is determined by PR,L = (1±γ5)/2, q
are light and heavy quarks. The field strength of the photon and the gluon are defined by
Fρν = ∂ρAν − ∂νAρ and Ga

ρν = ∂ρGa
ν − ∂νGa

ρ − fabcGb
ρG

c
ν , respectively. The normalization

is chosen so that the kinetic terms are given by −(1/4)FF and −(1/4g2
s)G

aGa. The σ
matrix is defined by σρν = i

2 [γ
ρ, γν ]. GF = 1/(

√
2v2) is the Fermi constant, while mµ

and mq represent the muon and running quark masses at µ = Λ, respectively. We have
introduced the running quark masses and the beta function of the QCD coupling constant,
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β = (g3
s/16π2)(11 − 2NF/3), so that the coefficients C’s do not depend on the renormal-

ization scale under QCD running at 1-loop level. The notation βH,L is used to distinguish
the Lagrangian with all quarks contributions (H) from the one where heavy quarks are
integrated out (L). The Lagrangian in Eq. (4.1) describes three kind of interactions that
violate the lepton flavour: The effective interaction with a photon (Dipole term), the effec-
tive interaction with quarks (Scalar and Vector terms) and the effective interaction with
gluons (Gluon term).

In order to evaluate the µ → e conversion rate, it is appropriate to use the effective La-
grangian at the nucleon level [89]. We first integrate out the heavy quarks before matching
to the nucleon level Lagrangian. It can be straightforwardly done by using the matching
of the trace anomaly [90]. The Lagrangian is given by

L(q′)
eff = −

1

Λ2

[

(CDRmµ ēσρνPLµ + CDLmµ ēσρνPRµ)Fρν

+
∑

q=u,d,s

(
C(q)

V R ēγρPRµ + C(q)
V L ēγρPLµ

)
q̄γρq

+
∑

q=u,d,s

(
C(q)

SRmµmqGF ēPLµ + C(q)
SLmµmqGF ēPRµ

)
q̄q

+ (CGQRmµGF ēPLµ + CGQLmµGF ēPRµ)
βL

2g3
s

Gρν
a Ga

ρν + h.c.

]

, (4.2)

where βL is the beta function of three-flavour QCD. The new coefficients of the gluon terms
are expressed in terms of the original Lagrangian parameters as follows:

CGQR =
∑

Q=c,b,t

C(Q)
SR κQ + CGRκ ,

CGQL =
∑

Q=c,b,t

C(Q)
SL κQ + CGLκ , (4.3)

where

κQ =
∆(β/g3

s)

(β/g3
s)L

=
27

2
, κ =

(β/g3
s)H

(β/g3
s)L

=
7

9
, (4.4)

being ∆(β/g3
s) ≡ 1

3 [(β/g3
s)L − (β/g3

s)H ]. The Lagrangian (4.2) can be evolved with the
renormalization group down to energy scales of the order of µ ∼ 1 GeV, by simply taking
the quark masses and gauge coupling constants in the Lagrangian to be the running ones
at µ ∼ 1 GeV. At this low scale, we match to the effective Lagrangian written in terms of
the relevant degrees of freedom, namely nucleons, leptons, and photons. That can be done
by the following replacements of operators:

mq q̄q → f (q)
SN mN ψ̄NψN ,

q̄γρq → f (q)
V N ψ̄NγρψN ,

βL

2g3
s

GG → fGN mN ψ̄NψN . (4.5)
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where N represents each nucleon (N = p, n), ψN are the nucleon fields, and f ’s are nucleon
form factors. The form factors depend in principle on the momentum transfer, which we
will neglect as it is smaller than the typical scale of the nucleon structure. The fact that
〈N |θα

α|N〉 = mN 〈N |ψ̄NψN |N〉, where θα
α is the trace of the energy momentum tensor,

θα
α =

∑

q′=u,d,s

mq′ q̄′q′ +
∑

Q=c,t,b

mQ Q̄Q +
βH

2g3
H

Gρν
a Ga

ρν , (4.6)

implies the simple sum-rule

1 =
∑

q=u,d,s

f (q)
SN + fGN , (4.7)

which we use to eliminate the form-factor fGN in terms of the scalar nucleon form factors
f (q)

SN . The nucleon vector form factors are known from the vector current conservation,

f (u)
V p = 2 f (u)

V n = 1 ,

f (d)
V p = 1 f (d)

V n = 2 ,

f (s)
V p = 0 f (s)

V n = 0 ,

(4.8)

while the calculation of the scalar form factors f (q)
SN is non-trivial. As discussed below, in

our analysis we will use input from Chiral Perturbation Theory and the lattice QCD to
asses the impact of current and future uncertainties on the conversion rate.

Collecting the above results, the Lagrangian at nucleon level can be written as

L(N)
eff = −

1

Λ2

∑

N=p,n

[

(CDRmµ ēσρνPLµ + CDLmµ ēσρνPRµ)Fρν

+
(
C̃(N)

V R ēγρPRµ + C̃(N)
V L ēγρPLµ

)
ψ̄NγρψN

+ GFmµmN

(
C̃(N)

SR ēPLµ + C̃(N)
SL ēPRµ

)
ψ̄NψN + h.c.

]

. (4.9)

The new effective couplings C̃’s contain the information about the underlying theory as
well as the form factors. The vector couplings are:

C̃(p)
V R =

∑

q=u,d,s

C(q)
V R f (q)

V p , (4.10)

C̃(n)
V R =

∑

q=u,d,s

C(q)
V R f (q)

V n , (4.11)

C̃(p)
V L =

∑

q=u,d,s

C(q)
V L f (q)

V p , (4.12)

C̃(n)
V L =

∑

q=u,d,s

C(q)
V L f (q)

V n , (4.13)
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while the scalar ones read:

C̃(p)
SR =

∑

q=u,d,s

C(q)
SR f (q)

Sp + CGQR (1 −
∑

q=u,d,s

f (q)
Sp ) , (4.14)

C̃(n)
SR =

∑

q=u,d,s

C(q)
SR f (q)

Sn + CGQR (1 −
∑

q=u,d,s

f (q)
Sn ) , (4.15)

C̃(p)
SL =

∑

q=u,d,s

C(q)
SL f (q)

Sp + CGQL (1 −
∑

q=u,d,s

f (q)
Sp ) , (4.16)

C̃(n)
SL =

∑

q=u,d,s

C(q)
SL f (q)

Sn + CGQL (1 −
∑

q=u,d,s

f (q)
Sn ) . (4.17)

4.3.2 Transition rates

The nucleon-level effective Lagrangian can be used to take matrix elements at the atomic
and nuclear level. In the non-relativistic approximation, the relevant matrix elements are

〈A, Z|ψ̄pψp|A, Z〉 = Zρ(p) ,

〈A, Z|ψ̄nψn|A, Z〉 = (A − Z)ρ(n) ,

〈A, Z|ψ̄pγ
0ψp|A, Z〉 = Zρ(p) ,

〈A, Z|ψ̄nγ
0ψn|A, Z〉 = (A − Z)ρ(n) ,

〈A, Z|ψ̄Nγ
iψN |A, Z〉 = 0 . (4.18)

Here |A, Z〉 represents the nuclear ground state, with A and Z the mass and atomic number
of the isotope, while ρ(p) and ρ(n) are the proton and neutron densities respectively. The
conversion rate of the process is written as

Γconv =
m5

µ

4Λ4

∣∣∣CDR D + 4GFmµ

(
mpC̃

(p)
SRS(p) + mnC̃(n)

SR S(n)
)

+ C̃(p)
V R 4V (p) + C̃(n)

V R 4V (n)
∣∣∣
2

+
m5

µ

4Λ4

∣∣∣CDL D + 4GF mµ

(
mpC̃

(p)
SLS(p) + mnC̃(n)

SL S(n)
)

+ C̃(p)
V L 4V (p) + C̃(n)

V L 4V (n)
∣∣∣
2

(4.19)

in terms of the dimensionless integrals D, V (N), S(N), representing the overlap of electron
and muon wavefunctions weighted by appropriate combinations of protons and neutron
densities [86]. For phenomenological applications, it is useful to normalize the conversion
rate to the muon capture rate, introducing the quantity:

Bµ→e(Z) ≡
Γconv(Z, A)

Γcapt(Z, A)
. (4.20)

Finally, we note here the branching ratio for the purely radiative process µ → eγ in
terms of the effective couplings defined above:

Bµ→eγ ≡
Γ(µ → eγ)

Γ(µ → eνµν̄e)
=

48π2

G2
F Λ

4

(
|CDR|2 + |CDL|2

)
. (4.21)
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4.3.3 Sources of uncertainty

There are two sources of uncertainty in the calculation of the transition rate: (i) scalar
form factors and (ii) neutron density (for high Z nuclei). The latter uncertainty has been
carefully discussed in Ref. [86], where several approaches to determine the neutron density
have been reviewed and used in the calculation of the overlap integrals. Whenever data
from polarized proton scattering exists, the uncertainty on the overlap integrals S(n) and
V (n) can be reduced to a few percent even for heavy nuclei such as Pb. Otherwise, it should
be considered to be of the order of 10%. In this work we focus on the uncertainty induced
by the scalar density matrix elements in the nucleon.

The scalar form factors defined in Eq. (4.5) can be re-expressed in terms of ratio of
quark masses and ratios of nucleon matrix elements as follows [91]:

f (u)
Sp =

mu

mu + md
(1 + ξ)

σπN

mp
, (4.22)

f (d)
Sp =

md

mu + md
(1 − ξ)

σπN

mp
, (4.23)

f (s)
Sp =

ms

mu + md
y
σπN

mp
, (4.24)

f (u)
Sn =

mu

mu + md
(1 − ξ)

σπN

mp
, (4.25)

f (d)
Sn =

md

mu + md
(1 + ξ)

σπN

mp
, (4.26)

f (s)
Sn =

ms

mu + md
y
σπN

mp
, (4.27)

where

σπN =
mu + md

2
〈p|ūu + d̄d|p〉 , (4.28)

ξ =
〈p|ūu − d̄d|p〉
〈p|ūu + d̄d|p〉

, (4.29)

y =
2〈p|s̄s|p〉

〈p|ūu + d̄d|p〉
. (4.30)

Information on the above matrix elements can be obtained from πN scattering data,
from an analysis of the octet baryon masses within Heavy Baryon Chiral Perturbation
Theory, or from Lattice QCD.

For the σ-term, we will use the lattice result [92]

σπN = (53 ± 2(stat)+21
−7 (syst)) MeV , (4.31)

whose uncertainty covers determinations from πN scattering [93–95], from ChPT analysis
of baryon masses [96], as well as from previous lattice analyses [97, 98]. For the ratio
measuring isospin-breaking, we will use [91, 99]:

ξ = 0.132 ± 0.035 . (4.32)
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For the ratio y quantifying the strange quark content of the nucleon, the situation is less
clear. A Chiral Perturbation Theory analysis gives the range y = 0.21±0.2 [96]. The large
uncertainty reflects the poor knowledge of the relevant low-energy constants, even within
resonance saturation (the matching renormalization scale is arbitrary). A recent lattice
QCD analysis [92] of the matrix element 〈N |s̄s|N〉 within the overlap fermion formulation
with two dynamical flavours leads to

y = 0.030 ± 0.016(stat)+0.006
−0.008(extrap)+0.001

−0.002(ms) . (4.33)

This result is obtained from the lattice matrix element 〈N |s̄s|N〉 by dividing out the
sigma-term as calculated in the same lattice simulation. Therefore, the uncertainty in
f (s)

SN ∝ y × σπN is controlled by Eq. (4.33), with σπN = 53 MeV simply providing the
normalization. The lattice result is consistent with the Chiral Perturbation Theory range,
although suggesting a much smaller strange content of the nucleon. The difference with
respect to previous lattice results has been attributed to a lattice artifact (mixing with
wrong chirality operator) in the Wilson fermion approach. The uncertainty on this value
is at the moment dominated by statistics.

For the purpose of this work, we will vary the parameter y within both a “conservative”
range and an “optimistic” range. For the conservative range we take y ∈ [0, 0.4], which
coincides with the ChPT range of Ref [96]. For the optimistic range we take y ∈ [0, 0.05]
which reflects more closely the recent JLQCD result [92] and seems a realistic guess of the
uncertainty that will be reached by lattice calculations in the next decade.

Finally, for the ratios of quark masses, we use the the input [100]

mu

md
= 0.553 ± 0.043 , (4.34)

ms

md
= 18.9 ± 0.8 . (4.35)

4.4 Testing the single operator dominance hypothesis

We now turn to illustrate the model discriminating power of a combined phenomenological
analysis of µ → eγ and µ → e conversion on different target nuclei. In order to organize
the discussion, we define here four classes of models, in which only one underlying short
distance operator dominates over all the others. We call these four classes of models the
“single-operator” dominance models. We will first analyze this simplest class of models and
then consider the more involved case in which two operators have comparable strengths
and interference effects cannot be neglected.

4.4.1 Dipole, Vector and Scalar models

• Dipole model

The Dipole model is defined by the assumption that, among all LFV short-distance
operators, the dipole operator is the dominant one. For simplicity, we focus on the
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case in which the outgoing lepton has definite chirality2. Explicitly, in terms of the
effective couplings defined in Eq. (4.1), this class of models is defined by:

CD ≡ CDR )= 0 , Celse = 0 . (4.36)

Most supersymmetric scenarios, including SUSY-GUT models [101–103] and SUSY
see-saw models [104, 105] fall in this class of models.

• Vector model 1: V (γ)

This model is defined by the assumption that the transition charge radius operator
gives the dominant contribution to the LFV lagrangian. The model is defined by

CV ≡ C(u)
V R = −2 C(d)

V R )= 0 , Celse = 0 , (4.37)

and is explicitly realized in large regions of the Left-Right symmetric model parameter
space [106]. In this model C̃(p)

V R )= 0, while C̃(n)
V R = 0.

• Vector model 2: V (Z)

The Vector model 2 is defined by the assumption that the underlying dominant
operator is an effective Z-penguin. The ratios of couplings of different quarks is
governed by the couplings of the Z0 coupling to quarks. The model is defined by:

CV ≡ C(u)
V R =

C(d)
V R

a
)= 0 , Celse = 0 , (4.38)

where a is the ratio of the down and up quarks coupling to the Z-boson:

a =
T 3

dL
+ T 3

dR
− (QdL

+ QdR
) sin2 θW

T 3
uL

+ T 3
uR

− (QuL
+ QuR

) sin2 θW
= −1.73 . (4.39)

With this value of a (corresponding to sin2 θW = 0.223) we obtain C̃(n)
V R/C̃(n)

V R = −9.26,
in contrast to the V (γ) model.

• Scalar model

This model is the general case of the 2HDM, in which scalar operators mediate the
interactions. It is defined by:

CS ≡ C(d)
SR = C(s)

SR = C(b)
SR )= 0 , Celse = 0 . (4.40)

This model may be explicitly realized in some regions of the usual R-parity conserving
SUSY see-saw parameter space [107] (large tanβ and relatively low "heavy" Higgs
sector) and within R-parity violating SUSY [108–111].

2Allowing for the presence of outgoing leptons with both chiralities (e.g. both CDR )= 0 and CDL )= 0)
would not change the conclusions of the single-operator analysis of this section.
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Figure 4.1: The y-parameter dependence of the conversion branching ratio in the scalar
model.

Among the above models, the scalar model suffers from the uncertainty in the y param-
eter. We show in Fig. 4.1 the y-parameter dependence of the conversion branching ratio.
The uncertainty is quite large if we take the conservative range, y ∈ [0, 0.4].

Each of the above classes of models has only one free parameter – the ratio Ci/Λ2 of
the dominant effective coupling over the square of the new physics scale. It is clear, then,
that the single-operator dominance hypothesis makes parameter-free predictions for ratios
of LFV branching fractions and therefore it can be tested so long as two LFV rates are
measured. We will discuss how well one can distinguish models in the presence of the
theoretical uncertainties.

4.4.2 µ → eγ vs µ → e conversion

If µ → eγ and µ → e conversion in at least one target nucleus are observed, this immedi-
ately opens up the possibility to test the Dipole dominance model. In fact, in this model
the ratio

R(Z) =
Bµ→e(Z)

Bµ→eγ
(4.41)

is entirely fixed by the overlap integrals D [86], which are essentially free of theoretical
uncertainty. R(Z) is predicted to scale as O(α/π) and we plot it in Fig. 4.2. We omit
from the plot the points corresponding to 166

68 Er, 181
73 Ta, and 197

79 Au, as data on the nucleon
densities are either obtained from quite old experiments or not well established [112, 113].
Any deviation from the pattern shown in Fig. 4.2 would imply the presence of scalar
or/and vector contributions. In order to disentangle these possibilities, one needs to study
the target dependence of the conversion rate.
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Figure 4.2: Ratio R(Z) of µ → e conversion over B(µ → eγ) versus Z in the case of Dipole
dominance model.

4.4.3 Target dependence of µ → e conversion

In principle, any single-operator model can be tested with two conversion rates, even if
µ → eγ is not observed. To illustrate this point, we update the analysis of Ref. [86] and
plot in Fig. 4.3 the conversion rate (normalized to the rate in Aluminum) as a function of
the Z of the target nucleus, for the four classes of single-operator models defined above.
Compared to Ref. [86], the novelty here is the inclusion of a second vector model (V (Z)).

The results of Fig. 4.3 show some noteworthy features. First, we note the quite different
target dependence of the conversion rate in the two vector models considered. This can
be understood as follows: in the case of the V (γ) model, the behavior in Fig. 4.3 simply
traces the Z-dependence of V (p) (the photon only couples to the protons in the nucleus).
On the other hand, in the case of the V (Z) model, the Z boson couples predominantly to
the neutrons in the nucleus and the target dependence of the ratio V (n)/V (p) ∼ (A − Z)/Z
generates the behavior observed in Fig. 4.3.

Next, let us focus on the actual discriminating power of the Z-dependence. Clearly,
the plot shows that the model-discriminating power tends to increase with Z. This is
a simple reflection of the fact that the whole effect is of relativistic origin and increases
in heavy nuclei. So in an ideal world, in order to maximize the chance to discriminate
among underlying models, one would like to measure the conversion rate in a light nucleus,
say Aluminum or Titanium, as well as in a large-Z nucleus, like Lead or Gold. This
simplified view, however, has to be confronted both with theoretical uncertainties and the
actual experimental feasibility. Concerning the uncertainties, a simple analysis shows that
the dominant uncertainty coming from the scalar matrix elements almost entirely cancels
when taking ratios of conversion rates (even using the conservative range y ∈ [0, 0.4] for
the strange scalar density matrix element). Moreover, in the large-Z tail of the plot,
some residual uncertainty arises from the input on the neutron density profile. When
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Figure 4.3: Target dependence of the µ → e conversion rate in different single-operator
dominance models. We plot the conversion rates normalized to the rate in Aluminum
(Z = 13) versus the atomic number Z for the four theoretical models described in the
text: D (blue), S (red), V (γ) (magenta), V (Z) (green). The vertical lines correspond to
Z = 13 (Al), Z = 22 (Ti), and Z = 83 (Pb).

polarized proton scattering data exists, the uncertainty on the ratios of conversion rates
becomes negligible. This point is illustrated by Table 4.1, where we report the detailed
breakdown of uncertainties in the ratios Bµ→e(Ti)/Bµ→e(Al) and Bµ→e(Pb)/Bµ→e(Al). For
other targets, the uncertainty induced by neutron densities never exceeds 5% [86]. The
conclusions of this exercise are that:

• The theoretical uncertainties (scalar matrix elements and neutron densities) largely
cancel when we take a ratio.

• As evident from Fig. 4.3, a realistic discrimination among models requires a measure
of Bµ→e(Ti)/Bµ→e(Al) at the level of 5% or better, or alternatively a measure of
Bµ→e(Pb)/Bµ→e(Al) at the 20% level. These are two cases that well represent the
trend in light and heavy target nuclei.
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S D V (γ) V (Z)

B(µ→e,Ti)
B(µ→e,Al) 1.70 ± 0.005y 1.55 1.65 2.0
B(µ→e,Pb)
B(µ→e,Al) 0.69 ± 0.02ρn 1.04 1.41 2.67 ± 0.06ρn

Table 4.1: Ratios of conversion rates in Titanium and Lead over Aluminum, in each of
the four single-operator models: scalar (S), dipole (D), vector 1 (photon coupling to the
quarks) and vector 2 (Z boson coupling to the quarks). In the scalar model, the scalar
form factor induces a negligible uncertainty in the ratios involving two targets (denoted by
the subscript y). In the case of Lead over Aluminum, the small uncertainty is dominated
by the neutron density input (denoted by the subscript ρn).

4.5 Testing the two-operator dominance hypothesis

In the last section we have discussed how to test the hypothesis of a single operator dom-
inance, and how to discriminate among different single-operator dominance models. If
the single operator dominance hypothesis fails, one is lead to consider the next simplest
case, namely the two-operator dominance models, defined by the assumption that only two
underlying operators have appreciable coefficients. Each model is characterized by two pa-
rameters, the effective strength C1/Λ2 of one of the two operators and the ratio C2/C1 of
the effective couplings of the two dominant operators. This class of models can be tested
so long as two double ratios of LFV rates are available (three LFV measurements!).

For the sake of illustration, we will consider the following three two-operator models:
Dipole-Scalar, Dipole-Vector(Z) and Scalar-Vector(Z). We consider both the case of con-
structive and destructive interference among the two dominant operators, assuming that
the ratio of Wilson coefficients r ≡ C2/C1 is real (a relative phase can be included but
it would unnecessarily complicate the analysis at this early stage). In order to test this
class of models, one has to assume that at least three LFV processes have been observed,
so one can construct two independent double ratios that are entirely determined by the
single parameter r. In models involving the Dipole operator among the dominant terms
(such as Dipole-Scalar and Dipole-Vector) the three observables could be (i) µ → eγ and
µ → e conversion in two different targets; or (ii) µ → e conversion in three different targets.
In models that do not involve a Dipole term (such as Scalar-Vector), only the possibility
(ii) above is available. As representative target nuclei, we have chosen aluminum (Al),
titanium (Ti), and lead (Pb).

4.5.1 Dipole-Scalar

In terms of the parameters introduced in Section 4.4.1, this model is defined by CS )= 0
and CD ≡ ± r

8e CS. The single-operator models are recovered in the limiting cases r → 0



50 4.5. Testing the two-operator dominance hypothesis

(scalar) and r → ∞ (dipole) 3. Note that in this particular case the asymptotic dipole
regime is reached already for r * 1 because of the peculiar normalization of the scalar
operators (suppressed by the factor GFmqmµ).

We illustrate the features of this model in Figs. 4.4 and 4.5, which correspond to
positive and negative sign of the ratio CD/CS, respectively. Panel (a) shows the behav-
ior of Bµ→e(Al)/Bµ→eγ versus the parameter r, while panels (b) and (c) show the ratios
Bµ→e(Pb)/Bµ→e(Al) and Bµ→e(Ti)/Bµ→e(Al), respectively. In panels (a) and (c) the curve
is widened in the interference region by the uncertainty in the scalar form factors. The
dominant uncertainty comes from the input parameter y, characterizing the strangeness
content of the nucleon. On the other hand, the ratio Bµ→e(Pb)/Bµ→e(Al) is affected not
only by the uncertainty in the scalar form factors, but also by the uncertainty induced in
the overlap integral by the neutron density in Pb. The width of the bands in panel (b) is
determined by the most conservative combination of two kinds of uncertainties.

In all panels the wide band corresponds to the range y ∈ [0, 0.4], while the narrow band
corresponds to the range y ∈ [0, 0.05]. This illustrates the effect of current and future
hadronic uncertainties on the process of extracting information on short distance LFV
couplings. The prominent feature in Fig. 4.5 is induced by the destructive interference
dipole and scalar amplitudes.

4.5.2 Dipole-Vector

In terms of the parameters defined in Section 4.4.1, this model is defined by CV )= 0 and
CD ≡ ± r

8e CV . The single-operator models are recovered in the limiting cases r → 0
(vector) and r → ∞ (dipole). In figures 4.6 and 4.7 we plot the ratios Bµ→e(Al)/Bµ→eγ

(panel (a)), Bµ→e(Pb)/Bµ→e(Al) (panel (b)), and Bµ→e(Ti)/Bµ→e(Al) (panel (c)) versus
the parameter r. Figures 4.6 and 4.7 correspond to positive and negative sign of the ratio
CD/CV , respectively. Within this model, the only source of uncertainty arises from the
vector overlap integral V (n)(Pb), sensitive to the neutron density in Pb. This uncertainty
is quantified by the thickness of the band in panel (b).

4.5.3 Scalar-Vector

In terms of the parameters defined in Section 4.4.1, this model is defined by CV )= 0 and
CS ≡ ±r CV . The single-operator models are recovered in the limiting cases r → 0 (vector)
and r → ∞ (scalar). Since the Dipole term is assumed to be subdominant, in this case we
include in the analysis only the ratios Bµ→e(Pb)/Bµ→e(Al) and Bµ→e(Ti)/Bµ→e(Al), shown
in panels (b) and (c) of Figures 4.8 and 4.9 (for positive and negative values of CS/CV ,
respectively). While the ratio Bµ→e(Ti)/Bµ→e(Al) is affected only by the uncertainty in y,
the ratio Bµ→e(Pb)/Bµ→e(Al) is affected also by the uncertainty in the Pb neutron density

3We consider here the case in which dipole and scalar operators produce outgoing lepton with definite
chirality (L or R). If both chiralities are allowed, then in principle CDR/CSR )= CDL/CSL and one more
parameter has to be introduced in the analysis.
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(through the overlap integrals). The width of the bands in the plots is determined by the
most conservative combination of two kinds of uncertainties.

In all panels the wide band corresponds to the range y ∈ [0, 0.4], while the narrow
band corresponds to the range y ∈ [0, 0.05]. As in the case of the Dipole-Scalar model, the
bands illustrate the effect of current and future hadronic uncertainties on extracting short
distance LFV couplings.

We conclude this section by summarizing what one could learn about the two-operator
dominance models in the case that two double ratios of LFV rates could be measured
experimentally. Our exercise shows that:

• The current theoretical uncertainty on the strange content of the nucleon prevents a
realistic test of the two-operator models involving the Scalar amplitude. The range
y ∈ [0, 0.4] induces uncertainties of up to one order of magnitude in the relevant
double ratios in the interference region (thick bands in all plots above). However,
the uncertainty within reach of lattice QCD calculations will remove this obstacle in
the coming years (this is illustrated by the thin bands in all plots above).

• Testing and discriminating among two-operator dominance models requires an ex-
perimental precision on the LFV rates that is comparable to the one needed to test
the single operator models.

4.6 Application to a SUSY model

An example of the two-operator dominance model is given by a SUSY scenario with flavour
mixing in the left-handed sleptons. Such a mixing, for example, can be induced from the
Yukawa interaction in the see-saw model. As it is shown in Ref. [107], the scalar operator
originated from the Higgs-boson-exchange diagrams can be sizable in this model if tanβ
is large and the heavy Higgs boson is relatively lighter than the other SUSY particles.
The ratio Bµ→e(Al)/Bµ→eγ can therefore be enhanced in such a parameter region, while
the ratio Bµ→e(Pb)/Bµ→e(Al) can show substantial deviations from the dipole-dominance
value.

In Fig. 4.10 we show the pseudoscalar-Higgs mass (mA) dependence of the ratio for
µ > 0 (left) and µ < 0 (right). We have taken the common mass (mSUSY = 1 TeV) for
the slepton masses, the universal gaugino mass at the GUT scale, and the Higgsino mass
parameter, and we fixed tan β = 60. Since the scalar operator does not decouple in the
mSUSY → ∞ limit, we see the enhancement in the small mA region. The light (dark) shaded
regions correspond to the conservative (optimistic) range of the y parameter, y ∈ [0, 0.4]
(y ∈ [0, 0.05]). Within the same framework, the ratio Bµ→e(Pb)/Bµ→e(Al) is shown in
Fig. 4.11.

In both cases, the theoretical uncertainty becomes significant as the scalar operator gets
important. In the context of this explicit supersymmetric model, a precise determination
of the y parameter is quite important in order to extract information on the underlying
model parameters. To illustrate this even more explicitly, in Fig. 4.12 we show for µ > 0
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the mA dependence of Bµ→e(Al)/Bµ→eγ (left) and Bµ→e(Pb)/Bµ→e(Al) (right) for different
values of tanβ = 40, 50, 60. In these plots, only the small uncertainty window is reported
(y ∈ [0, 0.05]), to illustrate the enhanced discriminating power.

4.7 Conclusions

In this Chapter we have investigated whether the target-dependence of µ-to-e conversion
rate can be exploited to discriminate among underlying dynamical mechanisms of lepton
flavour violation, once one takes into account realistic hadronic and nuclear uncertainties.
The major source of theoretical uncertainty arises from the nucleon matrix element of the
strange quark scalar density. This is expressed in terms of the parameter y (see Eq. (4.30)),
which we have varied within two ranges reflecting the current uncertainty (y ∈ [0, 0.4]) and
the projected uncertainty within reach of lattice QCD calculations (y ∈ [0, 0.05]).

In order to assess the model discriminating power of a combined phenomenological
analysis of µ → eγ and µ → e conversion on different target nuclei, we have defined four
classes of models, in which only one underlying short distance operator dominates over all
the others (Dipole, Scalar, Vector (γ) and Vector (Z)). Ratios of LFV branching fractions
can be used to test the various models. The single-operator hypothesis can be tested with
at least one ratio (two LFV measurements), while the two-operator models, where two
operators have comparable strength and interfere, can be tested with at least two ratios
(three LFV measurements).

Our conclusions are encouraging: the theoretical uncertainties (even at the current
level) are not an issue in testing the single-operator dominance model, as they largely
cancel when we take ratios of different conversion rates. On the other hand, the current
uncertainty prevents meaningful tests of two-operator models involving the Scalar operator,
as it produces errors of up to one order of magnitude in the double ratios in the interference
region. However, with the anticipated reduced lattice error on the strange content of the
nucleon, this will not be an issue in the future. We have illustrated these main conclusions
also in the context of a supersymmetric model.

Having established that the hadronic uncertainties will not be a limiting factor, we can
ask how well one should measure the LFV rates in order to discriminate the underlying
models. Fig. 4.3 shows that a realistic discrimination among single-operator models re-
quires a measure of the ratio of conversion rates in light nuclei (such as Bµ→e(Ti)/Bµ→e(Al))
at the level of 5% or better. Alternatively, one would need to measure the ratio of con-
version rates in a heavy and light element (such as Bµ→e(Pb)/Bµ→e(Al)) at the 20% level.
Similar accuracy is required on the experimental side to be sensitive to interference effects
when more than one operator is at work. Whether these challenging benchmark numbers
can be reached in the future round of experiments [114, 115] depends on many issues, in-
cluding the value of the branching fraction themselves (we are concerned here with ratios).
Nonetheless, we hope that our results will stimulate further experimental efforts towards
measurements of µ → eγ and µ-to-e conversion and consideration of various options for
target nuclei.
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Figure 4.4: Dipole-Scalar model: Ratios Bµ→e(Al)/Bµ→eγ (panel (a)), Bµ→e(Pb)/Bµ→e(Al)
(panel (b)), and Bµ→e(Ti)/Bµ→e(Al) (panel (c)) as a function of Log10(r) for positive
CD/CS. See text for details.
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Figure 4.5: Dipole-Scalar model: Ratios Bµ→e(Al)/Bµ→eγ (panel (a)), Bµ→e(Pb)/Bµ→e(Al)
(panel (b)), and Bµ→e(Ti)/Bµ→e(Al) (panel (c)) as a function of Log10(r) for negative
CD/CS. See text for details.
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Figure 4.6: Dipole-Vector model: Ratios Bµ→e(Al)/Bµ→eγ (panel (a)), Bµ→e(Pb)/Bµ→e(Al)
(panel (b)), and Bµ→e(Ti)/Bµ→e(Al) (panel (c)) as a function of Log10(r) for positive
CD/CV . See text for details.
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Figure 4.7: Dipole-Vector model: Ratios Bµ→e(Al)/Bµ→eγ (panel (a)), Bµ→e(Pb)/Bµ→e(Al)
(panel (b)), and Bµ→e(Ti)/Bµ→e(Al) (panel (c)) as a function of Log10(r) for negative
CD/CV . See text for details.
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Figure 4.8: Scalar-Vector model: Ratios Bµ→e(Pb)/Bµ→e(Al) (panel (b)) and
Bµ→e(Ti)/Bµ→e(Al) (panel (c)) as a function of Log10(r) for positive CS/CV . See text
for details.
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Figure 4.9: Scalar-Vector model: Ratios Bµ→e(Pb)/Bµ→e(Al) (panel (b)) and
Bµ→e(Ti)/Bµ→e(Al) (panel (c)) as a function of Log10(r) for negative CS/CV . See text
for details.
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shaded regions respectively correspond to the conservative and optimistic ranges of the y
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Chapter 5

The Aligned two-Higgs-doublet model

5.1 Introduction

Within the context of flavour physics in models with two Higgs doublets, there was the
prejudice that sources of CP violation different from the SM CKM phase could only be gen-
erated by breaking flavour conservation in neutral interactions. In this sense, the Aligned
two-Higgs-doublet model (A2HDM) [74] represents a counter-example, capable to maintain
a flavour structure consistent with the experiments with non-standard phases, opening for
this framework a new window in flavour physics.

The Aligned two-Higgs-doublet model describes a particular way of enlarging the scalar
sector of the SM, with a second Higgs doublet which is aligned to the first one in flavour
space, i.e. the Yukawa matrices of both doublets coupled to a given right-handed fermion
sector are assumed to be proportional. This is what immediately guarantees the absence
of FCNCs at tree level, while introducing new sources of CP violation in the Yukawa sector
through the proportionality parameters, which are in general complex numbers and have
full control of the new dynamics. Moreover, this Yukawa structure results in a generic
way to describe all the 2HDMs defined by the implementation of a discrete symmetry, Z2,
that are nothing but particular cases of the proportionality relation. Another important
advantage of the model is that those parameters are all observables (none of them depends
on the scalars basis). On the other hand, the structure of the potential is allowed to be as
general as in the 2HDM (3.9), then, if it is not assumed to be CP conserving, there will be
more phases coming from the neutral Higgs spectrum, which could generate interesting ef-
fects in processes with neutral Higgs exchanges. Another important feature of the A2HDM
Lagrangian that will be analyzed in this chapter is the presence of radiative FCNCs. The
alignment condition is broken by quantum corrections, since it is not protected by any
symmetry. This generates minimal-flavour-violation structures with flavour blind phases
suppressed by the corresponding loop factors, potentially relevant in heavy quark systems,
which finally leads the A2HDM to a rich and viable phenomenology with an interesting
hierarchy of FCNC effects.

The structure of the A2HDM is analyzed at tree level in section 5.2 and at one-loop
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level in section 5.3.

5.2 The model

The alignment conditions read from (3.32) are [74]

Γ2 = ξd e−iθ Γ1 , ∆2 = ξ∗u eiθ∆1 , Π2 = ξl e−iθ Π1 , (5.1)

where the proportionality parameters ξf are arbitrary complex numbers. To simplify later
equations, we have redefined these parameters introducing the explicit phases e∓iθ which
cancel the relative global phases between the two scalar doublets. The Yukawa alignment
guarantees that the Y ′

f and M ′
f matrices are proportional and, therefore, can be simulta-

neously diagonalized with the result:

Yd,l = ςd,l Md,l , Yu = ς∗u Mu , ςf ≡
ξf − tanβ

1 + ξf tanβ
. (5.2)

In terms of the mass-eigenstate fields, the Yukawa interactions take then the form:

LY = −
√

2

v
H+(x) ū(x) [ςd V MdPR − ςu MuV PL] d(x)

−
√

2

v
H+(x) ςl ν̄(x)Ml PR l(x)

−
1

v

∑

ϕ0
i ,f

ϕ0
i (x) y

ϕ0
i

f f̄(x) Mf PR f(x) + h.c. (5.3)

where V is the Cabibbo-Kobayashi-Maskawa quark mixing matrix and PR,L ≡ 1
2(1 ± γ5)

the chirality projectors.
The flavour alignment of the Yukawa couplings results in a very specific structure for

the scalar-fermion interactions:

i) All fermionic couplings of the physical scalar fields are proportional to the corre-
sponding fermion mass matrices.

ii) The neutral Yukawas are diagonal in flavour. The couplings of the physical scalar
fields H , h and A are obviously proportional to the corresponding elements of the
orthogonal matrix R,

y
ϕ0

i

d,l = Ri1 + (Ri2 + iRi3) ςd,l ,

y
ϕ0

i
u = Ri1 + (Ri2 − iRi3) ς

∗
u . (5.4)

iii) The only source of flavour-changing phenomena is the quark-mixing matrix V , which
regulates the quark couplings of the W± gauge bosons and the charged scalars H±.
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Model (ξd, ξu, ξl) ςd ςu ςl
Type I (∞, ∞, ∞) cot β cot β cotβ
Type II (0, ∞, 0) − tan β cot β − tan β
Type X (∞, ∞, 0) cot β cot β − tan β
Type Y (0, ∞, ∞) − tan β cot β cotβ
Inert (tan β, tanβ, tanβ) 0 0 0

Table 5.1: Limits on ξf that recover the different Z2-type models and the corresponding
ςf values.

iv) All leptonic couplings are diagonal in flavour. This is obviously related to the absence
of right-handed neutrino fields in our low-energy Lagrangian. As it is mentioned in
previous chapters, since neutrinos are massless, the leptonic mixing matrix VL can
be reabsorbed through a redefinition of the neutrino fields.

v) The only new couplings introduced by the Yukawa Lagrangian are the three pa-
rameters ςf , which encode all possible freedom allowed by the alignment conditions.
These couplings satisfy universality among the different generations: all fermions of
a given electric charge have the same universal coupling ςf , they are “flavour-blind”.
Moreover, the parameters ςf are invariant under global U(2) transformations of the
scalar fields, φa → φ′

a = Uabφb [7,17–23]; i.e., they are independent of the basis choice
adopted in the scalar space.

vi) The usual models with a single scalar doublet coupling to each type of right-handed
fermions are recovered taking the appropriate limits ξf → 0 or ξf → ∞ (1/ξf → 0);
i.e., ςf → − tanβ or ςf → cotβ. The type-I model corresponds to (ξd, ξu, ξl) =
(∞, ∞, ∞), type II to (0, ∞, 0), type X to (∞, ∞, 0) and type Y to (0, ∞, ∞). The
inert doublet model corresponds to ςf = 0 (ξf = tanβ). The ςf values for all these
particular models based on Z2 symmetries are given in Table 5.1.

vii) The ςf can be arbitrary complex numbers, opening the possibility to have new sources
of CP violation without tree-level FCNCs.

The Yukawa alignment provides a general setting to discuss the phenomenology of
2HDMs without tree-level FCNCs, parameterizing the different possibilities through the
three complex couplings ςf .

5.3 Quantum corrections

Quantum corrections induce some misalignment of the Yukawa coupling matrices, generat-
ing small FCNC effects suppressed by the corresponding loop factors. However, the special
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structure of the A2HDM strongly constrains the possible FCNC interactions [74,116]. Ob-
viously, the alignment condition remains stable under renormalization when it is protected
by a Z2 symmetry [117], i.e. for the particular cases indicated in table 5.1. In the most
general case loop corrections do generate some FCNC effects, but the resulting structures
are enforced to satisfy the flavour symmetries of the model. The Lagrangian of the A2HDM
is invariant under flavour-dependent phase transformations of the fermion mass eigenstates
(f = d, u, l, ν, X = L, R, αν,L

i = αl,L
i ):

f i
X(x) → eiαf,X

i f i
X(x) , Vij → eiαu,L

i Vij e−iαd,L
j , Mf,ij → eiαf,L

i Mf,ij e−iαf,R
j . (5.5)

Owing to this symmetry, lepton-flavour-violating neutral couplings are identically zero to
all orders in perturbation theory, while in the quark sector the CKM mixing matrix remains
the only possible source of flavour-changing transitions. The only allowed local FCNC
structures are of the type ūLV (MdM

†
d)nV †(MuM

†
u)

mMuuR, d̄LV †(MuM
†
u)

nV (MdM
†
d)

mMddR,
or similar structures with additional factors of V , V † and quark mass matrices [74]. There-
fore, at the quantum level the A2HDM provides an explicit implementation of the popular
Minimal Flavour Violation scenarios [118–123], but allowing at the same time for new
CP-violating phases1. Structures of this type have been recently discussed in [63].

Using the renormalization-group equations [117,126], one can easily check that the one-
loop gauge corrections preserve the alignment while the only FCNC structures induced by
the scalar contributions take the form [116]:

LFCNC =
C(µ)

4π2v3
(1 + ς∗uςd)

∑

i

ϕ0
i (x)

{
(Ri2 + iRi3) (ςd − ςu)

[
d̄L V †MuM †

u V Md dR

]

− (Ri2 − iRi3) (ς∗d − ς∗u)
[
ūL V MdM †

d V †Mu uR

]}
+ h.c. (5.6)

As they should, these FCNC effects vanish identically when ςd = ςu (Z2 models of type
I, X and Inert) or ςd = −1/ς∗u (types II and Y). The leptonic coupling ςl does not induce
any FCNC interaction, independently of its value; the usually adopted Z2 symmetries are
unnecessary in the lepton sector. Assuming the alignment to be exact at some scale µ0,
i.e. C(µ0) = 0, a non-zero value for the FCNC coupling, C(µ) = − log (µ/µ0), is generated
when running to a different scale.

The numerical effect of these contributions is, in any case, suppressed by mqm2
q′/v

3

and quark-mixing factors. This implies an interesting hierarchy of FCNC effects, avoiding
the stringent experimental constraints for light-quark systems, while allowing at the same
time for potential interesting signals in heavy-quark transitions. Obviously, the most rele-
vant terms in (5.6) are the s̄LbR and c̄LtR operators. The s̄LbR term induces a calculable
contribution to B0

s–B̄
0
s mixing through ϕ0

i exchanges, which modifies the mixing phase
and could explain the like-sign dimuon charge asymmetry recently observed by D0 [14].
Tree-level scalar exchanges from FCNC vertices have been already suggested as a possi-
ble explanation of the D0 measurement [127]. In ref. [128] an approximate solution to the

1Minimal flavour violation within the context of the Type II 2HDM has been discussed in [118,124,125].
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renormalization-group equations of the A2HDM is analyzed and the generated FCNC terms
are studied numerically, parametrizing the off-diagonal Yukawa couplings with the Sher-
Cheng approximation. They also perform the analytical calculation by using the “leading
log approximation” for the couplings at the electroweak scale. The results presented there
agree with our FCNC operator (5.6) and it is concluded that the induced FCNC effects are
well below the present experimental bounds. Ref. [124] analyzes the strength of FCNC ef-
fects mediated by neutral scalars in minimal-flavour-violation models containing two Higgs
doublets. The tree-level alignment conditions presented here are reproduced, the one-loop
FCNC structures in (5.6) are discussed and their coefficients are estimated at large tanβ
in the decoupling limit.

A very interesting work providing alignment as an effective effect of theory with Natural
Flavour Conservation at the UV scale has been presented recently in [129]. The most
important feature of that model is the possibility of having alignment to all orders. The
model starts with 2 + N scalar doublets with a discrete symmetry that preserves natural
flavour conservation; only two of these scalars are coupled to fermions while the other are
“hidden”. Then, the two interacting Higgs are assumed to be very heavy so their decoupling
leads to an effective Yukawa interaction, which connects a given fermion sector with the
N hidden Higgs with the same Yukawa matrix for all them (alignment). What this model
presents is, therefore, a way of having an exact alignment when all orders are resummed.

Still, it is very interesting to study the size of the one-loop FCNC effects provided by
the misalignment, as it is mentioned here and analyzed in the works cited above, not only
to understand the structure of the model at that level but also under a phenomenological
point of view.





Chapter 6

Charged Higgs phenomenology in the

Aligned two-Higgs-doublet model

6.1 Introduction

This Chapter focuses on a phenomenological analysis of the aligned two-Higgs-doublet
model (A2HDM) [74] introduced in Chapter 5, which enforces the alignment in flavour
space of the Yukawa couplings of the two scalar doublets, guaranteeing the absence of
tree-level FCNC interactions. The Yukawa structure of the resulting A2HDM is fully
characterized by the fermion masses, the CKM quark mixing matrix and three complex
parameters ςf (f = u, d, l), whose phases are potential new sources of CP violation [74].

The presence of a charged scalar H± is one of the most distinctive features of an ex-
tended scalar sector. In the following we analyze its phenomenological impact in low-energy
flavour-changing processes within the A2HDM, and constrain the three complex param-
eters ςf with present data on different leptonic, semileptonic and hadronic decays [116].
We proceed as follows: Section 6.2 explains our statistical treatment of theoretical uncer-
tainties and compiles the inputs used in our analysis. The phenomenological consequences
of having a charged Higgs field are analyzed next, process by process, extracting the cor-
responding constraints on the new-physics parameters ςf . In section 6.3 we discuss the
constraints derived from tree-level leptonic and semileptonic decays, while section 6.4 de-
scribes the information obtained from loop-induced processes. Finally, in section 6.5 we
analyze the CP asymmetries in B-systems, with emphasis on its scale dependence, and dis-
cuss its potential impact on the parameter space of the A2HDM. We analyze their impact
regarding the possible influence of charged-scalar effects on the like-sign dimuon charge
asymmetry (LDCA) in our framework. Then, we give our conclusions in section 6.6. Some
technical aspects related to ∆F = 2 transitions have been relegated to the Appendix B.

67
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6.2 Inputs and statistical treatment

In the following sections we will analyze the most important flavour-changing processes that
are sensitive to charged-scalar exchange and will try to constrain from them the new-physics
parameters ςf . Most of these observables have been discussed in recent phenomenological
analyses, usually in the framework of the type II 2HDM [130–132], but also in the type III
2HDM [133].

For that purpose, a good control of the hadronic decay parameters is necessary. These
usually involve large theoretical uncertainties whose treatment is not well defined. In our
work we use the statistical approach RFit [9], which has been implemented in the CKMfitter
package [134]. The new-physics parameter space is explored, assigning to each point the
maximal relative likelihood under variation of the theoretical parameters which are not
shown. Theoretical uncertainties are treated by defining allowed ranges within which the
contribution of the corresponding theoretical quantity to the ∆χ2 is set to zero, while it
is set to infinity outside. This treatment implies that uncertainties of this kind should be
chosen conservatively and added linearly.

Another related problem is the combination of different theoretical determinations of
a hadronic quantity, which is even less well defined. We follow the prescription given
in [134]. However, lattice results with 2 and 2 + 1 flavours are not averaged because
they are determined in different theoretical frameworks. Unless commented explicitly, we
only take results coming from 2 + 1 flavours. For quantities concerning the light hadrons,
we consider the determinations recommended by the Flavour Lattice Averaging Group
(FLAG) [135, 136]. The obtained values are collected in table 6.1.

For fKπ
+ (0) the only published value with 2+1 dynamical quarks is the one from

RBC/UKQCD [137,138], which however fails to fulfill the FLAG standards. On the other
hand, there is one 2-flavour result, which fulfills the FLAG criteria [139]. Although con-
sistent with the old Leutwyler-Roos estimate [140], based on O(p4) Chiral Perturbation
Theory (χPT), these lattice determinations are somewhat smaller than the O(p6) analyt-
ical calculations [141–144]. We take this into account and adopt the conservative range
fKπ

+ (0) = 0.965 ± 0.010.
To fix the values of the relevant CKM entries we only use determinations which are

not sensitive to the new-physics contributions. Thus, we use the Vud value extracted from
superallowed (0+ → 0+) nuclear β decays and CKM unitarity to determine Vus ≡ λ. The
values of Vub and Vcb = Aλ2 are determined from exclusive and inclusive b → ulν̄l and
b → clν̄l transitions, respectively, with l = e, µ. The apex (ρ̄, η̄) of the unitarity triangle
has been determined from |Vub/Vcb|, λ and the ratio ∆mB0

s
/∆mB0

d
(see section 6.4.2). For

the top quark mass we have adopted the usual assumption that the Tevatron value [157]
corresponds to the pole mass, but increasing its systematic error by 1 GeV to account for the
intrinsic ambiguity in the mt definition; i.e. we have taken mpole

t = (173.1±0.6±2.1) GeV
and have converted this value into the running MS mass. The measurements used in our
analysis are listed in table 6.2.

Concerning the charged-scalar mass, we will use the LEP lower bound MH± > 78.6 GeV
(95% CL), which does not refer to any specific Yukawa structure [41, 74]. This limit
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Parameter Value Comment
fBs (0.242 ± 0.003 ± 0.022) GeV Our average [145–147]
fBs/fBd

1.232 ± 0.016 ± 0.033 Our average [146, 147]
fDs (0.2417 ± 0.0012 ± 0.0053) GeV Our average [145, 147, 148]
fDs/fDd

1.171 ± 0.005 ± 0.02 Our average [147, 148]
fK/fπ 1.192 ± 0.002 ± 0.013 Our average [148–150]

fBs

√
B̂B0

s
(0.266 ± 0.007 ± 0.032) GeV [146]

fBd

√
B̂B0

s
/(fBs

√
B̂B0

s
) 1.258 ± 0.025 ± 0.043 [146]

B̂K 0.732 ± 0.006 ± 0.043 [151, 152]
|Vud| 0.97425 ± 0.00022 [153]
λ 0.2255 ± 0.0010 (1 − |Vud|2)

1/2

|Vub| (3.8 ± 0.1 ± 0.4) · 10−3 b → ulν (excl. + incl.) [154, 155]
A 0.80 ± 0.01 ± 0.01 b → clν (excl. + incl.) [154, 155]
ρ̄ 0.15 ± 0.02 ± 0.05 Our fit
η̄ 0.38 ± 0.01 ± 0.06 Our fit
m̄u(2 GeV) (0.00255 +0.00075

− 0.00105) GeV [156]
m̄d(2 GeV) (0.00504 +0.00096

− 0.00154) GeV [156]
m̄s(2 GeV) (0.105 +0.025

− 0.035) GeV [156]
m̄c(2 GeV) (1.27 +0.07

− 0.11) GeV [156]
m̄b(mb) (4.20 +0.17

− 0.07) GeV [156]
m̄t(mt) (165.1 ± 0.6 ± 2.1) GeV [157]

δK.2/π.2
em −0.0070 ± 0.0018 [158–161]
δτK2/K.2
em 0.0090 ± 0.0022 [162–164]
δτπ2/π.2
em 0.0016 ± 0.0014 [162–164]
ρ2|B→Dlν 1.18 ± 0.04 ± 0.04 [155]
∆|B→Dlν 0.46 ± 0.02 [165]
fKπ

+ (0) 0.965 ± 0.010 [137–139,141–144]
ḡL

b,SM −0.42112 +0.00035
− 0.00018 [166, 167]

κε 0.94 ± 0.02 [168]
ḡR

b,SM 0.07744 +0.00006
− 0.00008 [166, 167]

Table 6.1: Input values for the hadronic parameters, obtained as described in the text. The
first error denotes statistical uncertainty, the second systematic/theoretical.

assumes only that H+ decays dominantly into uid̄j and l+νl. Obviously, the bound is
avoided by a fermiophobic (inert) A2HDM with ςf * 1, but all our constraints would
also disappear in this case. The charged scalar could still be detected through the decay
mode H± → W±A, provided it is kinematically allowed. Assuming a CP-conserving scalar
potential, OPAL finds the 95% CL constraints MH± > 56.5 (64.8) GeV, for 12 (15) GeV <
MA < MH± − MW± [46].
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Observable Value Comment
|gS

RR|τ→µ < 0.72 (95% CL) [156]
Br(τ → µντ ν̄µ) (17.36 ± 0.05) × 10−2 [156]
Br(τ → eντ ν̄e) (17.85 ± 0.05) × 10−2 [156]
Br(τ → µντ ν̄µ)/Br(τ → eντ ν̄e) 0.9796 ± 0.0039 [169]
Br(B → τν) (1.73 ± 0.35) × 10−4 [8]
Br(D → µν) (3.82 ± 0.33) × 10−4 [170]
Br(D → τν) ≤ 1.3 × 10−3 (95% CL) [170]
Br(Ds → τν) (5.58 ± 0.35) × 10−2 [171–175]
Br(Ds → µν) (5.80 ± 0.43) × 10−3 [171, 175, 176]
Γ(K → µν)/Γ(π → µν) 1.334 ± 0.004 [161]
Γ(τ → Kν)/Γ(τ → πν) (6.50 ± 0.10) × 10−2 [156, 169]
log C 0.194 ± 0.011 [177, 178]
Br(B → Dτν)/Br(B → D6ν) 0.392 ± 0.079 [179–181]
Γ(Z → bb̄)/Γ(Z → hadrons) 0.21629 ± 0.00066 [182]
Br(B̄ → Xsγ)Eγ>1.6GeV (3.55 ± 0.26) × 10−4 [155]
Br(B̄ → Xceν̄e) (10.74 ± 0.16) × 10−2 [155]
∆mB0

d
(0.507 ± 0.005) ps−1 [155]

∆mB0
s

(17.77 ± 0.12) ps−1 [155]
|εK | (2.228 ± 0.011) × 10−3 [156]

Table 6.2: Measurements used in the analysis. Masses and lifetimes are taken from the
PDG [156].

6.3 Tree-level decays

6.3.1 Lepton decays

The pure leptonic decays l → l′ν̄l′νl provide accurate tests of the universality of the leptonic
W couplings and of their left-handed current structure [156,183, 184]. The exchange of a
charged scalar induces an additional amplitude mediating the decay of a right-handed
initial lepton into a right-handed final charged lepton; in standard notation [184, 185],
this scalar contribution gets parametrized through the effective low-energy coupling gS

RR =
−mlml′

M2
H±

|ςl|2. Its phenomenological effects can be isolated through the Michel parameters

governing the decay distribution,

ρ−
3

4
= 0 , η =

1

2N
Re(gS

RR) , ξ − 1 = −
1

2N
|gS

RR|2 , ξδ −
3

4
= −

3

8N
|gS

RR|2 , (6.1)

and in the total decay width

Γ(l → l′ ν̄l′ νl) =
G2

F

192π3
m5

l N

[
f

(
m2

l′

m2
l

)
+ 4 η

ml′

ml
g

(
m2

l′

m2
l

)]
rRC , (6.2)
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where f(x) = 1 − 8x + 8x3 − x4 − 12x2 log x, g(x) = 1 + 9x − 9x2 − x3 + 6x(1 + x) log x,
N = 1 + 1

4 |g
S
RR|2 and [186]

rRC =

[
1 +

α(ml)

2π

(
25

4
− π2

)] [
1 +

3

5

m2
l

M2
W

− 2
m2

l′

M2
W

]
. (6.3)

Since the scalar couplings are proportional to lepton masses, the decay τ → µν̄µντ is the
most sensitive one to the scalar-exchange contribution. The present bound |gS

RR|τ→µ < 0.72
(95% CL) [156] translates into |ςl|/MH± ≤ 1.96 GeV−1 (95% CL). A better limit can be
obtained from the ratio of the total τ decay widths into the muon and electron modes.
The universality test |gµ/ge|2 ≡ |Br(τ → µ)/Br(τ → e)||f(m2

e/m
2
τ )/f(m2

µ/m
2
τ )| = 1.0036±

0.0029 [156, 169] implies:

|ςl|
MH±

≤ 0.40 GeV−1 (95% CL). (6.4)

6.3.2 Leptonic decays of pseudoscalar mesons

Information about new-physics parameters can be also extracted from leptonic decays of
pseudoscalar mesons, P+ → l+νl, which are very sensitive to H+ exchange due to the
helicity suppression of the SM amplitude. The total decay width is given by 1

Γ(P+
ij → l+νl) = G2

F m2
l f

2
P |Vij|2

mP+
ij

8π



1 −
m2

l

m2
P+

ij




2

(1 + δM.2
em ) |1 −∆ij |2 , (6.5)

where i, j represent the valence quarks of the meson under consideration. The correction

∆ij =

( mP±
ij

MH±

)2

ς∗l
ςumui

+ ςdmdj

mui
+ mdj

(6.6)

encodes the new-physics information and δM.2
em denotes the electromagnetic radiative con-

tributions. These corrections are relevant because the additional photon lifts the helicity
suppression of the two-body decay, thereby compensating in part for the additional elec-
tromagnetic coupling, and the two processes are not distinguishable experimentally for
low photon energies. Their relative importance therefore increases for decreasing lepton
masses.

The correction ∆ij is predicted to be positive in model I, negative in model X and
can have either sign in the models II and Y, depending on the decaying meson, while it
is of course absent in the inert scenario. In the more general A2HDM it is a complex
number with a real part of either sign. To determine its size one needs to know |Vij| and
a theoretical determination of the meson decay constant.

1The normalization of the meson decay constant corresponds to fπ =
√

2Fπ = 131 MeV.
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The SM as well as the 2HDM contribution to this class of decays start at tree level.
Therefore they can be assumed to remain the dominant contributions, relatively indepen-
dent of a possible high-energy completion of the theory. Electroweak loop corrections are
of course expected and they could be sizeable in some cases, for example in supersymmetry
at large values of tan β [187, 188].

Heavy pseudoscalar mesons
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Figure 6.1: Constraints in the complex ς∗l ςu,d/M2
H± planes from B → τν (left) and D → µν

(right), in units of GeV −2. The colour code indicates confidence levels (1 − CL).

The leptonic decays of heavy pseudoscalar mesons that have been measured up to now
are B → τν, Ds → µν, Ds → τν and D → µν. The radiative corrections for the leptonic
decays of heavy mesons have been estimated in [189], and are already taken into account
in the experimental values given in table 6.2; therefore the electromagnetic correction is
set to zero in Eq. (6.5).

In B and D decays the function ∆ij can be approximated by neglecting the contribution
proportional to the light quark mass, because mu/mb ! md/mc ∼ O(10−3). Therefore the
relations

∆ub ≈
m2

B

M2
H±

ς∗l ςd , ∆cd ≈
m2

D

M2
H±

ς∗l ςu (6.7)

hold, leading to a direct constraint on these combinations. While for D(s) → τν the
helicity suppression is absent, the corresponding phase space is small and there are two
neutrinos in the final state, which is why D → τν has not been measured up to now.
Nevertheless, the upper limit set by CLEO [170] starts to become relevant in constraining
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Figure 6.2: 95% CL constraints in the complex ς∗l ςu/M
2
H± plane from Ds → (τ, µ)ν, in

units of GeV −2, using B → τν to constrain ς∗l ςd/M
2
H±.

our parameters: |1 − ∆cd| < 1.19 (95% CL). The present experimental limit on B → µν
gives |1 −∆ub| < 2.04 (95% CL). The information obtained from the decays B → τν and
D → µν is shown in figure 6.1. The broad dark red (black) ring in the middle reflects the
fact, that the systematic error is dominant in these constraints, leading to a large amount
of degeneracy for the ‘best fit value’. To infer a limit at a certain confidence level, the
corresponding number of rings has to be included, for example for 95% up to the light grey
corresponding to 1 − CL = 0.05. The resulting 95% CL constraints, |1 −∆ub| ∈ [0.8, 2.0]
and |1 − ∆cd| ∈ [0.87, 1.12], translate into corresponding allowed circular bands in the
ς∗l ςu,d/M2

H± complex planes. For real Yukawa couplings there is a two-fold sign ambiguity
generating two possible solutions, the expected one around ∆ij = 0 (the SM amplitude
dominates) and its mirror around ∆ij = 2, corresponding to a new-physics contribution
twice as large as the SM one and of opposite sign. The real solutions are ς∗l ςd/M

2
H± ∈

[−0.036, 0.008] GeV−2 or [0.064, 0.108] GeV−2, and ς∗l ςu/M
2
H± ∈ [−0.037, 0.037] GeV−2 or

[0.535, 0.609] GeV−2.
In Ds decays we get |1 −∆cs| ∈ [0.97, 1.18] from Ds → µν and |1 −∆cs| ∈ [0.98, 1.16]

from Ds → τν. Here the situation is a bit more complex, because ms/mc ≈ 10% and
the light-quark term in the ∆cs function cannot be neglected since this suppression could
be compensated by the different ςf . Therefore there is no direct constraint, neither on
ς∗l ςu/M

2
H± nor on ς∗l ςd/M

2
H±, only a correlation among them. For that reason, we use the

additional information from B → τν to constrain the parameters which are not shown.
This suffices to render the influence of the mass-suppressed term subdominant.

If CP symmetry were only broken by the CKM phase, the parameters ςf would be real.
In this case, the constraints from Ds → τντ and Ds → µνµ can be visualized as shown in
figure 6.3, plotting the correlation between the two real parameters. The two grey bands
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Figure 6.3: Constraints from Ds → τντ (left) and Ds → µνµ (right), in units of GeV −2,
under the assumption of real parameters ςf . The grey bands correspond to 95% CL. Also
shown are the cuts for the 2HDM of type I/X (dashed line) and II (lighter grey area,
tan β ∈ [0.1, 60]). Finally, the four black regions are the possible allowed areas considering
the information coming from B → τντ .

are associated with the two possible solutions around ∆cs = 0 and ∆cs = 2. The different
models with Z2-symmetry correspond to cuts in these plots. The plots show the small
influence of the term proportional to the strange quark mass, as long as the couplings
are of the same order. Using the constraints on ς∗l ςd/M

2
H± from B → τν, one finds for

the other coupling combination the two real solutions ς∗l ςu/M
2
H± ∈ [−0.005, 0.041] GeV−2

or [0.511, 0.557] GeV−2, at 95% CL, which agree with the corresponding constraints from
D → µν. Putting together all the information from leptonic B, D and Ds decays, the real
solutions are:

ς∗l ςd
M2

H±

∈

{
[−0.036, 0.008] GeV−2 ,

[0.064, 0.108] GeV−2 ,

ς∗l ςu
M2

H±

∈

{
[−0.006, 0.037] GeV−2 ,

[0.511, 0.535] GeV−2 .
(6.8)

Light pseudoscalar mesons

Due to the cancellation of common uncertainties, lattice calculations of the ratio fK/fπ

are more precise than the determinations of the individual decay constants. This ratio can
be extracted experimentally from two different ratios of decay widths:

Γ(K → µν)

Γ(π → µν)
=

mK

mπ

(
1 − m2

µ/m
2
K

1 − m2
µ/m

2
π

)2 ∣∣∣∣
Vus

Vud

∣∣∣∣
2 (

fK

fπ

)2

(1 + δKl2/πl2
em )

∣∣∣∣
1 −∆us

1 −∆ud

∣∣∣∣
2

, (6.9)

Γ(τ → Kν)

Γ(τ → πν)
=

(
1 − m2

K/m2
τ

1 − m2
π/m

2
τ

)2 ∣∣∣∣
Vus

Vud

∣∣∣∣
2 (

fK

fπ

)2

(1 + δτK2/τπ2
em )

∣∣∣∣
1 −∆us

1 −∆ud

∣∣∣∣
2

, (6.10)

where δKl2/πl2
em is given in table 6.1 and δτK2/τπ2

em = δ(τK2/K.2)
em +δK.2/π.2

em −δτπ2/π.2
em = 0.0004±

0.0054.
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Figure 6.4: Constraints in the complex plane (ς∗l ςd)/M
2
H±, in units of GeV −2. Left: Full

regions allowed at 95% CL for K/π → µν (upper plot) and τ → K/πν (lower plot). Right:
95% CL constraints in the interesting region (from the global fit) for both constraints, using
D → µν to constrain ς∗l ςu/M

2
H±.

The new-physics corrections are dominated by∆us 2 ς∗l ςdm
2
K/M2

H±. As m2
K/m2

B ∼ 1%,
the scalar contributions to these decays are much smaller than for the heavy mesons.
However, the good experimental precision achieved provides interesting constraints, as
shown in figure 6.4, which are dominated by the Kµ2/πµ2 ratio. At 95% CL, one finds
|1 − ∆us| ∈ [0.984, 1.017] from Kµ2/πµ2 and |1 − ∆us| ∈ [0.965, 1.025] from the ratio τ →
νK/π. The real solutions are then, ς∗l ςd/M

2
H± ∈ [−0.07, 0.07] GeV−2 or [8.14, 8.28] GeV−2.

The larger real solution is already excluded by the B → τν data.

6.3.3 Semileptonic decays of pseudoscalar mesons

Semileptonic decays receive contributions from a charged scalar as well, but in this case
the leading SM amplitude is not helicity suppressed, therefore the relative influence is
smaller. In addition, there are momentum-dependent form factors involved. The decay
amplitude M → M ′lν̄l is characterized by two form factors, f+(t) and f0(t) associated with
the P-wave and S-wave projections of the crossed-channel matrix element 〈0|ūiγµdj |MM̄ ′〉.
The scalar-exchange amplitude only contributes to the scalar form factor; it amounts to a
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multiplicative correction
f̃0(t) = f0(t) (1 + δij t) , (6.11)

where
δij ≡ −

ς∗l
M2

H±

miςu − mjςd
mi − mj

. (6.12)

The determination of the CKM matrix element |Vij| is not contaminated by the new-
physics contribution, because it is governed by the vector form factor. One measures
the electron mode M → M ′eν̄e, where the scalar contribution is heavily suppressed by the
electron mass, determining the product |Vij| |f+(t0)|, with t0 = 0 for light-quark transitions
and t0 = (mM − mM ′)2 for heavy quarks. A theoretical calculation of |f+(t0)| is then
needed to extract |Vij|. The sensitivity to the scalar contribution can only be achieved
in semileptonic decays into heavier leptons. Whenever available, one can make use of
the differential decay distribution to separate the scalar and vector amplitudes. In any
case, theoretical determinations of the scalar and vector form factors are needed to extract
information on δij.

B → Dτντ

To reduce the uncertainty from the vector form factor, let us consider the ratio

Br(B → Dτντ )

Br(B → Deνe)
= a0 + a1

(
m2

B − m2
D

)
Re(δcb) + a2

(
m2

B − m2
D

)2 |δcb|2 . (6.13)

The coefficients ai, which contain the dependence on the strong-interaction dynamics, have
been studied recently and parametrized in terms of the vector form-factor slope ρ2 and the
scalar density ∆(vB · vD) ≡ ∆, assumed to be constant [131, 190]. We make use of these
parametrizations, taking for the two parameters the values indicated in table 6.1. The
function ∆(vB · vD) ∝ f0(t)/f+(t) has been studied in the lattice, in the range vB · vD = 1–
1.2, and found to be consistent with a constant value ∆ = 0.46 ± 0.02, very close to its
static-limit approximation (mB − mD)/(mB + mD) [165].

We obtain once more a correlation between ς∗l ςu/M
2
H± and ς∗l ςd/M

2
H±, where the term

proportional to the charm quark mass is in general potentially more important than in the
type II model. The results are shown in figure 6.5 for both parameter combinations. As can
be seen there, the constraint on ςdς∗l /M2

H± is consistent with the information coming from
B → τν and the leptonic decays of light mesons, but does not constrain this combination
further as long as only the information of B → Dτντ is used. The red lines indicating the
constraint for ς∗l ςu → 0, however, show that the semileptonic decay can exclude a small
region around (0.08, 0), once that combination is bound to be small. We will use this to
exclude the second real solution for ς∗l ςd/M

2
H with aid of the processes εK , Z → bb and

τ → µνν (see figure 6.8). Also, when plotted in the complex ς∗l ςu/M
2
H± plane, it becomes

apparent that this constraint is important to exclude the second real solution allowed by
D(s) → 6ν decays, already using only the information from leptonic decays in addition (see
again figure 6.8).
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Figure 6.5: Constraints from B → Dτντ , in units of GeV −2, plotted in the complex plane
for ς∗l ςd/M

2
H± (left) and ς∗l ςu/M

2
H± (right), using D → µν and B → τν to constrain

the combination not shown, respectively. The colours indicate 1 − CL, the red lines the
constraint (95% CL) for ς∗l ςu,d/M2

H → 0.

Considering the limit of real ςf ’s, the correlation between the real parts is visualized in
figure 6.6, together with the cuts corresponding to the different models with Z2 symmetries.
The plot shows that the mb and mc terms have potentially similar influence in this case.

It has been pointed out in [191] that measuring the spectrum instead of just the branch-
ing ratio will increase the sensitivity of the channel. This, however, has not been done up
to now, due to lack of statistics.

K → π6ν

In semileptonic kaon decays the Callan-Treiman theorem [192, 193] allows to relate the
scalar form factor at the kinematic point tCT = m2

K −m2
π to the ratio of kaon and pion decay

constants: C ≡ f0(tCT)/f+(0) = fK

fπ
1

f+(0)+∆CT , where∆CT = (−3.5±8)·10−3 is a small χPT
correction of O[m2

π/(4πfπ)2] [144, 194, 195]. Using a twice-subtracted dispersion relation
for f0(t) [196], the constant C has been determined from the Kµ3 data by KLOE [177],
KTeV [178] and NA48 [197]. In the average quoted in table 6.2 the NA48 result has been
excluded because it disagrees with the other two measurements by more than 2σ.

In the presence of charged-scalar contributions, the scalar form factor gets modified as
indicated in Eq. (6.11), inducing a corresponding change in C. Taking into account that
the analyzed experimental distribution is only sensitive to |f̃0(t)|2, to first order in the
new-physics correction δus, the measured value of C corresponds to

log C = log

(
fK

fπ

1

f+(0)
+ ∆CT

)
+ Re

[
δus(m

2
K − m2

π)
]

. (6.14)
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Figure 6.6: Allowed regions for Re(ς∗l ςd)/MH±2 and Re(ς∗l ςu)/MH±2 from the process B →
Dτν at 95% CL (grey), in units of GeV −2, assuming that their imaginary parts are zero.
The projections for the 2HDMs of types I/X (dashed line) and II (lighter grey area, tanβ ∈
[0.1, 60]) are also shown.

The resulting constraint on the real part of ςdς∗l /M2
H± is shown in figure 6.7, leading to

Re

(
ς∗l ςd
M2

H±

)
∈ [−0.16, 0.30] GeV−2 (95% CL) , (6.15)

which is in agreement with the previous constraints, but with larger uncertainties. This
might change in the near future, due to improved lattice determinations of f+(0) and
fK/fπ, as well as improved experimental precision, e.g. from NA62 or KLOE-2.
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Figure 6.7: Constraint from the direct measurement of log C, in units of GeV −2.
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6.3.4 Global fit to leptonic and semileptonic decays

Combining the information from all leptonic and semileptonic decays discussed before,
one gets the constraints shown in figure 6.8. |ςdς∗l /M2

H±| is bounded to be smaller than
∼ 0.1 GeV−2 (95% CL) from these decays alone, while for ςuς∗l /M2

H± the constraints are
relatively weak, due to the similar masses of the mesons in the leptonic decays. Note
that in both cases there are two real solutions. For the combination ςuς∗l /M2

H±, one real
solution is excluded in the global fit at 95% CL, while the other, including the SM point
of vanishing couplings remains allowed. As mentioned before, this exclusion is due to
B → Dτν in combination with the constraint on ςdς∗l /M2

H±. For the latter, the situation
is more complicated. The second solution remains allowed, due to the overlapping of the
two main constraints in both regions and the weak constraint on ςuς∗l /M

2
H± derived from

semileptonic decays. However, using in addition the information coming from leptonic τ
decays in (6.4), the lower Higgs mass bound from LEP and the constraint from εK , Z → b̄b
(see section 6.4.1) in a conservative way, |ςuς∗l |/M2

H ! 0.01, the second real solution for
ςdς∗l /M2

H± is excluded as well by B → Dτν.
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Figure 6.8: ςdς∗l /M2
H± (left) and ςuς∗l /M2

H± (right) in the complex plane, in units of GeV −2,
constrained by leptonic decays and B → D6ν. The inner yellow area shows the allowed
region at 95% CL, in the case of ςdς∗l /M

2
H± using additional information (see text).

6.4 Loop-induced processes

For processes where new-physics contributions appear only through quantum loop effects,
the situation becomes obviously more difficult, regarding not only the calculation but also
the interpretation of the results. If the SM amplitude is also mediated only by loops, the
relative importance of the charged-scalar contributions is expected to be higher, but this
implies also a higher sensitivity to the framework in which the A2HDM is eventually to
be embedded in. In the following we make the assumption that for the observables under
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discussion the dominant new-physics corrections are those generated by the charged scalar.
Moreover, since no significant signal for new physics has been found up to now in flavour
observables, we assume these effects to be subleading with respect to the SM contribution.

6.4.1 Z → bb̄

The high-precision data collected at LEP and SLD has made possible to accurately test the
SM electroweak loop corrections at the Z scale, providing information on the Higgs mass
and useful constraints on many new-physics scenarios. While most Z-peak observables
are only sensitive to the gauge-boson selfenergies, the decay Z → bb̄ provides valuable
information on fermionic vertex corrections induced by charged-current exchanges. Since
Vtb ≈ 1, those loop diagrams involving virtual top quarks generate quantum corrections
to the Zbb̄ vertex, which are absent in the Zdd̄ and Zss̄ vertices. These corrections are
enhanced by a factor m2

t , allowing for a quite accurate determination of the top quark
mass [198, 199]. The same arguments apply to the charged-scalar contributions present in
the A2HDM, providing a sensitive probe of the corresponding H+t̄b coupling. For very
large values of |ςd| this decay would also be sensitive to contributions from neutral scalars
[200], but this possibility is excluded by the constraints obtained through other processes.
Therefore, we assume the dominance of charged-scalar effects in the following, allowing only
for |ςd| ≤ 50. We disregard the information coming from the forward-backward polarization
asymmetry Ab, because the scalar-exchange contributions to Ab are small compared to the
present uncertainties.

It is convenient to normalize the Z → bb̄ decay width to the total hadronic width of
the Z, because many QCD and electroweak corrections cancel in the ratio, amplifying the
sensitivity to the wanted vertex contribution [199]. Within the A2HDM, this ratio can be
written as [167, 200, 201]

Rb ≡
Γ(Z → b̄b)

Γ(Z → hadrons)
=

[
1 +

Sb

sb
CQCD

b

]−1

, (6.16)

where

sq =
[
(ḡL

b − ḡR
b )2 + (ḡL

b + ḡR
b )2

] (
1 +

3α

4π
Q2

q

)
, Sb ≡

∑

q (=b,t

sq , (6.17)

with µq ≡ m2
q/M

2
Z and CQCD

b = 1.0086 a factor including QCD and quark-mass corrections
[202]. The A2HDM contributions are encoded through the effective left- and right-handed
Zbb̄-couplings:

ḡL
b = ḡL

b,SM +

√
2 GFM2

W

16π2

m2
t

M2
W

|ςu|2
[
f1(th) +

αs

3π
f2(th)

]
, (6.18)

ḡR
b = ḡR

b,SM −
√

2GF M2
W

16π2

m2
b

M2
W

|ςd|2
[
f1(th) +

αs

3π
f2(th)

]
, (6.19)
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Figure 6.9: Constraint from Rb in the |ςu| − MH± plane (MH± in GeV units), allowing for
|ςd| ≤ 50.

where th ≡ m2
t/M

2
H±, f1(th) = [t2h−th−th log th]/(1−th)2 and the function f2(th) governing

the NLO correction is given in [167]. If running quark masses m̄t(MZ) and m̄b(MZ) are
used, this NLO QCD correction is small. The light-quark coupling contribution Sb = 1.3214
[167] is not sensitive to the new-physics effects. The SM values of the couplings ḡL,R

b,SM , given
in table 6.1, have been computed removing the Z → bb̄ information from the standard
electroweak fit [167].

In contrast to the leptonic and semileptonic constraints discussed before, here the pa-
rameters |ςu,d| enter directly, allowing to bound them without information on |ςl|. The
constraint resulting from the input values in tables 6.1 and 6.2 is shown in figure 6.9. The
constraint is plotted in the |ςu| − MH± plane, as obviously it is much weaker for |ςd|, once
again due to the relative factor mb/mt. For large scalar masses, the constraint weakens as
the effects start to decouple, reflected in limth→0 f1,2(th) = 0. In the range of scalar masses
considered, it leads to a 95% CL upper bound |ςu| ≤ 0.91 (1.91), for MH± = 80 (500) GeV.
The upper bound increases linearly with MH± , implying

|ςu|
MH±

< 0.0024 GeV−1 +
0.72

MH±
< 0.011 GeV−1 , (6.20)

where we have used the lower bound on the charged-scalar mass from LEP searches, MH± >
78.6 GeV (95% CL) [41,74]. Combined with the limit on |ςl/MH±| from leptonic τ decays,
this already constrains the combination |ςuς∗l |/M2

H± much stronger than the global fit to
(semi)leptonic decays, leading to

|ςuς∗l |
M2

H±

< 0.005 GeV−2 ; (6.21)
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given the additional assumptions of |ςd| ≤ 50 and charged-scalar effects dominating the
new-physics contributions to Rb. The range allowed for |ςd| in the fit does not influence
the upper bound on |ςu|, apart from the exclusion of neutral-scalar effects, since both
contributions can only lower the value for Rb and both are allowed to vanish in the fit.
Therefore the upper limit stems from points with |ςd| = 0.

6.4.2 B0-B̄0 mixing

The mixing of neutral B mesons is very sensitive to charged-scalar effects, as the leading
contribution stems from top-quark loops, rendering the new-physics and SM contributions
comparable. Besides the high precision of the measurement for the mass difference ∆mB0 ,
the B0

s mixing is especially interesting due to the observed tension in its phase [14, 155].
In the usual 2HDMs with a Z2 symmetry the scalar couplings are necessarily real, leading
to a vanishing contribution to this phase. However, the complex Yukawa couplings ςu,d

of the A2HDM provide a potential new-physics contribution, which could account for the
experimentally observed phase.

In the SM, the calculation is simplified by the fact that only one operator contributes,
denoted OVLL below. In the presence of a charged scalar, an enlarged effective Hamiltonian

H∆B=2
eff =

G2
F M2

W

16π2
(V ∗

tdVtb)
2

∑

i

Ci(µ)Oi (6.22)

has to be considered, involving a basis of eight operators [203–206]:

OVLL,VRR =
(
d̄αγµPL,Rbα

) (
d̄βγµPL,Rbβ

)
,

OLR
1 =

(
d̄αγµPLbα

) (
d̄βγµPRbβ

)
,

OLR
2 =

(
d̄αPLbα

) (
d̄βPRbβ

)
, (6.23)

OSLL,SRR
1 =

(
d̄αPL,Rbα

) (
d̄βPL,Rbβ

)
,

OSLL,SRR
2 =

(
d̄ασµνPL,Rbα

) (
d̄βσµνPL,Rbβ

)
,

with α, β being colour indices and σµν = 1
2 [γ

µ, γν ]. We have written the effective Hamil-
tonian relevant for B0

d-B̄
0
d mixing; the mixing of B0

s mesons is described by the analogous
expression, changing the label d to s everywhere.

We have performed the matching of the underlying A2HDM and the low-energy effective
Hamiltonian at the scale µtW ∼ MW , mt. The resulting Wilson coefficients, given in the
Appendix B, reproduce the SM result as well as the matching for the 2HDM in the limit
md → 0, given in [207]. As noted above, the contribution of the A2HDM to CVLL(µtW )
is an O(1) effect. For that reason, we calculate this contribution at NLO, implementing
the results of [207] within the A2HDM.2 Owing to their chirality structure, the remaining
Wilson coefficients are all suppressed by powers of the light-quark mass md (ms in the
B0

s case), except C1
SRR which is proportional to m2

b . Restricting the parameter ranges to

2Note, that there are several smaller errors in that paper, most of which have been pointed out in [130].
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Figure 6.10: The 95% CL constraint coming from ∆mB0
s

in the MH±– |ςu| plane for |ςd| ∈
[0, 50], varying in addition the relative phase ϕ in [0, 2π]. The excluded area lies above the
dark (red) region only. In yellow the allowed area for ςd = 0 is shown.

|ςu| ∈ [0, 5] and |ςd| ∈ [0, 50], the ratio |Ci(µtW )/CVLL(µtW )| is then below two percent for
all operators apart from OSRR

1 . Since the matrix elements for the B0 mixing do not contain
the large (chiral) enhancement factors present in the kaon system, this allows us to restrict
ourselves to two operators only. Moreover, the ratio C1

SRR/CVLL is a small quantity (10%
at most for |ςd| ≤ 25, still below 40% for |ςd| = 50) and therefore a leading-order estimate of
the OSRR

1 contribution is enough for our purposes, while the dominant OVLL contribution
is included at NLO.

The strong (ms−md)/MW suppression of SU(3)-breaking effects implies that, for the pa-
rameter ranges considered, the ratio∆mB0

s
/∆mB0

d
is unaffected by charged-scalar contribu-

tions and can be used in the CKM fit. Note, however, that in the limit |ςd| 4 50, |ςu| * 1,
which corresponds to the large–tanβ scenario in the type II model, the contribution from
OVRR might become the dominant new-physics correction to B0

s mixing, but remains small
compared to the SM one.

We use the ratio ∆mB0
s
/∆mB0

d
to determine the apex (ρ̄, η̄) of the unitarity triangle,

and bound the charged-scalar parameters with the B0
s mixing information. The resulting

constraint from ∆mB0
s

in the MH±– |ςu| plane is shown in figure 6.10, using the scales
µtW = mt and µb = 4.2 GeV. The error includes the variations in the CKM parameters,
fB0

s
, B̂B0

s
and the experimental uncertainty. The leading OVLL contribution depends on |ςu|2

only, while C1
SRR is proportional to ς∗uςd = |ςu||ςd|eiϕ, being ϕ the relative phase between

the two Yukawa couplings. To determine the allowed region shown in figure 6.10, we have
varied ςd in the range |ςd| < 50 and ϕ ∈ [0, 2π].

Interestingly, the dominant contribution to a possible phase shift in the mixing is also
the one from OSRR

1 . The factor M4
W D0(mt, MH) (see Appendix B) varies between zero

and ∼ −3% for scalar masses between 50 and 500 GeV, while 4m2
bm

4
t /M

6
W ∼ 10%. For
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relatively large values of the product |ς∗uςd | (" 20) this factor can contribute sizeably to
the B0 mixing phase, as long as MH± is relatively small. The sign of the shift is obviously
not fixed, but depends on the sign of the relative Yukawa phase ϕ. As long as |ςd| is not
too large, the effect is the same in B0

d and B0
s .

6.4.3 K0-K̄0 mixing: εK

The ∆S = 2 effective Hamiltonian is described by the same basis of four-quark operators
given in (6.23), changing the flavour b to s everywhere. However, the small light-quark
masses md and ms suppress now the contributions from all operators except OVLL. Another
difference with respect to B0 mixing is that, owing to the different CKM factors, one needs
to consider the virtual contributions from top and charm quark exchanges within the box
diagrams:

H∆S=2
eff =

G2
F M2

W

16π2

{
λ2

t Ctt
VLL(µ) + λ2

c Ccc
VLL(µ) + 2λtλc Cct

VLL(µ)
} (

d̄γµPLs
) (

d̄γµPLs
)

.

(6.24)
Since λt ≡ V ∗

tdVts ∼ A2λ5 while λc ≡ V ∗
cdVcs ∼ λ, in spite of the m2

c/m
2
t relative suppression,

the charm loop gives the dominant short-distance contribution to ∆mK . There are in
addition large corrections from long-distance physics, which make difficult to extract from
∆mK useful constraints on the new-physics amplitude.

More interesting is the CP-violating parameter εK , which can be written in the form
[168, 208]

εK =
κε√
2

eiφε

∆mK
Im(H∆S=2

eff ) , (6.25)

where κε = 0.94 ± 0.02 takes into account small long-distance corrections [168, 208]. The
top and charm contributions are now weighted by less hierarchical CKM factors Im(λ2

t ) ∼
λ4Im(λcλt) ∼ λ4Im(λ2

c); the mass hierarchy compensates for this, implying that the top
quark gives the most important contribution to εK .

The relevant Wilson coefficients Cqq′

VLL, containing the SM and new-physics contribu-
tions, are given in the Appendix B. The corrections induced by the charged scalar are
proportional to |ςu|2 and |ςu|4. All contributions from the coupling ςd are absent in the
limit md,s = 0. The matrix element 〈K0|H∆S=2

eff |K̄0〉 is parametrized through the hadronic
quantity f 2

KB̂K . We use the numerical values of fK/fπ and B̂K , given in table 6.1, together
with the phenomenological determination of the pion decay constant from Γ(π+ → µ+νµ),
fπ = 130.4 ± 0.04 ± 0.2 MeV [156]. Figure 6.11 shows the constraint obtained from εK
in the plane MH± – |ςu|. It is very similar to the one extracted from Z → bb̄, and even
slightly stronger.

6.4.4 B̄ → Xsγ

The radiative decay B̄ → Xsγ has been calculated at NNLO in the SM whereas in the
2HDM the decay amplitude is known at NLO [167,209–211]. While the problem of a sizable
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Figure 6.11: 95% CL constraints from εK .

scale dependence has been basically resolved with the calculation of the NLO corrections,
the issue of charm-mass scheme dependence can only be addressed at NNLO [212]. To
achieve this, a huge effort is being made, and by now the branching ratio is essentially3

calculated up to that order. We follow here the calculation by [216], giving Br(B̄ →
Xsγ)SM,theo

Eγ>1.6GeV = (3.15 ± 0.23) × 10−4, in agreement with the present world average [217]

Br(B̄ → Xsγ)exp
Eγ≥1.6GeV = (3.55 ± 0.26) × 10−4 . (6.26)

Note however, that different treatments of photon-energy-cut related effects lead to slightly
different results [218–220] (see also [221]). The related shifts are of the order of the uncer-
tainty assigned in [216]. Regarding the non-perturbative part of this calculation, contribu-
tions with the photon coupling to light partons (“resolved” photon contributions) lead to
the appearance of non-local matrix elements, implying an unreducible error of ∼ 5% [222].
Following the steps given in [223], one can express the branching ratio as

Br(B̄ → Xsγ)Eγ>E0 = Br(B̄ → Xceν̄)exp

∣∣∣∣
V ∗

tsVtb

Vcb

∣∣∣∣
2 6α

πCB
[P (E0) + N(E0)] , (6.27)

where the phase-space factor CB = |Vub/Vcb|2Γ(B̄ → Xceν̄)/Γ(B̄ → Xueν̄) = 0.580± 0.016
[224] accounts for the mc dependence of Br(B̄ → Xceν̄). Normalizing the result with
the B̄ → Xceν̄ transition, one cancels the leading non-perturbative corrections of or-
der Λ2/m2

b and minimizes many sources of uncertainties, such as those generated by the
CKM quark-mixing factors, the dependence on m5

b and the sensitivity to mc. The sub-
leading non-perturbative contributions are contained in N(E0), which includes corrections
of O(Λ2/m2

c) [225], O(Λ3/m3
b), O(Λ3/mbm2

c) [226] and O(αsΛ2/(mb − 2E0)2) [227]. The

3For the present status and recent developments, see e.g. [213–215].
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relevant combination of CKM factors is given by

∣∣∣∣
V ∗

tsVtb

Vcb

∣∣∣∣
2

= 1 + λ2(2ρ̄− 1) + λ4(ρ̄2 + η̄2 − A2) + O(λ6) = 0.963± 0.002± 0.005 , (6.28)

where the sensitivity to the apex (ρ̄, η̄) of the unitarity triangle is suppressed by two powers
of λ.

For ms = 0 the effective low-energy operator basis remains the same as in the SM. The
modifications induced by new-physics contributions appear only in the Wilson coefficients,
which are included in the perturbative part P (E0):

Ceff
i (µW ) = Ci,SM + |ςu|2 Ci,uu − (ς∗uςd ) Ci,ud , (6.29)

where ς∗uςd = |ςu||ςd|eiϕ, ϕ being the relative phase. The virtual top-quark contributions
dominate the coefficients Ci,uu and Ci,ud; their explicit expressions as a function of mt can
be found in [167]. Depending on the value of the phase ϕ, the combined effect of the two
terms Ci,uu and Ci,ud can be rather different. For instance, these two terms tend to cancel
each other in the type I model where ϕ = 0, while in the type II version with ϕ = π they
add constructively.

Since the new-physics contribution is only calculated up to NLO, terms in the branching
ratio of O(α2

s) coming from the square of the 2HDM amplitude are neglected consistently.
In some regions of the parameter space, leading to large new-physics effects of opposite
sign to the SM amplitude, the cancellations between the two contributions enhance the
sensitivity to higher-order QCD corrections, generating in some cases unphysical results
(for instance in the type I model at small values of tan β) [210]. Fortunately, the most
problematic region (large values of |ςu|) is already excluded by the constraints from Z → b̄b,
εK and ∆mB0

s
, allowing us to perform a consistent theoretical study of Br(B̄ → Xsγ)

in the whole remaining parameter space. The inclusion of the SM NNLO contributions
substantially improves the reliability of the theoretical predictions.

To extract the information on the A2HDM couplings, we take into account the latest
experimental values, given in table 6.2, and use the same renormalization scales as in [223]
(µ0 = 160 GeV, µb = 2.5 GeV and µc = 1.5 GeV as central values and the same ranges of
variation). We follow again the RFit approach, adding the theoretical uncertainty linearly
to the systematic error. The resulting constraints on |ςu| and |ςd| are shown in figure 6.12,
varying the charged-scalar mass in the range MH± ∈ [80, 500] GeV. The white areas are
excluded at 95% CL. In the left plot, the phase ϕ has been scanned in the whole range from
0 to 2π; the resulting constraints are not very strong because a destructive interference
between the two terms in (6.29) can be adjusted through the relative phase. In the range
|ςu| < 2, one finds roughly |ςd||ςu| < 20 (95% CL). More stringent bounds are obtained at
fixed values of the relative phase. This is shown in the right plot, where ςu and ςd have
been assumed to be real (i.e. ϕ = 0 or π). In that case, couplings of different sign are
excluded, except at very small values, while a broad region of large equal-sign couplings is
allowed, reflecting again the possibility of a destructive interference.
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Figure 6.12: Constraints on ςu and ςd from B̄ → Xsγ, taking MH± ∈ [80, 500] GeV. The
white areas are excluded at 95% CL. The black line corresponds to the upper limit from
εK , Z → b̄b on |ςu|. In the left panel, the relative phase has been varied in the range
ϕ ∈ [0, 2π]. The right panel assumes real couplings.

The sensitivity to the charged-scalar mass is illustrated in figure 6.13, which shows the
constraints on |ςd| versus MH± for fixed values of ςu = 0.5 (left) and ςu = 1.5 (right). Again,
in the upper plots the relative phase has been varied in the whole range ϕ ∈ [0, 2π], while
the lower plots assume real couplings. Figure 6.14 shows the constraints on the |ςu|−MH±

plane, for ςd = 0. Finally, in figure 6.15 we show the constraints obtained for fixed values
of the charged-scalar mass, assuming ςu and ςd to be real. We reproduce in this case the
qualitative behaviour obtained in [133].

We observe that for small values of |ςu| no constraint on ςd is obtained, because in the
limit |ςu| → 0 the SM is recovered, which is compatible with the data. With growing |ςu|
a bound on |ςd| emerges, corresponding to |ςuςd| ! 25. For ςd = 0 on the other hand, a
limit of |ςu| ! 3 can be observed for large scalar masses around 500 GeV, strengthening to
|ςu| ! 1.3 for smaller values of MH± . The overall constraint is relatively weak compared to
the strong bound on MH± obtained in the type II 2HDM, due to the correlation ςuςd = −1.
However, it can be seen from the plots with vanishing phase and/or a fixed value for |ςd,u|
that this strength is recovered, once some parameters are constrained independently. Com-
paring the plots with complex input parameters to their real counterparts, we observe that
the effect of the relative phase is mainly to extend the allowed bands in a way that the
excluded space between them is rendered allowed, too.

As we have shown up to this point, due to the additional degrees of freedom, the
resulting constraint is relatively weak; especially, no direct bound can be found with respect
to the charged-scalar mass, in striking contrast to the 2HDM type II. However, this changes
as soon as the phase is kept fixed to a certain value. Numerically, the decay amplitude has
roughly the following structure for large scalar masses (using numerical estimates for the
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Figure 6.13: Constraints on |ςd| versus MH± (in GeV) from B̄ → Xsγ, for ςu = 0.5 (left)
and ςu = 1.5 (right). The white areas are excluded at 95% CL. In the upper panels, the
phase has been varied in the range ϕ ∈ [0, 2π]. The lower panels assume real couplings.

different contributions from [210]):

A ∼ ASM

{

1 − 0.1 ς∗uςd

(
500 GeV

MH±

)2

+ 0.01 |ςu|2
(

500 GeV

MH±

)2
}

. (6.30)

From this it is obvious that we can expect in that case constraints on the parameter
combinations |ςu|2/M2

H± and ς∗uςd/M
2
H±, the latter being complex. For sizable |ςd|, the last

term is negligible, as |ςu| is constrained to be O(1) at most, leaving only the dependence
on the combination ς∗uςd/M

2
H±. The resulting limits on the single parameters in this ratio

are relatively weak, as seen above. The strength of the constraint lies however in creating
strong correlations between different parameter combinations [228]. This is illustrated in
Fig. 6.16, where the product |ς∗uςd| is plotted against the charged-scalar mass MH± and the
relative phase ϕ, respectively. The hole in the left plot can be understood as separating two
regions where the NP influence is relatively small (lower part) and where it is approximately
twice the size of the SM contribution (upper part), the latter corresponding to a fine-
tuned solution. For larger phases it is not possible anymore to cancel the SM amplitude
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Figure 6.14: Constraints on |ςu| versus MH± (in GeV) from B̄ → Xsγ, for ςd = 0. The
white area is excluded at 95% CL.
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Figure 6.15: Constraints on ςd versus ςu (95% CL) from B̄ → Xsγ, assuming real couplings
and taking MH± = 150 GeV (left) and MH± = 400 GeV (right).

completely, so only one constraint is remaining, making the gap disappear. From the right
plot it becomes obvious that high values for the product |ς∗uςd| are only allowed for large
values of the charged-scalar mass, due to the restriction on the ratio. The effect of these
correlations can obviously be large in observables where the phase plays an important role,
as it is shown in the next section with the CP asymmetries generated in some of these
processes.

6.5 CP Asymmetries in B-systems

The presence of new weak phases immediately poses the question of compatibility with
existing measurements of CP violating observables. One decay where a high sensitivity is
expected is b → sγ, for three reasons: the SM asymmetry is known to be tiny [229–231], its
measurement is rather precise and compatible with zero, and the potential influence of new
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Figure 6.16: The constraint from Br(b → sγ) plotted in the planes |ς∗uςd| − ϕ (left) and
|ς∗uςd| − MH± (right).

physics in this decay is large. In addition, being an inclusive process, non-perturbative un-
certainties are expected to be under better control than for exclusive modes. The branching
ratio and the CP rate asymmetry have both been analyzed within the context of a general
2HDM [210], and it has been pointed out that in large regions of the parameter space the
NLO predictions are not reliable, because they suffer from a very large renormalization-
scale dependence. For the part of the parameter space not affected by these problems the
asymmetry was found to be small.

In this section, we update the calculation for the asymmetry within the framework of the
A2HDM, extending the phenomenological analysis and discussing its implications for the
model parameters [228]. The predicted range for the CP asymmetry turns out to be within
the present experimental limits for all allowed ranges of the A2HDM couplings, although
for some particular values of the parameters it is not far from the achieved sensitivity. This
makes future high-precision measurements of this quantity very desirable and calls for a
better control of theoretical uncertainties.

To that end, the detailed discussion on the branching ratio performed in the previous
section is essential, due to its relevance for the rate asymmetry, but also due to its own high
sensitivity and its intimate relation to the like-sign dimuon charge asymmetry (LDCA) in
B0-decays.

6.5.1 B̄ → Xsγ

The CP rate asymmetry for the process b → sγ is defined as

aCP =
Br(B̄ → Xsγ) − Br(B → Xs̄γ)

Br(B̄ → Xsγ) + Br(B → Xs̄γ)
. (6.31)

Being doubly Cabibbo suppressed, it is known to be tiny in the SM, below 1% [229–231],
making it a sensitive probe of new-physics effects. The relative scale uncertainty is large,
as it is to be expected from a NLO calculation for a CP asymmetry, because it is the
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first contributing order. However, it is small in absolute terms. The same is true for the
charm-mass dependence. Note that the enhanced power-corrections at order O(αs

Λ
mb

) [222],
mentioned above in the discussion of the rate, are not yet included in the calculation for
the asymmetry. Being of relative order Λ/mb, they are likely to increase the uncertainty
significantly. However, the experimental uncertainty of the present world average [217],

aexp
CP (B̄ → Xsγ) = −0.012 ± 0.028 , (6.32)

is much larger than the expected value, so the calculation at NNLO has been considered
less interesting up to now.

Within the context of the general 2HDM the analysis has been performed at LO [232,
233] and then at NLO [210], working in the limit VubV

∗
us = 0, which implies by unitarity that

VcbV
∗
cs = −VtbV

∗
ts. It was pointed out in [210] that, given the cancellation problems in the

branching ratio described before, the prediction was not reliable in part of the parameter
space where it exhibited a large scale dependence, but that for parameter choices where
the branching ratio was well behaved the predicted aCP was very small, O(1%).

We now turn to reanalyze the asymmetry in the context of the A2HDM. In our previous
study we have used the SM NNLO calculation of the branching ratio; however, we will
not include NNLO information in the predicted asymmetry, for two reasons: First, the
necessary calculation does not exist completely, and the interpolation for the charm-mass
dependence has been done specifically for the branching ratio, ignoring some imaginary
parts which can be relevant for the asymmetry. Second, and more importantly, in our
approximation the asymmetry is a pure new-physics effect. Therefore, QCD corrections
should enter at the same level for the SM and new-physics amplitudes. Moreover, as the
scale dependence at NLO is in general more severe for the A2HDM than for the SM,
inclusion of the NNLO SM corrections only would not stabilize the full result.

We confirmed these expectations explicitly by calculating the asymmetry with the
NNLO SM contributions to the branching ratio included. The result showed a relatively
large shift in the central value, which we attribute to the different charm-mass dependence,
and no stabilization of the scale dependence at all. This behaviour is uniform for different
values of ςu,d and MH± . We conclude that for the inclusion of NNLO corrections impor-
tant parts are missing, the calculation of which is beyond the scope of this work. This
lack of NNLO corrections will make the problems described in the branching-ratio analysis
reappear. Nevertheless, we start by analyzing the asymmetry for the same range of pa-
rameters considered in our previous study of the branching ratio, |ςu| ∈ [0, 2], |ςd| ∈ [0, 50],
ϕ ∈ [0, 2π], and MH± ∈ [80, 500] GeV, to examine the strength of this observable by itself.

Figure 6.17 shows the µb renormalization-scale dependence of the predicted CP asym-
metry at NLO, as a function of the phase ϕ, taking MH± = 200 GeV, |ςu| = 0.1 and |ςd| = 5
(left) and 50 (right). The black central curve represents aCP for µb = 2.5 GeV, while the
outer (larger absolute values) and inner (smaller absolute values) lines correspond to µb = 2
and 5 GeV, respectively, using the same range of variation considered in the branching ra-
tio analysis. We observe that the µb dependence is proportional to |aCP |; therefore in the
regions where the asymmetry is relevant the theoretical error from the scale dependence
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is as well. As noted before, the overall scale dependence is strong, approximately 25% in
most of the parameter space. If not noted otherwise, in the following the scale is fixed to
µb = 2.5 GeV.
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Figure 6.17: CP asymmetry at NLO, as function of the relative phase ϕ, for ςu = 0.1,
ςd = 5 (left) and 50 (right) and MH± = 200 GeV. The band shows the variation with the
scale, taking µb = 2.5 GeV (central black line), 2 GeV (outer line) and 5 GeV (inner line).

The asymmetry is small for most values of the phase ϕ, apart from values around
zero, where for some parameter choices one observes an unphysical enhancement of |aCP |.
This is apparent in Fig. 6.17 (right panel), corresponding to ςd = 50, which shows a
large predicted asymmetry around ϕ = ±0.2 rad (modulo 2π), with a very large scale
dependence. This enhancement does not correspond to any large CP-odd contribution, but
rather to a destructive interference in the decay amplitude leading to a nearly vanishing
rate, which is only possible for small imaginary parts. This resonant behaviour can again
be easily understood from Eq. (6.30); a zero of the amplitude occurs around ς∗uςd/M

2
H± ∼

4×10−5 GeV−2 with eiϕ ∼ 1. For lower scalar masses the |ςu|2 term can give a more sizable
contribution, modifying this simplified behaviour, but again the amplitude can become
small through the cancellation of the SM and new-physics contributions. We illustrate this
fact in Fig. 6.18, which shows the parameter region in the |ςu||ςd|/M2

H±−MH± plane leading
to values of aCP outside the (95% CL) allowed experimental range, taking ϕ = 6.15 rad
and fixing the renormalization scale at µb = 2.5 GeV.

The regions of small amplitudes around values of ϕ ∼ 0, 2π are of course very sensitive
to the adopted truncation of the perturbative expansion in powers of the strong coupling
and introduce a correspondingly large theoretical uncertainty. Their appearance signals
the need to incorporate higher-order corrections into the calculation. Fortunately, since the
measured branching ratio is definitely non zero (by many standard deviations) and com-
patible with the SM prediction, these problematic regions of the parameter space, where
cancellations occur, are already excluded. Imposing the constraint that the experimen-
tal branching ratio should be reproduced, the surviving allowed parameter ranges lead to
well-behaved amplitudes and small asymmetries below the present limits.
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Figure 6.18: Region in the |ςu||ςd|/M2
H± − MH± plane leading to values of aCP outside the

(95% CL) allowed experimental range, for fixed phase ϕ = 6.15 rad and scale µb = 2.5 GeV
(MH± in GeV units).

In Fig. 6.19 we plot the predicted maximal value for the CP rate asymmetry, as a
function of the Yukawa phase ϕ = arg(ς∗uςd), including the Br(B̄ → Xsγ) constraint by
showing only points that lie within its 95% CL experimental range. We have scanned the
predictions over the parameter ranges MH± ∈ [80, 500] GeV, |ςu| ∈ [0, 2] and |ςd| ∈ [0, 50],
and have treated the error for the branching ratio as explained in [116]. We find as
expected that the problematic regions have been excluded, and that the maximal achievable
asymmetry is compatible with the present experimental limits at 95% CL, given the scale
dependence of the prediction. Sizable asymmetries at the 1-5% level seem possible for
ϕ ∼ ±0.7 rad, but the corresponding theoretical uncertainty is unfortunately quite large,
as shown by the large scale-dependence of the theoretical results.

6.5.2 B0-B̄0

The D0 experiment measured [14] a like-sign dimuon charge asymmetry leading to Ab
sl =

−0.00957 ± 0.00251 ± 0.00146, which differs by over three standard deviations from the
SM prediction [234]. The measurement includes contributions from B0

d and B0
s mesons,

corresponding to Ab
sl = (0.506 ± 0.043) ad

sl + (0.494 ± 0.043) as
sl, with (q = d, s)

aq
sl = Im

(
Γq

12

M q
12

)
=

|Γq
12|

|M q
12|

sin φq =
∆ΓB0

q

∆MB0
q

tanφq , (6.33)

where M q
12 − i

2 Γ
q
12 ≡ 〈B0

q |H∆B=2
eff |B̄0

q 〉. Using the current B0
d experimental asymmetry,

ad
sl = −0.0047 ± 0.0046 [155], the measured value of ∆MB0

s
and the SM prediction for

∆ΓB0
s
, the D0 asymmetry implies sin φs = −2.7± 1.4± 1.6, showing that the central value

of this measurement is incompatible with the assumption of negligible influence of new
physics on Γ12

s , while the uncertainties are large enough to allow every value for the mixing
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Figure 6.19: Maximal value of aCP versus the phase ϕ at NLO, for MH± ∈ [80, 500] GeV,
|ςu| ∈ [0, 2] and |ςd| ∈ [0, 50], taking into account the experimental Br(B̄ → Xsγ) constraint
at 95% CL. The three curves correspond to µb = 2 (outer), 2.5 (center) and 5 GeV (inner).
The dotted (continuous) horizontal lines denote the allowed experimental range at 95% CL
(68% CL). The vertical shadowed band indicates the region in which an enhancement of the
LDCA induced by charged-scalar effects in the direction of the measured value may occur
(see section 6.5.2 for further details).

phase at 2σ. Using in addition the direct measurement of as
sl through B0

s → µ+D−
s X

decays by D0 [235], as
sl = −0.0017 ± 0.0091, results in sin φs = −1.7 ± 1.1 ± 1.0. Hints

of a large φs value have been also obtained previously from B0
s → J/ψφ decays [236–238],

where the extraction of the phase might however be influenced by contributions to the
decay amplitude. The SM predicts a very small positive value for φs and a much larger
and negative result for φd. The theoretical values quoted in [234] are φs = 0.24◦ ± 0.08◦

and φd = −5.2◦ + 1.5◦

− 2.1◦ .
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Figure 6.20: Dependence of sinφq/(|∆q| sinφSM
q ) on ϕ ≡ arg (ς∗uςd ).

Assuming that the charged-scalar contributions are the only relevant new-physics ef-
fects, we can analyze the possibility to accommodate a large φs phase within the A2HDM.



Charged Higgs phenomenology in the Aligned two-Higgs-doublet model 95

In figure 6.20 we plot the allowed range for sin φq/(|∆q| sinφSM
q ), where ∆q ≡ M q

12/M
q,SM
12 ,

as a function of the relative Yukawa phase ϕ ≡ arg (ς∗uςd ). The other scalar parameters
have been varied in the ranges |ςd| ∈ [0, 50], MH± ∈ [80, 500] GeV, and |ςu| according to
the allowed range from εK , Z → b̄b, which includes only values for (|ςu|, MH) which lead to
acceptable values for ∆ms,d. While it is indeed possible to obtain a large value of φs, the
predicted equality of ∆s and ∆d implies a strong anti-correlation of sinφd/(|∆d| sinφSM

d )
and sinφs/(|∆s| sinφSM

s ), due to the different sign (and size) of φSM
d and φSM

s . This leads to
a prediction for the sign of ad

sl, which could be verified/falsified, once higher experimental
precision is achieved. As can be seen, the preferred negative sign for the as

sl asymmetry
implies arg (ς∗uςd) ∈ [π/2, π], [3π/2, 2π], and for possible large values the Yukawa phase
should not be close to 0, π (obviously).

Figure 6.21 shows the dependence of sinφs/(|∆s| sinφSM
s ) with |ςd| (left) and MH±

(right), varying the remaining parameters within their allowed ranges. If large values for
the as

sl asymmetry are confirmed (within the physical range | sinφs| ≤ 1), this would point
towards large values of |ςd| and small charged Higgs masses.
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Figure 6.21: Dependence of sinφs/(|∆s| sinφSM
s ) on |ςd| (left) and MH± (right).

We show in figure 6.22 the plots from figure 6.20 again, restricting the product |ςuς∗d | ≤
20. The corresponding maximal asymmetry is correspondingly smaller, but still relative
factors up to ∼ 60 are allowed for Bs with respect to the SM.
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Figure 6.22: Dependence of sinφq/(|∆q| sinφSM
q ) on ϕ ≡ arg (ς∗uςd ), constraining |ςuς∗d | ≤

20.
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However, taking all the correlations into account by using a parametrization |ς∗uςd|max

(ϕ, MH±) for the constraints shown in Fig. 6.16, the potential influence of charged-scalar
effects on this observable is reduced by roughly a factor of 10 compared to the result without
correlations. While an enhancement by a factor of ∼ 5 is still possible, larger effects from
charged-scalar contributions are excluded. This large impact can be understood as due to
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Figure 6.23: Possible influence of charged-scalar-effects on the LDCA, taking the constraint
from Br(b → sγ) shown in Figs 6.16 into account. The figure plots the allowed range for
the relative factor with respect to the SM result as a function of the phase ϕ.

a combination of the two correlations shown above: as discussed in [116], sizable values of
the LDCA require relatively low charged-scalar masses, a sizable phase and large values
for the product |ς∗uςd|. The correlations in the constraint from b → sγ imply that the latter
can only be achieved for relatively high masses and small values of the phase. Therefore
the full suppression shows up only in the correlated analysis performed here. A possible
enhancement from additional neutral scalars remains untouched by this. The present
data suggest a preferred negative sign for the B0

s semileptonic asymmetry as
sl, which for

charged-scalar effects to be in the right direction requires arg(ς∗uςd ) ∈ [3π/2, 2π]. Due
to the different structure of its amplitude, the b → sγ rate asymmetry could provide
complementary information on the Yukawa phase.

6.6 Discussion

Imposing natural flavour conservation through discrete Z2 symmetries, one finds that the
CKM phase is the only source of CP violation in the resulting 2HDMs. During the last
thirty years, it has been common lore to assume that this is a more general fact, i.e.
that the absence of tree-level FCNCs implies the absence of additional phases beyond the
CKM one. The A2HDM provides an explicit counter-example, where FCNC couplings are
absent at the Lagrangian level, while additional unconstrained complex phases generate
new sources of CP violation. Since all Yukawa couplings are proportional to fermion
masses, the A2HDM gives rise to an interesting hierarchy of FCNC effects, avoiding the
stringent experimental constraints for light-quark systems and predicting at the same time
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interesting signals in heavy-quark transitions. The flavour-blind phases present in the
model open a very interesting phenomenology which is worth to be investigated. The
built-in flavour symmetries protect very efficiently the A2HDM from unwanted FCNC
effects generated through quantum corrections. At the one-loop level the only allowed
FCNC local structures are the two operators in (5.6), which could have very interesting
(and computable) implications for B0

s mixing.
Besides the fermion masses and mixings, the charged-scalar couplings of the A2HDM

are fully characterized by three complex parameters ςf . In the previous sections, we have
analyzed the impact of the H± contribution to different observables, where it is expected
to be the dominant new-physics effect. Using conservatively estimated hadronic param-
eters and up-to-date data, we have inferred the present constraints on the new-physics
parameters involved in these processes.

Leptonic tau decays provide a direct bound on the leptonic Yukawa coupling: |ςl|/MH± ≤
0.40 GeV−1 (95% CL). From semileptonic processes constraints on the products ς∗l ςu/M

2
H±

and ς∗l ςd/M
2
H± are derived. The leptonic decays of heavy-light mesons allow us to disen-

tangle the effects from ςu and ςd. Thus, from B → τν we derive an annular constraint
on the complex plane ς∗l ςd/M

2
H± (figure 6.1a), implying the absolute bound |ς∗l ςd/M2

H±| <
0.108 GeV−2 (95% CL). For real Yukawa couplings there is a two-fold sign ambiguity
generating two possible solutions, the expected one around ∆ij = 0 (the SM ampli-
tude dominates) and its mirror around ∆ij = 2, corresponding to a new-physics con-
tribution twice as large as the SM one and of opposite sign. The real solutions are
ς∗l ςd/M

2
H± ∈ [−0.036, 0.008] GeV−2 or [0.065, 0.108] GeV−2.

Similar, but slightly weaker, constraints on ς∗l ςu/M
2
H± are obtained from the decays

D → µν (figure 6.1b) and Ds → (τ, µ)ν (figure 6.2); in the last case the bounds from
B → τν are used to get rid of the small ςd contamination proportional to the strange
quark mass. The resulting absolute bound |ς∗l ςu/M2

H±| < 0.6 GeV−2 (95% CL) is rather
weak, but the upper limit corresponds to a new-physics contribution twice as large as
the SM one, a very unlikely situation. The annular form of these constraints results in
much stronger limits, once this possibility is excluded by other processes. For real Yukawa
couplings, one finds ς∗l ςu/M

2
H± ∈ [−0.005, 0.037] GeV−2 or [0.511, 0.535] GeV−2, at 95%

CL.
Owing to the quark-mass suppression, the absolute constraints obtained from lep-

tonic decays of light mesons (figure 6.4) are obviously much weaker. However, the ex-
cellent experimental precision achieved in π and K decays implies a narrow allowed an-
nular region. For real Yukawa couplings this translates into quite stringent bounds:
ς∗l ςd/M

2
H± ∈ [−0.07, 0.07] GeV−2 or [8.14, 8.28] GeV−2 (95% CL). The uncertainties are

dominated by the present theoretical knowledge of the ratio fK/fπ.
Independent information is obtained from the semileptonic decays of pseudoscalar

mesons, through the scalar form-factor contribution. One needs, however, to disentan-
gle the dominant vector form-factor amplitude, which does not contain any charged-scalar
effect and is correlated with the usual measurement of the corresponding CKM mixing
factor. The present constraints from the ratio Br(B → Dτντ )/Br(B → Deνe), shown
in figures 6.5 and 6.6, are not very strong by themselves, but allow in combination with
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other processes the exclusion of the second real solutions in the ςu,dς∗l /M2
H planes. A future

measurement of the differential distribution in B → Dτντ would obviously increase the
sensitivity to the scalar contribution. In spite of the strange-mass suppression, the much
higher experimental accuracy achieved in the analysis of K → πlν decays allows to de-
rive the bound Re(ς∗l ςd/M

2
H±) ∈ [−0.16, 0.30] GeV−2 (95% CL). This already excludes the

second real solution (a scalar amplitude larger than the SM one) obtained from Kµ2/πµ2.
Combining the information from all leptonic and semileptonic decays analyzed, one

gets the constraints shown in figure 6.8.
The flavour-conserving decay Z → bb̄ provides a very stringent constraint on |ςu|. Since

Vtb ≈ 1, the one-loop contributions involving virtual top quarks completely dominate both
the SM (W±) and the new-physics (H±) radiative corrections. In contrast to leptonic
and semileptonic processes, where the charged-scalar effects are necessarily proportional
to ςl, the Z → bb̄ amplitude gives direct access to ςu and ςd. Owing to the relative
factor mb/mt which suppresses the ςd contribution, one gets finally the constraints on
|ςu| shown in figure 6.9 (assuming |ςd| ≤ 50). At 95% CL, we obtain |ςu| < 0.75 (1.6), for
MH± = 80 (500) GeV. The upper bound increases linearly with MH± , implying |ςu|/MH± <
0.0020 GeV−1 + 0.59

MH±
< 0.010 GeV−1, where we have used the LEP lower bound on the

charged-scalar mass MH± > 78.6 GeV (95% CL) [41, 74]. Together with the tau-decay
constraint on |ςl|/MH±, this gives the limit |ςuς∗l |/M2

H± < 0.004 GeV−2, which is much
stronger than the information extracted from the global fit to leptonic and semileptonic
decays.

Quite similar information can be extracted from B0 mixing, which is also dominated
by one-loop contributions involving virtual top quarks. The smallness of the ms/MW

ratio implies that SU(3)-breaking corrections are negligible; therefore, the charged-scalar
contributions cancel in the ratio∆mB0

s
/∆mB0

d
, which can be used in the CKM fit. Only two

∆B = 2 four-quark operators are numerically relevant; the one generating the leading SM
amplitude gets new-physics contributions proportional to |ςu|2,4, while the other operator
generates subleading corrections proportional to (ς∗uςd)1,2m2

b/M
2
W . Scanning the parameter

ranges |ςd| < 50 and ϕ ∈ [0, 2π], where ϕ is the relative phase between ςu and ςd, the
measured B0

s mixing amplitude implies the constraints shown in figure 6.10, in the plane
MH±– |ςu|. At 95% CL, one gets |ςu| < 0.00301 MH±−0.12+130/MH±, for MH± ∈ [80, 500],
in GeV units. The charged-scalar contribution could accommodate a B0

s mixing phase,
without spoiling the agreement in the Bd system, although not as large as the present D0
central value, which is at odds with the rate being unaffected by new physics.

The radiative decay B̄ → Xsγ provides another important source of information. There
are two different charged-scalar contributions, proportional again to |ςu|2 and ς∗uςd , but in
this case the two have similar sizes. Their combined effect can be quite different depending
on the value of the relative phase ϕ. This results in rather weak limits because a destructive
interference can be adjusted through this phase. The resulting constraints on |ςu| and |ςd|
are shown in figure 6.12, varying the charged-scalar mass in the range MH± ∈ [80, 500] GeV.
Scanning the phase ϕ in the whole range from 0 to 2π, and imposing |ςu| < 3, one finds
roughly |ςd||ςu| < 20 (95% CL). Much stronger bounds are obtained at fixed values of the
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relative phase. Assuming real values of ςu and ςd (i.e. ϕ = 0 or π), one finds that couplings
of different sign are excluded, except at very small values, while a broad region of large
equal-sign couplings is allowed, reflecting again the possibility of a destructive interference.
Figures 6.13, 6.14 and 6.15 show the sensitivity of the B̄ → Xsγ constraints to the dif-
ferent unknown parameters: MH± , |ςu|, |ςd| and ϕ. The strong constraints on the model
parameters e.g. in type II models are not visible in the A2HDM, due to the presence of
additional parameters. They are replaced by correspondingly strong correlations, which
we analyzed in some detail above, and which play an important role when combining other
constraints with this observable. An example for their influence is given by the LDCA in
B0-decays, whose most recent measurement was given by the D0 experiment. The con-
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Figure 6.24: Constraints on MH± (in GeV) versus tan β (95% CL), in the 2HDM models
of types I (upper-left), II (upper-right), X (lower-left) and Y (lower-right).
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straints discussed so far apply to the general A2HDM framework, with three arbitrary
complex parameters ςf . The limits become of course much stronger in particular models
where these parameters are correlated. Figures 6.24 show the combined constraints on
the tan β–MH± plane for the different Z2 models. The bounds from Z → bb̄, ∆mB0

s
and

B̄ → Xsγ are obviously identical for the models of type I and X and also for type II
and Y. In the type I/X case, ς2u = ς2d = ςuςd = cot2 β and the scalar amplitudes grow for
decreasing values of tan β. For type II/Y, this behaviour is only observed in the ς2u term,
while ς2d = tan2 β and ςuςd = −1; the decay B̄ → Xsγ provides then a very strong lower
bound on the scalar mass, MH± > 277 GeV (95% CL), due to the constructive interfer-
ence of the two contributing amplitudes. The ςl coupling gives rise to different constraints
from leptonic and semileptonic decays in each of the four models. Our results agree with
the qualitative behaviour found in previous analyses [73, 130–133,216, 239–244], the small
differences originating from the slightly different inputs adopted.

Another obvious question to address is the phenomenologically allowed size for the
new phases, which should be constrained by the measured CP-violating observables in
flavour physics. Of these, the b → sγ asymmetry is known to have both a very small SM
contribution and a high sensitivity to new physics. Unfortunately, although the b → sγ
rate is known at NNLO in the SM, the 2HDM contributions have been only computed
at NLO. Since a non-zero rate asymmetry requires absorptive contributions leading to a
strong-phase difference, it first appears at NLO. Therefore, the theoretical uncertainties
are much larger than for the branching ratio. On the other hand, some of the parametric
uncertainties cancel in the asymmetry.

We have analyzed the predicted b → sγ rate asymmetry within the A2HDM, scanning
the parameter space of the model over the full domain allowed by known constraints from
other processes. We have shown that, while aCP could be enhanced for some particu-
lar values of the parameters, it remains compatible with its present measurement when
considering parameters leading to acceptable values for the branching ratio. Sizable CP
asymmetries at the 1-5% level, close to the present experimental bound, seem possible for
Yukawa phases around arg(ς∗uςd) ∼ ±0.7 rad, making a future measurement of this quan-
tity very interesting. Such a measurement would be possible at a Super-B factory, where
precisions better than 1% could be achieved [245, 246]. However, the presently large the-
oretical uncertainty from scale and mass dependence makes necessary a complete NNLO
calculation for the SM and the A2HDM contributions to fully exploit such a measurement.
At the 1% level, one also needs to analyze the small corrections induced by |VubV ∗

us| )= 0,
which have been neglected up to now. An exception is given by potential experimental
information on the quadrant of the new-physics weak phase ϕ: once a measurement is
available which determines the sign of the asymmetry unambiguously, two quadrants are
excluded.

The A2HDM is not the most general version of a 2HDM without tree-level FCNCs. To
avoid the unwanted FCNCs one just needs diagonal Yukawa matrices Yf in the fermion
mass-eigenstate basis, i.e. Yd = diag(yd, ys, yb), Yu = diag(yu, yc, yt) and Yl = diag(ye, yµ, yτ),
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with arbitrary parameters yi. This more general scenario can be formally described by the
Lagrangian (5.3) with the substitution ςfMf → Yf . One could still use nine dimensionless
parameters ςf ≡ yf/mf , one for each charged fermion [247], but in this case this is just a
redefinition of the Yukawa couplings yf because a priori nothing relates them to the fermion
masses [248]. The hierarchy of couplings characteristic of the A2HDM ansatz is lost and
one cannot longer justify that the leading charged-scalar effects originate in the heavier
fermion couplings (it becomes an assumption). With this caveat in mind, our results can
still be applied in this case, but most correlations among different processes disappear be-
cause the associated constraints correspond now to different ςf parameters. For instance,
the constraint in (6.4) refers to ςµ and figures 6.1 to ς∗τ ςb (left) and ς∗µςc (right).

The A2HDM provides a general setting to discuss the phenomenology of 2HDMs, sat-
isfying in a natural way the requirement of very suppressed FCNC effects. The alignment
conditions imply Yukawa couplings proportional to the corresponding fermion masses,
which is supported by the data (bounds of order 1 for the ςf parameters). While in-
cluding as limiting cases all Z2 models, the A2HDM incorporates possible new sources of
CP violation through the ςf phases. The additional freedom introduced by these phases
makes easier to avoid some low-energy constraints, resulting in weaker limits than in the
usual scenarios with discrete Z2 symmetries. A detailed analysis of CP-violating observ-
ables is clearly needed to investigate the allowed ranges for these phases and their potential
phenomenological relevance.

At the moment, the data does not show any clear deviation from the SM. Therefore,
we have derived upper limits on the Yukawa parameters. Nevertheless, we have already
pointed out that the A2HDM could account for a sizeable B0

s mixing phase, as suggested by
the present Bs → J/ψφ and like-sign dimuon data. Our bounds could be made stronger,
adopting more aggressive estimates for the hadronic parameters entering the analysis,
but we have preferred to be on the conservative side and infer solid limits for later use.
Improvements are to be expected on one hand from better theoretical determinations of
the hadronic inputs, and on the other hand from more accurate measurements at NA62
(kaons), LHCb (∆md,s, Bs → J/ψφ), a future Super-B factory (τ , b → sγ,∆md, B →
6ν, B → D6ν), or a linear collider with Giga-Z option (Rb). The agreement of the different
bounds in the vicinity of zero is trivial, when the SM agrees with the data. If signals for
new-physics are found at LHC, the analysis presented here will be capable of quantifying
the agreement (or disagreement) of the data with the A2HDM, and with the different
implementations of the 2HDM based on Z2 symmetries, in one step.





Chapter 7

The two-Higgs-doublet model in the

presence of an extra U(1) gauge boson

7.1 Introduction

The Standard Model of Particle Physics (SM) (for reviews see e.g. [1, 249]) has been ex-
tremely successful in describing all low energy phenomena, being in excellent agreement
with a vast amount of experimental data. The only missing part of the SM today is the
Higgs boson that gives masses to fermions and to W± and Z bosons. The Stueckelberg
mechanism [250] gives mass to abelian vector bosons without breaking gauge invariance
on the Lagrangian, and thus provides an alternative to the Higgs mechanism [251–255]
to achieve gauge symmetry breaking without spoiling renormalizability. A Stueckelberg
extension of the SM was studied in [256, 257] (see also [258] for a generalization with a
kinetic mixing), where the neutral electroweak gauge bosons aquire a mass via both the
Higgs and the Stueckelberg mechanism.

Most of the well motivated extensions of the SM, which have been developed to address
its open issues, involve an extra U(1) in the gauge group. A new heavy gauge boson, Z ′, is
predicted which would have profound implications for particle physics and cosmology. Such
gauge bosons occur naturally in SO(10) grand unified models, extra dimensional models
with a hidden sector brane, and string theoretic models with intersecting branes. For a
nice recent review see e.g. [259]. In general, in models with an additional abelian factor in
the gauge group the fermions are charged under the extra U(1), and furthermore there is a
mixing between the SM boson Z and the new gauge boson Z ′. A Z ′ boson that mixes with
the SM Z boson distorts its properties, such as couplings to fermions and mass relative
to electroweak inputs. One thus has to worry about the cancellation of all anomalies, and
remain in agreement with the LEP and SLC data [260].

Another famous minimal extension of the SM consists in the addition of one scalar
doublet to the theory [16], as it is discussed in this thesis. We have seen already the
rich phenomenology that generates, being able to introduce new dynamical possibilities,
like different sources of CP violation or dark matter candidates, helps to solve some of
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the SM problems. In the most general version of the two-Higgs-doublet model (2HDM),
the fermionic couplings of the neutral scalars are not diagonal in flavour, which generates
dangerous flavour-changing neutral current (FCNC) phenomena. Since these are tightly
constrained by the experimental data, it is necessary to implement ad-hoc dynamical re-
strictions to guarantee their absence at the required level. For that aim, several versions
of the 2HDM based in different ideas have been developed (see Chapter 3). In this chap-
ter we present another framework for the 2HDM with flavour conservation in the neutral
sector, without any discrete symmetry or flavour symmetry, the presence of an extra U(1)
gauge symmetry plays a crucial role [261]. The only possible 2HDM in this context has
not FCNC terms and the scalar potential results CP invariant.

Many attempts have been made in order to embed the SM in open string theory,
with some success [262–271]. They consider the SM particles as open string states at-
tached on different stacks of D-branes. N coincident D-branes typically generate a uni-
tary group U(N) ∼ SU(N) × U(1). Therefore, every stack of branes supplies the model
with an extra abelian factor in the gauge group. Such U(1) fields have generically four-
dimensional anomalies [272, 273]. These anomalies are cancelled via the Green-Schwarz
mechanism [274–277] where a scalar axionic field is responsible for the anomaly cancella-
tion. This mechanism gives a mass to the anomalous U(1) fields and breaks the associated
gauge symmetry. If the string scale is around a few TeV, observation of such anomalous
U(1) gauge bosons becomes a realistic possibility [278–280]. The structure of the Minimal
Low Scale Orientifold Model has been presented in detail in [281].

This class of models is characterized by i) the existence of two Higgs doublets necessary
to give masses to all fermions, and ii) the massive gauge bosons acquire their mass from
two sources, namely the usual Higgs mechanism, as well as the stringy mechanism related
to the generalized Green-Schwarz mechanism, which is very similar to the Stueckelberg
mechanism. In the light of these developments, it becomes clear that it is natural to study
the 2HDM with additional U(1)s and the Stueckelberg mechanism together with the Higgs
mechanism. In the present work we wish to study the phenomenology of a simple four-
dimensional, non-GUT, non-supersymmetric model with an additional Higgs doublet, and
just one extra U(1) factor in the gauge group for simplicity. In a similar spirit, albeit in a
different set-up, possible signatures at colliders of new invisible physics and Stueckelberg
axions have been analyzed in [282–286].

Our work is summarized as follows. In the next section we present the model, in section
3 we discuss the physics of the heavy gauge boson, and finally we conclude in section 4.

7.2 The model

Here we shall present the ingredients of the model, the electroweak symmetry breaking,
and the mass spectrum at tree level, while the relevant interaction vertices will be given
in the next section.

The gauge group of the model is the SM gauge group times an extra abelian factor
U(1)X , with a coupling constant gX and a gauge boson Cµ associated with it. We have
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three generations of quarks and leptons with the usual quantum numbers under the SM
gauge group, and they are assumed to be neutral under the extra U(1). This is a simple
choice that ensures that there are no anomalies in the model. We consider the presence
of two Higgs doublets, H1 and H2, with the same quantum numbers under the SM gauge
group, the only difference being is that H1 is assumed to be neutral under U(1)X , while H2

is charged under the additional abelian factor with charge YX = ±11. As a consequence no
Yukawa terms including H2 are allowed by the symmetry, and therefore the FCNC problem
is avoided. The gauge interactions are thus completely specified, and the Yukawa couplings
are the same as in the SM. The most general Higgs potential which is renormalizable and
compatible with the symmetries in this framework is the following:

V = µ2
1H

†
1H1 + µ2

2H
†
2H2 +

1

2
λ1(H

†
1H1)

2 +
1

2
λ2(H

†
2H2)

2 + λ3(H
†
1H1)(H

†
2H2)

+ λ4(H
†
1H2)(H

†
2H1) , (7.1)

where µ1,2 and λ1−4 are real parameters. This corresponds to an inert approach, with
the potential similar to the one generated by imposing a Z2 discrete symmetry in the
Higgs basis of a general two-Higgs-doublet model with the SM gauge group [42–45], but in
this case, resulting from a gauge symmetry which additionally forbids the λ5 term. From
the three possible solutions given by the minimization conditions of the potential [31],
we choose for analogy the one where the second Higgs doublet vacuum expectation value
(VEV) is zero, < 0|H2|0 >= 0, and only the first Higgs doublet, H1, acquires a VEV, v.
As in the Z2-inert model, the nonexistence of a VEV for H2 ensures the absence of mixing
between the components of H1 and those of H2. Hence, H1 closely corresponds to the
ordinary SM Higgs doublet, and the fields belonging to H2 are inert in the sense that they
do not couple directly to fermions, but they have gauge interactions and self-interactions.

Finally, the Stueckelberg contribution is [256]

LSt = −
1

4
CµνC

µν −
1

2
(∂µσ + M1Cµ + M2Bµ)2 , (7.2)

where Cµ is the gauge boson associated with the U(1)X , Cµν is the corresponding field
strength, σ is the scalar axionic field which is assumed to couple both to Bµ and Cµ, and
M1 and M2 are two mass scales which serve as two extra parameters of the model.

After giving masses to the gauge bosons, the doublets are of the form [44]

H1 =

[
0

1√
2
(v + h)

]
, H2 =

[
H+

1√
2
(H + iA)

]
, (7.3)

where H1 has one physical degree of freedom left: the neutral scalar field h. Since h closely
resembles the Higgs particle of the SM it will be called here the SM Higgs boson. In

1In intersecting brane models one naturally obtains two Higgs doublets, with three possibilities arising
regarding their charges under the U(1) factors: i) both are neutral, ii) one is neutral and one charged, and
iii) both are charged with opposite charges [262, 271,278]. The first possibility is not interesting, while in
the third one no Yukawa couplings are allowed.
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addition, H2 includes the neutral CP -even H , the neutral CP -odd A (with defined CP
parities because the parameters of the scalar potential are real), and two charged H± inert
scalars. The masses of the particles are (at tree level) given by

M2
h = λ1v

2 ,

M2
H± = µ2

2 +
1

2
λ3v

2 ,

M2
H = µ2

2 +
1

2
(λ3 + λ4)v

2 ,

M2
A = µ2

2 +
1

2
(λ3 + λ4)v

2 . (7.4)

Notice that in our model the neutral inert Higgs bosons are exactly degenerate in mass,
and this should be true also at loop level, since A and H couple to the same fields with
the same coupling constants. If H and A are exactly degenerate in mass, there is not a
good dark matter candidate because of direct detection limits [45]. In direct detection
searches the dark matter particle scatters off a nucleous of the material in the detector.
What is seen is the recoil of the nucleous, while the dark matter particle is not observed.
Analysing the data an upper bound on the nucleon/dark matter particle cross section for
a given dark matter particle mass is obtained [287]. If the masses of H, A are different,
the lightest of the two Higgs bosons, say H , is supposed to play the role of dark matter
in the universe, and the scattering off a nucleous takes place via an exchange of the SM
Higgs boson (see the first Feynman diagram in the Figure 7 below). If, however, the two
inert Higgs bosons are degenerate in mass, the scattering of H off a nucleous can take place
also via a Z boson exchange (see the second Feynman diagram in the Figure 7 below). In
this case there is an unsuppressed coupling with the Z boson, and the elastic scattering
Hq → Aq through a Z boson exchange has a cross section orders of magnitude larger than
the allowed ones [45]. The components of the inert scalar doublet interact with h and

Figure 7.1: Feynman diagrams corresponding to the elastic scatterings H q → H q and
H q → A q respectively.
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among themselves as follows:
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With the Stueckelberg extension, and after the standard spontaneous electroweak symme-
try breaking the mass terms in the neutral vector boson sector take the form −1

2VaµM2
abV

µ
b ,

using (V T
µ )a = (Cµ, Bµ, W 3

µ)a, with mass matrix [256]

M2
ab =




M2

1 M1M2 0
M1M2 M2

2 + 1
4g

2
Y v2 −1

4gY g2v2

0 −1
4gY g2v2 1

4g
2
2v

2



 , (7.6)

where v = 2MW/g2 = (
√

2GF )−
1
2 = 246 GeV, g2 and gY are the SU(2)L × U(1)Y gauge

coupling constants, MW is the mass of the W± boson and GF is the Fermi constant. From
det(M2

ab) = 0 it is easily seen that one eigenvalue is zero, whose eigenvector corresponds
to the photon Aγ

µ. Among the remaining two eigenvalues M2
±, we identify the lighter mass

eigenstate with mass M− as the Z boson, and the heavy eigenstate with mass M+ as the
Z ′ boson. Using an orthogonal transformation O to diagonalize M2

ab, OT M2
abO = M2

D, we
go to the eigenstates basis ET

µ = (Z′
µ, Zµ, Aγ

µ), where M2
D = diag(M2

Z′ , M2
Z, 0), Vµ = OEµ

and O is parametrized as

O =




cosψ cosφ − sin θ sinφ sinψ − sinψ cosφ − sin θ sinφ cosψ − cos θ sinφ
cosψ sinφ+ sin θ cosφ sinψ − sinψ sinφ+ sin θ cosφ cosψ cos θ cos φ

− cos θ sinψ − cos θ cosψ sin θ



 . (7.7)

The mixing angles θ, φ and ψ are given by [256]

tan θ =
gY

g2
cosφ , tanφ =

M2

M1
, tanψ =

tan θ tanφM2
W

cos θ(M2
Z′ − (1 + tan2 θ)M2

W)
, (7.8)

and we can again define the weak angle to be the same as in the SM, tan θw = gY /g2. In
this model, there are some extra free parameters apart from the SM ones, which are: i)
the mass parameters and couplings in the Higgs potential, and ii) the coupling constant
gX and the mass scales M1, M2 (or M2/M1 and MZ′) from the Stueckelberg contribution.
Usually, to be consistent with the LEP data on the Z boson, the mixing between the Z
and Z ′ bosons has to be small, |ε| ≤ 0.001 [260], which is satisfied when either the Z ′ boson
is heavy or the new coupling constant gX is very small. In the model discussed here, the
couplings of Z ′ to the fermions (see the relevant formulas in the next section) do not deviate
significantly from the SM values if we take a small ratio M2/M1 ≤ (0.05 − 0.06) [257]. We
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have considered mainly the case in which M2/M1 = 0.03, but later on we will also make a
comment on what the effect of varying the ratio is. Since M2/M1 is taken to be small, the
new gauge boson is allowed to be relatively light, and if not very heavy it is within future
experimental reach. Therefore in the following we shall take the mass of the heavy gauge
boson to be in the range between 200 GeV and 1 − 2 TeV.

The interactions between the fermions, the SM Higgs and the charged W± bosons are
the same as in the SM, and the electromagnetic interactions of charged particles have the
usual form, where now the electric charge is given by

e =
g2gY cos(φ)√
g2
2 + g2

Y cos(φ)2
. (7.9)

Furthermore, the interactions of the inert bosons with W± are the same as in the inert
2HDM. However, due to the existence of Cµ and the new mixing between the mass eigen-
states and the gauge eigenstates, the couplings to the Z boson are different, and there
are also similar couplings to the Z ′. In the model discussed here, the photon is a linear
combination of W 3

µ ,Cµ ,Bµ, and we find the relation

Q = T3 +
Y

2
−

gXYXM2

2gY M1
(7.10)

which generalizes the usual SM formula Q = T3 + Y/2. For the particles that are neutral
under the extra U(1) factor the third term vanishes and we recover the formula valid in
the SM, while for the inert Higgs bosons, assuming that YX = ±1, we find

Y = 1 ±
gX

gY

M2

M1
(7.11)

and therefore for a coupling constant gX similar to the SM coupling constants g2, gY or
lower, the usual hypercharge for the inert Higgs bosons is slightly different than one.

7.3 Heavy gauge boson searches

The LHC is designed to collide protons with a center-of-mass energy 14 TeV. Since the
center-of-mass energy of proton-proton collisions at LHC is 14 TeV, the particle cascades
coming from the collisions might contain Z ′ if its mass is of the order of 1 TeV. Therefore
a heavy gauge boson can be discovered at LHC, and in fact new gauge bosons are perhaps
the next best motivated new physics, after the Higgs and supersymmetric particles, to
be searched for at future experiments. The mass, total decay width as well as branching
ratios for various decay modes are some of the properties of Z ′ that should be accurately
measurable, and could be used to distinquish between various models at colliders. Thus,
in this section we discuss the phenomenology of the model as far as the physics of the
new gauge boson is concerned. In the following we shall be interested in two-body decays,
M → m1 m2, of a heavy particle with mass M into two lighter particles with masses



The two-Higgs-doublet model in the presence of an extra U(1) gauge boson 109

m1, m2, provided of course that in the Lagrangian there is the corresponding three-point
vertex, and that the decay is kinematically allowed, namely that M > m1 + m2. The
general formula for the decay width is given by

Γ(M → m1 m2) =
λ1/2(M2, m2

1, m
2
2)

16πM3
|Mfi|2 , (7.12)

where Mfi is the transition amplitude from the initial to final state and the function
λ(a, b, c) ≡ a2 + b2 + c2 −2ab−2ac−2bc. In particular, we are here interested in the decays
of the heavy gauge boson Z ′ into fermions, W±, Z and Higgs bosons:

Z ′ → f f̄ ,

Z ′ → W+W− ,

Z ′ → H+H− ,

Z ′ → HA ,

Z ′ → h Z . (7.13)

7.3.1 Z ′ to fermions

For the first decay channel in (7.13), the Lagrangian interaction between fermions and a
massive neutral gauge boson V has the form

LV ff = −gV ff f̄γ
µ(cV + cAγ

5)fVµ , (7.14)

and the corresponding decay width is given by

Γ(V → f f̄) = Nc

g2
V ffMV

12π

[
c2
V + c2

A + 2(c2
V − 2c2

A)
m2

f

M2
V

]√

1 − 4
m2

f

M2
V

, (7.15)

which in the massless fermion limit (MV 4 mf) is simplified to

Γ(V → f f̄) = Nc

g2
V ff(c

2
V + c2

A)MV

12π
, (7.16)

where the number of colors Nc is one for leptons and three for quarks. In the model
discussed here V corresponds to the Z ′ boson and the coupling gZ′ff is given by

gZ′ff =
g2

4 cos(θw)
, (7.17)

while cV and cA are given by

cV = 2T3 cos(θw)O31 + (YL + YR) sin(θw)O21 ,

cA = −2T3 cos(θw)O31 − (YL − YR) sin(θw)O21 , (7.18)

and can be also found in [288]. In Table 7.1 we recall the quantum number of the fermions.
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T3 YL YR

Neutrinos 1
2 −1 0

Charged leptons −1
2 −1 −2

Up quarks 1
2

1
3

4
3

Down quarks −1
2

1
3 −2

3

Table 7.1: Fermion quantum numbers.

7.3.2 Z ′ to bosons

For the decay channels of Z ′ into Higg bosons the Lagrangian interaction has the usual
structure as in [289]. Departing from the neutral gauge eigenstates Vµ =

{
Cµ, Bµ, W 3

µ

}

Lagrangians,

iLV H+H− =
1

2
gY

(
H+

↔
∂µ H−

)
Bµ +

YX

2
gX

(
H+

↔
∂µ H−

)
Cµ +

1

2
g2

(
H+

↔
∂µ H−

)
W µ

3

LV HA =
gY

2

(
H

↔
∂µ A

)
Bµ +

gX

2

(
H

↔
∂µ A

)
Cµ −

g2

2

(
H

↔
∂µ A

)
W µ

3

LV V h =
1

v
h M2

Z

(
cos(θw)W 3

µ − sin(θw)Bµ

)
(cos(θw)W µ

3 − sin(θw)Bµ) , (7.19)

one can derive the interaction between the new gauge boson Z ′ rotating the fields as in Eq.
(7.7). Therefore, from the mass eigenstates basis Eµ =

{
Z ′

µ, Zµ, Aγ
µ

}
, the contributions

describing these interactions are,

LZ′H+H− = −i gZ′H+H− Z ′µ
(
H+

↔
∂µ H−

)
,

LZ′HA = gZ′HA Z ′µ
(
H

↔
∂µ A

)
,

LZ′Zh = gZ′Zh Z ′µZµh , (7.20)

given the corresponding couplings,

gZ′HA =
1

2
(−g2O31 + gY Y O21 + gXYXO11) ,

gZ′H+H− =
1

2
(g2O31 + gY Y O21 + gXYXO11) ,

gZ′Zh =
M2

Z

v
(2 cos2(θw)O31O32 + 2 sin2(θw)O21O22

− sin(2θw)(O31O22 + O32O21)) , (7.21)
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where gZ′Zh can be also found in [288]. Thus, the decay rates (7.12) corresponding to these
processes can be easily obtained from the following amplitudes squared

|MZ′→HA|2 =
1

3
g2

Z′HA

[
(M2

H − M2
A)2

M2
Z′

+ M2
Z′

(
1 −

2(M2
H + M2

A)

M2
Z′

)]
,

|MZ′→H+H−|2 =
1

3
g2

Z′H+H− M2
Z′

(
1 −

4M2
H±

M2
Z′

)
,

|MZ′→Zh|2 =
1

3
g2

Z′Zh

[
(M2

Z′ + M2
Z − M2

h)2

4M2
ZM2

Z′

]
. (7.22)

Finally, for the decay of Z ′ into W± bosons, we have obtained a formula similar to that
of [289], with the coupling in the model discussed here being different by the SM coupling
between Z and W± bosons by a factor O31

cos(θw) . Suppression by O31 of the decay Z ′ →
W+W−, resulting in a branching ratio of a few percent for this mode, is seen in [290].

7.3.3 Results

Our results are summarized in the figures below. We have fixed the Higgs boson masses
(Set 1 and Set 2 as can be seen in Table 2), as well as the coupling constant gX considering
two cases, one in which the coupling is small, gX = 0.001, and one in which the coupling
is comparable to the SM couplings, gX = 0.1. Then the only free parameter left is the
heavy gauge boson mass. Therefore, in the figures shown below the independent variable
is the mass of Z ′. First we focus on the case where gX = 0.001. Figures 7.2 and 7.3 show
the total decay width of Z ′ (in GeV) as a function of its mass for Set 1, with M2/M1 =
0.03 and 0.05, respectively. In the rest of the figures the impact of changing the value
for the ratio M2/M1 is negligible, so it is fixed at 0.03. Figures 7.4 and 7.5 show all
branching ratios as a function of MZ′ (for Set 1 and Set 2 respectively). All the decay
channels into quarks have been considered together as a single quark channel. However,
we have checked that Z ′ decay into quarks is dominated by the up quark contributions, as
in Figure 1 of [290]. The straight vertical lines correspond to the thresholds, one for the
top quark (∼ 346 GeV), one for the neutral Higgs bosons (600 GeV for Set 2 only) and
one for the charged Higgs bosons (400 GeV for Set 1 and 1000 GeV for Set 2). We remind
the reader that in the SM, the branching ratio of the Z boson to electrons or muons or
tau leptons is 0.034 for each of them, to all neutrino species (invisible channel) is 0.2, and
to hadrons is 0.7. To compare with the Stueckelberg extension of the SM with just one
Higgs doublet, we show for that model the branching ratios of Z ′ in Figure 7.9 (for Set
1), and the total decay width in Figures 7.2 and 7.3 together with the total width for our
model with two Higgs doublets. In the model with one Higgs doublet there are no decay
channels to inert Higgs bosons, and for a large enough MZ′ , where the branching ratios of
Z ′ to the inert Higgs bosons become significant, the decay widths in the two models tend to
differ. However, the difference is small since the dominant contribution to the decay width
is from Z ′ to fermions, which scales as MZ′g2

Y (M2/M1)2 [291]. Furthermore, in the model
with one Higgs doublet only, there is just the SM neutral Higgs boson, while in the model
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Set 1 Set 2
MH± (GeV) 200 500
MH,A (GeV) 100 300
Mh (GeV) 100 250

Table 7.2: The two sets of Higgs boson masses used in the analysis.

with two Higgs doublets there are both neutral and charged Higgs bosons. Clearly, if a
charged Higgs boson is seen at colliders, this would be a direct evidence of physics beyond
the SM. Without Yukawa couplings the charged Higgs bosons cannot directly decay into
fermions, and therefore the dominant decay channels of the charged Higgs bosons are just
two, H± → W± H and H± → W± A. Taking into account that H and A are degenerate
in mass, the model discussed here predicts that there are two main decay channels for H±

with the two branching ratios being equal to 1/2. We can also mention here in passing that
if the decay channel h → ZZ is kinematically allowed, the SM Higgs boson can be easily
found through the so-called four-lepton golden Higgs channel, h → ZZ → l+l−l+l− [15].

As in the case with one Higgs doublet, the total decay width is much smaller than
in other models [292, 293], and therefore a heavy gauge boson is expected to show up at
colliders as a sharp resonance. Finally, in Figure 7.8 we show ratios of decay widths of
two channels as a function of MZ′, and in particular we have chosen to show the following
ratios: Leptons to hadrons, leptons to neutrinos, charged Higgs to neutral Higgs, and W±

bosons to SM Higgs and Z boson. Recall that in the SM the ratio of leptons to neutrinos
is 0.17, and the ratio of leptons to hadrons is 0.05.

Finally, notice that in Figures 7.2 and 7.3, although they look very similar, the scale is
different. When the ratio M2/M1 is increased from 0.03 to 0.05, the total decay width also
increases by a factor ∼ 3, because the couplings of the new gauge boson are now larger.
We have also checked that the plot with larger mass ratio showing the branching fractions
cannot be distinguished from the one with smaller mass ratio.

We now consider the case where gX = 0.1 for Set 1 and M2/M1 = 0.03. Most of the
decay modes remain the same, apart from the ones into the inert Higgs bosons, for which
the coupling now is larger, leading to larger partial decay widths. Figure 7.7 shows the
effect of increasing the coupling constant gX in the total decay width, while Figure 7.6
shows the effect on the branching ratios. The curves corresponding to the decays into the
inert Higgs bosons preserve their shape, but now they are above the rest. The sign of YX

has been taken to be positive. If we change the sign of YX we obtain a similar plot where
the branching ratios for the inert Higgs bosons are slightly larger.

7.4 Conclusions

A model with an extra U(1) and a second Higgs doublet has been investigated. It is
assumed that the fermions and the SM Higgs are neutral under the extra U(1), while the
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dark Higgs is charged. Thus, Yukawa couplings for the additional Higgs are not allowed,
and the FCNC problem is avoided. From this point of view the model is similar to the inert
2HDM, although the gauge symmetry is more restrictive than the Z2 discrete symmetry.
The massive gauge bosons obtain their masses from two separate mechanisms, namely from
the usual Higgs mechanism, as well as from the Stueckelberg mechanism. The interplay
between the heavy gauge boson and the extended Higgs sector makes the phenomenology
of this model very rich. We have computed the total decay width and all the branching
ratios of Z ′ as a function of its mass for two different sets of the Higgs bosons masses. We
find that two distinct features of the model are a) a sharp decay width for the heavy gauge
boson, characteristic of the Stueckelberg mechanism like in the corresponding model with
just one Higgs doublet, and b) a pair of charged Higgs bosons with no Yukawa couplings
decaying dominantly into a W± boson and a neutral Higgs boson H or A, with the two
branching ratios being equal to 1/2 each.
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Figure 7.2: Total Γ of Z ′ depending on MZ′ for one Higgs doublet (dashed) and two Higgs
doublet model (for Set 1 and M2/M1 = 0.03). The vertical lines are kinematic thresholds
corresponding to twice the masses of the top quark and charged Higgs of Set 1.
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Figure 7.3: Total Γ of Z ′ depending on MZ′ for one Higgs doublet (dashed) and two Higgs
doublet model (for Set 1 and M2/M1 = 0.05). The vertical lines are kinematic thresholds
corresponding to twice the masses of the top quark and charged Higgs of Set 1.
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Figure 7.4: Branching ratios depending on MZ′ for Set 1. All the decay channels into quarks
have been considered together as a single quark channel. The vertical lines are kinematic
thresholds corresponding to twice the masses of the top quark and charged Higgs of Set 1.
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Figure 7.5: Branching ratios depending on MZ′ for Set 2. All the decay channels into quarks
have been considered together as a single quark channel. The vertical lines are kinematic
thresholds corresponding to twice the masses of the top quark, the neutral Higgs and
charged Higgs of Set 2.
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Figure 7.6: Same as Figure 7.4 but only changing the value of YXgX to +0.1. Apart from
the total decay rate, which is larger, the only relevant difference is for the branching ratios
of Z ′ decaying into inert Higgs (dashed lines), that increase significantly.
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Figure 7.7: Same as Figure 7.2 but only changing the value of YXgX to +0.1. The total
decay rate when the inert Higgs are present (two-Higgs-doublet model) increases.
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Figure 7.8: Ratios r of partial decay widths depending on MZ′ (for Set 1).
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Figure 7.9: Branching ratios depending on MZ′ in the case of one Higgs doublet model
(for Set 1). The vertical lines are kinematic thresholds corresponding to twice the masses
of the top quark and charged Higgs of Set 1.





Conclusions

The Two-Higgs-Doublet Model (2HDM) provides new interesting features in the flavour
sector of the Electroweak theory; some of them have been analyzed in this thesis and the
main conclusions are summarized in the following:

The most general 2HDM generates flavour-changing neutral current (FCNC) interac-
tions at tree level, which are very constrained by the experimental data, however, the
possibility of having these flavour-violating sources makes the model a perfect framework
to describe them, in the case they are observed. The simplest FCNC effect within the
general model is lepton flavour violation (LFV). Due to the absence of righ-handed neu-
trinos there is only one Yukawa matrix, Yl, in the lepton sector of the model, instead of
the two that are present in the quark sector, Yu,d, which decreases the number of free
parameters to deal with. Also, LFV experimental constraints are easier to accommodate
than the FCNC effects in the quark sector. With all that in mind, we presented a general
analysis about LFV, taking advantage of some possible low-energy experiments that could
easily discriminate among different underlying dynamics, scalar, vector or dipole operators.
Those experiments would study the µ → e conversion in different nuclei. Our main conclu-
sions after this analysis are, first, that hadronic uncertainties are not a limiting factor when
measuring LFV rates, since we have always taken ratios of branching ratios (either µ → e
in different nuclei or µ → e over µ → eγ) so the theoretical uncertainties largely cancel.
Also, we have given the accuracy at which the experiment should be done. In the case of
single-operator dominance the ratio of the conversion rates in light nuclei (e.g. Titanium)
should be measured at least at the level of 5%, while in heavy nuclei (e.g. Lead) the level
of accuracy should be 20%, given the rates normalized to the rate in Aluminum. Similar
requirements appear for more than one operator dominance. Once these accuracies are
reached by the experiments, a discrimination among the different models will be possible,
which would be specially interesting for the general 2HDM.

The Aligned Two-Higgs-Doublet Model (A2HDM) assumes that the Yukawa matrices
of the two scalars are aligned in flavour space. With this simple condition FCNC structures
automatically disappear at tree level and all the dynamics gets parametrized by only three
complex parameters, ςu, ςd and ςl, which are possible sources of CP violation. Therefore,
this model preserves flavour conservation in neutral interactions and keeps the possibility
of having CP violation in the flavour sector. Moreover, it contains as particular cases
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all the models based on the implementation of a discrete Z2 symmetry, which makes the
A2HDM a convenient approach where to study the phenomenology of this kind of models.
This alignment is not protected by a symmetry, and some misalignment is generated at
one-loop level. However, due to a flavour symmetry present in the Lagrangian, those FCNC
structures are minimal flavour violation like and result very constrained. The alignment
conditions imply the Yukawa couplings proportional to the masses of the corresponding
fermions, which is in agreement with the data and gives bounds of order 1 for the ςu,d,l

parameters. The additional freedom introduced by the phases of these complex parame-
ters makes easier to avoid the electroweak precision constraints, resulting in weaker limits
than in the scenarios where these parameters are correlated (Z2 models). In this sense,
the A2HDM parameter space could accommodate larger deviations from the SM than
other models. These conclusions arise from the phenomenological analysis of the processes
with charged Higgs contributions presented here. On one hand, we obtained limits on
ςu,dς∗l /M2

H± from leptonic and semileptonic meson decays and direct upper limits on ςu,d

from loop-induced processes, Z → bb̄, εK , B̄0 − B0 and B̄ → Xsγ. We have also analyzed
two CP violating observables present in B systems, the B̄ → Xsγ rate asymmetry and
the B0

s mixing phase. In the first case, we have shown that although the asymmetry could
be enhanced for some particular values of the parameters, it is still compatible with the
current measurements when considering parameters that lead to acceptable values of the
branching ratio. The theoretical errors play a crucial role in this “compatibility”, making
the accurate calculation of the branching ratio at NNLO very important, and also a future
more precise measurement of this quantity very interesting. A sizeable B0

s mixing phase
can be accommodated by the A2HDM, without spoiling the agreement in the Bd system,
although not as large as the one detected in the D0 experiment, which is at odds with
the rate having no contributions from new physics. The B̄ → Xsγ bounds give strong
correlations among the parameters, which reduce the enhanced B0

s mixing phase given by
the B0

s system itself. If signals of new physics are detected at the LHC, this analysis will
be capable to show the agreement or disagreement of the A2HDM.

The study of a new gauge boson in a Stueckelberg extension of the 2HDM gives rise
automatically to an “inert” approach, where the second doublet does not interact with
fermions. The model is similar to the inert 2HDM, although the gauge symmetry is more
restrictive than the Z2. In this model, the masses of the gauge bosons come from both the
Higgs sector and the Stueckelberg mechanism, and the interplay between the new gauge
boson and the extended scalar sector makes the phenomenology very rich. In the analysis,
we have shown all the possible branching ratios of the heavy boson Z ′ as a function of
its mass. A sharp decay width is observed, which is characteristic of the Stueckelberg
mechanism also in the case of one Higgs doublet.

As we have seen, the 2HDM is a versatile extension of the SM that provides many new
dynamical features. In this thesis, we exploited that fact and presented three different
studies of the Electroweak model with this non-minimal realization of the scalar sector, in
the way to look for new physics at the time of the LHC.



Conclusions

El Model de Dos Doblets de Higgs (2HDM) dóna lloc a nous i interessants trets en el sector
de sabor de la teoria Electrofeble; en aquesta tesi hem analitzat alguns d’ells i a continuació
resumim les conclusions més importants:

El 2HDM més general genera corrents neutres amb canvi de sabor (FCNC) a nivell ar-
bre, les quals estan molt retringides experimentalment, malgrat això, la possibilitat de tenir
aquestes fonts de violació de sabor fa del model un context perfecte per tal de descriure-les,
en cas de què foren observades. L’efecte més simple de FCNC en el model general és la
violació de sabor leptònic (LFV). Degut a l’absència de neutrins dextrogirs només hi ha
una matriu de Yukawa, Yl, en el sector leptònic del model, en lloc de les dues que hi ha en
el sector de quarks, Yu,d, fet que decreix el nombre de paràmetres lliures amb què treballar.
A més, les restriccions experimentals de LFV són més fàcils d’acomodar que els efectes
de FCNC en el sector de quarks. Amb tot això al cap, hem presentat una anàlisi general
sobre LFV, aprofitant els possibles experiments a baixa energia que podrien discriminar
fàcilment entre differents dinàmiques subjacents, operadors escalars, vectorials o dipolars.
Eixos experiments estudiarien la conversió µ → e en diferents nuclis. Les nostres conclu-
soins principals després de l’anàlisi són, primer, que els errors hadrònics no són un factor
limitador per mesurar amplades de LFV, ja que sempre hem pres quocients de branching
ratios (bé en la conversió µ → e en nuclis diferents o bé en la conversió µ → e normalitzada
a µ → eγ), de manera que els errors teòrics cancel·len. A més, hem donat la precisió a la
que caldria fer els experiments. En el cas de domini d’un únic operador els quocients entre
les amplades en nuclis lleugers (e.g. Titani) haurien de ser mesurades almenys al nivel del
5%, mentre que en nuclis pesats (e.g. Plom) el nivell de precisió hauria d’estar al voltant
del 20%, on totes les amplades estan normalitzades a l’amplada en Alumini. Per a més d’un
operador dominant els requisits que s’obtenen són similars. Una vegada assolides aquestes
precisions per part dels experiments, es podrà fer una discriminació entre els models, que
seria especialment interessant per al 2HDM general.

El Model Alineat de Dos Doblets de Higgs (A2HDM) assumeix que les matrius de
Yukawa dels dos escalars estan alineades en l’espai de sabor. Amb aquesta simple condi-
ció, les estructures FCNC desapareixen automàticament a nivel arbre i tota la dinàmica
queda parametritzada per, només, tres paràmetres complexes, ςu, ςd i ςl, que són possibles
fonts de violació de CP. Per tant, aquest model preserva conservació de sabor en inter-
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accions neutres i manté la possibilitat de tenir violació de CP en el sector de sabor. A
més, conté com a casos particulars tots els models basats en la implementació de simetria
discreta Z2, el que fa del A2HDM un marc adient per l’estudi de la fenomenologia d’aquest
tipus de models. Aquest alineament no està protegit per una simetria, i cert desalineament
es pot generar a 1-loop. Malgrat això, la presència d’una simetria de sabor en el Lagrangià,
fa que eixes estructures FCNC siguen del tipus violació mínima de sabor i resulten estar
molt suprimides. Les condicions d’alineament impliquen que els acoblaments de Yukawa
siguen proporcionals a les masses dels fermions corresponents, la qual cosa està d’acord
amb les dades experimentals i imposa límits d’ordre 1 per als paràmetres ςu,d,l. La llib-
ertat adicional introduïda per les fases d’aquests paràmetres complexes facilita l’ajust del
model a les restriccions experimentals electrofebles de precisió, donant lloc a límits menys
forts que en escenaris on els paràmetres entan correlacionats (models tipus Z2). En aquest
sentit, l’espai de paràmetres del A2HDM podria tenir més lloc que altres models per a
desviacions del SM. Aquestes conclusions venen de l’anàlisi fenomenològica dels processos
amb contribucions de Higgs carregats presentada ací. Per una part, hem obtingut límits en
ςu,dς∗l /M2

H± de desintegracions leptòniques i semileptòniques de mesons i límits directes en
ςu,d de processos induïts per loop, Z → bb̄, εK , B̄0 − B0 i B̄ → Xsγ. També hem analitzat
dos observables de violació de CP presents en sistemes de B, l’assimetria en l’amplada
del B̄ → Xsγ i la fase de mescla en B0

s . En el primer cas, hem mostrat que malgrat que
l’assimetria podria estar amplificada per a certs valors del paràmetres, és encara compati-
ble amb les mesures actuals quan els valors dels paràmetres que es consideren són aquells
compatibles amb valors acceptables per al branching ratio. El A2HDM pot donar lloc a
una fase de mescla en B0

s no menyspreable, tot i sent consistent amb el sistema Bd, encara
que no tan gran com la detectada a l’experiment D0, la qual és incompatible amb el fet
de considerar l’amplada lliure de contribucions de nova física. El B̄ → Xsγ imposa fortes
correlacions entre els paràmetres, cosa que redueix la grandària de la fase de mescla en B0

s

que tenia lloc només considerant aquest mateix sistema. Si l’LHC detecta senyals de nova
física, aquest anàlisi serà capaç de mostrar l’acord o desacord del A2HDM.

L’estudi d’un nou bosó de gauge en una extensió tipus Stueckelberg del 2HDM dóna lloc
automàticament a un context “intert”, on el segon doblet no interacciona amb els fermions.
El model és semblant al 2HDM inert, sent la simetria gauge més restrictiva que la Z2. En
aquest model, les masses dels bosons de gauge venen d’ambdós sectors, el de Higgs i el
del mecanisme d’Stueckelberg; la interacció entre el nou bosó de gauge i el sector escalar
estès dóna una fenomenologia molt rica. En aquesta anàlisi, hem mostrat tots els possibles
branching ratios del bosó pesat Z ′ en funció de la seua massa. L’amplada de desintegració
observada és pronunciada, cosa que també és característica del mecanisme d’Stueckelberg
en el cas d’un doblet de Higgs.

Com hem vist, el 2HDM resulta ser una extensió del SM certament versàtil, que pro-
porciona diverses característiques dinàmiques noves. En aquesta tesi, hem explotat aquest
fet, tot i presentant tres estudis diferents del model Electrofeble amb aquesta realització
no mínima del sector escalar, en el camí de cercar nova física en el temps de l’LHC.
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Higgs potential formulae

A.1 Basis dependent potential parameters

The potential in the general basis (φ1, φ2) (3.7) can be expressed as

V = µ′
1φ

†
1φ1 + µ′

2φ
†
2φ2 + [µ′

12φ
†
1φ2 + h.c.]

+ λ′
1(φ

†
1φ1)

2 + λ′
2(φ

†
2φ2)

2 + λ′
3(φ

†
1φ1)(φ

†
2φ2) + λ′

4(φ
†
1φ2)(φ

†
2φ1)

+ [(λ′
5φ

†
1φ2 + λ′

6φ
†
1φ1 + λ′

7φ
†
2φ2)(φ

†
1φ2) + h.c.] , (A.1)

where the quadratic and quartic couplings are

Y11 = µ′
1 Y12 = µ′

12

Y21 = µ′∗
12 Y22 = µ′

2 ,
(A.2)

and,

Z1111 = λ′
1 Z2222 = λ′

2

Z1122 = Z2211 = λ′
3
2 Z1221 = Z2112 = λ′

4
2

Z1212 = λ′
5 Z2121 = λ

′∗
5

Z1112 = Z1211 = λ′
6
2 Z1121 = Z2111 = λ

′∗
6
2

Z2212 = Z1222 = λ′
7
2 Z2221 = Z2122 = λ

′∗
7
2 ,

(A.3)

respectively. The parameters corresponding to the general basis φa (with prime) in (A.1)
are related to the ones in the Higgs basis Φa of (3.9) as,

µ1 = µ′
1 cos2 β + µ′

2 sin2 β + 2µ′R
12 sin β cosβ ,

µ2 = µ′
1 sin2 β + µ′

2 cos2 β − 2µ′R
12 sin β cosβ ,

µ12 = e−iθ
[
(µ′

1 − µ′
2) sinβ cosβ − µ′

12 cos2 β + µ′∗
12 sin2 β

]
, (A.4)
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λ1 = λ′
1 cos4 β + λ′

2 sin4 β + λ′
3 sin2 β cos2(β) + λ′

4 sin2 β cos2 β

+2λ′R
5 sin2 β cos2 β + 2λ′R
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A.2 Higgs self-couplings

The self-couplings of the Higgs fields are described by the potential (3.9), where the pa-
rameters are encoded in the Higgs basis. Tables A.1 and A.2 summarize the couplings
for all possible scalar self-interactions. The neutral Higgs couplings do not refer the mass
eigenstates interactions yet, but to the fields S1, S2 and S3. As is discussed in Section
3.2.1, these fields are related to the mass eigenstates ϕ0

i through an orthogonal matrix R,
which is defined by (3.14). Then, ϕ0

i = RijSj with ϕ0
i = {h1, h2, h3} for the most general

potential where CP is explicitly violated. If CP is preserved, then the form of R changes
and ϕ0

i = {h, H, A}. These relations among the fields can be easily translated for the
self-couplings in the following way:

ghihjhk
= Ril Rjm Rkn gSlSmSn , (A.6)

where the sum over equal indices is understood, i, j, k, l, m, n = 1, 2, 3. Of course, CP
violating interactions coming from the elements of the same doublet are forbidden, therefore
S2S2S2S3, S2S3S3S3 and H+H−S2S3 do not exist. Since the most general potential of the
2HDM violates CP, all the other possible self-interactions are allowed.
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gS1S1S1 v λ1 gS3S3S3 −1
2v λ

I
7

gS1S1S2
3
2v λ

R
6 gS3S3S1

1
2v

(
λ3 + λ4 − 2λR

5

)

gS1S2S2
1
2v

(
λ3 + λ4 + 2λR

5

)
gS3S1S1 −3

2v λ
I
6

gS2S2S2
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7 gS1S2S3 −2v λI

5

gS2S2S3 −1
2v λ

I
7 gH+H−S1 v λ3

gS2S3S3
1
2v λ

R
7 gH+H−S2 v λR

7

gH+H−S3 −v λI
7

Table A.1: Self-couplings of three Higgs.
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Table A.2: Self-couplings of four Higgs.





Appendix B

∆F = 2 effective Hamiltonian

B.1 ∆B = 2

At lowest order, the ∆F = 2 transitions are mediated by box diagrams with exchanges of
W± and/or H± propagators. Performing the matching between the A2HDM amplitude
and the low-energy effective Hamiltonian H∆F=2

eff , at the scale µtW ∼ MW , mt, one obtains
the Wilson coefficients Ci(µ). We have derived the LO results given in table B.1, where
xW ≡ m2

t /M
2
W and xH ≡ m2

t /M
2
H±. They can be expressed in terms of the two four-point

functions [294]:
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, (B.1)
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Oi Ci(µtW )

OVLL (4xW + x2
W )M2

W D2(mt, MW ) − 8x2
W M4

W D0(mt, MW )+
+ 2|ςu|2x2

W [M2
W D2(mt, MW , MH) − 4M4

WD0(mt, MW , MH)]+
+ |ςu|4x2

W M2
W D2(mt, MH)

OVRR m2
dm2

b

M4
W

[
|ςd|4xHM2

W D2(mt, MH) + |ςd|2M2
W D2(mt, MW , MH)

]

OLR
1 2mdmb

M2
W

xW [|ςd|2|ςu|2M2
WD2(mt, MH) + 2 Re(ς∗d ςu)M

2
WD2(mt, MW , MH)]

OLR
2 2mdmb

M2
W

[
4|ςd|2|ςu|2xW M4

W D0(mt, MH) − 4|ςd|2M2
W D2(mt, MW , MH)+

+ (|ςd|2 + |ςu|2)xW M2
W D2(mt, MW , MH)]

OSLL
1 4

m2
d

M2
W

x2
W [(ςuς∗d )2M4

W D0(mt, MH) + 2ςuς∗dM4
WD0(mt, MW , MH)]

OSLL
2 0

OSRR
1 4

m2
b

M2
W

x2
W [(ςdς∗u)2M4

WD0(mt, MH) + 2ςdς∗uM
4
W D0(mt, MW , MH)]

OSRR
2 0

Table B.1: Leading-order Wilson coefficients for the ∆B = 2 operators given above. The quark
masses from the scalar couplings are to be taken at the matching scale µtW .

through (i = 0, 2)

Di(m, M1, M2) ≡ lim
m2→m

Di(m, m2, M1, M2) , (B.2)

Di(m, M) ≡ lim
M2→M

Di(m, M, M2) , (B.3)

D2(m, M1, M2) ≡ D2(m, M1, M2) − D2(0, M1, M2) . (B.4)

These one-loop contributions involve virtual propagators of up-type quarks (u, c, t).
Once the GIM cancellation is taken into account, the up and charm contributions vanish
in the limit mu,c → 0, which we have adopted. Thus, the B meson mixing is completely
dominated by the top-quark contributions (the different CKM factors have all a similar
size for B0

d mixing, V ∗
udVub ∼ V ∗

cdVcb ∼ V ∗
tdVtb ∼ Aλ3, while in the B0

s case V ∗
usVub ∼ Aλ4

and V ∗
csVcb ∼ V ∗

tsVtb ∼ Aλ2). Since the scalar couplings are proportional to quark masses,
we have maintained the masses of the external down-type quarks. In the limit md → 0, we
reproduce the results given in [207]. The only Wilson coefficients which are not suppressed
by powers of md are CVLL and C1

SRR. Therefore, for all practical purposes, one can neglect
the remaining operators.

The running for OSRR
1 is performed using the results of [205],

(
C1

SRR(µb)
C2

SRR(µb)

)
=

(
[η11(µb)]SRR [η12(µb)]SRR

[η21(µb)]SRR [η22(µb)]SRR

) (
C1

SRR(µtW )
C2

SRR(µtW )

)
, (B.5)
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B0
d B0

s

BMS
2 (mb) 0.83 ± 0.03 ± 0.06 0.84 ± 0.02 ± 0.06

BMS
3 (mb) 0.90 ± 0.06 ± 0.12 0.91 ± 0.03 ± 0.12

Table B.2: B-parameters for B0
d,s mixing from [295]. Systematic errors added linearly.

with

[η11(µb)]SRR = 1.0153 η−0.6315
5 − 0.0153 η0.7184

5 , (B.6)
[η12(µb)]SRR = 1.9325 (η−0.6315

5 − η0.7184
5 ) , (B.7)

[η21(µb)]SRR = 0.0081 (η0.7184
5 − η−0.6315

5 ) , (B.8)
[η22(µb)]SRR = 1.0153 η0.7184

5 − 0.0153 η−0.6315
5 . (B.9)

These are leading-order expressions, but they have been evaluated with the two-loop ex-

pression for αs in η5 = α(5)
s (µtW )

α(5)
s (µb)

∼ 0.7.

The corresponding matrix elements are given by

〈OVLL〉(µ) =
1

3
mB0

d
f 2

B0
d
BVLL(µ) , (B.10)

〈OSRR
1 〉(µ) = −

5

24

(
mB0

d

mb(µ) + md(µ)

)2

mB0
d
f 2

B0
d
BSRR

1 (µ) , (B.11)

〈OSRR
2 〉(µ) = −

1

2

(
mB0

d

mb(µ) + md(µ)

)2

mB0
d
f 2

B0
d
BSRR

2 (µ) , (B.12)

the Bi(µ) parametrizing the deviation from the naive factorization limit. These Bi(µ)
factors have been evaluated in the quenched approximation on the lattice in [295], using
a different operator basis. The connection reads (see again [205], given here with both
operators in the same scheme)

BSRR
1 (µ) = B2(µ) , BSRR

2 (µ) =
5

3
B2(µ) −

2

3
B3(µ) . (B.13)

From [295] we arrive at the values given in table B.2 by adding again all systematic uncer-
tainties linearly.

The wanted B0
d-B̄

0
d mixing amplitude is given by

〈B0|H∆B=2
eff |B̄0〉 =

G2
F M2

W

16π2
(V ∗

tdVtb)
2f 2

B0
d
M2

B0
d

×
[
2

3
B̂B0

d
ηB(xW , xH) CVLL(µtW ) (B.14)

+
m2

B0
D

(mb(µb) + md(µb))2
[ηSRR(µb, µtW )CSRR(µtW )]T BSRR(µb)

]

,



130 B.2. ∆S = 2

with

BSRR(µb) =

(
− 5

12B2,d(µb)
2
3B3,d(µb) − 5

3B2,d(µb)

)
. (B.15)

From this, we get the relevant observables as

∆mB0
d

=
1

mB0
d

|〈B0
d|H∆B=2

eff |B̄0
d〉| , (B.16)

φB0
d

= −Arg
[
〈B0

d|H∆B=2
eff |B̄0

d〉
]

. (B.17)

The analogous expressions for B0
s -B̄

0
s mixing are trivially obtained changing the label

d to s everywhere.

B.2 ∆S = 2

For the Kaon mixing amplitude, we have calculated the LO matching coefficients com-
pletely anologous to the ∆B = 2 coefficients, keeping the charm mass finite. Due to the
strong suppression of all other operators by light quark masses we can choose the LO
matching coefficients to be

Ccc
OVLL

= (4xcc
W + xcc 2

W )M2
W D2(mc, MW ) − 8xcc 2

W M4
W D0(mc, MW ) ,

Cct
OVLL

= (4xct
W + xct 2

W )M2
W D2(mc, mt, MW ) − 8xct 2

W M4
W D0(mc, mt, MW )

+2|ζu|2xct 2
W

[
M2

W D2(mc, mt, MW , MH) − 4M4
WD0(mc, mt, MW , MH)

]

+|ζu|4xct 2
W M2

W D2(mc, mt, MH) , (B.18)
Ctt

OVLL
= (4xW + x2

W )M2
W D2(mt, MW ) − 8x2

WM4
W D0(mt, MW )

+2|ζu|2x2
W

[
M2

W D2(mt, MW , MH) − 4M4
W D0(mt, MW , MH)

]

+|ζu|4x2
WM2

W D2(mt, MH) ,

COi
= 0 (i )= VLL) ,

where the loop functions D0,2 have been defined already, and xct
W = mcmt/M2

W . In the
calculation, we use the NLO results for the SM which have been calculated in [296, 297],
while the NLO charged Higgs contributions to the top contribution are again taken from
[207], corrected and applied to our scenario.
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