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Introducción

El Gran Colisionador de Hadrones (conocido por sus siglas en inglés, LHC) ya se ha puesto
en marcha y se han producido las primeras colisiones. Hay una gran expectación hacia
los datos que serán recogidos en los próximos años: su energía a pleno rendimiento, 14
TeV en el centro de masa, nos guiará en la exploración de la física a la escala del TeV,
donde esperamos encontrar respuesta a algunos de los misterios de la Naturaleza aún por
desvelar. El LHC ya ha registrado la energía más alta alcanzada hasta hoy en aceleradores,
con colisiones a 2.36 TeV de energía en el centro de masa, en noviembre del año pasado y
a lo largo de los próximos años la verá subir hasta llegar a los 14 TeV.

Al principio de los años ’70 el Modelo Estándar (SM) de las interacciones fundamen-
tales se completa y en las décadas siguientes se confirma con una precisión muy alta en
un gran número de datos experimentales. Asimismo, se descubren partículas predichas
anteriormente, como los bosones de gauge Z y W o el quark top y la composición de la
Naturaleza en términos de partículas se comprende cada vez mejor. El Modelo Estándar es
una teoría de gauge basada en el grupo de simetría SU(3)C ⊗ SU(2)L ⊗ U(1)Y y describe
tres de las cuatro fuerzas fundamentales presentes en la Naturaleza: la fuerte, la débil
y la electromagnética. La cuarta fuerza es la gravedad, que hasta ahora no se ha con-
seguido incorporar. Las partículas elementales en el Modelo Estándar se clasifican como
leptones y quarks, los cuales son fermiones, y bosones de gauge, que son responsables de
las interacciones.

No obstante, algunas preguntas quedan todavía abiertas: ¿cuál es el origen de las
masas? ¿Por qué estamos hechos de materia y no de antimateria? ¿Qué es esa materia
oscura que constituye la mayor parte de nuestro universo y, aun así, no podemos ver? El
LHC tiene como objetivo encontrar respuesta a estos y más problemas en los próximos
años.

El LHC es un colisionador donde chocan dos haces de protones y está compuesto por
dos anillos de alrededor de 27 km de circunferencia. Los haces se encuentran en cuatro
puntos, donde están situados cinco experimentos. Hay dos detectores de alta luminosidad,
dedicados a distintas funciones, ATLAS y CMS, y dos de baja luminosidad, TOTEM y
LHCb, de los cuales el primero tiene como objetivo la detección de protones a pequeños
ángulos y el segundo la física del B. Asimismo, existe también un experimento de iones,
ALICE, que trabajará con haces de iones de plomo.

Uno de los objetivos principales de ATLAS y CMS es encontrar el bosón de Higgs. El
mecanismo de Higgs explica que aquellas partículas que tienen masa la adquieren a través
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de la interacción con un campo escalar, llamado bosón de Higgs. A pesar de haberse de-
sarrollado muchas teorías que incluyen uno o más bosones de Higgs, también en escenarios
supersimétricos, nadie todavía lo ha detectado hasta hoy. La cota inferior que viene de
búsquedas directas se sitúa alrededor de los 114 TeV al 95% de nivel de confianza. Un
ajuste global al Modelo Estándar de los datos electrodébiles de LEP indica una preferencia
para un Higgs ligero, con un límite superior de 182 GeV. Puesto que argumentos de uni-
tariedad dan un límite superior de 1.2 TeV, el LHC cubrirá el intervalo completo de energías
donde nos esperamos encontrar el Higgs. Además, la alta energía del LHC causará un con-
siderable aumento de la sección eficaz de producción del Higgs, comparado con Tevatron.
Por eso, contaremos con estadística suficiente para encontrar una señal definitiva. Si esto
no aconteciera, se investigarán modelos alternativos. Especialmente en este caso, es muy
importante probar modelos como supersimetría (SUSY), ya que, en principio, partículas
supersimétricas con masas menores que unos TeV son accesibles a los experimentos. Al-
gunos de los modelos de SUSY pueden explicar también la discrepancia que observamos
en el universo entre materia y antimateria. Efectivamente, en SUSY se pueden encontrar
nuevas fuentes de violación de CP, distintas a las del Modelo Estándar, así como en las
desintegraciones raras de los mesones B. El misterio de la materia oscura puede también
beneficiarse de los descubrimientos de SUSY, ya que la partícula supersimétrica más ligera
es un candidato excelente para ella. Otro candidato posible puede venir de modelos de di-
mensiones extra. En estos modelos se introducen más dimensiones espaciales curvadas de
tal forma que quedan ocultas en el mundo macroscópico. ATLAS y CMS podrían detectar
estas dimensiones escondidas, por medio de excitaciones de Kaluza-Klein de partículas del
Modelo Estándar o incluso del gravitón. Este tipo de modelos sería también una manera
de estudiar una teoría cuántica de la gravedad, que vive en un mundo con más de tres
dimensiones.

Antes de que empiece la emocionante era de los descubrimientos, se ha de pasar por
un periodo de medidas precisas de los procesos del Modelo Estándar. Esto es útil, no solo
para calibrar los detectores, sino en sí mismo porque se entrará en escalas y regiones del
espacio fásico nunca alcanzadas, donde los procesos del SM no han sido nunca estudiados.
Esto permitirá poner límites más altos, por ejemplo, sobre las funciones de distribución
partónicas, así como probar el funcionamiento correcto de los generadores Monte Carlo en
un intervalo de energía más amplio. Por último, procesos como W/Z + jets o producciíon
de quark top constituyen un fondo considerable para procesos de nueva física y hace falta
conocerlos con gran precisión.

La alta luminosidad de los dos detectores ATLAS y CMS ha sido necesaria porque
muchos de los procesos del SM tienen una baja sección eficaz en el LHC. Por otro lado,
tener un gran número de partículas colisionando por segundo aumenta la probabilidad de
colisiones inélasticas y ésta es la razón por la cual los protones del haz están divididos
en grupos. El balance entre estos dos requerimientos ha llevado a un intervalo entre dos
colisiones de los haces de 25 ns. La luminosidad a pleno rendimiento nominal es L =
1034cm−2s−1. Los partones que colisionan dentro del protón llevan fracción de momento x1

and x2. La energía en el centro de masa del proceso individual es entonces
√
ŝ =

√
x1x2s,

donde
√
s = 14 TeV a pleno régimen. Esto significa que la energía accesible es alrededor de
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unos TeV, por lo tanto es posible en principio detectar partículas con masas en ese intervalo.
Tevatron, que hace colisionar protones y antiprotones, con su energía en el centro de masa
de 1.96 TeV ya ha excluido la existencia de nuevas resonancias en distintos modelos con
masas más bajas que 1 TeV.

Mientras que LEP colisionaba electrones y protones, el LHC acelera dos haces de pro-
tones, lo cual significa que en cada colisión se puede presentar más de un estado inicial
y, por consiguiente, más de una interacción fundamental para cada choque. Esto implica
que nuestro conocimiento de los procesos físicos que ocurren sea menos preciso, porque los
partones que forman parte del protón pueden mezclarse con los estados finales del proceso.
Siendo las partículas del haz hadrones, los procesos generados en el LHC están gobernados
principalmente por la Cromodinámica Cuántica (QCD). El problema principal de QCD
es que la interacción es fuerte (varios órdenes de magnitud más que la débil o la electro-
magnética), por lo tanto la teoría perturbativa tiene un ámbito de aplicación limitado. La
constante de acoplo de QCD varía de tal forma que es pequeña para grandes momentos
transferidos, mientras que crece cuando el momento transferido decrece. Entonces, solo
se pueden calcular perturbativamente aquellos procesos con alto intercambio de momento,
como en el caso de la producción de partículas pesadas, mientras que la hadronización ha
de ser enfocada con técnicas no perturbativas. Por lo que se refiere al análisis perturba-
tivo, en el LHC se producirá un gran número de procesos, tanto de señal, como de fondo,
especialmente emisión de hadrones a corta distancia. Por eso, es de crucial importancia
conocer extremadamente bien el fondo, para ser capaces de distinguir de ése la posible
señal de nueva física. Por esta razón, todos los procesos necesitan ser calculados en QCD
perturbativa.

Mi trabajo de tesis quiere afrontar el desafío de la nueva física del LHC desde dos
puntos de vista. Por un lado, necesitamos cálculos más allá del nivel árbol para obtener
una precisión teórica comparable con la precisión de los datos experimentales. De hecho,
en experimentos como ATLAS y CMS, los errores estadísticos serán muy bajos. Otras
fuentes de errores, como la incertidumbre en las funciones de distribución partónicas y la
luminosidad se pueden reducir significativamente tomando el cociente de los observables
de interés con determinados procesos del Modelo Estándar, como la producción de Z, W y
tt̄. Por lo tanto, son indispensables cálculos por lo menos a segundo orden en teoría de las
perturbaciones (NLO). Cálculos a un order superior de expansión perturbativa existen solo
para un número bajo de jets y más allá de ese orden hay muy pocos. Cálculos a órdenes
superiores al nivel árbol por lo general son bastante complicados, por lo tanto son útiles
nuevos métodos para desarrollarlos. Nuestro objetivo es simplificar y hacer más compactas
las expresiones de amplitudes con n patas externas a nivel árbol, con el fin de extenderlas
a uno o más loops y hacer más sencillas las amplitudes a órdenes superiores. Discutiremos
esto en los capítulos 2 y 3.

Por otro lado, la posibilidad de detectar nuevas partículas en la región del TeV hace
indispensable la comprensión de la resolución alcanzable. En los capítulos 5 y 6, exami-
namos la posibilidad de detectar nuevas resonancias que se desintegran a un par de quark
top-antitop, en colisionadores de alta energía. Efectivamente, existen distintos modelos
de nueva física que introducen partículas masivas, como los axigluones, los gluones de
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Kaluza-Klein o los colorones. Algunas de ellas, cuando se desintegran a un par de quark
top, producen una asimetría de carga, ya a nivel árbol. En nuestro trabajo, exploramos
la posibilidad de medir este tipo de asimetrías en colisionadores hadrónicos. En particu-
lar, nos centramos en el escenario del LHC, con el fin de dar una estimación del alcance
estadístico que va a proporcionar en detectar nuevas resonancias a través de asimetrías de
carga.



Introduction

The CERN Large Hadron Collider (LHC) has started working and performing collisions.
There are great expectations for the LHC data: its 14 TeV centre–of–mass energy at full
regime will lead us into the TeV scale physics, where we hope to find answers to some of
the unrevealed mysteries of Nature. The LHC has already produced the highest energy
ever reached on the Earth with collisions at 7 TeV of center-of-mass energy on the 30th of
March 2010. Throughout the next years the energy will be raised until 14 TeV.

In the early ’70 the Standard Model (SM) of elementary interactions is ultimated and
in the following decades it turns out to explain with great precision a lot of experimental
data. Also, predicted particles (Z and W bosons, top quark . . . ) are discovered and the
composition of Nature in terms of particles is better and better understood. The Standard
Model is a gauge theory based on the symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y . It
describes three of the fundamental forces present in Nature: the strong, the weak and the
electromagnetic force. The fourth one is gravity which so far has not been incorporated.
The elementary particles in the SM are classified as leptons and quarks, which are fermions,
and gauge bosons, which are responsible of the interactions. In Table 1 their properties
are summarized.

spin = 1
2

spin = 1

Leptons Quarks Gauge bosons

Generation Q Q Force

I
e
νe

−1
0

u
d

2/3
−1/3

γ
g

e.m.

strong

II
µ
νµ

−1
0

c
s

2/3
−1/3

W±

Z

}
weak

III
τ
ντ

−1
0

t
b

2/3
−1/3

Table 1: Particle content of the Standard Model.
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Nevertheless, there are some questions still open: which is the origin of mass? Why are we
made of matter instead of antimatter? What is this dark matter that makes up most of
the matter in our universe and yet we cannot see? The LHC aims to find answers to these
and more problems, in the next years.

The LHC is a proton–proton collider, composed by two rings of about 27 km of length.
The beams cross in four points, where five experiments are located [1]. There are two
high luminosity, multi-purpose detectors, ATLAS and CMS, and two low luminosity ones,
TOTEM and LHCb, the first one devoted to the detection of protons at small angles and
the second one to B-physics. Furthermore, an ion experiment, ALICE, is set up, and it
will work with lead ion beams.

One of the main goals of ATLAS and CMS is to find the Higgs boson. The Higgs
mechanism tells us that those particles which have a mass acquire it through the interaction
with a scalar field, called Higgs boson. Many theories have been developed that include one
or more Higgs bosons, also in supersymmetric scenarios. However, nobody has detected
it so far. The current lower limit coming from direct searches is around 114 GeV at 95%
confidence level. A global electroweak SM fit of the Large Electron-Positron collider (LEP)
data indicates a preference for a light Higgs: an upper limit has been set to 182 GeV [2]. A
general unitarity constraint gives an upper limit of 1.2 TeV [3], so the LHC will cover the
whole range of energies where we expect to find the Higgs. Moreover, the high energy of the
LHC will produce a sizable increase in the Higgs cross section compared to the Tevatron.
Therefore, enough statistic will be in hand in order to find a definitive signal. Should this
not happen, alternative models can be investigated. Especially in this case, testing models
like supersymmetry (SUSY) is very important: in principle, sparticles with mass lower than
few TeV are accessible to the experiments. Some of the SUSY models can explain also the
discrepancy that we observe in the universe between matter and antimatter. Indeed, new
sources of CP violation, different from the SM ones, can be found in SUSY, as well as
in rare decays of B mesons. The puzzle of dark matter could also benefit from SUSY
discoveries: indeed, the lightest supersymmetric particle is an optimal candidate for the
dark matter. Another possible candidate could come from extra–dimensional models. In
these models, more dimensions exist, curled up in such a way that they escape the common
experience. ATLAS and CMS could detect this hidden dimensions, through Kaluza-Klein
excitations of SM particles or even the graviton. This kind of models would be also a way
of studying the quantum theory of gravity, which lives in a world with more than three
dimensions [4].

Before the exciting discovery era starts, a period of detailed measurements of SM pro-
cesses has to be passed. This is useful, not only to calibrate the detectors with already
known processes, but also because we will be able to enter unprecedented scales and re-
gions of the phase space. This will allow to set higher constraints on parton distribution
functions (pdf), as well as checking the correct behaviour of the Monte Carlo generators
in a wide range of scales. Finally, processes such as W/Z+ jets and top quark production
are an important background to new physics processes and their contributions need to be
known in detail [5].

The high luminosity of the two multi-purpose detectors has been necessary because
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many of the SM processes have a low cross-section at the LHC. On the other hand, having
a high number of particles colliding per second increases the probability of inelastic inter-
actions and this is the reason why the beam is divided in bunches. The balance between
these two requirements has lead to an interval between two beam crossings equal to 25
ns. The full regime planned luminosity is L = 1034cm−2s−1. The colliding partons inside
the protons carry momentum fractions x1 and x2. The centre-of-mass energy of the single
process is thus

√
ŝ =

√
x1x2s, where

√
s = 14 TeV at full regime. This means that the

accessible energy is around a few TeV, thus it is possible in principle to detect particles
with masses in such a range. The Tevatron, the proton–antiproton facility located at Fer-
milab, with its centre-of-mass energy of 1.96 TeV has already ruled out the existence of
new resonances in several models with masses lower than 1 TeV.

While LEP collided electrons and positrons, the LHC is a proton-proton accelerator,
which means that in every collision we have more than one initial state and consequently
more than one fundamental interaction per bunch crossing [3]. This makes our knowledge
of the physics processes that occur less precise, because the partons forming the proton can
mix with the final states of the process. Since the beam particles are hadrons, the processes
generated at the LHC are mainly ruled by Quantum Chromodynamics (QCD). The main
problem of QCD is that the interaction strength is high (several orders of magnitudes more
than the weak or the electromagnetic one), so perturbation theory has a limited range of
application. The QCD coupling constant αs runs in such a way that for high momentum
transfers it is small, while it grows when the momentum transfer decreases. So, processes
can be calculated perturbatively only at high momentum transfers, such as in the case
of heavy particles production, while the hadronization has to be approached with non-
perturbative techniques. As for perturbative analysis, a large number of processes is going
to show up at the LHC, both of signal and background, especially short distance hadron
emission. So, it is of crucial importance to know extremely well the background also, in
order to be able to disentangle the possible signal of new physics from it. For these reasons,
all of these processes need to be calculated in perturbative QCD.

My thesis aims to approach the challenge of the new LHC physics from two points of
view. On one side, at the LHC, calculations beyond the tree level are needed in order
to have a theoretical precision comparable with the precision of the experimental data.
Indeed, in experiments such as ATLAS and CMS, statistical errors are very low. Other
sources of errors, like the uncertainties on parton distribution functions (PDFs) and the
luminosity, can be reduced significantly by taking the ratio of the observables of interest
and some benchmark SM processes, such as Z, W and tt̄ production [5]. So, at least
next-to-leading order (NLO) calculations are indispensable. Next-to-next-to-leading order
(NNLO) calculations exist for a few jets, while, beyond that order, there are only very
few calculations (see, e.g., [6]). Calculations at orders higher than tree level are in general
quite cumbersome, so new methods can be useful to develop them. Our aim is to simplify
and compactify the expression of n-legs amplitudes at tree level, in order to extend them
to one or more loops and make NLO and NNLO amplitudes simpler. We will discuss this
part in Chapters 2 and 3.

On the other side, the exciting possibility of discovering new particles in the TeV region
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makes an understanding of the resolution that can be reached mandatory. In Chapter 5
and 6 we examine the possibility of detecting new resonances at high energy colliders, that
decay to a top–antitop quark pair. Indeed, there are several models of new physics that
introduce massive particles, like axigluons, Kaluza–Klein gluons, colorons. Some of them,
when decay to a quark–antiquark pair, produce a charge asymmetry, already at tree level.
In this work we explore the possibility of measuring this kind of asymmetries at hadronic
colliders. We focused especially on the LHC scenario, in order to work out the statistical
reach that it provides in detecting new resonances through charge asymmetries.



Chapter 1

Quantum Chromodynamics

1.1 The running coupling constant

Quantum Chromodynamics (QCD) is the theory which describes the strong interaction,
the force responsible of keeping together the nucleus components, that acts on quarks and
gluons. QCD is a gauge theory based on the SU(3)C symmetry group. The group charge is
called colour. QCD has two peculiar characteristics: confinement and asymptotic freedom.
As its very name suggests, this interaction appears strong since free quarks and gluon
are not observed, but only the hadrons that are constituted by them. The hadrons that
we observe are neutral in color (that is, they are color-singlet). This property is called
confinement and, although it has not been demonstrated yet, it relies on strong evidences
and a demonstration of it has been addressed by lattice calculations. On the other side,
quarks and gluon behave as free particles when tested at short distances. This feature,
known as asymptotic freedom, is due to the running of the color coupling constant αs that
is small at high energies and grows as the energy decreases. The running behaviour of the
coupling constant is a consequence of renormalization. When adding quantum corrections
to the tree level, infinite quantities are generated that would make the predictions useless.
To solve this problem, first the divergent part in every diagram is isolated, in a process
called regularization. The price that has to be paid for this is the introduction of a new
unphysical scale in the calculation. Then, through a redefinition of the fields that take part
in the theory, the new scale dependence is found to disappear with the infinite terms, leaving
a finite, well defined prediction. During this procedure the coupling constant appears to
be “running”, i.e. it depends on the energy scale of the process we are calculating. The
differential equation that regulates the αs dependence on the scale, at one loop level, is [7]:

µ
∂α(µ)

∂µ
= β0

α2

π
, (1.1)

where

β0 =
2Nf − 11Nc

6
, (1.2)

9
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Nf is the number of quark families and Nc = 3 is the number of colours. Integrating Eq.
(1.1) between two values Q2

0 and Q2, one finds the value of αs for every Q2, knowing its
value for a fixed Q2

0:

αs(Q
2) =

αs(Q
2
0)

1 − β0
αs(Q2

0
)

2π
ln(Q2/Q2

0)
(1.3)

From (1.2) it is clear that for Nf < 16, the beta function is negative. The negative
contribution is introduced by the gluon self-interaction, typical of non-abelian theories. If
β0 is negative, for Q2 > Q2

0, αs(Q
2) < αs(Q

2
0) and the coupling constant becomes smaller

and smaller with the raising of the energy. It is also possible an alternative approach that
introduces a dimensional scale that gives an estimation of the perturbative domain. Eq.
(1.1) can be solved between Q2 and the infinity, finding:

αs(Q
2) =

1

β0 ln(Q2/Λ2
QCD)

, (1.4)

where ΛQCD is the scale where the coupling diverges, extrapolated from the perturbative
regime. It is measured to be ΛQCD ≃ 200 MeV. Actually, expression (1.4) is calculated in
perturbation theory, so it is not reliable outside this regime. Anyway, it is sensible to expect
αs to keep on growing when the energy decreases, until the perturbation development is
not possible anymore. So, ΛQCD can be regarded qualitatively as the magnitude where the
interaction becomes strong. Nevertheless, from a rigorous point of view, we can state that
it is the scale parameter of the theory which rules the behaviour of αs at high energies [8].

The QCD Lagrangian reads:

LQCD ≡ −1

4
Gµν

a Ga
µν + ψ̄ (iγµDµ −mf) ψ + Lg.f. + Lghosts , (1.5)

where

Dµ = ∂µ − igsG
a
µTa

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν . (1.6)

The T a are the generators of the SU(3)C group. We recall that in the symmetry group
SU(N) there are N2 −1 generators, that, in the fundamental representation of the group1,
are traceless hermitian N × N matrices T a

ij with i, j = 1, . . . , N and a = 1, . . . , N2 − 1.
The totally antisymmetric structure constants fabc are defined as:

[T a, T b] = ifabcTc . (1.7)

The quark fields ψ are summed over the three different flavours and colours. Ga
µ is the

gluon field and gs is the strong coupling constant such that αs ≡ g2
s/(4π). Lg.f. is the

1The fundamental representation of SU(N) is the one with dimension N.
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Figure 1.1: Proton structure function F2 versus Q2 in the range of 1 − 105 GeV2 for fixed
values of x in the range of 0.65 − 6 × 10−5 [11].

gauge fixing term and Lghosts is the Faddeev Popov Lagrangian, that guarantees the correct
polarization for the gauge boson. Analogously to Eq. (1.7), a totally symmetric tensor dabc

can be introduced, such that the anticommutator can be written as:

{T a, T b} =
1

N
δab + dabcT c . (1.8)

At low energies, where perturbative expansion ceases being valid, the efforts of de-
scribing QCD have generated different paths such as lattice calculations, effective La-
grangians, (chiral Lagrangian, heavy quark effective theories, Soft Collinear Effective The-
ories (SCET), Non Relativistic QCD....) and QCD sum rules. However, the scope where
QCD can be tested through the current experiments is the perturbative regime. Important
steps forward have been made at the electron-proton collider HERA, especially concern-
ing parton distribution functions and proton structure (see, for instance, Fig. 1.1) and at
the Tevatron (proton-antiproton collider), where the top quark has been discovered. The
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measurements of the coupling constant αs are among the most compelling evidences of the
correctness of QCD. They come mainly by LEP and by scaling violation measurements in
deep inelastic scattering at hadron colliders. The agreement among such different kinds of
experiments is really amazing, as it is shown in Fig. 1.2. The most recent world average
gives αs(m

2
Z) = 0.1184 ± 0.0007 [12].

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100
Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

Figure 1.2: Summary of measurements of αs as a function of the energy scale Q [12].

1.2 Jets

Quarks and gluons are not observed as free particles. Still, it is possible to have clear
evidence of them, through the observation of jets. Indeed, a parton emits with high proba-
bility soft radiation, i. e. gluons or quarks that move roughly in the same direction or with
low energy. That means that what one can observe is a flow of energy and momentum in
a particular direction, called jet.

When jets were first observed at LEP in 1975 [9], it was an unequivocal proof of the
existence of quarks and gluons. At LEP, an electron and a positron annihilated, producing
a back-to-back quark antiquark pair, through a virtual photon or Z. The two-jet signal
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Figure 1.3: First 900 GeV collision events with two jets in stable-beam conditions at
ATLAS, December 6, 2009.

reflects exactly this event, where each parton of the pair emits soft radiation. If hard
radiation is emitted (with a probability of around 10%), the new parton in turn will origin
a third jet. This led to the three-jet observations. QCD can predict very well the details
of such events, like the amount of different numbers of jets or the variation depending on
the energy. In this way, quantitative tests of QCD have been done that have proved the
correctness of the theory to a great extent [10].

At the LHC, the dominant process among the ones with large transverse momentum
will be the inclusive dijet production (2 jets + X). At tree level, it is originated by a 2
parton → 2 parton event and the signal will be a number of more or less energetic jets
coming from the fragmentation of the partons in the final state. It appears clear that
identifying jets is not an easy task. An amount of hadronic energy and momentum has to
be connected to a single original particle and this is not unambiguous: different algorithms
can be built that define which signals found in the detector belongs to one jet and which
to another one. While in e+e− collisions one has the advantage of a unique initial state,
in hadron collisions problems arise in order to identify jets, due to the compositeness of
the initial states [14]. Only one parton takes part in the interaction out of the many that
constitute the hadron. This means that in the final states a lot of events appear besides the
jets, originated by soft radiation from the other partons. Moreover, the parton involved
in the interaction can produce initial state brehmsstrahlung, making the final state more
and more complicated. All these events are called "beam jets", because they have usually
small transverse momentum with respect to the beam axis and a large parallel momentum.
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So, one of the requirements of a jet reconstruction algorithm in hadron collisions is to
disregard the events with low transverse momentum, in order to eliminate beam jets as
much as possible. From a theoretical point of view, a good jet algorithm for hadron
collisions should fulfill some more requirements [15]. It should be infrared and collinear
safe, that is the same number of jets must be found if a collinear or a soft parton is added,
given the same energy. It should be invariant for boosts along the beam axis, since the
laboratory frame and the center-of-mass frame of the interaction partons are connected by
a boost. Finally, it should be order independent, namely the same result is given if the
analysis is applied at parton or detector level.

A jet algorithm is formed by two basic pieces: a test variable and a recombination
procedure. The values taken by the variable are used to decide whether two final hadrons
belong to the same particular jet or not and the recombination prescription combines the
particles in different jets. In hadron collisions a cone definition has often been used [16]. In
this kind of algorithms, a jet is a set of particles whose momenta lie in a same angular cone
with radius R. Usually, one starts looking at points in the detectors with a high amount
of energy and draws a cone with radius R; then, one calculates the centroid of the cone,
weighted on the transverse energy of the particles enclosed and draw a new cone around
that. One continues until a stability is reached and a jet is thus defined. The procedure is
iterated until all the particles with high transverse energy are placed in a jet. The last step
is to take care of overlapping jets, either by merging or by splitting them. Cone algorithms
have the bad characteristic of being not collinear neither infrared safe, due to the presence
of lower bounds on energy. Anyway, a seedless infrared-safe cone method has been recently
proposed [17].

The other fundamental class of algorithms is the so called clustering algorithms. They
are infrared and collinear safe and no merging neither splitting is needed, since every
particle is assigned uniquely to a jet. These algorithms combine together particles that
are close each other or that have high pT . Let us describe more in detail the so called kT

algorithm as an example [15]. In this algorithm a variable is built, that basically represents
the relative transverse momentum between two particles i and j:

dij ≡ min(k2
T i, k

2
Tj)

(yi − yj)
2 + (φi − φj)

2

R2
, (1.9)

where yi is the rapidity of the i particle, φi is the angle of the momentum of the i particle
in the plane perpendicular to the beam axis and R is a parameter characteristic of the
algorithm that plays the same role as the cone radius in the cone algorithm. Usually its
value is around O(1). We also remember that kT is the component of the momentum
perpendicular to the beam axis. One has to calculate dij and diB ≡ k2

T i for every pair
of objects (particles or pseudo-particle) and find the smallest one. If dij is the smallest,
particles i and j are recombined, that is, a pseudo-particle is added to the particle list
and both i and j are removed, otherwise particle i is called a jet and removed from the
particle list. This procedure is repeated iteratively until no particles are left in the list. A
generalization of the kT algorithm is the so called anti-kT [18], where the variables at stake
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are:

dij ≡ min(k−2
T i , k

−2
Tj )

(yi − yj)
2 + (φi − φj)

2

R2
(1.10)

and diB ≡ k−2
T i .





Chapter 2

N-gluon amplitudes

2.1 Introduction

The calculation of cross sections in gauge theories has been developed for many years
by means of Feynman rules in perturbation theory, leading to theoretical predictions in
a very good agreement with the experimental results. These calculations are at a fixed
order in the coupling constant αs, which depends on the renormalization scale. Since this
dependence is canceled only across different orders of αs, an error in the truncated serie is
produced. Of course, the higher the order, the better the precision one has: we need to go
beyond the tree level to reach enough accuracy. NLO and NNLO calculations are required
to reduce the error in the scale dependence. In QCD, in the last years, great progresses in
NNLO calculations have been made for a number of observables such as totally inclusive
quantities (e.g. the e+e− → hadrons total cross–section [19]) or splitting functions [20].
Quite a number of processes have been calculated at NLO, but they are generally limited to
four jets. Two of the most recent calculations are, for instance, qq̄ → tt̄bb̄ [21] and W → 3
jets [22]. Indeed, complexity increases rapidly with the number of external legs, because
the number of the diagrams needed to calculate these processes increases factorially as it
is shown in Table 2.1. Every diagram leads to very complicated expressions, due to the
presence of non–Abelian couplings and the number of kinematic variables (three more for
every external leg) makes all more and more cumbersome.

n 2 3 4 5 6 7 8

# of diagrams 4 25 220 2485 34300 559405 10525900

Table 2.1: The number of Feynman diagrams contributing to the scattering process gg →
n g [23].

The intermediate calculations are often quite difficult, while in the final result many
terms cancel. For this reason, effort has been made to find methods that make the cal-

17
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culations more efficient. Indeed, unnecessary spurious singularities can arise that make
numerical evaluations unstable: compact results can avoid this problem. Compact expres-
sions can also be useful in comparing different results and in understanding how to organize
calculations in order to extend the result to an arbitrary number of external legs and to
higher orders.

Approaches alternative to Feynman diagrams to calculate n–parton scattering ampli-
tudes have been developed since the 80’s. The basic idea is to use all the information
supplied by the external particles (color and helicity) in order to decompose the ampli-
tudes in simpler, fundamental pieces. Color decomposition allows to separate the color
contribution to the amplitude from the Dirac part, thus obtaining the total amplitude
as the sum of sub–amplitudes that have the useful property of being color–ordered. The
spinor helicity formalism deals with spinor products, introducing spinorial representations
for massless gauge bosons and produces very compact results.

In our work, we have used both these approaches, combining them with recursion
relations, to address the calculation of QCD massive amplitudes with a generic number of
external legs.

2.2 Recursion relations so far

In the second half of the 80’s, a number of people started to organize QCD amplitudes
by their color structure [24–27]. They addressed both processes with only gluons legs and
with quark–antiquark pairs, calculating numerically a few of these for small values of n.
Gluon amplitudes at tree level with all gluons of positive helicity or one single negative
helicity vanish:

A(1±, 2+, ..., n+) = 0 . (2.1)

Then, it is expected that the successive amplitude, with two gluons of negative helicity, can
be written in a very compact form. In 1986 Parke and Taylor conjectured an expression
for the Maximally Helicity Violating (MHV) squared amplitude at tree level [28]:

|M(1−, 2−, 3+, 4+, 5+, . . . , n+)|2 ∝
∑

P

(1 · 2)4

(1 · 2)(2 · 3) · · · (n · 1)
(2.2)

at the order O(N−2
c ) + O(g2), where Nc is the number of colors and (i · j) indicates the

scalar product of pi and pj. The sum is performed over all the non cyclic permutations of
1, . . . , n. One year after, Berends and Giele [29] proved the conjecture (2.2) that reads, in
terms of the partial amplitude:

An(1+, . . . , i−, . . . , j−, . . . , n+) =
〈ij〉4

〈12〉〈23〉 · · · 〈n1〉 , (2.3)

where with 〈ij〉 we indicate the spinorial product of right–handed spinors

〈ij〉 = u−(ki)u+(kj) , (2.4)
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according with the notation that is reported in section 2.4. They built a number of recur-
sion relations for color–ordered partons amplitudes that allow to construct the n–parton
amplitude once the n − 1 amplitude is known. They started with pure–gluon amplitudes
that are fundamental in hadron processes since gluons carry the largest cross section and lu-
minosity. From these amplitudes, it is relatively simple to add pairs of fermion–antifermion
and vector bosons. The construction of these recursion relations is based on the use of off–
shell currents, that is scattering amplitudes with one off-shell leg. To find the on–shell
amplitude for n particles one just needs to attach the nth parton to this current. The
usefulness of this procedure is double. First, the n+1 process can be worked out using the
result for n. Moreover, the n−1 parton current already involves all the Feynman diagrams,
thus eliminating the need to calculate them. Pure gluonic amplitudes can be determined
one by one starting with n = 3, but for specific helicity configurations their shape is found
to be very simple. Expressions valid for an arbitrary number of partons can be guessed and
then verified to satisfy the recursion relations. In this way, very compact results have been
found. Besides the form of specific amplitudes such as MHV, more conjectures concerning
factorizations, symmetries and many other properties can be proven with the tool of the
recursion relations. Recursion relations have also been proved very useful for one-loop
calculations, combined with the unitarity method [30].

To investigate the hidden structure of a result as simple as the one seen in Eq. (2.3),
Witten transformed it into the “twistor” space in 2003 [31]. The first to suggest the use
of twistors was Penrose [32], while trying to find a connection between Einstein theory
of gravitation and quantum mechanics. The consideration that probably at very small
distances the usual space–time structure would not be the correct description, motivated
him to look for alternatives. The interest for twistors arises because spinors seem to
be more fundamental than four–vectors in Minkowski space. The transformation into
twistors space [33] is a type of Fourier transform. It leaves the right–handed spinors u+(p)
unchanged and it transforms the left–handed spinors u−(p) into their Fourier conjugate µ,
defined as:

u−(p)α = i
∂

∂µα
. (2.5)

Relationship (2.5) is completely analogous to the usual Fourier transform between space–
time coordinates and momenta (p = i ∂

∂x
). Let us use a different spinorial notation, that

makes things clearer, in order to look at how the amplitudes are transformed by this change.
Calling:

(λi)α ≡ u+(pi)α, (λ̃i)α ≡ u−(pi)α , (2.6)

we obtain:

A(λi, λ̃i) −→ A(λi, µi) =

∫ n∏

i=1

dλ̃ie
iµiλ̃iA(λi, λ̃i) . (2.7)

The transformation of an MHV amplitude is very simple, because it depends explicitly
only on the holomorphic 〈ij〉 spinorial products, while the λ̃i dependence is hidden in an
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overall δ–function over the momenta. This factor can be written as:

δ4(

n∑

i

pi) =

∫
d4x exp[ i(

n∑

i

pi) · x] =

∫
d4x exp

[
i

n∑

i=1

(λi)αx
αβ(λ̃i)β

]
, (2.8)

where we have used the Gordon identity 1 for pi, remembering that

xαβ ≡ γµ
αβxµ . (2.9)

Therefore, the transformed MHV amplitude is:

AMHV
n (λi, µi) =

∫ n∏

i=1

dλ̃i exp[iµiλ̃i]

∫
d4x AMHV

n (λi, λ̃i) exp[i

n∑

i=1

λixλ̃i]

=

∫
d4x AMHV

n (λi, λ̃i)

∫ n∏

i=1

dλ̃i exp[i(µi + xλi)λ̃i]

= AMHV
n (λi, λ̃i)

∫
d4x

n∏

i=1

δ(µi + xλi) . (2.10)

This equation shows that an MHV amplitude is supported by a line in twistor space. In
Fig. 2.1 (a) this is shown graphically.

Figure 2.1: Tree amplitudes for n–gluon in twistor space: (a) MHV, (b) NMHV, (c) NNMHV [33].

Transforming next–to–maximally violating amplitudes (NMHV) and the following to
twistor space is not that simple. Amplitudes with three or more negative gluons have
been calculated and they are very complicated. Therefore, it is easier to guess which kind
of curve C(λi, µi) supports the transformed amplitude and to pull it back to the original
spinor space. Since µi = ∂/∂λ̃i, C(λi, µi) becomes a differential operator and we only need
to apply it on the unchanged amplitude and verify if it gives zero. Such a method has been
applied to amplitudes with three or more negative helicity gluons. In NMHV amplitudes
the support is an intersection of two lines (2.1 (b)), while NNMHV is the intersection
of three lines (2.1 (c)). The number of lines is in general one less than the number of

1[i|γµ|i〉 = 〈i|γµ|i] = 2k
µ
i
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negative helicity gluons. Thus, we see that the twistor space unveils a beautiful feature
of the amplitude that, as often happens in physics, allows us to guess that an important,
fundamental structure is still to be discovered. Unfortunately, it turns out that it is not
going to help in calculating numerically the amplitude.

This purpose has been achieved by Cachazo, Svrcek and Witten himself [34] that found
an alternative method to Feynman rules that allows to calculate these amplitudes and at
the same time clarifies the results in twistor space shown in Fig. 2.1. They found that the
tree level amplitudes with any number of negative helicity external gluons can be written
in terms of MHV amplitudes.

−

+

+

−

+

− +

+

−

+
−

+−

Figure 2.2: Example of CSW construction for an amplitude with four negative helicity
gluons.

In Fig. 2.2 the four negative gluons example is shown. As an implication of this result,
it follows that amplitudes with no negative gluons or only one must vanish, since otherwise
there would not be vertices at all. This statement has been proven with arguments from
supersymmetry.

One loop amplitudes are more complicated in QCD as well as in twistor space [35,36].
Anyway, it was found that supersymmetric QCD with N = 4 has a simpler structure.
In this theory, bubble and triangle diagrams vanish and only scalar box diagrams need
to be calculated. The integrals are well known and the coefficients enclose the infrared
behaviour that is strictly connected with tree level contribution of the amplitudes that
are being calculated. Thus, infrared relationships allow us to find new representations of
the tree level amplitudes. This is exactly what Britto, Cachazo, Feng and Witten used
to prove BCFW recursion relations [37]. The idea behind these relations is to use the
known behaviour of the amplitude in its poles to construct the amplitude itself. The tool
used is complex analysis with its richness of theorems and properties to be exploited. The
amplitude can be seen as depending on a complex variable z and the desired object is
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simply this amplitude evaluated at z = 0. By the residue theorem, the latter is connected
to the sum of the residues of the function in its poles. Since an amplitude is a rational
function of spinorial products, singularities arise as multiparticle poles, that is when a
propagator goes on–shell and the residue becomes the splitting of the function in a left and
a right amplitude with respect to the propagator. Each of these amplitudes has less legs
than the original. For a detailed explanation of BCFW recursion relations, see Appendix
A. These types of recursion relations, unlike the currents recursion relations of Berends and
Giele, deal with on–shell amplitudes, that is all their external legs are physical, since the
propagator itself goes on–shell in the pole. BCFW have been shown also to be very useful
if applied to massive scalars by Badger, Glover, Khoze and Svrček [38] (BGKS relations)
and to fermions and vector bosons [39]. In the last years, efforts have been made to include
scalar bosons in the multiparticle amplitudes [40–43], due to the prospect of finding the
Higgs particle in the LHC, finding out both numerical and analytical calculations.

2.3 Color ordering

Let us now describe the color decomposition of the amplitudes, which is the first step
to obtain simpler expressions for multiparton processes. The group symmetry of QCD is
SU(3), but we will generalize our analysis to SU(N). For the purpose of this chapter, we
choose the generators of SU(N) with the following normalization:

Tr(T aT b) = δab (2.11)

so that the structure constants fabc now satisfy the following relationship:
[
T a, T b

]
= i

√
2fabcT c . (2.12)

In QCD, we have three kinds of vertices involving gluons: quark–quark–gluon, three
gluons and four gluons, as can be seen in Fig. 2.3. We see that, in the first vertex, T a

matrices are present with color indices contracted with the fermions ones, while in the
gluons–only vertices there are the fabc constants and the contractions fabef cde. We want
to express all in terms of the group generators to make the color structure evident, thus
we use:

fabc = − i√
2
Tr(T a[T b, T c]) = − i√

2

(
Tr(T aT bT c) − Tr(T aT cT b)

)
(2.13)

that follows from (2.11) and (2.12). For the fundamental representation of SU(N) we have
the following relationship that allows us to reduce the number of T a matrices:

(T a) j1
i1

(T a) j2
i2

= δ j2
i1
δ j1
i2

− 1

N
δ j1
i1
δ j2
i2
. (2.14)

Managing these transformations, every n–gluon amplitude Atree
n at tree–level can be de-

composed in the sum of traces of T a matrices times a Dirac amplitude:
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= +f acef bde(gµνgρσ − gµσgνρ)

+f adef bce(gµνgρσ − gµρgνσ)]

−ig2[f abef cbe(gµρgνσ − gµσgνρ)

b)

c)

a, µ

all moments outgoing
+gρµ(q − k)ν]

= +gνρ(p − q)µ

−gf abc[gµν(k − p)ρ

a)= i√
2
gγµT a

b, ν

k

a, µ

b, ν c, ρ

p q

a, µ

c, ρ d, σ

Figure 2.3: Feynman rules for QCD.

Atree
n (gg . . . g) =

∑

perm

Tr(T aσ1 · · ·T aσn )Atree
n (σ(1λ1), . . . , σ(nλn)) (2.15)

where the sum is made over all the permutations of the ai indices modulo cyclic permu-
tations (they preserve the trace); λi is the helicity of the ith particle and Atree

n is a Dirac
amplitude that contains all the kinematic information but not the color. These new am-
plitudes can be calculated with color–ordered Feynman rules that do not contain fabc nor
T a anymore, that are shown in Fig. 2.4. The first and the second one simply arise from
removing respectively the T a and the fabc factor that originates the trace. The third one
is due to the separation of the 4–gluon vertex in terms carrying each one a pair of struc-
ture constants, i.e. the sum of Tr(T aT bT cT d). Rearranging the traces and grouping the
cyclically identical terms, all the terms have the form:

Tr(T aT bT cT d)

(
gµνgρσ − 1

2
(gµσgνρ + gµνgρσ)

)
. (2.16)

Each of them represents a four gluon vertex with a particular order of color indices and
momenta and Feynman rule:

gµνgρσ − 1

2
(gµσgνρ + gµνgρσ) . (2.17)

This clarifies also why in (2.15) the sum is over the permutation of ai indices, since each
of them is strictly connected with a particular momentum ordering.
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b)

c)

b, ν all moments outgoing
+gρµ(q − k)ν]

a)= i√
2
gγµ

k

p q

c, ρ

d, σ

= +gνρ(p − q)µ

i√
2
g[gµν(k − p)ρ

= ig2[gµσgνρ − 1
2
(gµνgρσ + gµρgνσ)]

a, µ

a, µ b, ν

a, µ

c, ρ

Figure 2.4: Color ordered Feynman rules.

The following relationship holds [23], where {a} and {b} are two permutations of the
gluon color indices:

N2−1∑

a(b)σi
=1

Tr(T aσ1 · · ·T aσn )
[
Tr(T bσ1 · · ·T bσn )

]∗
= Nn−2(N2 − 1)( δ{a}{b} + O(N−2) ) (2.18)

so that the color structures in equation (2.15) are orthogonal at the leading order in the
N expansion. This means that the whole squared amplitude is the incoherent sum of the
single partial amplitudes:

∑

colors

Atree ∗
n Atree

n = Nn−2(N2 − 1)
∑

perm

{|Atree(1, 2, . . . , n)|2 + O(N−2)} . (2.19)

If the amplitude presents a pair of external quarks, like in Fig. 2.5, the color ordering leads
to the following expression:

Atree
n (qq̄gg . . . g) =

∑

perm

T aσ3 · · ·T aσnAtree
n (1λ1

q̄ , 2
λ2

q , σ(3λ3), . . . , σ(nλn)) . (2.20)

In summary, the color–ordered amplitudes are simpler than the usual ones, because
only a certain order of momenta appears, therefore the poles or the branch cuts (if we have
loops) can involve only certain invariants. For instance, in a five gluon amplitude we can
have poles only in sij with j = i+ 1, obviously modulo 5.
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Figure 2.5: qq̄gg scattering.

2.4 Spinor helicity formalism

The spinor helicity formalism is a useful way to calculate amplitudes, because it makes pos-
sible to automatize the calculations and to find compact expressions in which the collinear
limit of the amplitudes becomes evident.

In this approach amplitudes are calculated with the external particles having an as-
signed helicity [23]. To obtain the total cross section we have only to sum the squares of
all the possible helicity amplitudes, because they do not interfere. With a fixed helicity
it is possible to choose a parametrization for polarization vectors, using gauge invariance,
that is useful to simplify the calculation. This formalism deals with massless fermions and
gauge bosons. In the massless limit, the Dirac equation for positive and negative energy
solutions is the same:

/ku(k) = 0,

/kv(k) = 0, (2.21)

and the chirality projector (1 ± γ5)/2 is the same as the helicity projector for u(k), while
it gets a minus sign for v(k). Definite helicity solutions are:

u(k)± =
1 ± γ5

2
u(k) v(k)± =

1 ∓ γ5

2
v(k), (2.22)

therefore it is possible to choose u(k)± = v(k)∓.
Let us define the unit blocks of this formalism. The spinors are:

|i〉 ≡ |ki〉 ≡ u+(ki) = v−(ki), 〈i| ≡ 〈ki| ≡ u−(ki) = v+(ki)

|i] ≡ |ki] ≡ u−(ki) = v+(ki), [i| ≡ [ki| ≡ u+(ki) = v−(ki) . (2.23)

Thus, the spinor products are:

〈ij〉 = u−(ki)u+(kj), [ij] = u+(ki)u−(kj). (2.24)

From (2.24) we see that

〈ij〉∗ = −[ij], (2.25)

therefore the two quantities only differ by a complex phase.



26 2.4. Spinor helicity formalism

It is possible to use spinors to construct a representation of the polarization vectors of
massless gauge bosons of definite helicity, too:

ε+
µ (k; q) =

〈q|γµ|k]√
2〈qk〉

, ε−µ (k; q) = − [q|γµ|k〉√
2[qk]

. (2.26)

Here k is the boson’s momentum and q is an arbitrary reference momentum, whose choice
reflects the gauge freedom. We can see that the expression (2.26) really satisfies the
massless gauge bosons properties. It has transverse polarization:

ε±(k; q) · k = 0 , (2.27)

because /k|k±〉 = 0 and it does create states with helicity ±1. The normalization of these
vectors is the usual one:

(εr)∗ · εr′ = −δrr′ , (2.28)

where r, r′ = +,−. The choice of the reference momentum is really arbitrary, because the
difference between two polarization vectors with different q is a longitudinal object that
does not contribute to the dynamics:

ε+
µ (q̃) − ε+

µ (q) =
〈q̃|γµ|k]√

2〈q̃k〉
− 〈q|γµ|k]√

2〈qk〉
=

〈qk〉〈q̃|γµ|k] − 〈q̃k〉〈q|γµ|k]√
2〈q̃k〉〈qk〉

=

= −〈q̃|γµ/k + /kγµ|q〉√
2〈q̃k〉〈qk〉

= −kµ ×
√

2〈q̃q〉
〈q̃k〉〈qk〉 . (2.29)

The freedom of choice of q can be used to simplify the expressions in the calculations, since
ε has some interesting properties:

ε±(ki; q) · q = 0

ε+(ki; q) · ε+(kj ; q) = ε−(ki; q) · ε−(kj; q) = 0

ε+(ki; kj) · ε−(kj ; q) = ε+(ki; q) · ε−(kj; ki) = 0

/ε+(ki; kj)|j〉 = /ε−(ki; kj)|j] = 0

[j|ε−(ki; kj) = 〈j|/ε+(ki; kj) = 0 . (2.30)

In our calculations, we will often use for helicity-like gluons identical gauge momenta and
equal to the external momentum of one of the gluons of opposite helicity.



Chapter 3

Recursion relations with heavy particles

3.1 Introduction

At the LHC, the high energy reached will lead to various processes where heavy particles
will be produced. Therefore, scattering amplitudes where particles masses are not neglected
are needed for phenomenological applications. However, when massive fermions, scalars
or boson vectors are incorporated to a pure gluon amplitude, calculations become more
difficult and huge results are found, due to the new couplings to be taken into account.
In this chapter we will deal with these calculations, managing to get to simpler and easier
to handle results. In particular, we will focus on amplitudes with colored, massive scalar–
antiscalar pairs.

Colored scalars have a great importance for two main reasons. The first one is that it
is possible to relate scalar and quark amplitudes, by means of the Supersymmetric Ward
Identities [44]. Indeed, we can think about QCD at tree level as a supersymmetric theory
[23,45]. If we consider pure gluon processes, we do not have loops at tree level, therefore no
fermions exist that can circulate. We can then replace them with supersymmetric particles
like gluinos for instance. At the level of partial amplitudes, in processes with quarks,
we have no means of distinguishing a quark from a gluino, once we have extracted the
color factor. This allow us to use indistinctly one or the other. Thanks to commutation
properties between supersymmetric charges and fields, it is possible to find the following
relationships between amplitudes with quarks and amplitudes with scalars:

An(1+
q , 2

+, ..., n− 1+, n−
q̄ ) =

〈ℓnq〉
〈ℓ1q〉

An(1+
s , 2

+, ..., n− 1+, n−
s̄ ) ,

An(1+
q , 2

+, ..., j−, ..., n− 1+, n−
q̄ ) =

〈ℓnj〉
〈ℓ1j〉

An(1+
s , 2

+, ..., j−, ..., n− 1+, n−
s̄ ) , (3.1)

where ℓi is the auxiliary massless momentum for massive particles defined in Appendix A
as:

ℓi := pi −
p2

i

2pk · pi
pk , (3.2)

27



28 3.2. An(1s; 2
+, ..., n − 1+; ns̄)

where pi is the momentum of the massive particle, and pk a light–like vector. Eqs. (3.1) hold
in SUSY at every order in perturbation theory. At tree level, these amplitudes are identical
to the QCD ones so that, in principle, we can deal with the most comfortable amplitude,
choosing between scalars and fermions. Since scalars are spinless, working with them is
easier: their helicity is zero and this prevents the complications due to polarization, such as
the double choice of the helicity of the internal propagator in the BCFW recursion relations.
The second motivation for the choice of scalars involves one–loop calculations. Although
QCD amplitudes are not the same as the SUSY ones at one loop, a decomposition of them
in terms of supersymmetric pieces is still possible and useful [46]. For a generic helicity
configuration the partial amplitude depends on the number of particles with different spins
that can enter the loop, according to the following relationship:

An;1 = Ag
n;1 +

nf

Nc
Af

n;1 +
nf

Nc
As

n;1, (3.3)

where the superscripts refer to the spin of the particles (gluons, fermions or complex
scalars). Some relationships among these amplitudes hold for specific helicity configu-
rations, for example:

An;1(1
±, 2+, . . . , n+) = (1 +

ns

Nc

− nf

Nc

)As
n;1, (3.4)

where the factor 1/Nc is generated in the conversion from fundamental to adjoint repre-
sentations in the loop. String theory inspired a method for decomposing QCD amplitudes
in supersymmetric and non–supersymmetric parts. For a n–gluon one loop amplitude the
gluonic and fermionic contributions can be written as:

Af
n;1 = AN=1

n;1 − As
n;1 ,

Ag
n;1 = AN=4

n;1 − 4AN=1
n;1 + As

n;1 (3.5)

and

AN=1
n;1 = Af

n;1 + As
n;1 ,

AN=4
n;1 = Ag

n;1 + 4Af
n;1 + 3As

n;1. (3.6)

AN=1
n;1 indicates the contribution of a supersymmetric chiral multiplet formed by a scalar

and a fermion. On the contrary, AN=4
n;1 is the contribution of a supersymmetric vector

multiplet that contains one gluon, four fermions and three complex scalars. In Eq. (3.5)
the one–loop gluon term receives as unique non–supersymmetric contribution a scalar one,
that can be found in terms of tree level amplitudes, by means of the Optical Theorem and
the Cutkosky rules [46].

3.2 An(1s; 2
+, ..., n− 1+;ns̄)

3.2.1 Introduction

To begin with, we consider a n-gluon amplitude with two massive colored scalars. The
authors of [47] have considered amplitudes with a pair of massive scalars and n gluons of
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positive helicity. They make an ansatz for such an amplitude and then they prove it by
verifying that BGKS recursion relations are satisfied. Once this result has been obtained, it
can be used to construct the amplitude with one–negative helicity gluon in any position, by
means of recursion relations. Indeed, the amplitude with n all-positive gluons is one piece
of the decomposition of the one-negative amplitude over its singularities. The other piece
is the unknown amplitude with n− 1 legs, from which the recursion relation is build. The
expressions thus found are large and have complicated denominators that are dangerous
when numerical computations are performed, since they can produce zeros. Actually, these
denominators are spurious, because in the amplitudes calculated with Feynman diagrams
only multiparticle poles can be generated, as they occur when a propagator goes on–shell.
Therefore, there must be a way of eliminating them.

In our first calculation [48] we managed to find a very compact expression for the all–
positive helicity amplitude with colored massive scalars, through recursion relations. As
we mentioned in Section 2.2, recursion relations are based on off–shell currents, that is
amplitudes where one leg is off–shell. The building blocks of our calculation are then the
gluon and the scalar–gluon off–shell currents and we combine them with BCFW recursion
relations.

3.2.2 Off–shell gluon current

To construct a n–leg current we have to take into account all the possible vertices that can
be present. In the case of gluonic amplitudes, we deal with the three–gluon and four–gluon
vertices shown in Fig. 2.4. The current with n external legs is the sum of all the possible
ways to connect currents with a lower number of legs by these two vertices, as it is shown
in Fig. 3.1.

Figure 3.1: The recursion relation for the off–shell gluon current Jµ(1, 2, . . . , n) [45].
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The current is then given by [45]:

Jµ(1, 2, . . . , n) =
−i
p2

1,n

[
n−1∑

i=1

V µνρ
3 (p1,i, pi+1,n) Jν(1, . . . , i) Jρ(i+ 1, . . . , n)

+

n−1∑

j=i+1

n−2∑

i=1

V µνρσ
4 (p1,i, pi+1,j, pj+1,n) Jν(1, . . . , i) Jρ(i+ 1, . . . , j) Jσ(j + 1, . . . , n)

]
.

(3.7)

There are special helicity configurations whose recursion relations (3.7) have been resolved,
such as the all–positive helicity case [29]. If the same reference momentum ξ for all the
gluons is chosen, the current has this shape:

Jµ(1+, 2+, . . . , n+) =
〈ξ|γµ/p1,n

|ξ〉
√

2〈ξ1〉〈12〉 · · · 〈nξ〉
. (3.8)

In order to extract amplitudes from the off–shell currents, what we have to do is to replace
the (n+ 1)th gluon propagator with the polarization vector, so that the amplitude can be
written in terms of the current Jµ as:

An+1(1, 2, . . . , n+ 1) = ip2
1,nεµ(pn+1)J

µ(1, 2, . . . , n)
∣∣∣
p2

1,n=0
(3.9)

where we call
∑k

i=1 pi ≡ p1,k and we remember that the gluon propagator is −i/p2
1,n [23,45].

Passing from amplitudes to currents, the momentum conservation is preserved, but in the
current the (n + 1)th particle is now off–shell, that is p2

n+1 is not zero. For this reason
currents are not physical objects and can depend on the gauge choice for the remaining
gluons. In the all–positive helicity case (3.8), Jµ has no poles in p2

1,n, therefore, once
we multiply by p2

1,n and impose the on–shell constraint p2
n+1 = p2

1,n = 0, the amplitude
A(1+, . . . , n+ 1+) vanishes.

3.2.3 Off–shell scalar–gluon currents and amplitudes

The Lagrangian that generates the scalar–gluon coupling is the scalar QCD:

Lscalar QCD = −1

4
Ga

µνG
µν
a +D†

µΦ
†DµΦ −m2Φ†Φ , (3.10)

where

Dµ = ∂µ − igAa
µ

Ta√
2
.

The possible interactions are shown in Fig. 3.2.
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a) b)

Figure 3.2: Scalar QCD vertices.

The a) vertex reads:

ig
T a

√
2
(pµ

s − pµ
s̄ ) , (3.11)

thus getting the color ordered Feynman rule:

i√
2
(pµ

s − pµ
s̄ ). (3.12)

The two scalars–two gluons coupling of Fig. 3.2 b) can be set to zero by a convenient
gauge choice. Indeed, it is proportional to the scalar product of the two polarization
vectors ε(p1) · ε(p2), which is zero for gluons of the same helicity if the gauge momenta are
chosen to be the same for both polarization vectors (Eq. 2.30). On the other hand, for
gluons that have opposite polarizations, ε(p1) · ε(p2) vanishes if the gauge momentum of
the first boson is set equal to the momentum of the other one.

Once we know the interaction among the involved fields, we can construct the current
S(1s; . . . , n− 1), with the anti–scalar off–shell. By definition

S(1s) = 1 . (3.13)

For the one–gluon current S(1s; 2) we need to add the gluon–scalar vertex. From momen-
tum conservation, the momentum of the antiscalar can be written in terms of the others
ps̄ = −ps − pg, thus:

(ps − ps̄) · ε(pg) = (2ps − pg) · ε(pg) = 2ps · ε(pg), (3.14)

where we have taken into account that ε(k) ·k = 0. The current with one gluon is obtained
multiplying the vertex by the scalar propagator i/y12:

S(1s; 2
+) = S(1s)i

√
2p1 · ε∗(p2)

i

y12
= −

√
2

y12
p1 · J(2+), (3.15)

where we have called p1 the momentum of the scalar and we have defined y1,j = (p1 + . . .+
pj)

2−m2. With two gluons we have two ways of building the current, as shown in Fig. 3.3.
Thus, in terms of the currents just built, we have:

S(1s; 2
+, 3+) = −

√
2

y1,3

(
S(1s) p1 · J(2+, 3+) + S(1s; 2

+) p12 · J(3+)
)
. (3.16)
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Figure 3.3: The two graphs for S(1s; 2
+, 3+).

In the second term we have from momentum conservation: ps̄ = −p12 − p3 and, once we
contract with J(3+), we are left with 2p12 · J(3+). The 1/y1,3 term comes from the scalar
propagator, since we are building off–shell currents. Going on with this procedure we arrive
at the recursion relation for the current :

S(1s; 2
+, . . . , n− 1+) = −

√
2

y1,n−1

n−2∑

k=1

S(1s; 2
+, . . . , k+)p1,k · J(k + 1+, . . . , n− 1+). (3.17)

Let us underline how the p1,k momentum is created. The vertex with the momenta conser-
vation would give a momentum 2pµ

1,k + pµ
k+1,n−1 that is contracted with the gluon current

giving:

〈ξ|(2/p1,k
+ /pk+1,n−1

)/pk+1,n−1
|ξ〉

√
2〈ξ k+1〉〈〈k+1, n−1〉〉〈n−1 ξ〉

=
√

2
〈ξ|/p1,k/pk+1,n−1

|ξ〉
〈ξ k+1〉〈〈k+1, n−1〉〉〈n−1 ξ〉 , (3.18)

where 〈〈i, j〉〉 ≡ 〈i i+1〉 . . . 〈j−1 j〉. We have seen that the on–shell amplitude is obtained
from the current divided by the propagator by putting the anti–scalar momentum on–shell,
that is p2

n = p2
1,n−1 = m2, i.e. y1,n−1 = 0:

An(1s; 2
+, . . . , n− 1+;ns̄) = S(1s; 2

+, . . . , n− 1+)
y1,n−1

i

∣∣∣
y1,n−1=0

. (3.19)

Looking at Eq. (3.19), we are led to divide the current into a part that contains a factor
1/y1,n−1 and another that does not. Thus, the latter goes to zero once the momentum goes
on–shell. We observe that the term of the sum in (3.17) for k = n− 2 can be written as:

− 1

y1,n−1〈n−1 ξ〉 S(1s; 2
+, . . . , n− 2+)〈ξ|/p1,n−2/pn−1

|ξ〉. (3.20)

The following relationship holds for every k, due to the Schouten identity and a few tricks
of spinorial helicity formalism:

〈ξ|p/1,kp/k+1,n−1|ξ〉 =
1

〈k k+1〉
(
〈ξ k+1〉〈k|y1,k−1 + p/1,k−1p/k,n−1|ξ〉 +

+ 〈kξ〉〈k+1|y1,k + p/1,kp/k+1,n−1|ξ〉
)
. (3.21)
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Applying Eq. (3.21), Eq. (3.20) becomes:

− S(1s; 2
+, . . . , n− 2+)

y1,n−1〈n−1 ξ〉〈n−2n−1〉 ×
[
〈ξn−1〉〈n−2|y1,n−3 + p/1,n−3p/n−2,n−1|ξ〉 +

−〈ξn−2〉〈n−1|y1,n−2 + p/1,n−2p/n−1|ξ〉
]
. (3.22)

With the following relationship:

y1,n−1 = y1,n−2 + p/1,n−2p/n−1 + p/n−1p/1,n−2 (3.23)

the second term of Eq. (3.22) is transformed into:

〈ξ n−2〉
〈n−2n−1〉〈ξ n−1〉 S(1s; 2

+, . . . , n− 2+), (3.24)

i.e. y1,n−1 in the denominator disappears. Applying the transformation (3.21) to all the
terms of the current, we do not find any other term in which y1,n−1 disappears, thus we
can write, for every n:

S(1s; 2
+, . . . , n− 1+) =

〈n−2 ξ〉
〈n−2n−1〉〈n−1 ξ〉 S(1s; 2

+, . . . , n− 2+)

+
i

y1,n−1

An(1s; 2
+, . . . , n− 1+;ns̄) . (3.25)

Let us find the first results for the amplitudes. In order to do this, we will use the following
transformations in the calculation:

〈ξ|p/1p/2,n−1|ξ〉 =
1

y12

(
m2〈ξ2〉[2|p/3,n−1|ξ〉 + 〈ξ|p/1|2]〈2|p/1p/2,n−1|ξ〉

)
, (3.26)

and then

[2|p/3,n−1|ξ〉 =
1

y1,3
([2|p/1p/23p/4,n−1|ξ〉 − [32]〈3|y12 + p/12p/3,n−1|ξ〉) . (3.27)

The well known n = 3 on–shell amplitude can be obtained putting Eq. (3.15) in Eq. (3.19):

A3(1s; 2
+; 3s̄) = i

〈ξ|p/1|2]

〈ξ2〉 . (3.28)

The following result is S(1s; 2
+, 3+). By developing Eq. (3.16), we find:

S(1s; 2
+, 3+) = − 〈ξ|p/1p/23|ξ〉

y1,3〈ξ2〉〈23〉〈3ξ〉 +
[2|p/1|ξ〉

y1,3y12〈ξ2〉
〈ξ|p/12p/3|ξ〉
〈ξ3〉〈3ξ〉 (3.29)

Then we apply the transformation (3.21) for k = n−2 = 2 and Eq. (3.23), and subsequently
the transformation (3.26) finding thus:

S(1s; 2
+, 3+) = −m2 [23]

y1,3y12〈23〉 −
〈ξ|p/1|2]

〈ξ3〉〈23〉y12
(3.30)
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and the amplitude:

A4(1s; 2
+, 3+; 4s̄) = i

m2[23]

y12〈23〉 . (3.31)

For the following term n = 5 the same substitutions are used, plus Eq. (3.27), thus finding:

A5(1s; 2
+, 3+, 4+; 5s̄) = i

m2[2|p/1p/23|4]

y12 y1,3〈〈2, 4〉〉
. (3.32)

The n = 6 amplitude is the first that presents two terms. Here we are going to summarize
the steps to follow in order to find a compact result. The strategy is to perform the above
substitutions in the general expression for the amplitude and then to analyze the result.
Looking at Eq. (3.25) and comparing it with Eq. (3.17), we can write the generic amplitude
An as:

An =
y1,n−1

i

(
−

√
2

y1,n−1

n−3∑

k=1

S(1s; 2
+, . . . , k+)p1,k · J(k + 1+, . . . , n− 1+) +

−〈n− 2|y1,n−3 + p/1,n−3p/n−2,n−1|ξ〉
y1,n−1〈n−1 ξ〉〈n−2n−1〉 S(1s; 2

+, . . . , n− 2+)
)
. (3.33)

It is useful to further separate the sum, isolating the k = 1 term. Replacing Eq. (3.26)
and Eq. (3.27) in this term and Eq. (3.21) in the other terms of the sum, we obtain the
following expression:

An = − m2[2|p/1p/23p/4,n−1|ξ〉
iy12y1,3〈n−1 ξ〉〈〈2, n−1〉〉 −

1

iy12〈n−1 ξ〉〈ξ2〉〈〈2, n−1〉〉
[m2〈ξ2〉

y1,3
〈3|y12 + p/12p/3,n−1|ξ〉 +

+ 〈ξ|p/1|2]〈2|p/1p/2,n−1|ξ〉
]
− 1

i〈n−1 ξ〉
n−3∑

k=2

S(1s; 2
+, . . . , k+) ×

× 〈ξ k+1〉〈k|y1,k−1 + p/1,k−1p/k,n−1|ξ〉 + 〈kξ〉〈k+1|y1,k + p/1,kp/k+1,n−1|ξ〉
〈k k+1〉〈ξ k+1〉〈〈k+1, n−1〉〉 +

− 1

i〈n−1 ξ〉 S(1s; 2
+, . . . , n− 2+)

〈n− 2|y1,n−3 + p/1,n−3p/n−2,n−1|ξ〉
〈n−2n−1〉 . (3.34)

Now we perform the transformation

[2|p/1p/23p/4,n−1|ξ〉 =

n−1∑

i=4

[2|p/1p/23|i]〈i ξ〉 (3.35)

on the first term and then we use Eq. (3.23) to replace the terms that contain a sum such
as y1,ℓ + p/1,ℓp/ℓ+1,n−1 in the following way:

〈ℓ+ 1|y1,ℓ + p/1,ℓp/ℓ+1,n−1|ξ〉 = y1,ℓ+1〈ℓ+1 ξ〉+
n−1∑

i=ℓ+2

〈ℓ+1|p/1,ℓ|i]〈iξ〉 . (3.36)
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The result that is obtained is very compact and can be written as:

An(1s; 2
+, . . . , n− 1+;ns) = i

m2

y12 y1,3 〈〈2, n−1〉〉

{
[2|p/1p/23|n− 1] +

+

n−5∑

j=1

[2|p/1p/23|w1]
〈w1|p/1,w1−1|w2]

−y1,w1

· · · 〈wj|p/1,wj−1|n− 1]

−y1,wj

}
, (3.37)

where 4 ≤ w1 ≤ n− 2 and wi < wi+1 and all the possible values of wi must be taken.
It can be seen that in this result the number of terms grows as 2n−5 and each of them is

proportional to m2, contrarily to what found in [47], thus making the result much simpler.
It is useful to verify that Eq. (3.37) satisfies the BGKS recursion relations. As suggested
in [47], we perform a shift in the four-momenta of the (2,3) gluons:

p̂µ
2 = pµ

2 +
z

2
[2|γµ|3〉 ,

p̂µ
3 = pµ

3 − z

2
[2|γµ|3〉 . (3.38)

This shift corresponds to the following shift of the spinors:

|2̂〉 = |2〉 + z|3〉 , |2̂] = |2] ,

|3̂] = |3] − z|2] , |3̂〉 = |3〉 . (3.39)

The graphs that in principle appear in the recursion relation are shown in Fig. 3.4.

2̂+

j+

3̂+

j + 1+

a)

ns̄

1s 1s 2̂+ 3̂+

ns̄

b)

± ∓

Figure 3.4: The recursion relation for An with the shift 〈2, 3].

Graph a) is zero for both the helicities of the internal propagator, because the amplitude
on the right vanishes for every value of j. Thus, the only term that contributes to the
recursion relation is graph b), where only the scalar and the first gluon are factorized in
the left side:

An(1s; 2
+, . . . , n− 1+;ns̄) = A3(1s; 2̂

+;−p̂12s̄)
i

y12
An−1(p̂12s; 3̂

+, . . . , n− 1+;ns̄) . (3.40)
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Thus, choosing ξ = 3̂ in the left amplitude and taking into account that p̂1,k = p1,k if k ≥ 3,
Eq. (3.37) becomes:

An(1s; 2
+, . . . , n− 1+;ns̄) =

i
m2 [2|p/1 p̂/3 p̂/12 p̂/34

y12 y1,3 y1,4 〈〈2, n−1〉〉

{
|n− 1] +

n−6∑

j=1

|w1]
〈w1|p/1,w1−1|w2]

−y1,w1

· · · 〈wj|p/1,wj−1|n− 1]

−y1,wj

}
,

(3.41)

where wk ∈ [5, . . . , n−2]. Replacing z = −y12/[2|p/1|3〉 for the channel under consideration,
we find the following relationship:

[2|p/1 p̂/3 p̂/12 p̂/34 = [2|p/1p/23 (y1,4 − p/4 p/1,3) . (3.42)

With the help of this relationship it is easy to demonstrate that (3.41) reproduces the
on-shell amplitude (3.37). The first term in the rhs of (3.42) generates all the terms that
do not contain the 1/y1,4 propagator, while the second term initiates the spinorial chains
for which w1 = 4. This fact also explains why the number of terms contributing to the
amplitude doubles each time that we add one extra gluon. On the other hand, it is worth
to notice that we can bring the first term of the rhs of (3.42) into the form

[2|p/1p/23 = [2|(y1,3 − p/3p/12) , (3.43)

thus obtaining:

An(1s; 2
+, . . . , n− 1+;ns̄) = i

m2 [2|(y1,3 − p/3p/12) (y1,4 − p/4 p/1,3)

y12 y1,3 y1,4 〈〈2, n−1〉〉

{
|n− 1] +

+

n−6∑

j=1

|w1]
〈w1|p/1,w1−1|w2]

−y1,w1

· · · 〈wj|p/1,wj−1|n− 1]

−y1,wj

}
, (3.44)

This suggests that we can regroup all the terms in the sum into a single one. Our final
result for the amplitude with all gluons of positive helicity becomes thus:

An(1s; 2
+, . . . , n− 1+;ns̄) = im2 [2|∏n−2

k=3(y1,k − p/kp/1,k−1)|n− 1]

y12 y1,3 · · · y1,n−2 〈〈2, n−1〉〉 =

= im2 [2|Φ3,j|n− 1]

y12〈〈2, n−1〉〉 , (3.45)

where

Φ3,j ≡
j∏

k=3

(
1 −

/pk/p1,k−1

y1,k

)
. (3.46)

Result (3.45), reported in Ref. [48], is extremely compact, compared, for instance, to the
previous expression given in Ref. [47]. This makes it very useful in successive calculations,
and as a tool to verify other results (see, e. g., Ref. [44]).
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3.3 Amplitudes with a self–dual φ scalar

3.3.1 Introduction

Once we have obtained the form of the amplitude (3.45), it is interesting to investigate
how things change if a self–dual colorless complex φ scalar is added.

One of the principal aims of LHC is to discover the Higgs boson, the particle predicted
by the Standard Model to be the responsible of particles having a mass. The principal
production channel will be the gg → H process, via a heavy–quark loop [49]. Since loops
with other quarks are suppressed by a factor of the order of m2

q/m
2
t , we can take into

account only the top contribution. NLO corrections to gg → H are important, since they
increase the cross section by around 100%, but at the same time they are complicated
since two–loops calculations are needed. However, in the large mt mass limit we can deal
with the effective vertex Hgg. This limit can be performed when the Higgs mass is lighter
than the top pair production threshold, that is mH < 2mt. Thus, the NLO corrections
involve only 1–loop diagrams and they are simpler to calculate. The production of the
Higgs boson via gluon fusion is interesting also as a background of the vector–boson fusion
qq → H + 2 jets (VBF). This process is useful to measure the Higgs coupling with the
vector bosons W and Z, as it is shown in Fig. 3.5. NLO corrections to this process
are very small, therefore it is necessary to know its background in order to separate the
interested signal [50]. Calculations of Higgs production together with many partons (gluons
or fermions) is thus mandatory for LHC physics.

HW/Z

H

Figure 3.5: Higgs + 2 jets production via VBF (left) and via gluon fusion (right).

Currently, the mass of the Higgs seems to be not too large. The global electroweak fit
gives an upper limit of 182 GeV [2]. In this case, we can use the effective vertex that is
generated from integrating out the top mass in the gluon fusion.

The effective Lagrangian which we start from, in order to find the effective vertex,
is [49]:

Lint
H,A =

C

2

[
H TrGµνG

µν + iA TrGµν
∗Gµν

]
, (3.47)
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where two Higgs fields are introduced. H is a scalar field, while A is a pseudoscalar one.
It is useful to define two complex auxiliary fields φ and φ†, since the Lagrangian is simpler
if we use them. The φ field is such that the scalar Higgs is the real part of it:

H = φ+ φ† , A =
1

i
(φ− φ†) . (3.48)

Introducing the selfdual (SD) and anti–selfdual (ASD) gluon fields strengths

Gµν
SD =

1

2
(Gµν + ∗Gµν) , Gµν

ASD =
1

2
(Gµν − ∗Gµν) , ∗Gµν ≡ i

2
ǫµνρσGρσ (3.49)

the Lagrangian becomes:

Lint
φ,φ† = C

[
φ TrGSD µνG

µν
SD + φ† TrGASD µνG

µν
ASD

]
. (3.50)

The amplitudes in terms of the new fields φ and φ† are simpler and to recover the result
for the Higgs we only need to sum the two amplitudes. The effective vertices found are:

V φgg
µν = −2i(gµνp1 · p2 − pµ

2p
ν
1 − iεµνρσp

ρ
1p

σ
2 )

V φggg
µνρ = −

√
2i
(
gµν(p1−p2)ρ + gνρ(p2−p3)µ + gρµ(p3−p1)ν + iεµνρα(p1+p2+p3)

α
)
.

(3.51)

Let us review the results found so far. The all–positive and one–negative amplitudes are:

An(φ, 1±, 2+, . . . , n+) = 0 (3.52)

and, if a fermion–antifermion pair is added,

An(φ, 1−f , 2
+, . . . , j+

f , . . . , n
+) = 0 , (3.53)

for both massless and massive quarks [51]. We have no null results when the helicity of
one gluon becomes negative. For the gluon case, the MHV–like amplitude is:

An(φ, 1+, 2+, . . . , i−, . . . , j−, . . . , n+) =
〈ij〉4

〈12〉 · · · 〈n1〉 .

(3.54)

When quarks are present, in the massless case it holds:

A(φ, 1+
f , 2

+, . . . , j−f , . . . , m
−, . . . , n+) =

〈jm〉3〈1m〉
〈12〉〈23〉 · · · 〈n1〉 . (3.55)

In Eqs. (3.54) and (3.55) there is a 2i factor of difference with respect to our notation.
It is important to notice that these amplitudes are the same in form as pure QCD. What
is different is the conservation of the momenta that now include the one carried by φ.
However, the V φgg vertex creates an amplitude that does not exist in QCD, that is the one
for n = 2:

A(φ, 1−, 2−) = −〈12〉2. (3.56)
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3.3.2 Calculation of amplitudes by Feynman diagrams

Our objective is to consider amplitudes with massive particles. We will focus our attention
on amplitudes with a massive colored scalar–antiscalar pair and a generic number of gluons,
starting from the one–negative helicity gluon placed next to the antiscalar.

A3(φ; 1s; 2
−; 3s̄)

φ 3s̄

1s

2−

Figure 3.6: n = 3 amplitude with massive scalars.

The first amplitude that we calculate is the n = 3 one. Here the only possible vertex is
V φgg (Eq. (3.51)). After a few manipulations, the amplitude results to be:

A3(φ; 1s; 2
−; 3s̄) = −2i

〈2|p/1p/3|2〉
s13

. (3.57)

A4(φ; 1s; 2
+, 3−; 4s̄)

The n = 4 amplitude receives contributions from both the two–gluon and the three–gluon
couplings with the φ. The four possible contributions are shown in Fig. 3.7. However,
choosing the gauge ξ2 = p3, ξ3 = p2, we are only left with two of them, that is a) and b).
In both of them, the purely gluonic current and the effective vertex are the same, that is:

Jρ(3
−) =

[ξ3|γρ|3〉√
2[3ξ3]

,

V φgg
σρ = (−2i)2

(
gσρp124 · p3 − p3σp124ρ

)
. (3.58)

We find the result:

A4(φ; 1s; 2
+, 3−; 4s̄) =

−2i

y12s14

(〈3|p/1p/4|3〉〈3|p/1|2]

〈23〉 − m2

s124
〈3|p/14|2]2

)
. (3.59)
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φ

2+

1s

4s̄

3−

1s

4s̄φ

2+

3−

1s

φ

2+

3−

1s

4s̄

φ

3−

2+

4s̄

a) b)

d)c)

Figure 3.7: n = 4 amplitude with massive scalars: all the possible Feynman diagrams.

We note that this result has the correct massless limit

lim
m→0

A4(φ; 1s; 2
+, 3−; 4s̄) = −2i

〈13〉2〈34〉2
〈〈1, 4〉〉〈41〉 (3.60)

up to a multiplicative factor. Let us remember in general the massless results in the case of
scalars. From supersymmetry we have seen how to obtain relationships between amplitudes
with a different content of particles. From Eq. (3.1) and Eq. (3.55) we obtain, up to a
multiplicative factor,

An(1s; 2
+ . . . , m−, . . . ;ns̄) =

〈m1〉2〈mn〉2
〈〈1, n〉〉〈n1〉 . (3.61)

3.3.3 Calculation of amplitudes throguh recursion relations.

The calculations made in the previous subsection, obtained using the effective vertex, show
that this method is quite complicated when the number of gluons grows. An alternative
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method is the employment of BCFW recursion relations, which allows to save calculations
by exploiting the n− 1 results to get the n one. Thus, BCFW recursion relations seem to
be the best tool for extending the calculations of the previous section to a generic number
of gluons.

To start, we make the choice of analyzing an amplitude where the negative helicity
gluon is placed in the last position, next to the antiscalar n. Let us first examine a shift
like 〈n−2n−1]. The diagrams that appear are shown in Fig. 3.8.

̂n − 1
−

φ

ns̄

̂n − 2
+

Aa

1s

̂n − 1
−

φ

ns̄

̂n − 2
+

Aa

1s

+ −

φ

̂n − 1
−̂n − 2

+

Ab
1s ns̄

− +

̂n − 1
−̂n − 2

+

Ac

φ

ns̄
n − 3+

1s
2+

Figure 3.8: BCFW recursion relation for n amplitude, 〈n−2n−1] shift.

We notice that in the right part of the third diagram there is exactly the same amplitude
that we are going to calculate, with a gluon less. Of course this is quite annoying, because it
would force us to construct the amplitude iteratively, as seen in [47], with huge calculations.
The ideal situation would be performing a shift that allows automatically only known
amplitudes, for example making the factorizations with the unwanted diagrams vanishing.
Such a shift has been found and a result for An(1q; 2

+, . . . , n− 1−;nq̄) has been calculated
by Schwinn and Weinzierl [52]. Their idea is to perform a shift on a massive fermion and
on the negative helicity gluon. Thus, a factorization with the two fermions in different
amplitudes cannot exist and the negative helicity gluon can never stay together with the
fermion. This implies that the unknown amplitude cannot take part in the relations and
only amplitudes with all positive gluons, for which we have shown a very compact form in
Section 3.2, are present. The recursion relation reads:

An(1λ1

q , 2
−, 3+, . . . , n− 1+, nλn

q̄ ) =
n−1∑

j=3

An−j+2(1̂
λ1

q , P̂
+
2,j . . . , j

+, j + 1+, . . . , n− 1+, nλn

q̄ )
i

P 2
2,j

Aj(P̂
−
2,j , 2̂

−, 3+, . . . , j+)

(3.62)

leading to the result

An(1λ1

q , 2
−, 3+, . . . , n− 1+, nλn

q̄ ) = 2n/2−1i
〈ℓn2〉
〈ℓ12〉

1

〈23〉 . . . 〈n−2n−1〉×
n−1∑

j=3

〈2|p/1p/2,j|2〉2
p2

2,j〈2|p/1p/2,j |j〉

(
δj,n−1 + δj 6=n−1

m2〈2|p/2,jΦj+1,n−2|n− 1]〈j j+1〉
y1,j〈2|p/1p/2,j|j + 1〉

)
(3.63)
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with the notation

Φk,n−2 =

n−2∏

j=k

(
1 − p/jp/1,j

y1,j

)
. (3.64)

This result, however, presents some spurious denominators that can create problems when a
numerical calculation is performed. These denominators have no physical meaning, because
in the original Feynman diagrams only propagators can generate denominators, therefore
there must be a way to eliminate them. Our purpose is to make the result simpler, so that
denominators can be simplified. Unlike [52], we develop our analysis with colored scalars
instead of quarks and a φ boson added. Moreover, our negative helicity gluon is n − 1
instead of 2.

3.3.4 Canceling spurious poles

Performing the shift on the momenta pn and pn−1, we find only one kind of diagram different
from zero, that is the one where the quark and the antiquark are factorized in the same
amplitude together with a number j − 1 of gluons. It is useful to consider separately the
first diagram, where the left amplitude is a three–point one and the last, with j = n− 2,
as we show in Fig. 3.9. The shifted momenta, according to the shift on a massive particle

n̂s̄

2+

̂n − 1
−

φ

1s

−+

Aa

n̂s̄

1s

−+

n − 2+

Ac

φ

̂n − 1
−

n̂s̄

j + 1+

̂n − 1
−

φ

1s

−+

j+

Ab

Figure 3.9: BCFW recursion relation for n amplitude, shift on pn and pn−1.
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shown in Appendix A, are:

p̂µ
n = pµ

n − z

2
〈n− 1|γµ|ℓn] ,

p̂µ
n−1 = pµ

n−1 +
z

2
〈n− 1|γµ|ℓn] , (3.65)

where

ℓµn ≡ pµ
n − m2

2pn·pn−1
pµ

n−1. (3.66)

The recursion relation for Aa is:

Aa = AL(1s;−P̂+
1n; n̂s̄)

i

P 2
1n

AR(φ; n̂− 1
−
, P̂−

1n, 2
+, . . . , n− 2+) , (3.67)

and the evaluation gives, up to a factor 2 that we will drop hereafter:

Aa = i
〈ξ|p/1| − P̂1n]

〈ξ −P̂1n〉
i

P 2
1n

i
〈n−1 P̂1n〉3
〈〈2, n−1〉〉 . (3.68)

Choosing the gauge ξ = pn−1 and using some tricks of spinor properties, we obtain:

Aa = i
〈n− 1|p/1np/1|n− 1〉

P 2
1n〈〈2, n−1〉〉

〈n− 1|p/np/1n|n− 1〉
〈n− 1|p/np/1n|2〉

= −i 〈n− 1|p/1p/n|n− 1〉2
s1n〈〈2, n−1〉〉〈2|p/1p/n|n− 1〉 . (3.69)

The second graph is given by:

Aj
b = im2 [2|∏j

k=3(y1,k − p/kp/1,k−1)| − p̂nj]

y12 · · · y1,j〈〈2, j〉〉〈j − p̂nj〉
i

p2
nj

i
〈n−1 p̂nj〉3

〈〈j+1, n−1〉〉〈p̂nj j+1〉 ,

(3.70)

where pnj ≡ p1,j + pn. Using the same tricks as above, we get to the following result:

Aj
b = −im2 [2|Φ3,j p/nj |n− 1〉

〈〈2, n−1〉〉snj

〈j j+1〉〈n− 1|p/njp/n|n− 1〉2
〈j|p/njp/n|n− 1〉〈j + 1|p/njp/n|n− 1〉 . (3.71)

We see that the third graph in Fig. 3.9 is simply Ac ≡ An−2
b . This graph does not exist in

pure QCD, but it appears now, since A(φ;−,−) 6= 0, thus the sum over j runs from j = 2
to j = n− 2. Moreover, we can include Aa in the sum, too, as A1

a. Putting together these
results and grouping common factors, we arrive to the quite compact expression:

A =
−i

〈〈2, n−1〉〉
n−2∑

j=1

〈n− 1|p/np/nj|n− 1〉2
snj〈n− 1|p/np/nj |j + 1〉

{
− δj1 + δj 6=1m

2 [2|Φ3,j p/nj|n− 1〉〈j j+1〉
y12〈n− 1|p/np/nj|j〉

}
.

(3.72)
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We can easily check that the massless limit is the know one:

lim
m2→0

A = −i〈n−1n〉2〈n−1n〉2
〈〈1, n〉〉〈n1〉 . (3.73)

Still, in this expression spurious denominators do hold over. The way of getting rid of
them is to rearrange Eq. (3.72). The generic jth term for j ≥ 3 can be manipulated in a
quite laborious way in order to be divided in the sum of three parts:

〈n− 1|p/np/nj |n− 1〉2〈j j+1〉
snj〈n− 1|p/np/nj|j + 1〉〈n− 1|p/np/nj |j〉

[2|Φ3,j p/nj|n− 1〉 =

=
〈n− 1|p/np/nj |n− 1〉

snj

〈n−1 j+1〉
〈n− 1|p/np/nj|j + 1〉 [2|Φ3,j p/nj|n− 1〉 +

+
〈n− 1|p/np/nj |n− 1〉

snj

〈j n−1〉
〈n− 1|p/np/nj|j〉

[2|Φ3,j−1 p/nj−1|n− 1〉 +

+
〈n− 1|p/np/nj |n− 1〉

snjy1j

[2|Φ3,j−1 p/j|n−1〉 ≡ aj + b1j + b2j (3.74)

In this way, we can pass from one two–terms denominator to three single ones. Thus, we
have the following kind of sum:

. . .+ aj + b1j + b2j + aj+1 + b1j+1 + b2j+1 + . . . (3.75)

and we are going to sum every aj term with the b1j+1 as it is graphically shown in (3.76):

. . .+aj+b
1
j + b2j+aj+1+b

1
j+1+ . . . . (3.76)

The reason why we do this kind of grouping is that these terms have the same denominator
and the same productory multiplied and the guess is that the sum of the numerators can
give a quantity that cancels such a denominator. Actually, this happens and, after a bit
more technicalities, the final result is found:

An(φ; 1s, 2
+, . . . , n− 2+, n− 1−, ns̄) =

−i
y12 〈〈2, n−1〉〉

{
[2|p/1|n− 1〉〈n− 1|p/1p/n|n− 1〉

sn1

+

n−2∑

j=2

m2

sn,j
[2|Φ3,j−1

(
p/j|n− 1〉〈n− 1|p/n

y1,j
+
p/n,j−1|n− 1〉〈n− 1|p/j

sn,j−1

)
p/n,j|n− 1〉

}
.

(3.77)

This is a very compact form where all the spurious denominators have disappeared.



Chapter 4

The top quark

4.1 Introduction

The top quark was discovered in 1995 by the CDF and D0 experiments at the Tevatron
pp̄ collider, hosted at Fermilab [53, 54]. It was introduced as the weak isospin partner of
the b quark, since the b quark detection in 1977 [55], for two principal reasons [56]. In the
first place, its existence explains the absence of flavour changing neutral currents, through
the GIM mechanism that was already introduced for the c quark. A second motivation,
and more fundamental, is that the existence of three quark families, as well as three lepton
families, guarantees the absence of anomalies in the electroweak theory, thus allowing it to
be renormalizable. The weak isospin of the b quark was measured to be −1/2, so that the
top quark had to be "up-type". Constraints on the top quark mass were set during the
next years, thanks to electroweak precision data. Electroweak one-loop corrections ∆r can
be related to the W - and the Z-boson masses through:

m2
W =

παe.m.√
2GF

1(
1 − m2

W

m2

Z

)
(1 − ∆r)

, (4.1)

where GF is the Fermi electroweak constant and αe.m. = e2

4π
. The loop contributions coming

from the top quark depend quadratically on the top quark mass, while those coming from
the Higgs boson have a logarithmic dependence on the Higgs boson mass. This means that
electroweak data can set stronger constraints on the top quark mass than on the Higgs
mass. In Fig. 4.1 the top quark and the Higgs boson electroweak loop corrections to the
W and Z boson self energies are showed. Eventually, the top quark was discovered exactly
in the mass range predicted.

In the SM, the top quark is the heaviest known elementary particle, being as heavy as
a gold atom. The most recent measurements at the Tevatron give the world average [57]:

mt = 173.1 ± 0.6stat. ± 1.7syst. GeV . (4.2)

This means that the top quark behaves differently from the other quarks [58]. Its lifetime
is very short, so that the top quark decays before hadronizing. This way, some of its

45
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Figure 4.1: Electroweak loop contributions to the W and Z boson self energies originating
from the top quark (up) and from the Higgs boson (down).

properties, such as, for example, the spin, are transferred directly to the decay products.
The top does not get to be depolarized by the strong interactions, thus its spin can be
studied in the angular distribution of the decay products. The space the top quark can
fly before decaying is about 0.1 fm, less than the typical hadronic size. In this range, the
QCD strength is still weak and the top quark behaves like a free particle. Due to the very
short top quark life-time, in principle, any theoretical analysis should take into account
both the production and the decay. Nevertheless, the decay width of the top quark is very
narrow compared with its mass, being Γt/mt ≃ 0.008, so it is possible to factorize the two
processes with good approximation to an on-shell production and subsequent decay.

The top quark mass is heavy compared to the masses of the other quarks and it is of the
same order of the Higgs boson vacuum expectation value. This fact suggests that the top
quark could play an important role in the electroweak symmetry breaking (EWSB) and
clarify the nature of this mechanism [59]. In the SM the particle responsible of the EWSB
is the Higgs boson, that has not been observed yet. Other models have been developed
where different particles plays the same role, for instance, a bound state of top quarks in
technicolor and topcolor models, where top condensation is present. These models predict
the existence of heavy gauge bosons coupling to top quarks. Also, extra-dimensional models
such as Randall-Sundrum and ADD take into consideration the hierarchy problem, that
is, why the weak scale is so different from the Planck scale. In these models, the existence
of TeV gravitons is predicted, that couple to a tt̄ pair. This changes the differential cross
section distribution of top quark pair production from the SM prediction. For a review of
new top dynamics in the EWSB, see, for example, [60].

4.2 Pair production

At the typical energies of hadron colliders, perturbative QCD can be used to describe the
physics of the top quark. The tt̄ pair production at the LHC is given at the tree level by
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c)b)a) d)

Figure 4.2: Graphs that contribute to the tree level QCD cross section in the quark-antiquark
production.

the Feynman diagrams shown in Fig. 4.2, where in the SM the intermediate particle can
be either a photon, a Z0 or a gluon in events such as a) and a gluon in events of b) kind.
Electromagnetic contributions to the cross section are usually negligible compared to the
QCD ones. The factorization theorem tells us that at every order in perturbation theory
the cross section is given by the convolution among the perturbative hard subprocess cross
section and the parton distribution functions (PDFs) of the deep inelastic scattering:

dσp1p2→tt̄X =

∫ 1

0

dx1dx2

∑

a,b

fa/p1
(x1, µ

2
F )fb/p2

(x2, µ
2
F )dσ̂ab→tt̄X . (4.3)

The parton distribution function fa/p1
represents the probability density distribution for

the momentum fraction x1 of the parton a inside the proton p1. It is evaluated at a certain
factorization scale µF , necessary in order to absorb the infinite quantities that arise from
the collinear singularities. The partonic cross section can be written as:

σ̂ab→tt̄X = [σ̂0 + αS(µ2
R)σ̂1 + . . .]ab→tt̄X , (4.4)

where µ2
R is the renormalization scale. At all orders in perturbation theory, σp1p2→tt̄X

does not depend on these scales, because the dependence of the subprocess cross section
compensates the scale dependence of the PDFs. However, at a fixed order, this cancellation
is not exact and an appropriate choice of the scales has to be made in order to minimize
the fixed order dependence. Often, values of µR similar to the typical momentum scales
of the scattering process and also µR = µF are chosen. This avoids large logarithms [61].
The sum in Eq. (4.3) is over all the possible partonic subprocesses. The evolution of the
parton distribution functions as a function of Q2 is given by the DGLAP equations [62],
while the dependence on the momentum fraction can only be extracted from fitting data.

4.3 Top quark decay

The t quark decays almost exclusively to a b quark, by emitting a W+ boson: its branching
ratio is B(t → bW+) = 0.998. While the b quark can be detected as a jet, the W
gauge boson can decay either leptonically, to a lepton and a neutrino, or hadronically,
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to a quark and an antiquark. The hadronic decay is roughly three times more probable
than the leptonic one, since the quarks appear in three colors. Thus, there are different
possible signals in tt̄ production, depending on the decay mode of the two W bosons, as
shown in Fig. 4.3. The all-hadronic mode (c), that is, where both W ’s decay hadronically,
has the largest branching ratio, but it is also the most difficult experimentally, because
all the signals are jets. The dilepton channel (b), where both the gauge bosons decay
leptonically, has a low branching ratio and two neutrinos in the final state, which makes
the reconstruction of the tt̄ invariant mass impossible. The semi-leptonic channel (a), where
oneW boson decays hadronically and the other one leptonically, has a significant branching
ratio and a lower background than the totally hadronic mode, and it is thus considered the
best channel for discovering heavy resonances decaying to tt̄ [63]. To identify the decay in
this channel, one needs to detect an isolated charged lepton, missing transverse momentum
and at least four jets [64].
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Figure 4.3: Semi-leptonic (a), leptonic (b) and totally hadronic (c) decay of a tt̄ quark pair.

4.4 Heavy colored resonances

In beyond the Standard Model scenarios, more particles besides the SM gauge bosons can
be involved in top quark pair production. Indeed, several models predict the existence of
heavy colored resonances decaying to top quarks that might be observed at the LHC, like
axigluons in chiral color models [65–67], colorons [68] or Kaluza Klein excitations in extra
dimensional models [69–74]. Their existence modifies the qq̄ → tt̄ production cross-section,
while gluon-gluon fusion to top quarks stays, at first order, unaltered, because a pair of
gluons do not couple to a single extra resonance in this kind of models. For example, the
asymmetric chiral color model [66] allows the existence of three axigluon vertices, which are
forbidden in the usual chiral color model by parity [65], but exclude gluon-gluon-axigluon
vertices as well. Models in extra warped dimensions, where KK modes can be single
produced, have been constructed [72], but in the conventional and more extended extra
dimensional models, a single KK gauge field does not couple to two SM gauge bosons at
leading order by orthonormality of field profiles [69]. The new interaction between quarks
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and the extra resonance reads:

Lres. ≡ igsψ̄qγ
µ(gq

V + gq
Aγ5)R

a
µTaψq , (4.5)

where, in the most general case, each quark with flavor q can couple with different strength
to the colored massive resonance Ra. The kinetic term for the resonance field takes the
form −1

4
Rµν

a Ra
µν , where, as usual, Ra

µν = ∂µR
a
ν − ∂νR

a
µ + gsf

abcRb
µR

c
ν .

Detecting such resonances with masses in the TeV region is not an easy task, because
the top quarks are very energetic. This means that they are very boosted, thus their
decay products are highly collimated. On one side, this makes the identification of the jets
difficult, due to a high level of overlapping. On the other side, it is easier to misinterpret
a b quark as a light quark, since the two vertices that are the characteristic signal of the b
quark are very close to each other and they could be detected as a single jet [64].

The natural signature of these resonances is a peak in the invariant mass distribution of
the top-antitop quark pair located at the mass of the new resonance. Colored resonances
are fairly broad: ΓG/mG = O(αs) ∼ 10%. Present lower bounds on their mass are about
1 TeV. The latest exclusion limit by CDF [76] at 95% C.L. is 260 GeV< mG < 1.250 TeV
for axigluons and flavor-universal colorons (with cot θ = 1 mixing of the two SU(3)).

However, asymmetries can be an alternative way of revealing these resonances. Some
of those exotic gauge bosons, such as the axigluons, might generate already at tree-level
a charge asymmetry through the interference with the qq̄ → tt̄ SM amplitude [77–80]. In
principle, one could guess that a charge asymmetry can be generated without introduc-
ing any resonance, and considering instead CP violating models where chromoelectric or
chromomagnetic dipoles [81] are generated. In these models, the Lagrangian reads:

L = − i

2
dM(E))ψ̄tσ

µν(γ5)ψtFµν , (4.6)

where dM(E) is the magnetic(electric) dipole moment and the γ5 matrix is present in the
chromoelectric case and is not in the chromomagnetic case. From (4.6) a gluon-gluon-
quark-antiquark vertex is generated in addition to the gqq̄:

dM(E)fabcψ̄tσ
µν(γ5)A

b
µA

c
νT

aψt. (4.7)

A charge asymmetry in theories with (chromo)electric(magnetic) dipole moments can be
generated only for polarized beams and if the decay products are analyzed. Direct calcu-
lation for the charge asymmetry under consideration resulted in zero.

Let us now review briefly the basic features of the most representative models of heavy
colored resonances decaying to top-antitop quark pair.

4.4.1 Top color models and colorons

These models extend the SM to an enlarged gauge group called topcolor group SU(3)h ⊗
SU(3)ℓ that breaks to SU(3)color [82]. In top color models the third generation of quarks
transforms under SU(3)h and the light quarks transform under SU(3)ℓ [65, 67], while,
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in coloron models, all quarks transform in the same way under both SU(3) [68]. With
the symmetry breaking, the particle spectrum is enriched with massive color-octet gauge
bosons, called topgluons, that couple purely vectorially to the top quarks. In the top
color case, these bosons couple preferentially with the top and bottom quarks, while in
flavor universal coloron models they have the same coupling strength with all the flavours.
Depending on the strength of the coupling, a condensate of two heavy quarks can be
generated also.

A more complete formulation of the ideas that base these models is topcolor-assisted
technicolor. Here the symmetry group is:

GTC ⊗ SU(3)h ⊗ SU(3)ℓ ⊗ SU(2)W ⊗ U(1)h ⊗ U(1)ℓ , (4.8)

which breaks to the low energy

GTC ⊗ SU(3)color ⊗ U(1)e.m. , (4.9)

where GTC is the technicolor gauge group. The third generation of quarks couple preferen-
tially to SU(3)h⊗U(1)h, while the first and second ones to SU(3)ℓ⊗U(1)ℓ. The symmetry
breaking provides a mass for the coloron and the Z ′ which are the bosons responsible of
carrying new interactions for the third generation doublet.

4.4.2 Chiral color models and axigluons

Another possible extension of the SM gauge group at higher energy is the gauge group
SU(3)L ⊗ SU(3)R ⊗ SU(2)L ⊗ U(1)Y [67]. The chiral color group SU(3)L ⊗ SU(3)R is
broken to the diagonal subgroup SU(3)color. Originally, the scale at which both symmetry
breakings occur, by the Higgs mechanism, has been proposed to be the same, around
few hundreds GeV. A variety of new particles are predicted, according to the different
models, but there is one important model-independent prediction: besides the W and the
Z bosons, another color-octet massive gauge boson, electrically neutral, appears, with a
mass similar to the electroweak gauge bosons and it is called axigluon. Indeed, its coupling
with fermions is purely axial and the coupling strength is the same as QCD. In axigluon
models a charge asymmetry is generated already at the tree level. In [77] a first analysis
has been performed pointing out that the forward-backward asymmetry is more sensitive
to larger values of the axigluon mass than the invariant mass distribution of the top quark
pair.

4.4.3 Extra dimensional models

Extra dimensional models address the hierarchy problem, one of the still open questions in
particle physics today, namely why the Planck unification scale and the electroweak scale
are so different. Indeed, we have:

MEW

MPl.
≃ 10−20 , (4.10)
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a very low number. Anyway, there are proposed models where the Planck scale is not the
fundamental scale of gravity [70, 83].

The first in developing the idea of extra dimensions have been Kaluza and Klein [84]
in the second decade of the last century. A five-dimensional space was proposed, where
besides the four familiar dimensions of space-time, a new dimension was added, curled up
in a circle. The size of this new dimension is very small, of the same order of magnitude
as the Planck length scale, thus has not visible effects on the observable physics. The
ground state of this space-time is thus M4 × S1, where M4 is the usual four dimensional
Minkowski space and S1 the circle. Small oscillations around the ground state generate a
spectrum of massive excitations, called the Kaluza-Klein (KK) tower [85]. Their masses
are inversely proportional to the S1 radius. Also, a finite number of massless modes is
found, among which is the spin-2 graviton. This theory has been neglected for a long time
since it seemed not to have any realistic implementation, and has been studied only as
a mathematical structure itself. Nevertheless, some of its phenomenological implications
appear in subsequent models.

For instance, Arkani-Hamed, Dimopoulos and Dvali (ADD) [83] introduced n new com-
pact dimensions in addition to the usual 4-dimension space-time. SM ordinary fields are
confined to a 4-dimensional subspace, called 3-brane and are not influenced by these ad-
ditional dimensions, which are compactified. Gravity, on the other hand, can propagate
freely through the whole space (bulk). Kaluza-Klein gravitons are generated that couple
with SM fields and can thus be detected. In these models, the Planck scale is related to
another scale M , the fundamental one, through the volume of the compactified dimensions
Vn:

MPl. = VnM
2+n . (4.11)

The original suppression factor 1/MPl. changes to 1/M , that can be of the order of around
TeV−1, if the compactification volume is large enough. This factor allows these models to
undergo phenomenological analyses. Indeed, upper bounds have already been set, getting
M & 1 TeV.

The ADD model, while eliminating the hierarchy problem between the Planck and the
electroweak scale, however, introduces a new one between the compactification volume and
MEW. To solve this problem, Randall and Sundrum [70] proposed a new extra dimensional
model (RS model), where there is no need to introduce a new scale. They proposed a
5-dimensional, non factorizable space, where the 4-dimensional metric is multiplied by an
exponential factor depending on the compactification radius:

e−2krcφηµνdx
µdxν + r2

cdφ
2 . (4.12)

Here, φ is the new extra dimension, that ranges from 0 to π and whose size is given by
rc, while k is a factor of the size of the Planck scale. To generate a large hierarchy a
large rc is not needed, due to the fact that the function is an exponential, thus varies very
rapidly on rc. The ratio between the 5-dimensional Planck scale and the inverse of the
compactification radius is just krc ≃ 50, compared to the (MPl./M)2/n = (MPl./TeV)2/n of
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the ADD model. The Kaluza-Klein gravitons in the Randall-Sundrum model are predicted
to have a mass around the TeV and couple with the SM fields with a suppression factor
of the order of the TeV as well, thus the coupling is enhanced compared to the ADD
model. Thus, these states could be generated as resonances and decay at a rate that can
be observed at the LHC. In the original model, the SM fields can only propagate in the
4-dimensional space. However, models have followed, where they are allowed to live in the
whole bulk [73]. This feature has various interesting implications like the suppression of
flavour-changing neutral currents, the explanation of the fermion mass hierarchy or the
gauge coupling unification. A consequence of these models is the existence of Kaluza-Klein
excitations of the SM gauge bosons. In particular, KK gluons should have the largest
coupling of all and thus be the first to be detected at the LHC. For masses above the tt̄
threshold, the KK gluon decays mainly to a top-antitop quark pair, with a branching ratio
depending on the model, while the couplings with the light quarks are suppressed in most
bulk RS models.

4.5 The top quark charge asymmetry at hadron coliders

4.5.1 The charge asymmetry in QCD

QCD at tree level predicts that top-antitop quark pair production at hadron colliders is
charge symmetric, namely the differential charge asymmetry, defined as:

A(cos θ) =
Nt(cos θ) −Nt̄(cos θ)

Nt(cos θ) +Nt̄(cos θ)
(4.13)

vanishes for every value of θ. In (4.13), Nt(t̄)(cos θ) is the number of top (antitop) quarks
produced at a certain angle θ. Nevertheless, an asymmetry is generated at O(α3

s). The cor-
rections to the cross section at this order, that generate such an asymmetry, are represented
in Figs. 4.4 and 4.5. The asymmetry is given by two different kinds of contribution [86]: on
one side, the radiative corrections given by the interference of final-state with initial-state
bremsstrahlung (Fig. 4.4 (d + f) ⊗ (e + g)) and the interference of the double virtual
gluon exchange with the Born amplitude (Fig. 4.4 a ⊗ (b + c)). On the other side, in-
terferences between the different graphs of gluon-quark processes, whose amplitudes are
shown in Fig. 4.5. In [86] it has been calculated that qg originated processes generate a
contribution to the asymmetry much smaller than qq̄, so it is possible to neglect them
as far as the charge asymmetry is concerned. Finally, the gluon-gluon initiated process
is obviously symmetric. The charge asymmetry coming from the real hard radiation has
opposite sign compared to the soft and virtual corrections and the latter is always larger
than the former. The soft gluon radiation generates an infrared singularity that is canceled
exactly by the one emerging in the double gluon exchange. On the other hand, ultraviolet
singularities are absent in the antisymmetric part of the double gluon exchange, as well
as collinear singularities in the limit mq → 0, where mq is the mass of the incoming light
quark. This can be understood because such singularities could be canceled only by terms
proportional to the lower order, but the lower order is symmetric.
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Figure 4.4: Graphs originated by qq̄ that contribute to the QCD charge asymmetry in quark-
antiquark production.

The way a charge asymmetry arises in QCD is analogous to what happens in Quantum
Electrodynamics [87]. In a e+e− → µ+µ− annihilation, the cross section receives charge
asymmetric contributions at O(α3

e.m.) from the same amplitudes as the ones shown in
Fig. 4.4 (where the gluon is replaced by a photon and the light and top quarks are replaced
by electrons and muons respectively). The photon has charge conjugation C = −1. In the
a ⊗ (b+ c) and (d+ f) ⊗ (e+ g) interferences, an odd number of photons appears and a
minus sign under charge conjugation results, thus leading to an asymmetry in the µ+ and
µ− production. In QCD, the gluon has not a definite sign under charge conjugation and
the above products of amplitudes contain both C-even and C-odd components.

The a ⊗ b, d ⊗ e and f ⊗ e contributions (1) are related to the a ⊗ c, d ⊗ g and f ⊗ g
(2) respectively by:

σ(1)(t, t̄) = −σ(2)(t̄, t) , (4.14)
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Figure 4.5: Graphs originated by qg that contribute to the QCD charge asymmetry in quark-
antiquark production.

without taking into account the color factors. The color factors are:

C1 ∝ d2 + f 2

C2 ∝ d2 − f 2 , (4.15)

where d2 ≡ dabcd
abc and f 2 ≡ fabcf

abc, so the asymmetry just selects the d2 factor. This
means that only color-singlet quark-antiquark configurations produce the asymmetry.

4.5.2 Experimental measurements and theoretical predictions

At partonic level, the top quark is emitted preferentially in the direction of the light
incoming quark [86], so the partonic central asymmetry integrated in the forward region

Â =
dσt(cos θ̂ ≥ 0) − dσt̄(cos θ̂ ≥ 0)

dσt(cos θ̂ ≥ 0) + dσt̄(cos θ̂ ≥ 0)
(4.16)

is positive. It can be seen that Eq. (4.16) is equivalent to the forward-backward asymmetry,
defined as:

ÂFB =
dσt(cos θ̂ ≥ 0) − dσt(cos θ̂ ≤ 0)

dσt(cos θ̂ ≥ 0) + dσt(cos θ̂ ≤ 0)
. (4.17)

QCD is CP invariant, so, after performing a charge conjugation followed by a parity
transformation, the physics should not change. As shown in Fig. 4.6, this implies the
condition dσt(cos θ) = dσt̄(cos(π − θ)).

The forward–backward asymmetry of top quarks has already been measured at the
Tevatron proton-antiproton collider [88–90], at a center-of-mass energy of

√
s = 1.96 TeV.
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Figure 4.6: CP transformation of qq̄ → tt̄.

The CDF analyses provide the measurement in the lepton plus jets channel. The most
recent value for the forward-backward asymmetry in the laboratory frame is [90]:

App̄
FB =

Nt(cos θ > 0) −Nt(cos θ < 0)

Nt(cos θ > 0) +Nt(cos θ < 0)
= 0.193 ± 0.065 stat. ± 0.024 syst. , (4.18)

where θ is the angle between the top quark and the proton beam. This value has been
extracted with a luminosity of 3.2 fb−1 and has to be compared with the one year old result:
App̄ = 0.17±0.07 stat. ±0.04 syst., with 1.9 fb−1 [88]. The uncertainty of both measurements
is still large, but systematic errors have been improved considerably from one measurement
to another, and statistical errors have decreased accordingly. Moreover, it turns out to be
quite interesting that the uncertainty is still statistically dominated, and hence significant
improvements should be expected in the near future.

The total charge asymmetry generated at the Tevatron by QCD at NLO has been
calculated to be [77, 78]:

A =
Nt(y ≥ 0) −Nt̄(y ≥ 0)

Nt(y ≥ 0) +Nt̄(y ≥ 0)
= 0.051(6) , (4.19)

In Eq. (4.19), y is the quark rapidity in the laboratory frame, defined as:

y =
1

2
ln
E + pz

E − pz

, (4.20)

where pz is the momentum of the parton relative to the beam axis. The range of the
rapidity is (−∞,∞): y = 0 if pz = 0, that corresponds to a π/2 angle with the beam and
y = ±∞ for pz = ±|p| = ±E in the relativistic limit where the masses are set to zero.
In a realistic analysis, a maximum value for the rapidity is taken not greater than a few
units. It is worth to notice that the rapidity is positive in the forward direction, that is for
θ ∈ (0, π/2) and negative in the backward direction, for θ ∈ (π/2, π).

The expressions for the different contributions to the differential cross section are listed
in Appendix B.1. The value reported in Eq. (4.19) has been calculated using the LO for
both the numerator and the denominator. However, the NLO corrections to the cross
section are quite large, around 30% or even more [91], so, from a conservative point of
view, an uncertainty of around 30% should be assigned to the asymmetry. Nevertheless,
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the dominant corrections from collinear emission are expected to cancel [86]. The error
is calculated taking into account different PDF sets and renormalization and factorization
scales, as well as the error on the top quark mass. Prediction (4.19) for the inclusive charge
asymmetry is robust with respect to the higher-order perturbative corrections generated
by threshold resummation [92]. The forward–backward asymmetry of the exclusive process
pp̄ → tt̄+ jet receives, however, large higher order corrections and is almost completely
washed out at the Tevatron [93].

Comparing the theoretical prediction (4.19) with the experimental result (4.18), a dis-
crepancy emerges of about two sigmas, that opens a window to the presence of new physics.
Although it is too early to claim new physics there, because the statistical error of the mea-
surement is rather large, it is possible to put constraints to some general parameters that
appear in models with new physics. As expected, this result has boosted a renovated
interest in looking for new models that would account for this effect [94–102].

4.5.3 The top quark charge asymmetry beyond the SM

As said in Section 4.4, there are models where the presence of a heavy colored resonance
generates a charge asymmetry, that could, in principle, explain the discrepancy of the
Tevatron measurements with the SM. This is, for instance, the case of the axigluon which
has only axial-vector coupling with both light and top quarks.

We have studied, in a model independent way, heavy color-octet boson resonances
decaying to tt̄ with arbitrary vector and axial-vector couplings to quarks. In Appendix B.2
we list the differential cross sections in the presence of such a resonance. We have calculated
the charge asymmetry generated in this toy model in the scenario of the current hadron
colliders, namely the Tevatron and the LHC, in order to give reliable predictions about the
possibility of measuring it in the next years. In Chapter 5 we present an analysis performed
with the Tevatron parameters, that is reported in papers [103] and [104]. In Chapter 6 we
evaluate the top quark charge asymmetry in a given finite interval of rapidities together
with its statistical significance, according to the paper [104].

In the most popular models of warped extra dimensions, the Kaluza-Klein excitations
of the gluon couple identically to the left-handed and the right-handed light quarks, and
these couplings are different only for the third generation. A charge asymmetry cannot
be generated in this kind of models by the production mechanism. An asymmetry will
arise, however, in the decay products of the top quark. The polarization asymmetry from
the angular distribution of the positron from the top quark decay has been investigated
for example in [71]. However, the production of top quark pairs together with one jet can
generate an asymmetry also in this kind of models. This motivates our study of tt̄ + jet
processes, reported in [105] and discussed in Chapter 6.
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Analysis at the Tevatron

5.1 Introduction

The Tevatron, located at the Fermi National Accelerator Laboratories, near Chicago, USA,
is a proton-antiproton high energy collider. It has reached a center-of-mass energy of√
s = 1.96 TeV and has been the world’s highest energy machine before the LHC. The

Tevatron has been running since 1985 and has hosted various experiments, among them
CDF and D0 which discovered the top quark in 1995.

Figure 5.1: Air view of the Tevatron.

The maximum instantaneous luminosity L reached at the Tevatron has been 2.9 ×
1032 cm−2 s−1 [106], where L is defined as the number of particles in the beam per unit
area per unit time. The number of interactions of a physics process per unit of time dN/dt
is given by the product of its total cross section and the instantaneous luminosity:

dN

dt
= L σ . (5.1)

57
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The instantaneous luminosity depends strongly on time, so often it is useful to use the
integrated luminosity L:

L =

∫
L dt , (5.2)

that is related to the number of particles of the beam over a finite period of time. At
the moment, the Tevatron has recorded 8 fb−1 of integrated luminosity and has analyzed
about 3 − 4 fb−1.

5.2 Top quark charge asymmetries

At the Tevatron, most of the processes is initiated by qq̄ collisions that generate a charge
asymmetry, as we have seen in Chapter 4. Gluon-gluon fusion, which represents only 15%
of all the events at the Tevatron, remains charge symmetric. Due to CP invariance, the
charge asymmetry is equivalent to a forward–backward asymmetry.

The CDF analyses provide two different measurements in the lepton plus jets channel.
The first measurement is made in the laboratory frame, and the most recent value is [90]:

App̄
FB =

Nt(cos θ > 0) −Nt(cos θ < 0)

Nt(cos θ > 0) +Nt(cos θ < 0)
= 0.193 ± 0.065 stat. ± 0.024 syst. , (5.3)

as shown in Section 4.5.2. The second measurement exploits the Lorentz invariance of the
difference between the t and t̄ rapidities, ∆y = yt − yt̄. Indeed, at LO it is related to the
top quark production angle θtt̄ in the tt̄ rest frame by [90]:

∆y = 2 tanh−1 (β cos θtt̄) , (5.4)

where β =
√

1 − 4m2
t/ŝ is the top quark velocity. So, the region ∆y ≥ 0 corresponds to

cos θtt̄ ≥ 0. Its value, with 1.9 fb−1 of data, is [88]:

Att̄
FB =

Nev.(∆y > 0) −Nev.(∆y < 0)

Nev.(∆y > 0) +Nev.(∆y < 0)
= 0.24 ± 0.13 stat. ± 0.04 syst. . (5.5)

The corresponding theoretical predictions are [77]:

A =
Nt(y ≥ 0) −Nt̄(y ≥ 0)

Nt(y ≥ 0) +Nt̄(y ≥ 0)
= 0.051(6) , (5.6)

for the inclusive charge asymmetry, or forward–backward asymmetry (A = App̄
FB), and

AY =

∫
dY (Nev.(yt > yt̄) −Nev.(yt < yt̄))

∫
dY (Nev.(yt > yt̄) +Nev.(yt < yt̄))

= 0.078(9) , (5.7)
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for the integrated pair asymmetry, which is defined through the average rapidity Y = 1
2
(yt+

yt̄). The differential pair asymmetry is almost flat in the average rapidity, and amounts
to about 7% for any value of Y . The corresponding integrated asymmetry is equivalent
to the integrated forward–backward asymmetry in the tt̄ rest frame: AY = Att̄

FB and this
is the reason why the pair asymmetry is larger than the forward–backward asymmetry.
Indeed, events where both t and t̄ are produced with positive or negative rapidities in
the laboratory frame do not contribute to the integrated forward–backward asymmetry,
while they do contribute to the pair asymmetry, because in the partonic frame t and t̄
are always back-to-back, as shown in Fig. 5.2. The experimental measurements of the top
quark asymmetry in Eq. (5.3) and Eq. (5.5), although still statistically dominated, disagree
with the corresponding theoretical predictions in Eq. (5.6) and Eq. (5.7), respectively, by
about 2σ. Thus, there is space for arguing the presence of new physics to account for this
discrepancy.

t

q q̄

t

t̄

p p̄

t̄

Laboratory frame Partonic frame

Figure 5.2: The forward–backward asymmetry is larger in the partonic frame than in the
laboratory frame.

We shall consider in the following the production of heavy color-octet boson resonances
decaying to top-antitop quark pairs with a non-vanishing axial-vector coupling to quarks.
We shall not stick here to a particular model, but will analyze the most general scenario
where the heavy resonance interacts with quarks with arbitrary vector gV and axial-vector
gA strength relative to the strong coupling gs. We also assume that there is no direct
coupling of a single resonance to an even number of gluons, and therefore the production
of top quarks is driven by qq̄ events. This choice is motivated by different implementations
of models predicting the existence of extra color-octet gauge bosons, as seen in the previous
chapter. The Born differential cross section for qq̄ annihilation in the presence of a color-
octet vector resonance is given in Eq. (B.17) of Appendix B.2, that we report here for
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convenience:

dσqq̄→QQ̄

d cos θ̂
= α2

s

TFCF

Nc

πβ

2ŝ

(
1 + c2 + 4m2 +

+ 2ŝ Re{G(ŝ)}
[
gq

V g
t
V (1 + c2 + 4m2) + 2 gq

A g
t
A c
]
+

+ ŝ2 |G(ŝ)|2
[ (

(gq
V )2 + (gq

A)2
)(

(gt
V )2(1 + c2 + 4m2) +

+ (gt
A)2(1 + c2 − 4m2)

)
+ 8 gq

V g
q
A g

t
V g

t
A c

])
. (5.8)

The charge asymmetry is built up from the two contributions of (5.8) that are odd in the
polar angle. The first one arises from the interference with the gluon amplitude, and is pro-
portional to the product of the axial-vector couplings of the light and the top quarks. This
contribution, provided that the product of the couplings is positive, is negative in the for-
ward direction for invariant masses of the top-antitop quark pair below the resonance mass,
and changes sign above. The second contribution, arising from the squared amplitude
of the heavy resonance, although always positive for positive couplings, is suppressed with
respect to the contribution of the interference term by two powers of the resonance mass.
For large values of the couplings, however, the squared amplitude of the resonance might
compensate the interference contribution, then leading to a positive forward–backward
asymmetry, because it is enhanced by the product of the vector couplings. Indeed, for

ŝ = s̄ ≡ m2
G

1 + 2 gq
V g

t
V

, (5.9)

the two odd terms cancel to each other, and above that value the contribution to the
forward–backward asymmetry becomes positive.

To simplify our analysis we consider that the vector and axial-vector couplings, which
are normalized to the strong coupling αs, are flavour independent: gq

V = gt
V = gV , and

gq
A = gt

A = gA, where q labels the coupling of the excited gluon to light quarks, and t to
top quarks. The axigluon of chiral color theories [65, 75], for example, is given by gV = 0
and gA = 1. We study how the production cross section and the charge asymmetry vary
depending on the vector and axial-vector couplings, which we take in the range [0, 2].
Within this range the perturbative expansion is still reliable. Moreover, in the flavour
independent scenario the sign of the couplings is not relevant, since they always appear as
squared.

Results for the difference between the production cross section in the presence of the
resonance and the SM prediction in the (gV , gA) plane are presented in Fig. 5.3 for different
values of the resonance mass between 1 and 2 TeV. In our analysis, we use the MRST 2004
parton distribution functions [107], and we set the renormalization and factorization scales
to µ = mt, with mt = 170.9±1.1 stat.±1.5 syst. GeV [108]. For comparison, we also overwrite
in Fig. 5.3 the 1, 2 and 3 sigma contours obtained from the experimental measurement
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Figure 5.3: Top quark cross-section at the Tevatron in the bidimensional gV -gA plane for
different values of the resonance mass.

σexp.
tt̄ = 7.5 ± 0.48 (pb) [109], and the SM prediction σNLO

tt̄ = 6.7 ± 0.8 (pb) [110]. The
difference between the cross sections is thus:

σexp.
tt̄ − σNLO

tt̄ = 0.8 ± 0.93 pb (5.10)

where the standard deviation has been calculated by summing the squared errors. Similar
plots are presented in Figs. 5.4 and 5.5 for the forward–backward asymmetry and the pair
asymmetry, respectively. The sigma contours are calculated from the difference between
the experimental measurement in Eq. (5.3) and the theoretical prediction in Eq. (5.6)
for the forward–backward asymmetry, and between Eq. (5.5) and Eq. (5.7) for the pair
asymmetry. At 90% C.L. the plots of the production cross section and the asymmetries
exclude complementary regions of the parameter space. While the production cross section
excludes the corner with large vector couplings gV and low axial-vector coupling gA, the
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Figure 5.4: Forward–backward asymmetry at the Tevatron in the bidimensional gV -gA

plane for different values of the resonance mass.

forward–backward and the pair asymmetry exclude the corners with higher axial-vector
couplings and either low or high vector couplings. This is not surprising, because the
terms of the differential cross section in Eq. (5.8) that are even in the polar angle contribute
exclusively to the integrated cross section, while the odd terms contribute to the charge
asymmetry only, and they are proportional to different combinations of the vector and
axial-vector couplings. The exclusion regions are, as expected, smaller for higher values of
the resonance mass, because a high mass suppresses all the contributions beyond the SM.
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Figure 5.5: Pair asymmetry at the Tevatron in the bidimensional gV -gA plane for different
values of the resonance mass.

5.3 Constraining heavy colored resonances

So far, we have considered sigma contours on the total cross section and the asymmetries
in order to constrain the parameter plane (gA, gV ). Comparing Eq. (5.6) with Eq. (5.3), we
can deduce that heavy resonances giving rise to a vanishing or negative charge asymmetry
are disfavored at 2σ. This is the case of colorons (gA = 0) and normal axigluons (gV =
0, gA = 1), as we show in Fig. 5.6. At 3σ one can also exclude, for instance, axigluon
masses below 1.4 TeV.

We explore whether it is still possible to reconcile this kind of resonances, such as the
axigluon, with the measurement of the charge asymmetry. A positive asymmetry can be
generated if the term from the squared amplitude of the massive color-octet in Eq. (5.8),
which is proportional to 8gq

V g
q
Ag

t
V g

t
Ac, dominates over the term of the interference, that is
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Figure 5.6: Comparison of the axigluon contribution to the top quark charge asymmetry
with the 1σ, 2σ, and 3σ contours as a function of the axigluon mass. We also consider the
case gq

A = −gt
A = 1.

proportional to 2gq
Ag

t
Ac. This is possible if the vector couplings are large enough, as can be

seen in Fig. 5.4. However, although the total cross section might still be compatible with
the SM prediction in that case, because the contribution of the excited gluon is suppressed
by powers of its mass, the top-antitop quark invariant mass distribution might be enhanced
considerably, due to the factor

(
(gq

V )2 + (gq
A)2
) (

(gt
V )2 + (gt

A)2
)
, (5.11)

particularly for high values of the top-antitop quark invariant mass.
In [59], the differential distribution in the invariant top-antitop quark mass is presented.

The measurement is done with 2.7 fb−1 of integrated luminosity and the histogram is shown
in Fig. 5.7. The invariant mass is divided in nine bins and the last one

dσ

dMtt̄

(0.8 − 1.4 TeV) = 0.068 ± 0.032 stat. ± 0.015 syst. ± 0.004 lumi. =

= 0.068 ± 0.036 (fb GeV−1) (5.12)

is the most sensible to extra contributions beyond the SM at the TeV scale.
As done before with the total cross section, we now subtract the experimental value

of the top-antitop quark invariant mass distribution in the interval 800 GeV< Mtt̄ <
1.4 TeV (Eq. (5.12)) and the theoretical QCD prediction. As a first approximation, we
take σSM

NLO ≃ σexp with no error. Within 1σ the invariant mass distribution in that bin is



Analysis at the Tevatron 65

]2 [GeV/c
tt

Unfolded M
0 200 400 600 800 1000 1200 1400

]2
 [f

b/
G

eV
/c

tt
/d

M
σd

-110

1

10

SM Expectation

Data

Figure 5.7: dσ/dMtt̄ measured at the Tevatron with 2.7 fb−1 [59].

thus enhanced by 50%. The charge asymmetry and the invariant mass distribution probe
different combinations of the vector and axial-vector couplings; therefore, by combining
both limits, one can constrain complementary regions of the parameter space.

Our results are shown in Fig. 5.8, where, for a given value of the mass of the color-octet
resonance, we provide the allowed region at 95% C.L. in the gV − gA plane. The solid lines
are obtained from the charge asymmetry, while the dashed lines are derived from the last bin
of the invariant mass distribution. The allowed regions are quite constrained; indeed at 90%
C.L., we do not find any overlapping region for any value of the color-octet mass, and future
experimental measurements with higher statistics can shrink significantly, or even exclude
completely the allowed regions at 95% C.L.. With the most recent experimental values we
find, in particular, that the asymmetric chiral color model (gV = cot 2θ, gA = 1/ sin 2θ, or
gV =

√
g2

A − 1) is disfavored.
Another possibility to generate a positive charge asymmetry is to couple the third

generation of quarks and the lighter quarks with axial-vector couplings of opposite sign:
sign (gq

A) = −sign (gt
A). From Eq. (5.8) it is obvious that the actual sign of these couplings

is irrelevant; only their relative sign is important because the asymmetric contributions to
the differential cross section are proportional to their product. Chiral color models with
nonuniversal flavor couplings were already considered in the pioneering works [65]. Our
approach here is purely phenomenological, and building a realistic model in that scenario
is beyond the scope of this work. The results for the axigluon case with gq

A = −gt
A = 1 are

presented in Fig. 5.6. That scenario is compatible with the experimental data for any mass
within 2σ. The most general case is shown in Fig. 5.9. From Fig. 5.9 and for |gA| < 2, we
find that, independently of the resonance mass, the region about

(|gA| − 2.3)2 + |gV |2 & 1.82 (5.13)
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Figure 5.8: Contours at 95% C.L. as a function of the vector and axial-vector couplings
for different values of the resonance mass for flavor-universal couplings.

is excluded at 90% C.L. Furthermore, for fixed values of the vector and axial-vector cou-
plings, the charge asymmetry sets a lower limit on the mass of the color-octet, while an
upper bound can be set thanks to the invariant mass distribution, e.g. for |gA| = 1, we
find that at 90% C.L.

1.33 TeV < mG < 2 TeV . (5.14)

Finally, we have also considered the case gq
V = −gt

V and gq
A = −gt

A. Our results are
presented in Fig. 5.10. Obviously, for gV = 0, we obtain the same result as in Fig. 5.9.

5.4 Summary

In this chapter, we have analyzed the charge asymmetry in a top-antitop quark pair pro-
duction at the Tevatron through the exchange of a color-octet heavy boson. We have first
examined the case of flavour independent couplings, studying different observables. We
have found that the total cross section on one side and the forward-backward asymmetry
in the laboratory frame and the pair asymmetry on the other side, exclude complemen-
tary corners of the parameter space. This is reasonable, since the cross section and the
asymmetries depend on different combination of the parameters. With the most recent
measurement at the Tevatron, it becomes quite clear that a negative charge asymmetry is
excluded within 2σ. Moreover, even if the total cross section remains unchanged in the
presence of a heavy resonance, the differential distribution in the top-antitop quark invari-
ant mass can be affected significantly, particularly for high values of the invariant mass.
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For this reason, we have combined the measurement of the asymmetry and the last bin
of the differential distribution of the top pair invariant mass to constrain the parameter
space. We have found that in the flavor universal scenario the constraint is large, because
the most recent measurements disfavor at 2σ vanishing or negative values of the charge
asymmetry. In the flavor nonuniversal case, it is still possible to reconcile the experimental
data with the existence of such resonances, and already a significant region of the param-
eter space can be excluded. Similar analyses have also been performed recently in warped
extra dimensional models [98] and in the asymmetric chiral color model [96]. In view of
the significant progress over the last year from the experimental side, we expect that new
results from the Tevatron will further constrain efficiently the parameter space even before
the start of the LHC, which is the natural place to discover those heavy resonances.



Chapter 6

Charge asymmetries at the LHC

6.1 Introduction

The LHC is the optimal environment to perform top quark measurements, due to its high
center-of-mass energy (14 TeV at full activity). At the LHC a great amount of top-antitop
quark pairs will be produced, thus allowing to develop analyses with high statistic. The full
luminosity design is L = 1034 cm−2 s−1 (equivalent to 100 fb−1/year integrated luminosity).
Since the production cross section of top-antitop quark pairs at the LHC is about 950 pb at
14 TeV [111], the LHC will produce millions of top-antitop quark pairs at full regime. This
will allow not only to measure better some of the properties of the top quark, such as mass
and cross section, but also to explore with unprecedented huge statistics the existence of
new physics at the TeV energy scale in the top quark sector. After a successful start up,
in September 2008, the machine went through a one-year stop and the energies initially
scheduled had to be replanned. The first collisions have already been detected in December
2009, with a centre-of-mass energy of up to

√
s ∼ 2.36 TeV , before the winter break and

the first paper has already been published by the CMS collaboration [113]. The running
schedule approved in January 2010 [112] plans an operation centre–of–mass energy of 7
TeV for the next 18 to 24 months, to which a one-year stop will follow. It is necessary
in order to prepare and update the machine so that the 14 TeV full regime energy can be
reached.

6.2 QCD induced charge asymmetry

Top quark production at the LHC is forward–backward symmetric in the laboratory frame
as a consequence of the symmetric colliding proton-proton initial state. The charge asym-
metry can be studied nevertheless by selecting appropriately chosen kinematic regions.
The production cross section of top quarks is, however, dominated by gluon-gluon fusion,
thus the charge asymmetry generated from the qq̄ and gq (gq̄) reactions is small in most
of the kinematic phase-space. Indeed, while at the Tevatron the amount of top quarks
produced through gg fusion is around 15% and through qq̄ annihilation is the 85%, at the

69
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LHC the situation is the opposite: gluon gluon fusion represents the 84% of the top quark
production at 10 TeV and the 90% at 14 TeV.

Nonetheless, QCD predicts at the LHC a slight preference for centrally produced antitop
quarks, with top quarks more abundant at very large positive and negative rapidities [86].
The difference between the single particle inclusive distributions of t and t̄ quarks can be
understood easily. Due to the proton composition in terms of quarks, production of tt̄(g)
is dominated by initial quarks with large momentum fraction and antiquarks with small
momentum fraction. QCD predicts that top (antitop) quarks are preferentially emitted in
the direction of the incoming quarks (antiquarks) in the partonic rest frame as shown in
Fig. 6.1 (left graphs). The boost into the laboratory frame ”squeezes” the top quark mainly
in the forward and backward directions, while antitop quarks are left more abundant in
the central region (see Fig. 6.1 right graphs).

Lab: preferred directionCM: preferred direction

t

q q̄

t

q q̄

Lab: preferred directionCM: preferred direction

t

q̄ q

t

q̄ q

Figure 6.1: Boost from the center-of-mass quark–antiquark reference frame to the labora-
tory frame.

So, it is possible to select events in a given range of rapidity and define the integrated
charge asymmetry in the central region as [77]:

AC(yC) =
Nt(|y| ≤ yC) −Nt̄(|y| ≤ yC)

Nt(|y| ≤ yC) +Nt̄(|y| ≤ yC)
. (6.1)

The central asymmetry AC(yC) obviously vanishes if the whole rapidity spectrum is inte-
grated, while a non-vanishing asymmetry can be obtained over a finite interval of rapidity.
It is worth noticing that this asymmetry does not arise from any CP violating effect, but it
is due to a restriction in the phase space. According to what said above, a positive partonic
asymmetry translates into a negative central asymmetry: an abundance of top quarks in
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the forward direction in the partonic cross section means that more antitop quarks are left
in the central region in the laboratory frame.

To enhance the asymmetry defined in Eq. (6.1), it is useful to perform a cut on the
invariant mass of the top-antitop quark pair, mtt̄ > mmin

tt̄ , because that region of the phase
space is more sensitive to the quark-antiquark induced events rather than the gluon-gluon
ones. The reason is the behaviour of the parton distribution functions of the gluon and
the light quarks: the gluon PDF is much higher than the quark ones for low momentum
fractions, while decreases abruptly with the increasing of x, as shown in Fig. 6.2.

Figure 6.2: Parton distribution functions dependence on the momentum fraction x [114].

In Fig. 6.3 (left plots) we show the central charge asymmetry at
√
s = 7 TeV and

14 TeV as a function of the maximum rapidity yC . Our aim is to determine the best value
for the central rapidity. We have chosen two different values of the cut on the invariant
mass of the top-antitop quark pair mtt̄ > 500 GeV, and 1 TeV, in order to compare the
size of the asymmetry in the two cases. As expected, the central charge asymmetry is
negative, is larger for larger values of the cut mmin

tt̄ , and vanishes for large values of yC .
In Fig. 6.3 (right plots) we also show the corresponding statistical significance S of the
measurement. The statistical significance of an observable A is defined as the number of
standard deviations σA of which A differs from zero:

S =
A

σA
. (6.2)

In a counting measure, the error of a measure N is
√
N , according to a Poisson statistic.

Thus, using the error propagation and the definition of the asymmetry in Eq. (6.1), after
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Figure 6.3: Central charge asymmetry at LHC as predicted by QCD, as a function of the
maximum rapidity yC (left plots), and corresponding statistical significance (right plots),
for two different cuts on the top-antitop quark pair invariant mass.

a few algebraic manipulations, we find:

σAC
=

1

Nt +Nt̄

√
1 − A2

C . (6.3)

Since Nt+Nt̄ = (σt+σt̄)L from the definition of luminosity, the expression for the statistical
significance is:

SSM ≃ ASM
C

√
(σt + σt̄)SM L =

Nt −Nt̄√
Nt +Nt̄

, (6.4)

where L denotes the total integrated luminosity for which we take L = 200 pb−1 at√
s = 7 TeV and L = 10 fb−1 at

√
s = 14 TeV, according to the current schedule of

the LHC. The maximum significance is reached for both running energies at yC = 1 for
mtt̄ > 500 GeV, and yC = 0.7 for mtt̄ > 1 TeV. Surprisingly, although the size of the
asymmetry is greater for the larger value of mmin

tt̄ , its statistical significance is higher for
the lower cut. This is a very interesting feature because softer top and antitop quarks
should then be identified more easily than the very highly boosted ones.
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Figure 6.4: Central charge asymmetry and statistical significance at LHC from QCD, as a
function of the cut mmin.

tt̄ , for 7 TeV and 14 TeV energy.

We now fix the value of the maximum rapidity at yC = 0.7 and study the size of the
asymmetry and its statistical significance as a function of mmin

tt̄ . Our results are shown in
Fig. 6.4 for

√
s = 7 TeV and L = 200 pb−1 and

√
s = 14 TeV and L = 10 fb−1. In all cases,

the asymmetry increases for larger values of mmin
tt̄ , while the statistical significance is larger

without introducing any selection cut. Note that the size of the asymmetry decreases again
above mmin

tt̄ = 2.5 TeV because in that region the gq(q̄) events compensate the asymmetry
generated by the qq̄ events; their contributions are of opposite sign. We should point out
that the values of the significance found here do not take into account experimental factors
such as detector efficiencies. Moreover, top detection is carried out through the decay
products. Since the semileptonic channel is considered the most suitable decay channel,
top reconstruction is often performed only through it, in which case one expects to have
the significance be reduced roughly to one third. Nevertheless, considering these caveat,
we can conclude that, whereas with 200 pb−1 and 7 TeV of energy the significance is rather
low, 10 fb−1 of data at the design energy of the LHC seems to be enough for a clear
measurement of the QCD asymmetry.
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Figure 6.5: Central charge asymmetry (left plots) and statistical significance (right plots)
at LHC as a function of the maximum rapidity, for 7 TeV energy and two different cuts on
the top-antitop quark invariant mass. Two different sets of couplings are shown.

6.3 Charge asymmetry of color-octet resonances

Like for the Tevatron in Section 5.2, we study here the charge asymmetry produced at
the LHC by the decay of a color-octet resonance to top quarks, in the scenario where
the vector gq(t)

V and axial-vector gq(t)
A couplings are flavour independent. We evaluate the

central asymmetry in Eq. (6.1), and its statistical significance

SG =
AG+SM

C − ASM
C√

1 − (ASM
C )2

√
(σt + σt̄)SM L ≃ (Nt −Nt̄)

G+SM

√
(Nt +Nt̄)G+SM

, (6.5)

for different values of the couplings and the kinematical cuts. In Eq. (6.5), the label G+SM
on an observable means that such an observable is evaluated in a theoretical framework
where the color-octet resonance is present. Eq. (6.5) is obtained assuming (Nt +Nt̄)

SM ≃
(Nt+Nt̄)

G+SM. As in the Tevatron analysis, we use here the MRST 2004 parton distribution
functions, and again we set the renormalization and factorization scales to µ = mt, with
the updated value mt = 173.9 ± 0.6 stat. ± 1.1 syst. GeV [57].

When a heavy color-octet boson resonance is produced, considerations similar to those
in Section 5.2 lead to predict a positive central asymmetry for values of the cut in the
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Figure 6.6: Central charge asymmetry (left plots) and statistical significance (right plots)
at LHC as a function of the maximum rapidity, for 14 TeV energy and two different cuts
on the top-antitop quark invariant mass. Two different sets of couplings are shown.

invariant mass of the top-antitop quark pair below the mass of the resonance and a negative
asymmetry above. This is true as far as the interference term has a greater relevance than
the squared amplitude of the exotic resonance. If this is the case, a higher number of
antitop quarks will be emitted in the direction of the incoming quarks, and once the boost
into the laboratory frame is performed (cf. discussion in Section 6.2), a higher number of
top quark will be found in the central region, so that the central asymmetry is positive.
Since for high values of the cut the sign of the interference term changes, the asymmetry
will become negative, and then it has to vanish at a certain intermediate value of that cut,
close and below the resonance mass.

In our first analysis we shall determine the value of the maximum rapidity yC that
maximizes the statistical significance. We fix the resonance mass at 1.5 TeV, and impose
two different cuts on the invariant mass of the top-antitop quark pair, namely mtt̄ >
700 GeV and mtt̄ > 1.5 TeV. We choose two different combinations of the vector and
axial-vector couplings gV and gA. In Figs. 6.5 and 6.6, we present the results obtained for
the central asymmetry and the statistical significance for gV = 0, gA = 1 and gV = gA = 1
for two values of the centre-of-mass energy, 7 and 14 TeV, respectively. We notice that for
the first choice of the parameters, namely gV = 0, gA = 1, the central asymmetry suffers
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a change of sign by passing from the lower cut to the higher one. This means that it will
vanish for a given value of the cut, thus making the statistical significance vanishing also.

By looking at the corresponding significance we find that yC = 0.7 is a good choice
in all cases. Thus, we use this value to find the best cut for the top-antitop quark pair
invariant mass. In order to do that, we choose several values of the parameters and we
study the trend of the significance as a function of mmin.

tt̄ /mG. The results are shown
in Figs. 6.7 and 6.9. For most values of the parameters, we find two maxima in the
statistical significance as a function of mmin.

tt̄ /mG. Starting from the threshold, where the
asymmetry is small because the gluon-gluon fusion process dominates there, the size of the
central asymmetry grows by increasing mmin.

tt̄ , as the quark-antiquark annihilation process
becomes more and more important. Since the asymmetry induced by the excited gluon
vanishes at a certain critical point, its statistical significance does as well, and reaches a
maximum at an intermediate value between that critical point and the threshold. Above
the critical point, the asymmetry becomes negative and its statistical significance increases
again, until the event yield becomes too small. A second maximum in the statistical
significance is generated there. For certain values of the vector couplings, however, the
critical partonic invariant mass defined in Eq. (5.9) can be located at a rather low scale.
In this case, the central asymmetry generated by the exotic resonance will be negative
exclusively, and we find only one maximum in the statistical significance.

The optimal cuts depend, of course, on the values of the vector and axial-vector cou-
plings, but either mmin.

tt̄ /mG = 0.5 or mmin.
tt̄ /mG = 0.8 provide a reasonable statistical

significance for almost all the combinations of the couplings. This is an important result,
because it means that a relatively low cut – at about half of the mass of the resonance
or even below – is enough to have a good statistical significance, and a clear signal from
the measurement of the charge asymmetry. Then, we have calculated the luminosity that
would be needed in order to have a statistical significance equal to 5. According to the
result on the significance, we expect to find a minimum for relatively low cuts. In Fig. 6.8
we show the results, selecting the part of the phase space where the minimum for the
luminosity resides. It can be seen that the luminosity required is around few tens of pb−1,
depending on the value of the resonance mass. Again, we should mention that we have not
considered experimental efficiencies, therefore this number should be seen only as a lower
limit. In a realistic analysis, much higher luminosities will be required to perform that
measurement. However, we are interested here in showing the position of the minimum as
a function of mmin

tt̄ .
We now fix mmin.

tt̄ /mG = 0.5 and mmin.
tt̄ /mG = 0.8, and we study how the central

asymmetry and its statistical significance vary as a function of the vector and the axial-
vector couplings, for a given value of the resonance mass. These choices, for which we have
found the best statistical significances, are of course arbitrary and are not necessarily the
best for all the values of the vector and axial-vector couplings. For illustrative purposes
are, however, good representatives. We have chosen mG = 1.5, 2 and 3 TeV. The results
are presented in Figures 6.10, 6.11, 6.12 and 6.13, 6.14, 6.15 in the (gV , gA) plane for√
s = 7 TeV, and 14 TeV. It is possible to see that the pattern of the size of the asymmetry

is quite similar independently of the value of the resonance mass; it depends mostly on the
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ratio mmin.
tt̄ /mG. A sizable asymmetry is found whatever the value of the resonance mass

is. The statistical significance, as expected, decreases with the increasing of the resonance
mass.
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Figure 6.7: Statistical significance at LHC for 7 TeV energy and different sets of gA, gV as
a function of the cut on the top-antitop quark pair invariant mass for mG = 2 and 3 TeV.
The luminosity is L = 200 pb−1
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Figure 6.8: Luminosity needed to obtain a statistical significance S = 5 at the LHC for 7
TeV energy and different sets of gA, gV as a function of mmin

tt̄ for mG = 2 and 3 TeV.
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Figure 6.9: Statistical significance at LHC for 14 TeV energy and different sets of gA, gV as
a function of the cut on the top-antitop quark pair invariant mass for mG = 2 and 3 TeV.
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Figure 6.10: Central charge asymmetry and statistical significance at LHC in the gA-gV

plane for 7 TeV energy, for a resonance mass mG = 1.5 TeV and different values of the cut
on the top-antitop quark pair invariant mass.
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Figure 6.11: Central charge asymmetry and statistical significance at LHC in the gA-gV

plane for 7 TeV energy, for a resonance mass mG = 2 TeV and different values of the cut
on the top-antitop quark pair invariant mass.



Charge asymmetries at the LHC 83

-0.15

-0.1

-0.05

0

0

0

0.04

AC-AC
SM

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

gA

g V

mG = 3 TeV, mt  t
_

> 1.5 TeV

0.5

0.5

1

1

2

S H200 pb-1L

0

0

0

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

gA

g V

mG = 3 TeV, mt  t
_

> 1.5 TeV

-0.15

-0.1

-0.05

0

0

0

0.04

AC-AC
SM

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

gA

g V

mG = 3 TeV, mt  t
_

> 2.4 TeV

0.1

0.1

0.5

1

S H200 pb-1L

0

0

0

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

gA

g V

mG = 3 TeV, mt  t
_

> 2.4 TeV

Figure 6.12: Central charge asymmetry and statistical significance at LHC in the gA-gV

plane for 7 TeV energy, for a resonance mass mG = 3 TeV and different values of the cut
on the top-antitop quark pair invariant mass.
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Figure 6.13: Central charge asymmetry and statistical significance at LHC in the gA-gV

plane for 14 TeV energy, for different values of the resonance mass and the cut on the
top-antitop quark pair invariant mass.
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Figure 6.14: Central charge asymmetry and statistical significance at LHC in the gA-gV

plane for 14 TeV energy, for a resonance mass mG = 2 TeV and different values of the cut
on the top-antitop quark pair invariant mass.
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Figure 6.15: Central charge asymmetry and statistical significance at LHC in the gA-gV

plane for 14 TeV energy, for a resonance mass mG = 3 TeV and different values of the cut
on the top-antitop quark pair invariant mass.
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6.4 tt̄+jet

6.4.1 Introduction

The production of top quark pairs together with one jet is important at the LHC: the
exclusive cross-section for this process can reach roughly half of the total inclusive cross-
section calculated at next-to-leading order [115]. The asymmetry produced in tt̄+jet by
the interference of initial- with final-state real gluon emission (Figures 4.4 d, 4.4 e, 4.4 f,
4.4 g) is, obviously, a tree level effect, and, moreover, one of the main contributions to the
inclusive asymmetry.

6.4.2 QCD induced charge asymmetry for tt̄+jet

The SM predicts a charge asymmetry in tt̄+jet already at tree level from qq̄ events. This
asymmetry is of similar size, but of opposite sign to the total tt̄ inclusive asymmetry [86].
The differential asymmetric cross section for tt̄+jet is given in Appendix B.1.

In the previous section we have found that for the central asymmetry in Eq. (6.1) values
of the maximum rapidity around yC = 0.7 maximize the statistical significance. Thus, in
the following, we fix yC = 0.7, and analyze the central asymmetry in the SM as a function
of the cut on mtt̄. The additional jet is defined by using the kT algorithm described in
Section 1.2, with minimum transverse momentum pT = 20 GeV and the jet parameter
R = 0.5. In Fig. 6.16 we show the results for center-of-mass energies of 7 and 10 TeV. We
find that the asymmetry is positive and of the order of few percents (Fig. 6.16, left plots).
As expected, at 7 TeV the asymmetry is higher than at 10 TeV, for the same value of
mmin

tt̄ , because the qq̄ component is larger. The right plots in Fig. 6.16 show the luminosity
that would be needed in order to have a statistical significance equal to 5. The statistical
significance SSM of the measurement is defined as in (6.4). From Fig. 6.16 we see that there
is a minimum in the required luminosity for low values of mmin

tt̄ . Before that minimum, the
luminosity increases since the corresponding asymmetry approaches zero, while after the
minimum, it increases because the number of events decreases.

6.4.3 Charge asymmetry of color-octet resonances

As in the inclusive process, we consider now a toy model where a color-octet vector reso-
nance can couple differently to light and top quarks. In this case, a new diagram appear
that contribute to the asymmetry, namely the gluon emission from the exchanged particle.
In Fig. 6.17 we show the complete set of diagrams that take part in the asymmetry. Com-
pared to QCD, now asymmetric contributions are generated also by products of final-state
with final-state and initial-states with initial-state bremsstrahlung ((b+ d) ⊗ (b+ d) and
(c+ e) ⊗ (c+ e)), besides the interferences with the new graphic (a ⊗ (a+ b+ c+ d+ e)).

In Appendix B.2 we list the expression for the asymmetric contribution to the tt̄+jet
differential cross section. It is interesting to stress that, contrary to the SM, where top
quarks contribute to the asymmetry only when they are in a color-singlet state (color factor
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Figure 6.16: Central charge asymmetry and luminosity at the LHC from QCD, as a function
of the cut mmin

tt̄ for
√
s = 7 TeV and 10 TeV.

equal to d2
abc), we find also color-octet contributions proportional to the color factor f 2

abc.
We consider now three different scenarios. A large part of the parameter space for flavor-
universal couplings is disfavored because the inclusive asymmetry in that case is negative,
as seen in Section 5.3. In particular, axigluons such as originally introduced [65], i. e. with
g

q(t)
V = 0, gq(t)

A = 1, would be forbidden. Yet, it is possible to generate a positive inclusive
asymmetry if the lighter quarks and the top quarks couple with different sign. Thus, as
a first case, we examine a "modified axigluon", with g

q(t)
V = 0 and gt

A = −gq
A = 1. In

the flavor-universal scenario, the only possibility that is still allowed at the 95% C.L. is
the one where gV takes high values and gA is constrained accordingly as a function of the
resonance mass. So we choose as a second scenario g

q(t)
V = 1.8 and g

q(t)
A = 0.7. In the

third scenario we focus on a Kaluza–Klein gluon excitation in a basic Randall–Sundrum
model: gq

V = −0.2 , gt
V = 2.5 , gq

A = 0 , gt
A = 1.5 , as presented, for instance, in [116].

Since the axial coupling for the light quarks is zero, the inclusive central charge asymmetry
vanishes at tree level. Thus, it is necessary to look at the hard emission process, where
it becomes different from zero. Accordingly, the inclusive charge asymmetry will get also
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a)

d)

b) c)

e)

Figure 6.17: Graphs originated by qq̄ that contribute to the charge asymmetry in quark-
antiquark + jet production. The exchanged particle can be both the gluon and the massive
resonance.

non-vanishing loop contributions.
The results for the asymmetry and the minimal luminosity to achieve a statistical

significance of 5 are shown in Fig. 6.18. We have chosen mG = 1.5 TeV as a reference mass
for the resonance. As in the pure QCD case, the maximal rapidity of yC = 0.7 is optimal
to enhance the statistical significance, which is defined, like in (6.5) as:

S =
AC − ASM

C√
1 − (ASM

C )2

√
(σt + σt̄)SM L . (6.6)

The luminosity required to have a fixed significance has a minimum for low values of mmin
tt̄ ,

at around one half the mass of the resonance, for all the scenarios. In the flavor-universal
case, we found that this minimum value is reached with even softer cuts. We find also that
in this scenario the needed luminosity is lower than in the other two cases, and almost
of about one order of magnitude less. A few hundreds of pb−1 at relatively low values of
mmin

tt̄ would allow a measurement in the first times of the LHC running. The Kaluza-Klein
model shows an asymmetry of opposite sign compared to the other two cases. This can be
an interesting way for distinguishing it from the other models. In Fig. 6.18 we also show
the color-singlet contribution to the asymmetry. In the modified axigluon scenario, it has
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Figure 6.18: Central charge asymmetry and luminosity to obtain a statistical significance
S = 5 at the LHC, as a function of mmin

tt̄ for
√
s = 7 TeV. The dashed line represent the

contribution of the d2
abc terms. mG = 1.5 TeV.

opposite sign compared with the total asymmetry. In the flavor-universal scenario it is
about one half of the asymmetry. In the Kaluza-Klein model, the color-octet contribution
is almost zero.
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6.4.4 Conclusions

In this analysis, we have explored the central charge asymmetry in tt̄ + jet at the LHC.
We have found that it receives contributions from top quark pairs both in a color-octet
and in a color-singlet state. We have set a lower limit on the luminosity needed in order
to have a statistical significance equal to 5 for three different scenarios at

√
s = 7 TeV. We

have found that, in the flavor-universal case, this lower bound is around a few hundreds of
pb−1, while for the other scenarios few fb−1 are required. These values depend, of course,
on the resonance mass. We have not considered the detector efficiency, so these numbers
should be taken as a lower limit. For the three choices of the parameters that we have
considered, the minimum of the required luminosity is reached for relatively low values of
mmin

tt̄ . This is a non-trivial result as it means that relatively low energetic top quarks can
already generate an asymmetry. This is an advantage, because very boosted top quarks
are difficult to distinguish from jets initiated by light quarks.

NLO calculations of tt̄+jet [93] in the SM show that the exclusive asymmetry is almost
completely washed out at the Tevatron. Although there is no reason why we should find the
same behavior if a heavy resonance exists, it would be interesting to extend this analysis
at NLO, and to combine it with a realistic estimation of experimental efficiencies. From
our analysis, the measurement of the charge asymmetry from tt̄+jet events at the LHC
seems promising, although challenging. Experimental analysis from the Tevatron with
more statistics will also constrain further those resonances in the near future.





Conclusions

The next years promise to be very exciting for particle physics, due to the incoming LHC
data. The insight into the TeV scale will shed light on both conceptual problems and
phenomenological issues, such as the origin of mass, the dark matter constituents, the
unification of gravity inside the SM or the hierarchy problem [13]. Several models have
been proposed in the last decades that would account for these fundamental questions,
some of which introduce new particles and interactions. Due to its high energy in the
centre-of-mass, the LHC is the most suitable environment to test them.

In order to be prepared for understanding the huge amount of data that the LHC will
collect, an optimal knowledge of QCD is mandatory. The ATLAS and CMS experiments
will measure the final states with negligible statistical error, even in the early running,
and in many cases with systematic errors smaller than those achieved by the experiments
at the Tevatron. In many cases, SM backgrounds to non-SM physics can be extrapolated
from background-rich to signal-rich regions, but a definite determination of the background
often requires an accurate knowledge of the background cross sections [5]. This requires
calculations of many QCD processes to at least NLO in perturbation theory.

In this thesis, we have addressed the challenges that the start up of the LHC presents
us, from a double point of view. On one hand, we have faced the issue of improving the
efficiency of scattering amplitudes calculations, looking for compact results (Chapters 2
and 3). This is necessary when the number of external legs increases, since the number of
Feynman diagrams that one needs to calculate becomes huge. Moreover, such calculations
can be more easily extended to higher orders. On the other hand, we have analysed the
possibility of accounting for the discrepancy in the charge asymmetry that arises at 2σ at
the Tevatron in top quark pair production. Considering a toy model with a heavy colored
resonance, we have set constraints on the couplings and have estimated the necessary
luminosity in order to achieve a good significance at the LHC (Chapters 4, 5 and 6).

As for the first part of our work, we have used techniques alternative to the usual
Feynman diagram calculation. They consist of color ordering and spinor helicity formalism,
combined with recursion relations. They have been used in the past thirty years to calculate
n-parton amplitudes efficiently both at tree level and one or more loops. In Chapter 3
we have shown the results obtained. At the LHC the energy reached will be enough to
produce a large amount of heavy particles. Thus, we have analysed massive tree level
processes involving a colored scalar-antiscalar pair together with an arbitrary number of
gluons, with or without a complex colorless scalar φ. The reason for choosing colored
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scalars instead of quarks is double: on one side, they are simpler, since they do not carry
helicity, and at tree level the amplitudes are related with the amplitudes of the quarks
through supersymmetric Ward identities. On the other side, string theory tells us that
one-loop gluon and fermion amplitudes can be decomposed in terms of supersymmetric
and non-supersymmetric parts. The non-supersymmetric part is a one-loop amplitude
involving scalars, which can be written from the tree level amplitude by means of the
Cutkosky rules.

At first, we have calculated the amplitude An(1s; 2
+, . . . , n − 1+;ns̄) with all-positive

helicity gluons and have managed to get to a result much simpler and compact than the
one available in literature. Starting from the scalar QCD Lagrangian, we have derived
the couplings among gluons and scalars and developed the construction of the amplitudes
from off-shell recursion relations, starting with low n. We have identified the useful kinds
of relationships and have applied them to the amplitude for a generic n. Then, we have
validated the result obtained through the on-shell BCFW recursion relations, finding the
final result:

An(1s; 2
+, . . . , n− 1+;ns̄) = im2 [2|Φ3,j |n− 1]

y12〈〈2, n−1〉〉 . (6.7)

The compactness of this result makes it very useful in successive calculations and as a tool
to verify other results.

The next step has been to add a colorless scalar φ to the amplitude. Since the all-
positive helicity amplitude vanishes, we have analysed the one with one–negative helicity
gluon in the last position. We have used on–shell recursion relations to simplify the cal-
culations. The starting point has been the expression found by [52]. We have used the
same shift and we have applied it to our case, with the addition of φ. The amplitude
thus obtained presented some spurious, unphysical denominators, and our aim has been
to cancel them. The kernel of the procedure has been to reorganize the terms of the sum
in a different way, grouping parts with the same denominators to obtain quantities in the
numerator exactly equal to the spurious terms. The result is:

An(φ; 1s, 2
+, . . . , n− 2+, n− 1−, ns̄) =

−i
y12 〈〈2, n−1〉〉

{
[2|p/1|n− 1〉〈n− 1|p/1p/n|n− 1〉

sn1

+
n−2∑

j=2

m2

sn,j

[2|Φ3,j−1

(
p/j|n− 1〉〈n− 1|p/n

y1,j

+
p/n,j−1|n− 1〉〈n− 1|p/j

sn,j−1

)
p/n,j|n− 1〉

}
.

(6.8)

This is a very compact result and the absence of denominators makes it suitable for nu-
merical calculations, because it does not produce any fake instability due to the vanishing
of spurious denominators. The compact form of (6.8) suggests also the possibility of ex-
tending it to an arbitrary position of the negative helicity gluon.

In the second part of our work, we have focused our attention on top quark pair pro-
duction at hadron colliders. The LHC will produce a huge amount of top quarks, so it
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will be the perfect environment to study top quark physics. A charge asymmetry in top
quark pair production is predicted in QCD at O(α3

s). However, a discrepancy of 2σ with
the theoretical value has been found recently in the forward-backward asymmetry mea-
surements at the Tevatron. This has aroused a considerable interest in the study of new
physics models where resonances decaying to a top-antitop quark pair are produced, which
also generate a charge asymmetry.

In our work, we have analyzed the charge asymmetry in top-antitop quark pair produc-
tion through the exchange of a color-octet heavy boson with arbitrary vector and axial-
vector couplings to quarks. We have considered the experimental setups of the Tevatron
and the LHC, studying different observables and scenarios.

At the Tevatron, we have examined, at first, the scenario of flavour independent cou-
plings. The forward-backward asymmetry and the pair asymmetry, together with the total
cross section, exclude complementary corners of the parameter space. The exclusion re-
gions are smaller for higher values of the resonance mass, since a high mass suppresses all
the contributions beyond the SM. The most recent measurement excludes a negative charge
asymmetry within 2σ. Moreover, although the total cross section remains unchanged in
the presence of a heavy resonance, the differential distribution in the top-antitop quark
invariant mass can be affected significantly, particularly for high values of the top-antitop
quark pair invariant mass. For this reason, we have combined the measurement of the
asymmetry and the last bin of the differential distribution of the top quark pair invari-
ant mass to constrain the parameter space. We have found that in the flavor universal
scenario the constraint is large. However, in flavor nonuniversal cases, it is still possible
to reconcile the experimental data with the existence of such resonances, and already a
significant region of the parameter space can be excluded. Considering that the Tevatron
is still running, we expect that the next measurements will set further constraints on the
charge asymmetry, since the statistical error will keep on decreasing.

At the LHC the forward-backward asymmetry vanishes, because the initial state is
symmetric. However, a charge asymmetry is still observable by selecting appropriate kine-
matic regions. First, we have studied the statistical significance of the measurement of the
central asymmetry in top quark pair inclusive production, and we have found that it is
possible to tune the selection cuts in order to find a sensitive significance. The maximum
of the statistical significance for the measurement of the asymmetry as predicted by QCD
is obtained without introducing any cut in the invariant mass of the top-antitop quark
pair, although the asymmetry is smaller in this case.

When a heavy resonance is considered, one or two maxima in the significance spectrum
are found, depending on the size of the couplings. The position of the peaks depends on
the ratio mmin

tt̄ /mG and not on the resonance mass. One of the peaks can be located at an
energy scale as low as one half of the resonance mass, or even below. Thus, data samples
of top and antitop quarks that are not too energetic can be used to detect or exclude the
existence of this kind of resonances. We have plotted the integrated luminosity needed
in order to have a statistical significance of 5. Consistently with the significance analysis,
we have found that a minimum in the luminosity appears for low values of the cut on
mmin

tt̄ /mG. Fixing the cut to the values that maximize the statistical significance, we have
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scanned the space of the couplings (gA, gV ), finding that the pattern for the asymmetry
and the significance does not depend on the mass of the resonance, but only on mmin

tt̄ /mG.
Successively, we have analyzed the production of top quark pairs together with one

jet. In this case, the asymmetry is a tree level effect and receives contributions both from
color-singlet and color-octet quark final states. This process is important at the LHC and
is especially significant to test those models of resonances whose inclusive pair production
does not generate a charge asymmetry at tree level. This is the case, for instance, of
most of the Kaluza-Klein excitations in extra-dimensional models. After calculating the
differential cross section for tt̄+ jet, we performed the same analysis as in the inclusive case.
We have found that a minimum in the luminosity needed to have a statistical significance
equal to 5 is reached for pretty low values of the cut on the top-antitop quark invariant
mass distribution. Again, this result opens the possibility of using low energy top quark
samples to identify resonances also in exclusive production.

The calculations with the presence of resonances that we have performed in our work
have been carried out at tree level. Although a more accurate analysis would require one
loop calculations to ascertain the contribution of higher orders to the asymmetry, our result
is important, because opens the promising possibility of measuring the charge asymmetry
in top-antitop quark production already in the first period of running of the LHC.



Conclusiones

Los próximos años prometen ser muy interesantes para la física de partículas gracias a
los datos del LHC. La investigación de la escala de energía del TeV arrojará luz sobre
problemas conceptuales así como sobre cuestiones fenomenológicas, como, por ejemplo, el
origen de las masas, los constituyentes de la materia oscura, la unificación de la gravedad
dentro del SM o el problema de la jerarquía. En las últimas decadas se han propuesto
distintos modelos para responder a estas preguntas fundamentales, algunos de los cuales
introducen nuevas partículas e interacciones. Gracias a su alta energía en el centro de
masa, el LHC es el entorno más adecuado para probarlos.

Es necesario un excelente conocimiento de QCD para comprender la gran cantidad de
datos que el LHC va a acumular. Los experimentos ATLAS y CMS van a medir los estados
finales con error estadístico despreciable, incluso en el primer periodo de funcionamiento,
y en muchos casos con errores sistemáticos menores que los alcanzados en los experimentos
de Tevatron. Esto requiere el cálculo de muchos procesos de QCD por lo menos a NLO en
teoría de las perturbaciones.

En esta tesis, hemos tratado de responder a los desafíos que la puesta en marcha del
LHC nos propone, desde un doble punto de vista. Por un lado, nos hemos enfrentado a
la cuestión de mejorar la eficiencia del cálculo de las amplitudes de dispersión, buscando
resultados compactos (capítulos 2 y 3). Esto es necesario cuando el número de patas
externas aumenta, debido a que el número de diagramas de Feynman que uno necesita
calcular se hace enorme. Además, estos cálculos se pueden extender más fácilmente a
ordenes más altos. Por otro lado, hemos analizado la posibilidad de explicar la discrepancia
en la asimetría de carga que es generada en Tevatron a dos sigmas en la producción de
pares de quark top. Considerando un modelo que incluye una resonancia masiva que lleva
carga de color, hemos impuesto limitaciones a las constantes de acoplo y hemos dado una
estimación de la luminosidad necesaria para alcanzar una buena significancia estadística
en la medida de la asimetría en el LHC (capítulos 4, 5 y 6).

En la primera parte de nuestro trabajo, hemos usado como técnicas alternativas al
cálculo usual con diagramas de Feynman la descomposición de color y el formalismo de
helicidad, junto con relaciones de recursión. Estas técnicas se han estado usando en los
últimos treinta años para calcular amplitudes de dispersión con n partículas de forma
eficiente, tanto a nivel árbol como a uno o más loops. En el capítulo 3 hemos mostrado
los resultados obtenidos. En el LHC la energía alcanzada será suficientemente alta como
para producir una gran cantidad de partículas pesadas. Por eso, hemos analizado procesos
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masivos, a nivel árbol, que involucran un par de escalar-antiescalar con color, junto a un
número arbitrario de gluones, en presencia o en ausencia de un escalar sin color complejo
φ. La razón de haber escogido escalares con color en lugar de quarks es dúplice: por un
lado, los escalares son más simples, debido a que no llevan helicidad y a nivel árbol sus
amplitudes de dispersión están relacionadas con las amplitudes de los quarks a través de
las identidades de Ward supersimétricas. Por otro lado, la teoría de cuerdas afirma que las
amplitudes a un loop de gluones y fermiones se pueden descomponer en términos de una
parte supersimétrica y otra no supersimétrica. Esta última es una amplitud a un loop que
contiene escalares, que puede escribirse a su vez en función de amplitudes a nivel árbol, a
través de las reglas de Cutkosky.

En un primer momento, hemos calculado la amplitud de dispersión An(1s; 2
+, . . . , n−

1+;ns̄), con todos los gluones de helicidad positiva y hemos conseguido obtener un resultado
mucho más sencillo y compacto que la expresión ya disponible en literatura. Empezando
por el Lagrangiano de la QCD escalar, hemos derivado los acoplamientos entre gluones
y escalares y hemos desarrollado la construcción de las amplitudes a través de relaciones
de recursión off–shell, partiendo de n bajos. Hemos identificado las relaciones útiles para
simplificar la expresión y las hemos aplicado a la amplitud para un n genérico. Finalmente,
hemos confirmado el resultado obtenido a través de las relaciones de recursión on–shell

BCFW, llegando al resultado final:

An(1s; 2
+, . . . , n− 1+;ns̄) = im2 [2|Φ3,j |n− 1]

y12〈〈2, n−1〉〉 . (6.9)

La compacidad de este resultado lo convierte en un instrumento muy útil para cálculos
sucesivos y para validar otros resultados.

El paso sucesivo ha sido añadir un escalar φ sin color a la amplitud. Debido a que la
amplitud con todos los gluones de helicidad positiva es cero, hemos analizado la amplitud
con un gluón de helicidad negativa en la última posición. Hemos usado relaciones de
recursión on–shell para simplificar los cálculos. El punto de partida ha sido la expresión
encontrada en [52]. Nosotros hemos usado el mismo desplazamiento de momentos y lo
hemos aplicado a nuestro caso añadiendo φ. La amplitud obtenida de esta forma presentaba
unos denominadores espurios y no físicos y nuestro objetivo ha sido cancelarlos. El principio
fundamental de este procedimiento ha sido reorganizar los términos de la suma en una
forma diferente, reagrupando partes con el mismo denominador para obtener cantidades
que cancelaran los términos espurios. El resultado es:

An(φ; 1s, 2
+, . . . , n− 2+, n− 1−, ns̄) =

−i
y12 〈〈2, n−1〉〉

{
[2|p/1|n− 1〉〈n− 1|p/1p/n|n− 1〉

sn1

+

n−2∑

j=2

m2

sn,j
[2|Φ3,j−1

(
p/j|n− 1〉〈n− 1|p/n

y1,j
+
p/n,j−1|n− 1〉〈n− 1|p/j

sn,j−1

)
p/n,j|n− 1〉

}
.

(6.10)
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Ésta es una expresión muy compacta y la ausencia de denominadores hace que sea idónea
para cálculos numéricos, pues evita inestabilidades falsas asociadas con denominadores
nulos. Asimismo, la forma compacta de (6.10) sugiere la posibilidad de extender el cálculo
a una posición arbitraria del gluón de helicidad negativa.

En la segunda parte de nuestro trabajo, nos hemos centrado en la producción de pares
de quarks top en colisionadores hadrónicos. El LHC producirá una gran cantidad de quarks
top, por lo tanto va a ser el entorno perfecto para estudiar la física del top. A O(α3

s), QCD
predice una asimetría de carga en la producción de pares de quarks top. No obstante, en
Tevatron recientemente se ha encontrado una discrepancia de alrededor de 2σ entre las
medidas de la asimetría forward-backward y la predicción de su valor teórico. Esto ha
despertado un considerable interés para el estudio de modelos de nueva física donde se
producen resonancias que se desintegran a un par de quarks top-antitop y que generan
también una asimetría de carga.

En nuestro trabajo, hemos analizado la asimetría de carga en la producción de pares de
top-antitop a través del intercambio de un bosón masivo octeto de color con acoplamiento
arbitrario tanto vectorial como axial a los quarks. Hemos considerado la situación experi-
mental de Tevatron y de LHC, estudiando distintos observables y escenarios.

En Tevatron, hemos examinado en primer lugar el escenario de acoplamientos indepen-
dientes del sabor. La asimetría forward-backward y la asimetría pair, junto con la sección
eficaz total, excluyen partes complementarias del espacio de los parámetros. Las regiones
de exclusión son más pequeñas cuanto más alta es la masa de la resonancia, debido a que
una masa grande suprime todas las contribuciones más allá del SM. Las medidas más
recientes excluyen una asimetría negativa dentro de 2σ. Además, aunque la sección eficaz
total permanece invariada en presencia de una resonancia masiva, la distribución diferen-
cial de la masa invariante del par top-antitop puede resultar afectada significativamente,
en particular para altos valores de la masa invariante. Por esta razón, hemos combinado la
medida de la asimetría y el último intervalo de la distribución diferencial de la masa invari-
ante para poner limitaciones sobre el espacio de los parámetros. Hemos encontrado que
en el escenario de acoplamientos independientes del sabor dichas limitaciones son grandes.
No obstante, en los casos de acoplamientos distintos según el sabor de los quarks es posible
todavía conciliar los datos experimentales con la existencia de dichas resonancias y excluir
una región significativa del espacio de los parámetros. En vista de que Tevatron sigue
funcionando, esperamos que futuras medidas establezcan ulteriores limitaciones sobre la
asimetría de carga, porque el error estadístico seguirá disminuyendo.

En el LHC la asimetría forward-backward es nula, debido a que el estado inicial es
simétrico. No obstante, se puede todavía observar una asimetría de carga seleccionando
regiones cinemáticas apropiadas. En primer lugar, hemos estudiado la significancia es-
tadística de la medida de la asimetría central en la producción inclusiva de pares de quarks
top-antitop y hemos establecido que es posible afinar los cortes con el fin de encontrar
una significancia sensible. El máximo de la significancia estadística para la medida de
la asimetría tal y como predice QCD se obtiene sin introducir ningún corte en la masa
invariante del par de tops, aunque la asimetría es menor en este caso.

Cuando se toma en consideración una resonancia pesada, se encuentran uno o dos má-
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ximos en el espectro de la significancia, dependiendo de la dimensión de los acoplamientos.
La posición de los picos depende del cociente mmin

tt̄ /mG y no de la masa de la resonancia.
Uno de los picos se sitúa a una escala de energía igual a un medio de la masa de la resonancia
o incluso más baja. Por lo tanto, se pueden usar muestras de datos de quarks top y antitop
que no sean muy energéticos para detectar o excluir la existencia de este tipo de resonancias.
Hemos calculado también la luminosidad integrada necesaria para obtener una significancia
estadística igual a 5. De acuerdo con el análisis de la significancia, hemos encontrado que
aparece un mínimo en la luminosidad para bajos valores del corte en mmin

tt̄ /mG. Fijando
dicho corte a los valores que maximizan la significancia, hemos escaneado el espacio de los
parámetros (gA, gV ), encontrando que los patrones de la asimetría y de la significancia no
dependen de la masa de la resonancia, sino solamente de mmin

tt̄ /mG.
Sucesivamente, hemos analizado la producción de pares de quarks top junto con un jet.

En este caso, la asimetría es un efecto de nivel árbol y recibe contribuciones de estados
finales tanto octetos como singletes de color. Este proceso es importante en el LHC y es
especialmente significativo para probar aquellos modelos de resonancias en los cuales la
producción inclusiva de pares top-antitop no genera una simetría de carga a nivel árbol.
Éste es el caso, por ejemplo, de la mayoría de las excitaciones de Kaluza-Klein en modelos
de dimensiones extra. Una vez calculada la sección eficaz diferencial para tt̄ + jet, hemos
realizado el mismo análisis del caso inclusivo. Hemos encontrado que se alcanza un mínimo
en la luminosidad necesaria para obtener una significancia estadística de 5 para valores
bastante bajos del corte en la distribución de la masa invariante del par top-antitop. Una
vez más, este resultado abre la posibilidad de usar muestras de tops de baja energía para
identificar resonancias también en la producción exclusiva.

El cálculo en presencia de resonancias que hemos llevado a cabo en nuestro trabajo es
a nivel árbol. Si bien un análisis más preciso requeriría cálculos a un loop para establecer
la contribución a la asimetría de los órdenes más altos, nuestro resultado es significativo,
porque abre la prometedora posibilidad de medir la asimetría de carga en la producción de
pares de top-antitop ya en el primer periodo de funcionamiento del LHC y sin necesidad
de analizar tops muy energéticos y por ende difíciles de reconstruir.



Appendix A

BCFW recursion relations

The heart of these relations is to reconstruct the n–point amplitude from its singularities.
A partial amplitude has singularities like p2

i,j only, because singularities occur when a
propagator is put on–shell. Since a partial amplitude has already been color–ordered by
extracting color factors, propagators only involve a sum of adjacent momenta. Let us take
a gluon propagator as an example. In the limit of such a propagator going on–shell, it
becomes:

iδab

q2

(
−gµν +

nµqν + qµnν

q · n

)
=
iδab

q2

∑

h=±

εh∗
µ (q)εh

ν(q) , (A.1)

where n is the reference momentum of the polarization. Thus, the amplitude in the limit
P 2

1,m → 0 takes the form:

An(1, . . . , n) ∼
∑

h=±

AL
m+1(1, . . . , m, P

h)
i

P 2
1,m

AR
n−m+1(−P−h, m+ 1, . . . , n), (A.2)

where we used the notation P1,m = p1+p2+. . .+pm and we notice that both the amplitudes
are on–shell. The sum is carried out on the helicities of the internal propagator. Notice
that, since in our convention all the particles are outgoing, the propagator must flip the
helicity. BCFW recursion relations have exactly the same form of (A.2) with a shift
performed on a spinor of the left amplitude and on a spinor of the right one.

A.1 Massless shift

Let us start considering a shift on massless particles. A (j, k) shift can be:

|ĵ] = |j] − z|k], |ĵ〉 = |j〉
|k̂〉 = |k〉 + z|j〉, |k̂] = |k] (A.3)

where the shifted objects are indicated by a hat and z is a complex number. The Gordon
identity

[i|γµ|i〉 = 〈i|γµ|i] = 2kµ
i (A.4)
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gives the following shift on the momenta:

p̂µ
j (z) = pµ

j − z

2
〈j|γµ|k]

p̂µ
k(z) = pµ

k +
z

2
〈j|γµ|k]. (A.5)

Thus, we have an amplitude that depends on z:

A(z) = A(p1, .., p̂j(z), . . . , p̂k(z), . . . , pn) . (A.6)

This amplitude can have poles only when a propagator vanishes, that is:

0 = p̂2
i,r(z) = p2

i,r − z〈j|/pi,r
|k] (A.7)

where the j momentum is assumed to belong to (i, r) and the mass is present or not
according to which particle is being propagated. Thus, A(z) has only simple poles in:

zi,r =
p2

i,r

〈j|/pi,r
|k] (A.8)

and it can be written as

A(z) =
c(z)

p2
i,r − z〈j|/pi,r

|k] = − c(z)

〈j|/pi,r
|k]
(
z − p2

i,r

〈j|/pi,r
|k]

) = − c(z)

〈j|/pi,r
|k](z − zi,r)

. (A.9)

We know from complex analysis the residue theorem, that holds for an analytic function
f(z) except for isolated singular points inside the contour γ, that

1

2πi

∮

γ∈∞

f(z)dz =
∑

poles

Res f(z). (A.10)

Defining

f(z) ≡ A(z)

z
, (A.11)

we can write Eq. (A.10) as:

1

2πi

∮

γ∈∞

A(z)

z
dz =

∑

poles

Res
A(z)

z
= A(0) +

∑

poles of
A(z)

Res
A(z)

z
(A.12)

where A(0) is exactly the residue of A(z)/z in z = 0. We have seen (Eq. (A.7)) that A(z)
has linear poles (i.e. of order 1) only in z, therefore the residues have the following form:

Res
z=zi,r

A(z)

z
= lim

z→zi,r

A(z)

z
(z − zi,r). (A.13)
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Replacing A(z) with the expression (A.9), we find:

Res
z=zi,r

A(z)

z
= − lim

z→zi,r

c(z)

z〈j|/pi,r
|k](z − zi,r)

(z − zi,r) = − c(zi,r)

zi,r〈j|/pi,r
|k] =

= −c(zi,r)

p2
i,r

. (A.14)

Let us now go back to the residue theorem Eq. (A.12). We observe that if A(z)/z has a
behaviour at least like 1/z2, the left–hand side vanishes, because the integral goes to zero
when z → ∞. In this case, the theorem tells us that

A(0) = −
∑

poles of
A(z)

Res
A(z)

z
=
∑

i,r

c(zi,r)

p2
i,r

. (A.15)

We have seen in Eq. (A.2) that, near the pole, the amplitude splits into two parts, thus
we can identify the residues of A(z) with the product of AL and AR. The final expression
is thus:

A = A(0) =
∑

i,r

∑

h=±

AL
ir(zir)

i

p2
ir

AR
ir(zir). (A.16)

In summary, in the expression (A.16) we have a sum over the different multiparticle singu-
larities that can arise in the amplitude. This different singularities translate in the different
ways that exist of dividing the amplitude in a left and a right part. These amplitudes are
evaluated in the correspondent poles and are summed over the possible helicities of the
propagator, too. The denominator is simply the propagator unshifted, i. e. evaluated in
z = 0. The graphic representation of BCFW recursion relations is related in Figure A.1.

pi

pr pr+1

p̂j p̂k

pi−1

AL AR

p̂∓ir−p̂±ir

Figure A.1: Decomposition of an amplitude in BCFW recursion relations.
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To complete this discussion, let us consider the three point amplitudes that can appear
in (A.16) [117]. In the usual Minkowski space (+−−−) A3(1, 2, 3) = 0, due to momentum
conservation. We can see this by noticing that every scalar product among two of the three
momenta is zero, since

0 = p2
3 = (p1 + p2)

2 = 2p1 · p2 . (A.17)

This means that either 〈ij〉 or [ij] are zero, but, since they are connected by (2.25), if one
is zero, the other is zero, too. The amplitude is proportional to these spinorial products,
thus one finds that this amplitude vanishes. Instead, if we deal with a space with signature
(−−++), these amplitudes do not vanish so trivially. What is the difference? In the new
signature, λ̃i and λi, in the notation of 2.2 are independent, thus the equation

pi · pj = 0 (A.18)

has two solutions: either 〈ij〉 = 0 or [ij] = 0. Therefore, the three–point amplitude does
not always vanishes. Nevertheless, there will be amplitudes that are null, depending on
the shift performed on the momenta [35].

A.2 Massive shift

If the shift is performed over a massive particle, we have to change slightly Eq. (A.3). We
will perform our analysis about massive quarks [52], but a similar one is valid for other
particles like massive scalars. As said in the previous section, we want to perform a shift
on the jth and the kth particle, but now the jth particle is a massive quark, while the kth
is a gluon. For the massive particle it is useful to build a lightlike momentum related to it:

ℓj := pj −
p2

j

2pk · pk
pk . (A.19)

It is easy to see that ℓj is massless by construction. A spinorial representation can be
applied to massive fermions, too, with the help of a reference momentum. Choosing this
momentum equal to k, it reads:

u+(pj) =
(/pj

+m)

[ℓjk]
|k], u+(pj) = 〈k|

(/pj
+m)

〈kℓj〉
,

u−(pj) =
(/pj

+m)

〈ℓjk〉
|k〉, u−(pj) = [k|

(/pj
+m)

[kℓj]
. (A.20)

Such spinors have the correct massless limit, as can be verified by replacing pj with the
relationship given in A.19

u+(pj) = |j〉, u+(pj) = [j|,
u−(pj) = |j], u−(pj) = 〈j|, (A.21)
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they satisfy the Dirac equations

(/p−m)u±(p) = 0, u±(p)(/p−m) = 0, (A.22)

and the completeness relation
∑

h=±

uh(p)uh(p) = /p+m. (A.23)

As we saw in the previous section, we can make two different shifts, depending on the
helicities of the involved particles. The one that corresponds to (A.3) is the so called
anti–holomorphic shift, and it is given by

û−(pj) = u−(pj) − z|k]
|k̂〉 = |k〉 + z|j〉 . (A.24)

To find how the momenta change, we use the following relationship among spinors and
momenta:

pµ =
1

4
Tr
(
γµ
∑

h=±

uh(p)uh(p)
)
, (A.25)

that brings to

p̂µ
j = pµ

j − z

2
〈ℓj|γµ|k]

p̂µ
k = pµ

k +
z

2
〈ℓj |γµ|k] . (A.26)

In particular, we explicitly develop the contraction with the gamma matrices

/̂pj
= /ℓj +

m2

2ℓj · pk
/pk

− z
(
|k]〈ℓj| + |ℓj〉[k|

)
. (A.27)

If the momentum of the propagator is −P̂i,r, with j ∈ (i, r), the on–shell condition P̂ 2
i,r =

m2
P imposes the value for z:

z = +
P 2

i,r −m2
P

〈ℓj|/P i,r|k]
. (A.28)

The holomorphic shift causes the opposite change on the spinors:

û−(pj) = u−(pj) − z|k〉
|k̂] = |k] + z|j] . (A.29)

This analysis can be carried out also if both the shifted particles are massive, extending
what has been done for pj to pk.

As we have seen before, BCFW recursion relations hold if the amplitude A(z) goes to
zero at ∞. This condition imposes a set of constraints on our choice of the shift:
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• The shift cannot be performed on both fermions belonging to the same line.

• The holomorphic shift can be used for the helicity configurations (j+, k−), (j+, k+)
and (j−, k−) except than for some specific configuration such as (q+

j , g
+
k ), (q̄+

j , g
+
k ),

(g−j , q
−
k ), (g−j , q̄

−
k ).

• The anti–holomorphic shift can be used for the helicity configurations (j−, k+),
(j+, k+) and (j−, k−) except than for some specific configuration such as (q−j , g

−
k ),

(q̄−j , g
−
k ), (g+

j , q
+
k ), (g+

j , q̄
+
k ).
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The tt̄ production cross sections

Before recalling the different contributions to the heavy quark production cross section, let
us define the notation that we have used. All the scalar invariants are normalized to the
partonic center of mass energy ŝ:

yij ≡ 2
pi · pj

ŝ
, m2 ≡ m2

Q

ŝ
. (B.1)

Moreover,

β ≡
√

1 − 4m2 , c ≡ β cos θ̂ . (B.2)

The polar angle of the top quark with respect to the incoming quark in the center of
mass rest frame is called θ̂, and the color factors read d2

abc = 2CF (N2
c − 4) = 40/3 and

f 2
abc = 2CFN

2
c = 24, with Nc = 3, TF = 1/2 and CF = 4/3.

The asymmetric part of a cross section is defined as:

dσA ≡ 1

2
[dσ(Q) − dσ(Q̄)] , (B.3)

for every final state.

B.1 QCD

The Born cross sections for qq̄ annihilation and gg fusion to heavy quarks are:

dσqq̄→QQ̄

d cos θ̂
= α2

s

TFCF

Nc

πβ

2ŝ
(1 + c2 + 4m2) , (B.4)

dσgg→QQ̄

d cos θ̂
= α2

s

πβ

2ŝ

(
1

Nc(1 − c2)
− TF

2CF

)(
1 + c2 + 8m2 − 32m4

1 − c2

)
. (B.5)
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In the hard gluon radiation process

q(p1) + q̄(p2) → Q(p3) + Q̄(p4) + g(p5) , (B.6)

the asymmetric part of the bremsstrahlung interference (see Fig. 4.4 (d+ f) ⊗ (e+ g)) is
given by:

dσqq̄,hard
A

dy35 dy45 dΩ
=

α3
s

4πŝ

d2
abc

16N2
c

1

y12 (y34 + 2m2) y35

×

×
{
y13

y15

(
y2

13 + y2
14 + y2

23 + y2
24 + 2m2(y34 + 2m2 + y12)

)
+ 4m2 y24

}
+

− (1 ↔ 2) − (3 ↔ 4) + (1 ↔ 2, 3 ↔ 4) . (B.7)

Expression (B.7), once integrated in the phase space down to a cut w in the energy of the
soft gluon, gives a contribution to the asymmetry formed by a part that is infrared singular
and another one that depends on the cutoff. The singularity is cancelled exactly by the
infrared divergence that origins in the virtual radiation (Fig. 4.4 a ⊗ (b+ c)). The sum of
the soft and virtual radiative corrections is given by [86]:

dσqq̄,virt+soft
A

d cos θ̂
=

α3
s

2ŝ

d2
abc

16N2
c

β

{
B(c) − B(−c) +

+ (1 + c2 + 4m2)

[
4 log

(
1 − c

1 + c

)
log(2w) +D(c) −D(−c)

]}
, (B.8)

with the functions B(c), coming from the box contribution, and D(c), from soft radiation,
defined as:

B(c) =
1 − c2 − 8m2

1 − c− 2m2
log

(
1 − c

2

)
+ (c+ 2m2)

[
2 Li2

(
1 − 2m2

1 − c

)
− log2

(
1 − c

2

)]
+

+
4c

β2

2 − c2 − 7m2

(1 − 2m2)2 − c2
m2 log(m2) +

c

2
log2(m2) +

− c

2β3
(1 − 8m2 + 8m4)

[
log2

(
1 − β

1 + β

)
+ 4 Li2

(
−1 − β

1 + β

)
+
π2

3

]
− c

π2

6
, (B.9)

D(c) = 2 Re

{
Li2

( −x
1 − y

)
− Li2

(
1 − x

1 − y

)
− Li2

(
1 + x

y

)
+ Li2

(
x

y

)}
+

+ log2

∣∣∣∣
y

1 − y

∣∣∣∣− Re
{

Li2(x
2)
}

+
1

2
log2(x2) − log(x2) log(1 − x2) , (B.10)

where

x =
1 − c√

2(1 − c− 2m2)
, y =

1

2

(
1 − β +

√
2(1 − c− 2m2)

)
. (B.11)
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The dependence on w is compensated by the integration of (B.7) in the complementary
phase space.

The asymmetric contribution from the q(q̄)g originated process

q(q̄)(p1) + g(p2) → Q(p3) + Q̄(p4) + q(q̄)(p5) , (B.12)

is:

dσqg
A

dy35 dy45 dΩ
=

α3
s

4πŝ

d2
abc

16N2
c

1

y15 (y34 + 2m2) y23

×

×
{(

y13

y12
− y35

y25

)(
y2

13 + y2
14 + y2

35 + y2
45 + 2m2(y34 + 2m2 − y15)

)
+

+4m2 (y45 + y14)

}
− (3 ↔ 4) . (B.13)

It is infrared finite and can be obtained just by crossing of momenta from (B.7).

B.2 Heavy colored resonance

Let us define the propagator of the heavy resonance as:

G(s) =
1

s−m2
G + imG ΓG

, (B.14)

where mG is the mass of the resonance and ΓG is the decay width, given by:

ΓG ≡
∑

q

Γ(G→ qq) =
αs mG TF

3

[∑

q

(
(gq

V )2 + (gq
A)2
)

+

+

√
1 − 4m2

t

m2
G

(
(gt

V )2

(
1 +

2m2
t

m2
G

)
+ (gt

A)2

(
1 − 4m2

t

m2
G

))]
. (B.15)

Having G(s) both real and imaginary part, it is useful to have at hand some quantities:

Re{G(ŝ)} =
ŝ−m2

G

(ŝ−m2
G)2 +m2

GΓ2
G

, Im{G(ŝ)} = − mG ΓG

(ŝ−m2
G)2 +m2

GΓ2
G

,

|G(ŝ)|2 =
1

(ŝ−m2
G)2 +m2

GΓ2
G

,

Re{G(ŝ)†G(ŝ34)} =
(ŝ34 −m2

G)(ŝ−m2
G) +m2

GΓ2
G

[(ŝ−m2
G)2 +m2

GΓ2
G] [(ŝ34 −m2

G)2 +m2
GΓ2

G]
,

Re{G(ŝ)G(ŝ34)} =
(ŝ34 −m2

G)(ŝ−m2
G) −m2

GΓ2
G

((ŝ−m2
G)2 +m2

GΓ2
G)((ŝ34 −m2

G)2 +m2
GΓ2

G)

Im{G(ŝ)†G(ŝ34)} =
(ŝ34 − ŝ)mG ΓG

[(ŝ−m2
G)2 +m2

GΓ2
G] [(ŝ34 −m2

G)2 +m2
GΓ2

G]
, (B.16)
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The Born cross-section for qq̄ annihilation to heavy quarks in the presence of a color-
octet vector resonance reads:

dσqq̄→QQ̄

d cos θ̂
= α2

s

TFCF

Nc

πβ

2ŝ

(
1 + c2 + 4m2 +

+ 2ŝ Re{G(ŝ)}
[
gq

V g
t
V (1 + c2 + 4m2) + 2 gq

A g
t
A c
]
+

+ ŝ2 |G(ŝ)|2
[ (

(gq
V )2 + (gq

A)2
)(

(gt
V )2(1 + c2 + 4m2) +

+ (gt
A)2(1 + c2 − 4m2)

)
+ 8 gq

V g
q
A g

t
V g

t
A c

])
. (B.17)

The parameters gq
V (gt

V ), gq
A(gt

A) represent the vector and axial-vector couplings among the
excited gluons and the light quarks (top quarks).

There are two terms in Eq. (B.17) that are odd in the polar angle and therefore there
are two contributions to the charge asymmetry. The first one arises from the interference
of the SM amplitude with the resonance amplitude, and the second one from the squared
resonance amplitude. The former depends on the axial-vector couplings only, while the
latter is proportional to both the vector and the axial-vector couplings. For large values of
the resonance mass, the second term is suppressed, and the charge asymmetry will depend
mostly on the value of the axial-vector couplings, and residually on the vector couplings.
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The charge asymmetric piece of the hard gluon radiation process

q(p1) + q̄(p2) → Q(p3) + Q̄(p4) + g(p5) , (B.18)

is given by:

dσqq̄,hard
A

dy35 dy45 dΩ
=

α3
s ŝ

4πN2
c

{
d1

ŝ ŝ34
+
(
gq

V g
t
V d1 − gq

A g
t
A f1

)
Re

{
G(ŝ34)

ŝ

}
+

+
(
gq

V g
t
V d1 + gq

A g
t
A (−f1 + f7 + 2f2)

)
Re

{
G(ŝ)

ŝ34

}
+

+
(
gq

V g
t
A f3 + gq

A g
t
V d3

)
Im

{
G(ŝ)

ŝ34

− G(ŝ34)

ŝ

}
+

+
[(

(gq
V )2 + (gq

A)2
) (

(gt
V )2 d1 + (gt

A)2 d2

)
− 4 gq

V g
q
A g

t
V g

t
A (f1 + f2)

]
×

×Re{G(ŝ)†G(ŝ34)} − 2
[(

(gq
V )2 + (gq

A)2
)
gt

V g
t
A f3+

+ gq
V g

q
A

(
(gt

V )2 d3 + (gt
A)2 d4

)]
Im{G(ŝ)†G(ŝ34)} +

+ (d5 + f4)

[
gq

A g
t
ARe

{
G(ŝ)

ŝ

}
+ 2 gq

A g
t
A g

q
V g

t
V |G(ŝ)|2

]
+

+ (d6 + f5)

[
gq

A g
t
ARe

{
G(ŝ34)

ŝ34

}
+ 2 gq

A g
t
A g

q
V g

t
V |G(ŝ34)|2

]
+

+ gq
A g

t
A f6Re

{
G(ŝ34)

ŝ34

}
+ gq

A g
t
A ((f6 + f9)

ŝ

ŝ34
+ f7 − 2f2)Re{G(ŝ)G(ŝ34)} +

+ gq
V g

t
Af8

[
−Im{G(ŝ)G(ŝ34)}

ŝ

ŝ34
+ Im

{
G(ŝ34)

ŝ34

}]
+

+ 2gt
A g

t
V

[
gq

A g
q
V ŝ

2

[
2

(
f6

(
1 − m2

G

ŝ

)
+ (f7 + f2)

(
y34 +m2 − m2

G

ŝ

))
+ f9

]
+

+((gq
A)2 + (gq

V )2)f8
mGΓG

ŝ

]
× |G(ŝ)|2|G(ŝ34)|2

− (3 ↔ 4)

}
(B.19)

where
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d1 =
cd
y35

[(
y13

y15

− y23

y25

)(
y2

13 + y2
14 + y2

23 + y2
24 + 2m2

(
y34 + 2m2 + 1

))
+ 4m2 (y24 − y14)

]
,

d2 =
cd
y35

[(
y13

y15
− y23

y25

)(
y2

13 + y2
14 + y2

23 + y2
24 − 2m2

(
y34 + 2m2 + 1

))
+ 4m2 (y13 − y23)

]
,

d3 =
cd
y35

[
y2

13 + y2
14 − y2

23 − y2
24 − 2m2(y15 − y25)

y15 y25

]
4

ŝ2
ǫp1 p2 p3 p4 ,

d4 =
cd
y35

[
y2

13 + y2
14 − y2

23 − y2
24 + 2m2(y15 − y25)

y15 y25

]
4

ŝ2
ǫp1 p2 p3 p4 ,

d5 =
cd
y35

[
2m2

(
1 − 1 − 2y24

y35

)
+ y25 + y24(2m

2 + y34 − 1) + (y13 − y23)

(
2m2

y45

+ 1

)
+

−(y13y24 − y14y23)

(
1 +

1

y45

)]

d6 = cd

[(
y23

y15
− y13

y25

)
y45 +

1

y15y25
(2y23 − y35(3y14 + y35 + y13(y35 + y45 − 3) + 1))

]

f1 =
cf
y35

[(
y23

y25
− y13

y15

)(
y2

13 + y2
14 + y2

23 + y2
24

)
+

+ 4

(
(y13 + y15)y24(y13 − y35)

y15
− (y23 + y25)y14(y23 − y35)

y25

)]
,

f2 =
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y35

[
2m2 (y15 − y25)

]
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f3 =
cf
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y2
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14 − y2

23 − y2
24

y15 y25

]
4

ŝ2
ǫp1 p2 p3 p4

f4 =
cf
y35

[
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)
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y45
+ 1

)
+
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1
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[
3

(
y23

y15
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y25
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1

y15y25
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]
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2cf
y15y25

[(y23 − y25)y
3
13 − (y13 − y15)y

3
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3
23 − y3
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24 − y14y23 − y14y13 − 3y14 + 5 +

+y24(−11 + 2y23 + 4y14))y
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13 + 4(−1 + y14y23 + 2y24 − y23y24)y13 +
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y15
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1
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The colour factor are cd =
d2

abc

16
and cf =

f2

abc

16
.

The charge asymmetric contribution of the flavor excitation process

q(q̄)(p1) + g(p2) → Q(p3) + Q̄(p4) + q(q̄)(p5) , (B.21)

is infrared finite and can be obtained just by crossing of the momenta (2 ↔ 5) from
Eq. (B.19).
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