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Introducción

La física de partículas está sin lugar a dudas en un momento histórico. Casi cuarenta
años después de que se formularan las bases teóricas del llamado Modelo Estándar
de las interacciones electrodébiles y fuertes, estamos a punto de dar un paso más y
ver qué nos tiene reservado la Naturaleza. Nuevas simetrías, nuevas interacciones o
incluso nuevas dimensiones podrían ser descubiertas en los próximos años.

Este paso adelante en nuestra comprensión del mundo microscópico es un proyecto
que involucra a toda la comunidad de física de altas energías. Será el resultado de
años de duro trabajo llevado a cabo por nuestros compañeros experimentales en el
Gran Colisionador de Hadrones (LHC) en el CERN, construyendo el más potente
acelerador de partículas, que ha comenzado a funcionar hace tan solo unos meses.
Y no sólo en el LHC sino también en otras increíbles instalaciones experimentales,
como laboratorios subterráneos o detectores instalados en satélites. Será el producto
de décadas de trabajo teórico, aprendiendo a realizar cálculos precisos dentro del
Modelo Estándar, absolutamente necesarios para desentrañar la eventual señal de
Nueva Física de entre los millones y millones de datos que se recogerán, y también
el resultado del trabajo de todos esos físicos teóricos que decidieron no esperar la
información experimental y ya han explorado todo tipo de posibles escenarios de
Nueva Física.

El primer objetivo de este proyecto global es encontrar una explicación dinámica
de las masas de las partículas, o lo que es lo mismo, averiguar cuál es mecanismo que
rompe la simetría electrodébil. De acuerdo con el Modelo Estándar, el responsable
es un campo escalar conocido como campo de Higgs. Si esta descripción es correcta,
las medidas experimentales realizadas hasta la fecha nos dicen que la partícula de
Higgs estaba sólo un poco más allá del alcance de LEP y que será encontrada en
el LHC tras algunos años de colisiones y análisis de datos. Diversas alternativas
a este sencillo mecanismo han sido propuestas, aunque todas ellas presentan algún
defecto que no las hace convincentes. Huelga decir que tanto el descubrimiento del
bosón de Higgs estándar como de cualquier mecanismo alternativo representará un
descubrimiento de enorme importancia en la historia de la física de partículas. Se
tratará de la última pieza del Modelo Estándar o de la primera pieza del próximo
paradigma teórico.

En el supuesto caso en el que el bosón de Higgs sea encontrado, uno debe pre-
guntarse por qué el Modelo Estándar no puede ser la descripción final del mundo
microscópico. No puede serlo esencialmente por las mismas razones por las que la
tabla periódica de Mendeleev no podía ser toda la historia: porque hay hechos expe-
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rimentales que el actual modelo no puede responder (la simetría materia-antimateria,
qué partícula constituye la materia oscura, la explicación de la energía oscura, la
gravedad cuántica, las masas de los neutrinos, ...) y porque incluso en el sector en el
que el las predicciones del modelo se ajustan perfectamente a los datos, la filosofía de
la ciencia nos obliga a buscar un modelo más simple (¿por qué tres generaciones de
partículas? ¿por qué estas masas para las partículas? ¿por qué hay tres constantes
de acoplo? etc.).

Pero aún así, incluso tras esta respuesta afirmativa, uno debe hacerse la pre-
gunta concreta de por qué el actual Modelo Estándar de la Física de Partículas
debe fallar en la descripción de los datos experimentales que serán medidos en la
próxima generación de experimentos. La respuesta es que podría no fallar. Pero en
cierto sentido esto sería un gran descubrimiento, porque implicaría que no hemos
comprendido algo profundo sobre la Teoría Cuántica de Campos, el marco teórico
que describe el mundo microscópico, donde los efectos cuánticos y relativistas están
presentes. El escenario conocido como “gran desierto” donde sólo un Higgs ligero es
observado y nada nuevo se encuentra en el rango del teraelectronvoltio (TeV) genera
con total seguridad más preguntas que respuestas.

Como ya hemos señalado, la carrera para descubrir la Nueva Física no está
monopolizada por el LHC, sino que hay por todo el mundo otros experimentos
tremendamente sofisticados que escudriñarán direcciones en las que el LHC es com-
pletamente ciego. Es realmente increíble que midiendo por ejemplo kaones y piones
en experimentos donde la energía de las partículas es mucho más pequeña que en el
Tevatrón o el LHC, uno sea sensible a escalas mucho más altas que el TeV. Este he-
cho anti-intuitivo es en parte sólo otra consecuencia de las propiedades cuánticas del
mundo microscópico que estamos explorando, y donde las partículas de gran masa
(aún por descubrir) contribuyen a procesos de energías bajas a través de correcciones
cuánticas. De este tipo de experimentos hemos aprendido en las últimas décadas
que la estructura de sabor de la nueva teoría que reemplazará al Modelo Estándar
es altamente no genérica, hecho que permanece sin explicación por el momento. La
próxima generación de experimentos en el sector de sabor (las llamadas fábricas de
B’s, los experimentos con kaones, ...) alcanzarán sensibilidades sin precedentes y
por tanto explorarán energías aún más altas.

Esta interacción entre experimentos de energías altas y bajas es absolutamente
necesaria y va más allá de la primera observación de una señal de Nueva Física.
En la probable situación donde la primera discrepancia con el Modelo Estándar
aparezca en el LHC, será muy difícil interpretar esta señal y discernir entre la enorme
cantidad de posibles modelos teóricos, principalmente debido al hecho de que el
LHC es un colisionador de hadrones, donde los efectos de la interacción fuerte son
omnipresentes. La complementariedad con otros experimentos será crucial en la
comprensión de la estructura completa de la nueva teoría.

El esfuerzo hecho por la comunidad científica en todo el mundo ha sido enorme
y hay mucho en juego. Las apuestas están ya hechas, aunque como siempre en la
ciencia, la Naturaleza tendrá la última palabra.

En esta tesis doctoral abordaremos dos aspectos diferentes de la parte teórica
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de este gran proyecto. Por una parte trataremos con las interacciones fuertes y
con su naturaleza no-perturbativa, un marco teórico extremadamente complejo que
representa el mayor obstáculo hoy día en la obtención de predicciones precisas para
los distintos observables. Por otra parte, iremos más allá del Modelo Estándar y
analizaremos el impacto fenomenológico de la Nueva Física en los observables de
energías bajas (procesos con kaones, física del tau, desintegración del neutrón, ...)
donde la precisión experimental es tan alta que pueden extraerse fuertes cotas. A
continuación desarrollamos estos dos puntos.

El Modelo Estándar: cuando predecir es el reto

Realizar cálculos precisos en el Modelo Estándar no es una tarea fácil en absoluto. La
Teoría Cuántica de Campos, el lenguaje matemático en el que las leyes de las física de
partículas están escritas, es una teoría tremendamente complicada y la extracción
de soluciones precisas a las ecuaciones es literalmente un reto para la comunidad
de físicos teóricos. Los métodos perturbativos disponibles en el sector electrodébil
del Modelo Estándar pierden su validez en la descripción del mundo hadrónico de
energías bajas, y nos vemos obligados a buscar herramientas alternativas.

En las últimas décadas diversas propuestas se han aplicado con éxito para mejo-
rar nuestra capacidad para realizar cálculos teóricos en el sector hadrónico (Teoría
de Perturbaciones Quirales, Reglas de Suma de QCD, ...), mientras que al mismo
tiempo el estudio de las ecuaciones de la teoría formulada en el retículo (lattice
QCD) y su solución numérica se ha desarrollado considerablemente, y para muchas
cantidades es ya la fuente de información más precisa.

Lattice QCD es una disciplina muy prometedora y en el futuro, los métodos
analíticos alternativos podrían no ser capaces de competir con ella. Uno podría
ingenuamente pensar por tanto que la mejor estrategia es sentarse y esperar el de-
sarrollo de los cálculos en el retículo, y olvidarse de los enfoques analíticos. Pero
por una parte hay que tener en cuenta que hay observables para los que los cálculos
en el retículo están muy lejos de ser competitivos y el avance científico no puede
simplemente congelarse durante décadas. Por otra parte, lattice QCD es una disci-
plina en pleno desarrollo y necesita de los enfoques alternativos para comprobar sus
resultados y detectar posibles errores sistemáticos. Es más, la combinación de lattice
QCD con la Teoría de Perturbaciones Quirales es de crucial importancia desde un
punto de vista práctico, ya que permite trabajar con masas de quarks no físicas
y extrapolar los resultados a los valores físicos, lo que es muy útil para reducir el
tiempo de cálculo necesario.

Nos centraremos en esta tesis en las llamadas Reglas de Suma de QCD, que
representan un método analítico para trabajar con las interacciones fuertes. Este
método ha sido muy útil desde su formulación a finales de los setenta, pero tal y
como veremos hay aspectos teóricos que aún merecen un cuidadoso estudio. For-
mularemos el método desde sus principios básicos, analizando con visión crítica los
diversos elementos e incertidumbres asociadas, para posteriormente aplicarlo en la
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determinación de diversos parámetros a partir de los datos de las desintegraciones
hadrónicas del leptón τ , medidos principalmente por las Colaboraciones ALEPH y
OPAL en el CERN.

En la parte final de la tesis iremos más allá de la desintegración del leptón τ
y repasaremos el estado actual de las diferentes determinaciones de los elementos
Vud y Vus de la matriz de Cabibbo-Kobayashi-Maskawa (CKM), lo que nos con-
ducirá al estudio de las desintegraciones semileptónicas de kaones y piones, de la
desintegración del muón y de los procesos nucleares. En estas extracciones, veremos
la interacción y la complementariedad de los distintos enfoques. Necesitaremos la
Teoría de Perturbaciones Quiral para realizar cálculos teóricos con kaones y piones,
cálculos perturbativos con varios loops para tener en cuenta los efectos electrodébiles
y lattice QCD para extraer el valor de ciertos parámetros hadrónicos.

Más allá de las leyes conocidas: buscando en la os-

curidad

Desde la misma formulación del Modelo Estándar a finales de los años sesenta y
principio de los setenta, los físicos teóricos han intentado encontrar una extensión
convincente de él (o una alternativa), que pudiera explicar al menos algunas de las
cuestiones todavía no resueltas. El espectro de posibilidades es enorme, desde pe-
queñas extensiones del Modelo Estándar donde sólo una partícula es añadida (como
por ejemplo el axión, asociado al problema con la simetría CP en las interacciones
fuertes) hasta teorías tremendamente ambiciosas que pretenden unificar no sólo las
interacciones electrodébiles y fuertes, sino también la gravedad, como por ejemplo
la teoría de cuerdas.

Quizás podemos señalar supersimetría como la extensión más popular, que sigu-
iendo el camino de los avances teóricos que desembocaron en el Modelo Estándar usa
la simetría como referente. Supersimetría sería una nueva simetría de la Naturaleza,
que relaciona bosones y fermiones y que conlleva la existencia de un super-compañero
por cada partícula conocida. Al igual que ocurre con la simetría electrodébil, tiene
que existir un mecanismo que la rompe a una energía muy alta para que las masas
de estas super-partículas queden por encima de los límites experimentales actuales.
Esta teoría representa una extensión del Modelo Estándar muy atractiva desde un
punto de vista teórico y además parece encajar de manera natural en el contexto
de la teoría de cuerdas (de hecho fue formulada por primera vez en este marco)
y podría resolver diversos problemas, como por ejemplo la existencia de un can-
didato para la materia oscura (la partícula supersimétrica más ligera). En cualquier
caso, la motivación original y principal de supersimetría fue la solución al problema
de la jerarquía, ya que las contribuciones cuánticas de las super-partículas pueden
cancelar las contribuciones de sus partículas compañeras, estabilizando la masa del
bosón de Higgs. De esta manera sería posible tener un campo escalar fundamental
con una masa que no necesita un ajuste no-natural de su valor (fine-tuning). Esta
búsqueda de naturalidad ha sido la principal fuente de inspiración para los teóricos



Introducción 5

en la búsqueda de posibles extensiones del Modelo Estándar. Sin embargo, las me-
didas realizadas por LEP en el CERN y por otros experimentos de gran precisión
han arrinconado las teorías supersimétricas hasta una posición no-natural, donde
algún tipo de fine-tuning parece inevitable. De esta forma, la principal motivación
para la teoría parece haberse casi desvanecido.

Esto ha incentivado la exploración de otras posibles soluciones y nos ha con-
ducido a nuevos escenarios, algunos de ellos realmente exóticos e interesantes, con
dimensiones adicionales de tamaño macroscópico y pequeños agujeros negros en el
LHC. También ha provocado un renovado interés por antiguas teorías alternati-
vas, como por ejemplo technicolor, donde la simetría electrodébil está rota por una
nueva dinámica fuertemente acoplada à la QCD. En cualquier caso, las investiga-
ciones realizadas hasta la fecha parecen indicar que todas las posibilidades requieren
fine-tuning en alguna medida.

Existe una perspectiva alternativa que puede seguirse en el estudio de la Nueva
Física, basada en el concepto de Teorías de Campos Efectivas. Esta metodología
no escoge ningún modelo en particular sino que parte tan solo de un contenido de
partículas a energías bajas y de unas ciertas simetrías de la teoría, lo cual permite
un estudio casi independiente del modelo. Por tanto, en este enfoque el Modelo
Estándar representa una buena descripción de la Naturaleza hasta una cierta escala
de energías que es muy superior a la masa de la partícula estándar más pesada (quark
top o bosón de Higgs), salvo por ciertas correcciones que pueden ser parametrizadas
en términos de operadores de dimensiones más altas.

De esta forma es posible analizar la información experimental disponible en un
marco teórico general y concluir qué operadores están más o menos suprimidos.
Los resultados de este análisis indicarán qué experimentos pueden ser interesantes
para estudiar aquellos operadores menos acotados y qué experimentos son en cierto
sentido redundantes ya que explorarían regiones que ya han sido excluidas por otras
medidas.

La interacción de estos estudios independientes del modelo y de los análisis re-
alizados dentro de una extensión concreta del Modelo Estándar es muy necesaria.
El primer enfoque puede indicar nuevas direcciones que no están acotadas por los
datos y estimular nuevas ideas entre los teóricos para la construcción de modelos,
mientras que el segundo es necesario para evitar trabajar con un número infinito
de parámetros y también para indicar posibles canales de detección directa de las
nuevas partículas.

En la segunda parte de esta tesis seguiremos este análisis independiente del mod-
elo de Nueva Física, repasando la derivación del Lagrangiano más general compatible
con la conservación del número leptónico y bariónico, que fue realizada hace ya más
de veinte años, y donde el Modelo Estándar es el término dominante y la Nueva
Física a la escala del teraelectronvoltio aparece como una corrección. Aplicaremos
este marco teórico al estudio de la desintegración del muón y de las desintegraciones
semileptónicas de los quarks ligeros, poniendo las bases para un análisis sistemático
de los efectos de Nueva Física en los procesos de energías bajas, y manteniendo
pleno contacto con la física del TeV. De esta forma puede evaluarse, en un marco
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general que no prioriza ningún modelo concreto de Nueva Física, la relevancia de
las medidas experimentales de energías bajas para la restricción de las extensiones
del Modelo Estándar.

Más concretamente analizaremos con gran detalle los test de unitariedad de la
primera fila de la matriz CKM, y mostraremos como la enorme precisión alcanzada
tanto a nivel experimental como teórico en los observables asociados pone esta cota al
mismo nivel de relevancia que aquellas que vienen de colisionadores u otras medidas
electrodébiles de gran precisión.

De esta forma, comprobaremos de manera explícita cómo los experimentos de
bajas energías exploran regiones de la física desconocidas hasta hoy, aportando una
información de gran valor sobre la estructura de la nueva teoría que reemplazará al
Modelo Estándar. Por lo tanto, estos experimentos podrían adelantarse al LHC y
ser los primeros en encontrar una señal experimental que no pueda explicarse sin
dar un paso más allá de las leyes conocidas. Tras décadas de enorme trabajo teórico
y experimental, este capítulo de la historia de la física de partículas se encuentra en
su momento más álgido y ya sólo nos queda esperar.



Chapter 1

The New Physics Quest

The real benefit of science is to know, deep inside,
that you are following the narrow path which has
lead humanity out of the dark ages, and which might
make us reach goals which are unthinkable now.

T. Dorigo

Particle physics is certainly living a historical moment. Almost forty years after
the foundation of the theoretical basis of the so-called Standard Model (SM) of
electroweak and strong interactions we are about to go one step beyond it and see
what Nature has in store for us. New symmetries, new interactions or even new
dimensions can be just around the corner.

This step beyond our current understanding of the microscopic world is an en-
terprise of the whole high-energy physics community. It will be the result of years
of hard work performed by our experimental colleagues at the Large Hadron Col-
lider (LHC) at CERN, building the most powerful particle accelerator, that has
just started to operate, and also at other amazing experimental facilities, like un-
derground laboratories or detectors assembled in satellites. It will be the product
of decades of theoretical work, learning to perform precise calculations within the
Standard Model, absolutely necessary to disentangle the eventual New Physics (NP)
signals from billions and billions of data, and also the result of the work of all those
theoreticians that could not wait for the experimental information and have already
explored all kinds of possible New Physics scenarios.

The first goal of this global enterprise is to find a dynamical explanation of the
particle masses, that is, to find out which is exactly the mechanism that breaks the
electroweak symmetry. According to the Standard Model, a scalar field known as
Higgs field is responsible for it. If this description is right the data collected so far in
different experiments tell us that the Higgs particle was just a bit beyond the LEP
reach and that it will be found at the LHC, after some years of collisions and data
analysis. Different alternatives to this simple mechanism for the origin of mass have
been proposed, although none of them is free of flaws. Needless to say that both
the discovery of the standard Higgs boson or of any alternative mechanism would
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represent a major discovery in the history of particle physics. It would be either the
final piece of the Standard Model or the first piece of the next theoretical paradigm.

Assuming the Higgs boson is found, one must wonder why the Standard Model
cannot be the final description of the microscopic world. Essentially for the same
reasons that the Mendeleev periodic table could not be the whole story: because
there are some experimental facts that the current model cannot answer (matter-
antimatter asymmetry, dark matter constituent, dark energy explanation, quantum
gravity, neutrino masses ...) and because even in the sector where the model fits
perfectly the data the philosophy of science forces us to search a more simple model
(why 3 generations? why these values for the masses? why three coupling constants?
etc.).

But still, even with this affirmative answer, one must ask the precise question of
why the current Standard Model of Particle Physics must fail in the description of
the data collected in the next generation of experiments. Well, the answer is that it
might not fail. But in a certain sense this would be a huge discovery, since it would
mean that we have not understood something deep about Quantum Field Theory,
the theoretical framework that describes the microscopic world, where the quantum
and relativistic effects are present. The scenario known as “big desert” where only
a light Higgs particle is observed and nothing new is found in the TeV range would
certainly provide more questions than answers.

As we have already pointed out, the race for the discovery of New Physics is not
an LHC monopoly. There are other very sophisticated experiments all around the
world looking at corners where the LHC is absolutely blind. It is really amazing
that measuring for example kaons and pions in experiments where the energy of
the particles is very much smaller than in Tevatron or the LHC, one is sensitive
to energy scales beyond the TeV range. This counterintuitive fact is in part just
another consequence of the quantum properties of the microscopic world that we
are exploring, and where the heavy particles (still to be discovered) contribute to
low-energy process through quantum corrections. From these kind of experiments
we have learned in the last decades that the flavor structure of the new theory that
supersedes the Standard Model is highly non-generic, something that remains unex-
plained so far. The next generation of experiments in the flavor sector (B factories,
kaon experiments, ...) will achieve unprecedented sensitivities and therefore will
explore even higher energy scales.

This interplay between low- and high-energy experiments is absolutely necessary
and goes beyond the first observation of a New Physics signal. In the probable
scenario where the first discrepancy with the SM appears at the LHC, it will be very
difficult to interpret this signal and to distinguish among the plethora of possible
theoretical models, essentially due to the fact the LHC is a hadron collider, where
the strong interaction effects are omnipresent. The complementarity with other
experiments will be crucial in the comprehension of the complete structure of the
new theory.

The effort made by the scientific community all over the world has been enor-
mous. The stakes are quite high. As always in science, Nature will have the final
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word.
In this PhD thesis we address two different aspects of the theoretical part of this

enterprise. On one hand we will deal with the strong interactions and their non-
perturbative nature, an extremely difficult theoretical framework that represents the
main obstacle nowadays for obtaining precise predictions for the different observables
in the Standard Model. On the other hand we will take a look at the physics that
can lie beyond it, and its phenomenological impact on low-energy processes (kaon
processes, tau physics, neutron decay, ...), where the experimental accuracy is so
high that very strong bounds can be obtained. Now we develop these two points.

1.1 The Standard Model: when predicting is the

challenge

Performing accurate calculations within the Standard Model is not an easy task at
all. Quantum Field Theory, the mathematical language in which particle physics is
written, is a very complicated subject and the extraction of precise solutions to the
equations is literally a challenge for the theoretical community. The perturbative
methods available in the electroweak sector of the SM cannot help us in the descrip-
tion of the low-energy hadronic world from the Quantum Chromodynamics (QCD)
Lagrangian, and we are forced to search for other tools.

In the last decades different analytical approaches have been successfully used in
order to improve our capabilities to perform theoretical calculations in the hadronic
sector (Chiral Perturbation Theory, QCD Sum Rules, ...), whereas at the same time
the study of the equations of the theory formulated on a lattice and their numerical
solutions has developed considerably, and for several quantities is already the most
reliable source of information.

The lattice approach seems to be very promising and in the future the alternative
analytical approaches might not be able to compete with it. One could naively think
that therefore the best strategy is to sit and wait for the lattice development and
forget about analytical methods, but things are not that simple. First of all, there
are observables where the lattice calculations are very far from being competitive
and one cannot simply freeze the scientific advance for decades. Secondly, Lattice
QCD is a developing discipline and needs the alternative approaches to check results
and detect possible systematic errors. And moreover, the combination of the lattice
methods with for example Chiral Perturbation Theory is of crucial importance from
a practical point of view, since it allows to work with non-physical quark masses
and extrapolate the results to the physical points, what is very useful reducing the
computational time needed.

We will concentrate in the first part of this thesis in the so-called QCD Sum
Rules, that represent an analytical method to deal with the strong interactions.
This method has been very useful since its modern formulation in the late seventies,
but as we will see there are theoretical aspects that still deserve a careful study.
We will formulate the method from its very basis, analyzing critically the different
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elements and uncertainties. And later we will apply it for the extraction of different
parameters from the precise hadronic τ decay data collected principally by the OPAL
and ALEPH Collaborations at CERN.

In the final part of the thesis we will go beyond the τ decays and we will re-
view the current status of the different determinations of Vud and Vus, elements of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix, what will lead us to the study of
semileptonic kaon and pion decay, muon decay and nuclear processes. In these ex-
tractions, we will see the interplay and complementarity of the different approaches.
We will need Chiral Perturbation Theory to perform theoretical calculations with
pions and kaons, perturbative multi-loops calculations to take into account the elec-
troweak effects and Lattice QCD to extract the value of certain hadronic parameters.

1.2 Going beyond: searching in the darkness

Since the very foundation of the Standard Model in the late sixties and early sev-
enties, the theoreticians have been trying to find a convincing theoretical extension
of it (or an alternative to it), such that it could explain at least part of the so far
unsolved questions. The spectrum of possibilities is huge, from small extensions of
the SM where only one particle is added (like e.g. the axion, associated to the strong
CP problem) to very ambitious frameworks that aim to unify not only strong and
electroweak interactions but also gravity, like string theory.

We can maybe point supersymmetry as the most popular extension. It follows
the path of the theoretical discoveries that ended with the formulation of the SM
and uses the symmetry as the guiding principle. Supersymmetry would be a new
symmetry of the world that relates bosons and fermions and entails the existence
of a super-partner for every known particle. As the electroweak symmetry it has to
be spontaneously broken at a very high scale in order to push the masses of these
super-partners above the experimental limits. It is a nice theoretical extension of the
SM that moreover seems to arise naturally in the context of string theory (indeed
it was first formulated in that context!) and that could solve several problems, like
for example the existence of a dark matter candidate (the lightest supersymmetric
particle). In any case the original and main motivation for supersymmetry was the
solution of the hierarchy problem, since the super-partners quantum contributions
in the loops can cancel the other quantum contributions, stabilizing the mass of the
Higgs boson. In this way one could have a fundamental scalar with a mass that
does not need an unnatural fine-tuning. This search of naturalness has been the
main source of inspiration for model-builders when looking for possible extensions
of the SM. However, the measurements performed by LEP at CERN and by other
precision experiments have cornered supersymmetry to an unnatural place where
some fine-tuning seems to be necessary. In this way, the main motivation for the
theory seems to have been almost lost.

This has triggered the exploration of other possible solutions and has led to
new scenarios, some of them very exotic and exciting, with large additional spatial
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dimensions and microscopic black holes that could be found at the LHC. It has
also led to a revival interest in old alternatives like technicolor theories, where the
electroweak symmetry is broken by new strong interacting dynamics à la QCD. In
any case, the investigations made so far indicate that all the known possibilities
require some degree of fine-tuning.

There is an alternative perspective that can be taken for the study of New
Physics, based on the concept of Effective Field Theory. In this approach one does
not commit with any particular model but only assumes the low-energy particle
content and the symmetries of the theory, what allows a quite model-independent
study. Therefore one has that the Standard Model (or a certain modification of it)
represents a good description of Nature up to a certain scale that is well above the
heaviest SM particle (top quark or Higgs), but for small corrections that can be
parameterized in terms of higher dimensional operators.

In this way one can analyze the current experimental information in a general
framework and conclude which operators are more or less suppressed, revealing
which experiments can be interesting in order to probe those operators less con-
strained and which experiments are somehow redundant since they will explore
regions already excluded by other measurements.

The interplay of these model-independent studies and the analyses performed
within particular New Physics scenarios is very necessary, since the former can
point at unconstrained new directions and trigger new ideas among the model-
builder community, whereas the later are needed in order to avoid working with an
infinite number of parameters and also in order to indicate possible direct detection
channels of the new particles.

In the second part of this thesis we will follow this model-independent approach,
reviewing the twenty years old derivation of the most general effective Lagrangian
assuming only lepton and baryon number conservation, where the SM is the first
term and the New Physics at the TeV scale appears as corrections to the SM dom-
inant contribution. We will apply this framework to the study of the muon decay
and the semileptonic decays of light quarks, putting the basis for a systematic anal-
ysis of New Physics effects in low-energy processes, keeping full contact with the
TeV physics. In this way one can assess in a model-independent framework the
relevance of the current experimental measurements constraining the extensions of
the Standard Model.

In particular, we will analyze with great detail the unitarity test of the first
row of the CKM matrix, and we will show how the achieved experimental and
theoretical precision in the associated observables puts this constraint at the same
level of relevance than those coming from colliders or other electroweak precision
measurements.
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Chapter 2

Hadronic tau decays: a QCD
laboratory

(In this respect,) it would have been much nicer
if the tau-lepton had had a mass of 5 GeV!

R. D. Peccei & J. Solà [1]

2.1 Introduction

The τ particle is a lepton of the third generation of the Standard Model, that
has negative charge and a mass of 1776.99 ± 0.29 MeV. During the three decades
passed since its discovery it has been deeply studied with different accelerators and
detectors.

The τ lepton is the only lepton massive enough to decay into hadrons what makes
it a very interesting object for the study of the strong interaction, given its relative
simplicity compared with the purely hadronic processes. Its mass is such that gives
us access to the low and intermediate energy regions where the non-perturbative
effects are very important (resonances), but where the perturbative calculations can
be still used within the appropriate framework that will be explained in the next
chapter. In this way it offers many interesting, and sometimes unique, possibilities
for testing the Standard Model and learning about QCD, both in the perturbative
and non-perturbative regimes.

We can classify the τ -decays in leptonic and semileptonic (or hadronic) decays.
There are two leptonic channels

τ → ντ +W → ντ + ν̄l + l, l = µ, e, (2.1)

and for them the SM prediction, including the electroweak corrections and neglecting
the neutrino masses is [2]

Γτ→l ≡ Γ(τ− → ντ l
−ν̄l) =

G2
Fm

5
τ

192π3
f

(

m2
l

m2
τ

)

rEW , (2.2)
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where f(x) = 1 − 8x + 8x3 − x4 − 12x2 log x, and the factor rEW = 0.99986 takes
into account the small radiative corrections and the non-local structure of the W-
propagator.

The hadronic decays take place when the W-boson couples to a pair of quarks
(see Fig. 2.1), that after the hadronization process give rise to the experimentally
observed hadrons. We can divide in turn these decays in those where the total
strange charge in the final state is zero and those where it is not-zero, that at first
order in the strong interaction are given by

τ → ντ +W → ντ + d+ u, (2.3)

τ → ντ +W → ντ + s+ u, (2.4)

respectively.

W


e


e  ,   
 , d  


,      , u


τ


ν


θ


µ


τ


−


−


−
 µ
−


ν
 ν


Figure 2.1: Feynman diagram at tree-level for the τ -decay.

Another well-known process where the strong interaction effects can be studied
in simple conditions is the process e+e− → γ → hadrons. But notice that whereas in
that process only the electromagnetic vector current Jµ =

∑

qQq q̄γ
µq is examined,

the hadronic τ decays offer the possibility of studying the properties of both the
vector V µ

ij = q̄jγ
µqi and the axial-vector Aµij = q̄jγ

µγ5qi (con qj , qi = u, d, s) currents,
in such a way that these two processes are complementary.

2.2 Experimental overview

Tau physics in the last decades has been dominated by two different and complemen-
tary experimental facilities: on one hand the LEP experiments ALEPH, DELPHI,
L3 and OPAL, operating at the Z resonance at center-or-mass energies of 91.2 GeV,
and on the other hand CLEO at CESR running at the Υ(4S) resonance (10.6 GeV).
Up to 1.6 × 105 τ pairs have been recorded by each of the LEP experiments be-
tween 1990 and 1995, and in CLEO one has even larger statistics, although with
less precision.

Given a specific channel τ → ντn, where n stands for a certain hadronic system,
one measures the number of events Nn(s) where this hadronic system is emitted
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with a total invariant mass
√
s. In this way one can construct the so-called spectral

function that gives the associated probability of that event

ρτ→ντn(s) ∼
1

Nn

× dNn

ds
, (2.5)

where we have omitted for simplicity the different factors usually included in the
definition.

Although experimentally one observes the individual events, i.e. the exclusive
decays, we will work with the following inclusive observables in this work:

• non-strange vector contribution to the total τ hadronic width, i.e. the sum
over all the decays that have zero strangeness in the final state, and that
are mediated by the vector current. It can be shown that these modes are
those with an even number of pions1. The corresponding spectral function is
precisely defined as

v
(1)
ud (s) ≡ 1

NV

dNV

ds

m2
τ

12π2 |Vud|2SEW

B(τ−→V −ντ )

B(τ−→ e− νeντ )

1
(

1− s
m2

τ

)2(

1+ 2s
m2

τ

)
(2.6)

where V − stands for a strangeless hadronic system with an even number of
pions and where the different factors added to 1/NV × dNV/ds have been
included for later convenience;

• non-strange axial-vector contribution to the total τ hadronic width, i.e. the
sum over all those decays that have zero strangeness in the final state and an
odd number of pions. In this case we define the spectral function as

a
(1)
ud (s) ≡ 1

NA

dNA

ds

m2
τ

12π2 |Vud|2SEW

B(τ−→A−ντ )

B(τ−→ e− νeντ )

1
(

1− s
m2

τ

)2(

1+ 2s
m2

τ

)
(2.7)

where A− stands for a strangeless hadronic system with an odd number of
pions, except the one-pion state that is excluded. This exclusion of the τ →
πντ and the different factors will be understood in the next section;

• strange contribution to the total τ hadronic width, i.e. sum over all the decays
that involve non-zero total strange charge in the final state. In this case the
separation in vector and axial-vector mediated decays is not possible.

The measurements of these spectral functions performed by ALEPH [3] are the most
precise available and they are shown in Fig. 2.2.

1Modes with a KK̄ pair contributes both to the V and A channel, what generates a certain
error that will be taken into account.
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Figure 2.2: Vector (V ), axial-vector (A), V + A and V − A τ hadronic spectral
functions measured by ALEPH [3]. The shaded areas indicate the main contributing
exclusive τ decay channels. The curves show the predictions from the parton model
(dotted) and from massless perturbative QCD using αS(MZ) = 0.120 (solid).

2.3 Theoretical calculation

From the electroweak Lagrangian

LSM(x) = −GF√
2
Vijℓµh

µ
ij , (2.8)

where ℓµ = τ̄γµ(1 − γ5)ντ and hµij = ūiγ
µ(1 − γ5)dj , it can be formally calculated

any exclusive tau decay τ → ντn (where n stands for a certain hadronic system) in
terms of the hadronic matrix element 〈n|hµij(0)|0〉 that cannot be calculated from
first principles due to its non-perturbative nature.

If we consider an inclusive tau decay defined as the sum over all the possible
channels mediated by a certain quark-current J µ

ij (x), then we end up with the
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following objects

ρµνij,JJ (p) ≡ (2π)3
∑

n

〈0|J µ
ij (0)|n〉〈n|J µ

ij(0)†|0〉 δ(4)(p− pn) (2.9)

= (−gµνq2 + qµqν) ρ
(1)
ij,JJ (p2) + qµqν ρ

(0)
ij,JJ (p2) , (2.10)

where we have shown their Lorentz decomposition. In particular we will find the
following result for the inclusive strange and non-strange decay widths mediated by
the quark-currents J µ

ud(x) and J µ
us(x)

RS=0
τ,J = 12πSEW cos2 θc

∫ m2
τ

m2
π

ds

m2
τ

×
(

1− s

m2
τ

)2[(

1+2
s

m2
τ

)

ρ
(0+1)
ud,JJ (s) + ρ

(0)
ud,JJ (s)

]

, (2.11)

RS=1
τ,J = 12πSEW sin2 θc

∫ m2
τ

m2
K

ds

m2
τ

×
(

1− s

m2
τ

)2[(

1+2
s

m2
τ

)

ρ
(0+1)
us,JJ (s) + ρ

(0)
us,JJ (s)

]

, (2.12)

where s = p2
h is the invariant mass of the final hadronic state, SEW = 1.0194 [2] is

an electroweak correction factor and θC is the Cabibbo angle.
We focus now on the non-strange case. The (0)-component of both currents

is well known theoretically: in the isospin limit the vector part ρ(0)
ud,V V (s) vanishes

due to the conservation of the vector current (CVC), whereas the axial-vector part
ρ

(0)
ud,AA(s) is almost saturated by the pion pole contribution, fully calculable within
χPT. Therefore we have

ρ
(0)
ud,AA(s) ≈ 2 f 2

π δ(s− m2
π) , (2.13)

and therefore

RS=0
τ,V = 12πSEW cos2 θc

∫ m2
τ

s0

ds

m2
τ

(

1− s

m2
τ

)2(

1+2
s

m2
τ

)

ρ
(1)
ud,V V (s) (2.14)

RS=0
τ,A = 12πSEW cos2 θc

∫ m2
τ

s0

ds

m2
τ

×
(

1− s

m2
τ

)2[(

1+2
s

m2
τ

)

ρ
(1)
ud,AA(s) + 2 f 2

π δ(s− m2
π)

]

. (2.15)

From these results we can easily see that the ρ(1)
ud,V V/AA(s) functions are nothing but

the spectral functions v1/a1(s) that we have defined in Eqs. (2.6) and (2.7) but for
a 2π2 factor

ρ
(1)
ud,V V (s) =

1

2π2
v1(s) , ρ

(1)
ud,AA(s) =

1

2π2
a1(s) . (2.16)
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These spectral functions are not calculable from first principles, at least not in
the whole integration range from s = 0 to s = m2

τ since our perturbative calculations
are valid only at high energies. And so it seems that we cannot calculate either the
exclusive or the inclusive decay widths.

But in the next chapter we will explain a theoretical framework that will allow
us to re-write this kind of integrals of the inclusive spectral functions as contour
integrals calculable within QCD. And therefore we will able to connect the QCD
calculations with the hadronic tau decays. Thanks to this framework and depending
on the goal, it may be interesting to study the integrals of one spectral function or
other. Here we give some examples:

• The non-strange vector and axial-vector spectral function (and its sum) are
well suited to study the perturbative physics and can be used to determine
the strong coupling constant [4];

• The non-strange difference v1(s) − a1(s) is well suited to study the non-
perturbative physics, as we will see in Chapters 4 and 5;

• The difference between the strange and non-strange spectral function can be
used to determine the value of the strange quark mass and the element Vus of
the CKM matrix [5, 6];

The spectral functions embody both the rich hadronic structure seen at low
energy, and the quark behavior relevant in the higher energy regime and play an
important role in the understanding of hadronic dynamics in the intermediate energy
range. They represent the basic input for QCD studies and for evaluating low-energy
contributions from hadronic vacuum polarization.



Chapter 3

QCD Sum Rules: derivation and
dissection

Not only God knows, I know,
and by the end of the semester,
you will know.

Sidney R. Coleman

As we already emphasized in the Chapter 1, due to the non–perturbative character
of the strong interaction described by the QCD Lagrangian, it is extremely difficult
to cover the path that goes from the quarks and gluons to the observable hadrons.
In this Chapter we will present a method that has been very useful during the last
thirty years to help us in covering at least part of this path.

This method is known under the name of QCD Sum Rules and it was introduced
in its modern form in 1979 [7] by Shifman, Vainshtein and Zakharov1. These QCD
Sum Rules [7–9] are the result of the combination of the operator-product expansion
developed by Wilson in 1969 [10] with the old dispersion relations known since the
fifties [11] and with low-energy theorems. So as we see the bases of the QCD Sum
Rules are even older than the Lagrangian of Quantum Chromodynamics, and this
is so because the method is based on very general principles of Quantum Field
Theory like causality and unitarity, that govern the analytic behavior of the two-
point correlation functions, that will be introduced later. But the knowledge of the
fundamental QCD Lagrangian is also an essential ingredient of the QCD Sum Rules
for the exact calculation of the operator-product expansion and in order to prove
the low-energy theorems that may be needed.

The QCD Sum Rules go far beyond the perturbative QCD calculations and
take into account the highly non-perturbative nature of the QCD vacuum, a very
complicated and unknown entity where the operators of the theory have in gen-
eral non-vanishing expectation values. Non-perturbative effects are parameterized
in terms of these vacuum expectation values, that we will consider free parameters

1Due to this work, carried out at the Institute for Theoretical and Experimental Physics (ITEP)
in Moscow, this method is also known as SVZ (or ITEP) sum rules.
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in the absence of an analytic way of calculating them from first principles (lattice
determinations cannot compete still with phenomenological methods), and in this
way the QCD Sum Rules start from the perturbative calculations and the QCD vac-
uum and connect them with hadronic observables. This is what makes the method
so interesting. It goes from pure QCD to the hadronic resonances.

As we will see the QCD Sum Rules do not represent a method that can be
refined indefinitely to any desired precision, like a Taylor expansion of a function,
but has some systematic limits that it is important to understand. Given that the
strong interaction is usually the main culprit of the SM uncertainties, it is crucial
to be able to assign realistic errors to any QCD prediction in such a way that we
can be in a position of claiming the eventual discovery of New Physics or discard
it. So it is necessary to evaluate the different sources of error of a given sum rule
prediction and to evaluate also the possible improvements of this prediction and
the limits of this method for that particular calculation. This kind of analyses are
extremely important in order to know which experiments must be undertaken in the
near future and which are not useful since the theoretical knowledge is still poor.

The central objects of the QCD Sum Rules are the two-point correlation functions
(correlators) ΠAB(q2), that will be introduced in the next section.We would like to
keep the derivation and the discussion as general as possible and with this purpose
we will work with a general correlator ΠAB(q2). But at the end of every section we
will particularize to the case

ΠAB(q2) → ΠLR(q2) , (3.1)

where ΠLR(q2) will be defined in the next section. We do this with the intention
of making the derivation more pedagogical and because this correlator will be the
central object of the next two Chapters

3.1 Correlation Function

A two–point correlation function of two operators A(x) and B(x) is the vacuum
expectation value of their T-ordered product

K(x− y) = 〈0|T (A(x)B(y)†)|0〉 , (3.2)

where we have explicitly shown that the correlation function only depends on the
relative distance x− y, due to the homogeneity of the vacuum. We will work in the
momentum space

ΠAB(q) ≡ i

∫

d4x eiqx〈0|T (A(x)B(0)†)|0〉 , (3.3)

and the operators A(x) and B(x) will be two-quark currents with the generic form
q̄iΓnqj, where Γn = 1, γ5, γ

µ, γµγ5, σ
µν (or any linear combination of them) and

qi,j = u, d, s..
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We will extract the Lorentz structure of the correlators in such a way that we
end up working with scalar objects that contains the dynamical information and
that only depend on q2. For the sake of simplicity and in an abuse of terminology
we will call them also correlators.

Depending on the phenomenology that one wants to study it is interesting to
work with one correlator or another. We will be interested during the next Chapters
in the LR correlator, and so we move on now to its rigorous definition.

3.1.1 The LR correlator

The vector and axial-vector quark currents V µ
ij (x) = qiγµqj and Aµij = qiγµγ5q

j are
specially interesting because they are realized in nature through the electroweak
vector bosons W , Z and γ and there is a very rich associated phenomenology. Be-
cause of that, the sum rules generated by the corresponding correlators can be used
to connect the hadronic world with the QCD Lagrangian.

In Chapters 4 and 5 we will pay special attention to the non-strange (or Cabibbo-
allowed) left- and right-handed currents

Lµud(x) ≡ V µ
ud(x) −Aµud(x) = uγµ(1 − γ5)d , (3.4)

Rµ
ud(x) ≡ V µ

ud(x) + Aµud(x) = uγµ(1 + γ5)d , (3.5)

and the associated LR correlator

Πµν
ud,LR(q) ≡ i

∫

d4x eiqx 〈0|T
(

Lµud(x)R
ν
ud(0)†

)

|0〉

= (−gµνq2 + qµqν) Π
(1)
ud,LR(q2) + qµqν Π

(0)
ud,LR(q2) , (3.6)

where we have shown the Lorentz decomposition. This two-point function is also
called V − A correlator because2

Πµν
ud,LR(s) = Πµν

ud,V V (s) − Πµν
ud,AA(s) , (3.7)

since the V A (and AV ) correlation function vanishes due to parity invariance of the
vacuum. More specifically we will be working with the following object

Π
(0+1)
ud,LR(s) ≡ Π

(0)
ud,LR(s) + Π

(1)
ud,LR(s) , (3.8)

that abusing of the terminology and notation we will call LR correlator and denote
by ΠLR(s) for the sake of brevity.

3.1.2 Analytic structure of the correlators

Although the correlators are defined in principle for real values of q2, the definition
is formally valid also for complex values, in such a way that we can consider them

2In the literature, when the currents A(x) = B(x), as in the V V or AA case, the subindex of
the correlator is commonly reduced to just V or A.
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complex functions of a complex variable q2. The QCD Sum Rules take advantage of
their analytic properties in the complex plane to relate different regions and connect
the hadronic data with the QCD calculations.

It is always assumed that the correlators are analytic functions of q2 in the whole
complex plane except in the positive real axis, where they have a cut and maybe
also some poles before the beginning of the cut3. This mathematical assumption
comes from very general physical requirements, like causality and unitarity [12] and
it is known since the times of the S-matrix theory.

It is usually said that the correlator satisfy the Schwarz reflection property across
the real axis4

ΠAB((q2)∗) = [ΠAB(q2)]∗ , (3.9)

and that consequently the correlator takes real values for real q2 and the discontinuity
in the positive real axis associated to the cut is suffered only by the imaginary part.

It is obvious that mathematically this property cannot be true for arbitrary
currents A(x) and B(x), since one can always redefine A(x) → eiθA(x) and then the
reflection property will not be satisfied. And indeed the property can in principle
be false for the correlator even if we allow this rephasing.

But it is the physics that tells us that our correlators will satisfy this property
up to a factor i that can appear due to conventions. In order to prove it for a
particular pair of currents, the standard procedure is to demonstrate it in the deep
euclidean region where QCD perturbation theory is reliable and, because of the
analytic structure of the correlator, analytically continue this result to the rest of
the complex plane.

In this way it can be proved that the LR correlator satisfy the Schwarz reflection
principle and that is why we did not extract any factor i in the Lorentz decomposition
(3.6). On the contrary, in the explicit analysis of the VT correlator of Ref. [13] we
can see that it is necessary to extract a factor i from the definition of the correlator in
order to satisfy the reflection property and therefore to have a real spectral function
(see section 3.3).

3.2 General derivation of a QCD Sum Rule

Let us consider the general correlator ΠAB(q2) defined in Eq. (3.3) (we will omit
in this section the AB subindex for brevity), a weight function w(q2), that must be
analytic in the whole complex plane but for a possible pole at the origin5, and the

3There is a subtlety that must be noticed. This property of analyticity affects the whole
correlator, but once we Lorentz-decompose it, the remaining pieces may have a different analytic
structure at the origin. In the case of the LR correlator (3.6) this happens for the (0)- and (1)-

components, but not for the objects Π
(0+1)
LR (s) and s ·Π(0)

LR(s) that must be analytic at s = 0. Due
to this we will use this second decomposition.

4We discuss this issue for completeness, although it is not necessary to use this property at any
moment to formulate the QCD Sum Rules.

5It is also assumed the weight function takes real values for real q2. The derivation can be
generalized in a straightforward way to weight functions with poles also out of the origin, but here
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s0sth

ReIq2M

ImIq2M

Figure 3.1: Circuit of integration in the q2-complex plane. The radius of the inner
circle is ǫ, the radius of the outer one is s0 and the separation between the horizontal
parts of the circuit is proportional to ǫ. We indicate the possible pole of the correlator
at q2 ≤ sth and the cut starting at q2 = sth. The possible pole of the weight function
at the origin is not marked.

circuit C in the q2-complex plane that is shown in the Fig. 3.1. Taking into account
the discussed analytic properties of the correlator and the weight function inside
this circuit C we have by the Cauchy’s theorem

∮

C

Π(z)w(z)dz = 0 , (3.10)

where we have already used the notation z = q2 that emphasizes that we are working
in the complex plane. We can divide this integral in three contributions as it is shown
diagrammatically in Fig. 3.2 finding

∫

Cout

Π(z)w(z)dz +

∫

Cin

Π(z)w(z)dz +

∫

Ccut

Π(z)w(z)dz = 0 , (3.11)

where Cin, Cout and Ccut referred to the circuits of Fig. 3.2. Taking the limit ǫ→ 0
we have the exact relation

∮

Cout

Π(z)w(z)dz − 2πi Res
s=0

(Π(z)w(z)) +

∫ s0

0

DiscΠ(s)w(s)ds = 0 , (3.12)

where Res
s=0

[F (s)] is the residue of F (s) at s = 0 and DiscΠ(s) ≡ Π(s+ iǫ)−Π(s−iǫ),
that is, the discontinuity of the correlator at the positive real axis. These three pieces
are the main ingredients of a QCD Sum Rule, although we must make still some
changes to arrive to its final form. Let us now explain the main features of the three
contributions to (3.12) and in the following sections we will analyze them carefully:

we restrict ourselves to this case to simplify the equations and the discussion.
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Figure 3.2: Diagrams that represent the different contributions to the integral (3.10)
(see Eq. (3.12)).

• If s0 is high enough, we can calculate within QCD the first integral of (3.12)
(Fig. 3.2a) making use of the Operator-Product Expansion, a useful tool
that will be explained in Section 3.4. Therefore we have

∮

Cout

Π(z)w(z)dz =

∮

Cout

ΠOPE(z)w(z)dz + 2πi DV[w(z), s0] , (3.13)

where DV[w(z), s0] is the error associated to this OPE-substitution in a circuit
of finite radius s0. This error is called quark-hadron duality violation (DV)
and will be analyzed carefully in Section 3.5.

• If w(s) has a pole at the origin we will have the second term of (3.12) (Fig. 3.2b)
and then we will need to know the structure of the correlator near the origin.
This can be rigorously calculated using Chiral Perturbation Theory, the
effective theory of QCD in the low-energy regime (see Section 4.1).

• Spectral functions.- In the third term of (3.12) (Fig. 3.2c), we have the
discontinuity of the correlator at the positive real axis, that as we will show in
Section 3.3, is related to the measurable spectral functions introduced in the
previous Chapter in the following way

Π(q2 + iǫ) − Π(q2 − iǫ) = 2 π i ρ(q2) . (3.14)

This is where the hadronic observables enter in our analysis.

Therefore, we can re-write our general expression of a QCD Sum Rule (3.12) in the
following way

∫ s0

0

ρ(s)w(s)ds = Res
z=0

ΠχPT(z)w(z) −
∮

Cout

dz

2πi
ΠOPE(z)w(z) − DV[w, s0]. (3.15)
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This exact expression represents a non-trivial constraint for the hadronic integral,
that is nothing but a sum over hadronic states. This is why they are called sum
rules. Notice that given a correlator we still have freedom in the choice of the weight
and the value of the Cauchy’s radius s0, what will generate a plethora of sum rules
for the same correlator, each with some problems and virtues.

Eq. (3.15) is the main result of this Chapter. In the following sections we will
explain thoroughly the different ingredients that we have already introduced: the
spectral functions, the operator-product expansion and the duality violation.

3.3 Spectral representation of a general correlator

Assuming just translation invariance and unitarity it can be shown that the corre-
lators satisfy the so-called dispersion relation6

ΠAB(q2) =

∫

dt
ρAB(t)

t− q2 − iǫ
, (3.16)

where ρAB(t) is the spectral function, defined by

ρAB(q2) ≡ (2π)3
∑

n

〈0|A(0)|n〉〈n|B(0)†|0〉 δ(4)(q − pn) , (3.17)

where we see that in the case A(x) = B(x) the spectral function is by construction
a real and non–negative function.

The original proof was made more than fifty years ago by Källen and Lehmann
[11] for the case A(x) = B(x) and still today this is the standard assumption. We
show in the Appendix A the demonstration for the general case where A(x) and
B(x) are different.

From the dispersion relation (3.16) and using the identity

1

t− q2 ∓ iǫ
= PP

(

1

t − q2

)

± i π δ(t − q2) , (3.18)

one finds that the discontinuity of ΠAB(q2) across the real axis is related to the
spectral function ρAB(q2) by:

ΠAB(q2 + iǫ) − ΠAB(q2 − iǫ) = 2 π i ρAB(q2) , (3.19)

that was the pursued result that we used in the preceding section for the derivation of
the QCD Sum Rule (3.15). We see then that the dispersion relation (3.16) connects
the correlator evaluated at an euclidean point with the discontinuity in the opposite
part of the real axis, that is, the timelike region.

Now we take a careful look to the LR spectral function and how it can be
extracted from τ -data.

6We work for the moment with an unsubtracted dispersion relation, where the integral at the
r.h.s. of (3.16) converges and one does not have to add any arbitrary polynomial. We will come
back to this issue later.
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3.3.1 LR spectral function: connection with data

In the previous Chapter we introduced the non-strange VV and AA spectral func-
tions with their Lorentz decomposition

ρµνud,JJ (p) ≡ (2π)3
∑

n

〈0|J µ
ud(0)|n〉〈n|J µ

ud(0)†|0〉 δ(4)(p− pn) , (3.20)

= (−gµνq2 + qµqν) ρ
(1)
ud,JJ (p2) + qµqν ρ

(0)
ud,JJ (p2) . (3.21)

and we explained that they are measurable quantities that can be obtained from the
leptonic tau decay. We focus now on the V-A difference

ρ
(j)
ud,LR(s) = ρ

(j)
ud,V V (s) − ρ

(j)
ud,AA(s) . (3.22)

As we explained in the previous Chapter the (0)-component is well known theoreti-
cally, with only the pion pole contribution in the axial-vector channel. Therefore

ρ
(0)
ud,LR(s) ≈ −2 f 2

π δ(s− m2
π) , (3.23)

ρ
(0+1)
ud,LR(s) ≈ −2 f 2

π δ(s− m2
π) + ρ

(1)
ud,LR(s) θ(s− 4m2

π) , (3.24)

where the θ(s) function has been introduced just to emphasize that ρ(1)
ud,LR(s < 4m2

π)

is zero. This spectral function ρ
(1)
ud,LR(s) is the part that we are not able to predict

from first principles, but we know it experimentally (for s < m2
τ ). We will work with

it during the next two Chapters, and sometimes we will call it just LR spectral
function for brevity and denote it by ρLR(s) or even ρ(s) if the context allows us
to do it without confusion.

The determination of this spectral function by the ALEPH Collaboration is
shown in the Fig. 3.3.

0.5 1 1.5 2 2.5 3
s HGeV2L

-0.05

0.05

0.1

·HsL

Figure 3.3: V-A spectral function measured by ALEPH [3].
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3.4 The operator-product expansion

We are going to rely on the operator expansion
beyond perturbation theory. Every step here is a
new one and by no means evident.

M. Shifman, A. Vainshtein, V. Zakharov [7].

3.4.1 Definition

In the operator-product expansion proposed by Wilson in 1969 [10] the product of
operators, say A(x) and B(x), is expanded in a series of well defined local operators
Oi(x) with singular c-number coefficients Ci(x).

A(x)B(y) =
∞
∑

i=0

Ci(x− y)Oi

(

x+ y

2

)

(3.25)

The local operator Oi(x) is regular in the sense that the singularity of the product
A(x)B(y) for x = y is fully contained in the coefficient functions Ci(x− y). In Eq.
(3.25) we have arranged each term in the order of decreasing singularity. Hence
C0(x− y) is the most singular as y → x, the next one is C1(x− y) and so on.

Applied to a two-point correlation function in the momentum space the OPE
is equivalent to the assumption that at large external momentum q the following
operator expansion is valid:

ΠAB(−q2) ≡ i

∫

d4x eiqx〈0|T (A(x)B(0)†|0〉

=
∑

n

CAB
n (q2)〈0|On|0〉 ≡

∑

n

CAB
n (q2)〈On〉 , (3.26)

where CAB
n (q2) are coefficients and On are gauge-invariant local operators con-

structed from quarks and gluon fields. We will consider only spin-zero operators
since only these contribute to the vacuum expectation value.

As we said, the operators On are conveniently classified according to their di-
mension n. An increase in dimension implies extra powers of M2/(−q2) for the cor-
responding contribution, where M is some typical hadronic mass entering through
the matrix element of On, and therefore even at intermediate (−q2) ∼ 1 GeV2,
the expansion can safely be truncated after a few terms. So we list now all the
gauge-invariant operators with zero Lorentz spin and n ≤ 6

O0 = 1 (3.27)

O3 = q̄q (3.28)

O4 = Ga
µνG

aµν (3.29)

O5 = q̄σµν
λa

2
Gaµνq , (3.30)

Oψ
6 = (q̄Γrq)(q̄Γsq) , (3.31)

OG
6 = fabcG

a
µνG

b ν
σ G

cσµ , (3.32)
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where Γr,s denote various combination of Lorentz and color matrices. The unit
operator is associated with the perturbative contribution that enters through its
Wilson coefficient CAB

0 (q2). The corresponding vacuum averages of O3 and O4 are
known as quark and gluon condensates, respectively, and as quark-gluon, four-quark
and three-gluon condensates the rest of them. Notice that there are no colorless
operators in QCD with dimension d = 1, 2. So we see that the non–perturbative
contributions are suppressed by large powers of M2/(−q2).

The OPE has been proved rigorously by Zimmermann [14] within the framework
of perturbation theory, but there exist no non–perturbative proof of the OPE except
for illustrations in some model field theories. We will assume the validity of the
expansion also beyond perturbation theory as far as the first few terms are concerned,
since explicit instanton solutions show that in higher orders in (−q2) the operator
expansion becomes invalid [7].

3.4.2 Physical picture

The physical meaning of the operator expansion is the separation of scales. The
OPE assumes the possibility of separating short and large distance effects and indeed
being precise we must have written

ΠAB(−q2) =
∑

n

CAB
n (q2;µ)〈On〉(µ) , (3.33)

where µ is an arbitrary scale that defines what will be consider short-distance and
large-distance physics. Of course, this dependence is non-physical and will not
appear in any observable.

The interactions at momenta p2 > µ2 (short distances) are included in the co-
efficients CAB

n (q2;µ), and if we take µ large enough we can calculate them pertur-
batively, thanks to asymptotic freedom7. In the free field theory we can extract the
singularity structure of them just from dimensional arguments. In QCD and for
high values of −q2 we expect the corrections to this free field behavior to be small
(logarithmic) thanks again to the asymptotic freedom. According to this we have

ΠAB(q2) ≈
∑

n

C̃AB
n

(−q2)n/2
〈On〉 , (3.34)

up to logarithmic corrections, that only in the case of the perturbative contributions
will be important. On the other hand, the large-distance contribution (p2 < µ2) is
accounted for phenomenologically, through the vacuum-to-vacuum matrix elements.

7In practice, using the standard methods of the Feynman-diagram technique, an explicit separa-
tion of distances is impossible in the quark-loop diagrams. One is forced to take into account both
the soft parts of perturbative diagrams and the long-distance condensate effects simultaneously.
This yields a certain amount of double counting, which is, fortunately, in many cases numerically
insignificant, because the condensate contributions turn out to be much larger than the soft tails
of perturbative diagrams.
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e e

e e

u,d,s,..

Figure 3.4: Quark-antiquark creation and annihilation by the virtual photon in the
electron-electron scattering.

It is clear then that the contribution of the large-size fluctuations (independent of q2)
of the vacuum fields, can be consistently kept within the framework of the operator
expansion, whereas the small-scale fluctuations cannot be included into the operator
expansion, at least in its present form.

We can try to visualize the correlator and this separation of scales. The creation
of quark-antiquark pair by the external current at one point and its absorption at
another point by another current (see Fig. 3.4) is the physical process behind the
formal definition of ΠAB(q2). It is clear that this quark-antiquark pair interacts with
the vacuum fields, and that this interaction is beyond QCD perturbation theory and
has to be taken into account separately. The vacuum fields in QCD are very compli-
cated objects, with their origin in the nonlinear nature of the QCD Lagrangian. Let
us just say about it that various non–perturbative approaches (instanton models,
lattice simulation of QCD, etc.) indicate that these vacuum fields fluctuate with
typical long-distance scales Λvac ∼ ΛQCD.

We explain now qualitatively how the contributions to the correlators coming
from the vacuum fields can be performed. It can be shown that at large −q2 ≫ Λ2

QCD

the average distance between the emission and absorption of the quark-antiquark
pair is smaller than the scale of the vacuum fluctuations and so the quark-antiquark
pair behaves as a short-distance probe of long-distance fields, being sensitive to
averaged characteristics of these fields. Therefore quarks with large momenta inter-
act with external static fields composed of soft vacuum gluons and quarks, as it is
diagrammatically shown in Fig. 3.5.

It is important to say that, in addition to these mild effects of the quark scattering
over the vacuum fields, there are specific vacuum fluctuations at short distances
∼ 1/

√

−q2, which absorb the whole momentum of the external quark current, and
that violate the condensate expansion (direct instantons).
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Figure 3.5: Diagrams corresponding to the gluon (a,b,c), quark (d), quark-gluon (e)
and four-quark (f) condensate contributions to the OPE of a correlation function.

3.4.3 OPE of the LR correlator

In the Ref. [4] can be found a detailed analysis of the operator-product expansion
of the VV and AA correlators. There we see that in the chiral limit (mu = md = 0)
these two correlators coincide to all orders in perturbation theory, and consequently
the LR correlator vanishes in perturbation theory, what makes it a purely non-
perturbative quantity.

Still in the chiral limit the first term of the OPE of the LR correlator is that of
dimension d = 6, that have the three gluon (3.32) and the four-quark component
(3.31). In Ref. [4] we can see that at leading order in the αS expansion of their
Wilson coefficients we can neglect the three-gluon contribution and we have

(−q2)3
[

Π
(0+1)
LR (q2)

](D=6)

= −8παS

(

〈ūγµT ad · ūγµT ad〉

−〈ūγµγ5T
ad · ūγµγ5T

ad〉
)

. (3.35)

The nonzero up and down quark masses induce tiny corrections with dimensions
two and four, which are negligible at q2 << 0. Therefore we will have

ΠLR(q2) = CLR
2 (q2;µ)〈O2(µ)〉 + CLR

4 (q2;µ)〈O4(µ)〉 + CLR
6 (q2;µ)〈O6(µ)〉 + . . .

≈ C̃LR
6 (µ)

(−q2)3
〈O6(µ)〉 +

C̃LR
8 (µ)

(−q2)4
〈O8(µ)〉 + . . . ,

≡ −OLR
6

q6
+

OLR
8

q8
+ . . . , (3.36)

where we have introduced the objects OLR
n that are µ-independent and approxi-

mately q2-independent and that will be extracted from the data in the next Chapter.
We will call them LR (or V-A) condensates.
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3.5 Violation of the quark-hadron duality

In Section 3.2, when deriving the general expression of a QCD Sum Rule, we have
followed the standard procedure of any sum rule analysis of replacing the correlator
for its OPE expression in the whole circumference of radius s0, see (3.13), in order
to be able to calculate theoretically the associated contour integral

∮

|z|=s0
dz Π(z)w(z)dz →

∮

|z|=s0
dz ΠOPE(z)w(z)dz . (3.37)

As we explained in the previous section the OPE of Π(q2) has been defined for
q2 ≪ 0, and in this integral we are using it for any complex value such that |q2| = s0.

But one cannot perform this analytic continuation in the whole circuit and obtain
the right expression of the correlator Π(q2) in the positive real axis, since that would
mean that we could calculate then the associated spectral function, something that
it is not possible, since the OPE is written in terms of quarks and gluons and cannot
predict the production thresholds of hadrons and resonances, and indeed it will have
production thresholds of pairs of quarks, that we know are confined. One says that
there is no local quark-hadron duality if s0 is finite, i.e.

Π(q2 > 0) 6= ΠOPE(q2 > 0) . (3.38)

Therefore the OPE substitution of the correlator in (3.37) introduces an error,
known as quark-hadron duality violation DV[w(z), s0] formally defined by

DV[w(z), s0] =
1

2πi

∮

|z|=s0
dz
(

Π(z) − ΠOPE(z)
)

w(z)dz , (3.39)

where it is explicitly shown that the DV of a given sum rule depends crucially on
the weight function w(s) and the value of the Cauchy radius s0.

The duality violation is older than the SVZ sum rules themselves and was dis-
cussed in the seventies in the context of the calculation of the process e+e− →
hadrons [15, 16]. It was conjectured by Poggio, Quinn and Weinberg [16] in 1976
that the OPE represents a good approximation in the whole complex plane except
in the region close to the positive real axis. This is equivalent to say that we cannot
use the OPE to predict the value of the spectral function ρ(s) at a given point s,
but it can predict the average of the spectral function over a wide enough interval
of energies.

This DV has been commonly disregarded in the sum rules analyses and indeed
its definition has not been clear in the literature during decades. Let us remind that
there are two kinds of errors in any practical OPE of a correlator. On one hand there
is the fact that the OPE does probably not represent a perfect approximation of the
real correlator, as simple instanton models show [7], since there are small effects
that cannot be included in the OPE. And on the other hand, the OPE itself cannot
be calculated with infinite precision, since we have to truncate the calculation of the
Wilson coefficients at a certain order in αS and also the condensates series.
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Therefore we can calculate the correlator in the euclidean region with a certain
error ǫ and the key point is that this error is enhanced during the analytic continu-
ation to the positive real axis, generating there an error qualitatively bigger than ǫ,
and this is what we call DV [17]8.

It is very instructive to work on a certain model (e.g. an instanton-based model)
[17, 19–21] where the appearance of the DV can be seen explicitly in the analytic
continuation of the OPE. We refer the interested reader to the nice reviews of M.
Shifman [17].

During the first years of application of the SVZ sum rules the DV was usually
disregarded, under the assumption of being negligible. Later it received more at-
tention, and different authors started to assign it a certain error, extracted from an
analysis of the stability of the results under changes in the Cauchy’s radius s0, since
if the DV is negligible then there should not be any s0-dependence9. Only in the last
years a different approach has been followed to estimate the DV [17, 19–26], based
on the use of simple models and general parametrizations, as we will explain with
detail in Chapter 5.

3.5.1 An alternative expression for the DV

Now we want to perform some manipulations in (3.15) in order to derive an alterna-
tive expression for the DV. If we define ρOPE(s) ≡ 1

π
ImΠOPE(s), i.e. the prediction

for the spectral function obtained assuming local duality, we have that (3.15) takes
the form

∫ s0

0

(

ρ(s) − ρOPE(s)
)

w(s)ds− Res
s=0

(

ΠχPT(z)w(z)
)

+ DV[w(z), s0] = 0 . (3.40)

If we evaluate the expression for s0 and s̃0 > s0, and compare the l.h.s. we find

DV[w(z), s0] − DV[w(s), s̃0] =

∫ s̃0

s0

(

ρ(s) − ρOPE(s)
)

w(s)ds . (3.41)

Setting s̃0 → ∞ and taking into account that DV[w(z), s̃0 =∞] = 0 one can write
the DV in the following form [17, 19, 21, 22]

DV[w(z), s0] =

∫ ∞

s0

(

ρ(s) − ρOPE(s)
)

w(s)ds , (3.42)

that is the expression that we wanted to find. This result gives us a very differ-
ent perspective of the meaning of the quark-hadron duality violation, expressing it

8The DV has been studied from this more mathematical perspective related to the stability of
the analytic continuation in some works. We refer the interested reader to Ref. [18].

9We are discussing here QCD Sum Rules were the Cauchy’s radius s0 is finite. In the Borel sum
rules, the exponential weight suppressed strongly the high-energy region and consequently one can
take in practice an infinite Cuchy’s radius. One is only moving the error from one place to another,
since the exponential weights generate an infinite series of condensates that will be neglected.



3.5 Violation of the quark-hadron duality 33

in terms of the difference between the real spectral function and the OPE predic-
tion for it beyond the upper integration limit. Let us emphasize again the explicit
dependence of the DV on the weight function w(s) and the Cauchy’s radius s0.

This expression is much simpler in the case of the LR correlator, where the
perturbative contribution vanishes. If we neglect the logarithmic dependence of the
Wilson coefficient the condensate contribution to the spectral function also vanishes
and we have

DVLR[w(z), s0] =

∫ ∞

s0

ds ρLR(s)w(s) , (3.43)

that expresses the DV as the part of the integral of the spectral function that we
have not included in the sum rule. Therefore while the expression (3.39) relates the
DV to the break-down of ΠOPE

LR (z) (a quark-gluon quantity) near z = s0, this last
expression relates it to the hadronic spectral function ρLR(s > s0).

3.5.2 WSRs: measuring the DV

In 1967 Weinberg [27] conjectured that the LR spectral function satisfy the following
relations

∫ ∞

0

ds ρ
(1)
LR(s) = 2 f 2

π (3.44)
∫ ∞

0

ds ρ
(1)
LR(s)s = 0 , (3.45)

known as first and second Weiberg Sum Rules (WSRs) respectively. Later they
were proven to hold within QCD in the chiral limit [28], as can be deduced from
the fact that the operator-product expansion of the LR correlator starts with the
dimension-six condensate in the absence of quark masses (see Section 3.4.3). Indeed
the first WSR holds also for massive quarks, whereas for the second WSR we have

∫ s0

0

ds ρ
(1)
LR(s)s = 2 f 2

π m
2
π + O(m2

qαSs0), (3.46)

where we see that for an infinite upper limit the integral diverges, although if we do
not work with large values of s0 this divergence can be neglected. These sum rules
are extremely interesting because we can take a finite upper integration limit s0 and
then we can measure the DV

DV[1, s0] = −
∫ s0

0

ds ρ
(1)
LR(s) + 2 f 2

π (3.47)

DV[s, s0] = −
∫ s0

0

ds ρ
(1)
LR(s) s+ 2 f 2

π m
2
π , (3.48)

neglecting again the corrections of the formm2
qαS. The results of these measurements

are shown in Figs. 3.6, where we can see that the DV can be very important even
at energies like s0 ∼ 3 GeV2.
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Of course, we cannot use these relations to estimate directly the DV of any other
sum rule, since it depends crucially on the weight function. However, this does not
mean that they cannot be useful. In the Fig. 3.6 we can see that the DV vanishes
at some finite points

s0 ∼ 1.5 GeV2 , s0 ∼ 2.5 GeV2 , (3.49)

known as duality points, that coincide approximately for both sum rules. This
fact has been used to suggest that these points are optimal to evaluate other sum
rules and minimize their DV. It is reasonable to think that the duality points of
two sum rules with similar weight functions will not be very different, but once
we change substantially the weight function there is no sense in assuming that the
duality points will still be close to each other. Therefore this strategy based on the
use of duality points must be taken with great care, something that has not been
done sometimes in the literature. We can safely believe the duality-point-based
prediction if it does not depend on which duality point (3.49) is taken. Otherwise
one must assign an error such that covers the prediction of both duality points.

These points are nothing but values of s0 such that there is a numerical cancel-
lation of the contributions that are ahead of them

∫ ∞

s0

ds ρ
(1)
LR(s) w(s) = 0 , (3.50)

and so it is clear that the highest duality point of (3.49) must be more stable under
the change of the weight function than the smallest one, since the cancellation needed
is smaller. Anyway, as we have emphasized, the use of the duality points must be
taken with care and the systematic error of the method will be probably quite large.
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Figure 3.6: The first and second WSRs as a function of the upper integration variable
s. The central curve corresponds to the central values of [3] while the upper and
lower curve are the one sigma errors.

3.5.3 Pinched weights

During decades it has been assumed that the use of the so-called pinched weights
(polynomial weights that vanish at s = s0) minimizes the DV [29–35], since they



3.5 Violation of the quark-hadron duality 35

suppress the contribution from the most problematic region in the contour integral
(3.39)

DV[w(z), s0] ≡ 1

2πi

∮

|s|=s0
ds w(s)

(

Π(s) − ΠOPE(s)
)

. (3.51)

But the alternative definition of the DV that expresses it in terms of the spectral
function (3.43)

DV[w(z), s0] =

∫ ∞

s0

ds w(s) ρ(s) , (3.52)

shows that things are not that simple and the assumption is not necessarily true,
since a pinched-weight (PW) function will indeed suppressed the first part of this
hadronic integral but at the same time may enhance the high-energy tail that can
become important. If the final balance is positive and the weight function does its
job minimizing the DV contribution with respect to the normal weight is something
that depends on the particular weight used and on how fast the spectral function
goes to zero, something that is not known theoretically.

This question about the convenience of the use of these PW is very entangled
with the more general question of how to estimate the duality violation of a given
sum rule. The observation of a more stable plateau in the final part of the data
is the standard requirement to check if the weight improves the situation, and the
deviations from the plateau the standard way of estimating the remaining DV. But
it is important to notice that the existence of the plateau is a necessary but not
sufficient condition, because it could be temporary. This is particularly plausible
because the PWs produce curves that have derivative zero in the second duality
point (s0 ∼ 2.6 GeV2), that is very near of the end of the data. That is, they
produce a fake plateau, that can induce to the wrong conclusion that the DV is
negligible for that weight and that value of s0.

In principle one can know if the plateau is false or real performing a fit to a
straight line. The correlations of the experimental points take into account if the
plateau is real or it has been artificially created by the weight function. But in
practice this fit is not always possible. The available window for the fit allows only
a small range and if the correlations between points in that range are very large10,
then the standard χ2-fit cannot be used, as explained in [36].

It must be emphasized that the PW functions are also useful because they are
expected to minimize the experimental errors, since they suppress the region near
the kinematical end point.

We will use these weights in the next Chapter, will give explicit examples of how
they can fail in the Appendix B and will re-analyze them with the framework that
we will explain in Chapter 5 to answer the question of their convenience in certain
sum rules.

10This situation was found e.g. in the determination of the V-A condensates in Refs. [30, 31].
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3.6 Conclusions

In this Chapter we have derived from very general first principles like analyticity
and unitarity the expression of a generic QCD Sum Rule
∫ s0

0

ρ(s)w(s)ds = Res
s=0

(

ΠχPT(z)w(z)
)

−
∮

Cout

dz

2πi
ΠOPE(z)w(z) − DV[w(z), s0].(3.53)

This is a very important result, since it connects the hadronic observables with
the quark-gluon calculations without making any assumption or working with any
model. We have introduced and thoroughly explained the different elements that
appear in this relation: the Wilson operator-product expansion that allows a QCD
calculation of the correlator in the deep euclidean region, the spectral functions that
are directly related with the experiment and the often disregarded duality violation,
that will be carefully analyzed in Section 3.5. We postpone the discussion of the
χPT contribution to the next Chapter, where it will be carefully studied.

To finish this Chapter with a more specific result and see the power of the sum
rules, we particularize the general expression to the Π

(0+1)
LR (q2) correlator with the

weight function w(s) = s2. From expressions (3.36) and (3.23) we have
∫ s0

0

ρ
(1)
LR(s) s2 ds = 2f 2

πm
4
π + O6 − DV[z2, s0] . (3.54)

It can be seen that we can use this sum rule to extract from the hadronic tau data the
value of O6, a purely non-perturbative QCD quantity. As we will see in Chapter 5
this is indeed the most precise source of information about the value of this quantity.

In the literature, given a certain correlator one can found a lot of different choices
for the weight functions and the value of s0. The Borel or Laplace Sum Rules employ
weights of the form e−τs (e.g. [7,37,38]) that suppress strongly the high-energy region
and therefore the DV, but at the same time they entail the appearance of an infinite
number of condensates. The gaussian sum rules [39], with weight functions of the
form e−(s−ŝ)/σ2

have been used to study the violation of local duality. The Finite
Energy Sum Rules [29–31,40,41] (FESRs) take a polynomial weight and a finite value
of s0 and have the advantage of involving just a small number of condensates. The
finite value of s0 generates potential problems with the DV, and there are different
strategies available in the literature to minimize this problem (WSRs duality points,
pinched weights, etc.). The sum rules that employ weights of the form 1/sm being
m a positive integer are sometimes called inverse finite energy sum rules and they
are specially good behaved because the high-energy region contribution is small and
the condensates do not appear.

In the next Chapters we are going to focus on the FESR and inverse FESR, but
conceptually the others are very similar and our arguments and conclusions can be
extended easily to those cases.



Chapter 4

Extracting Chiral LECs from tau
decays

I was just guessing
at numbers and figures,
pulling the puzzles apart.

Coldplay

Thanks to the theoretical framework developed in the previous chapter, the precise
hadronic τ -decay data provided in Refs. [3, 42–46] are a very important source of
information, both on perturbative and non-perturbative QCD parameters.

The theoretical analysis of the inclusive τ decay width into hadrons (QCD Sum
Rule with the ΠLL correlator) allows to perform an accurate determination of the
QCD coupling αs(Mτ ) [4, 29, 34, 47–50],which becomes the most precise determi-
nation of αs(MZ) after QCD running. In this case, non-perturbative QCD effects
parameterized by power corrections are strongly suppressed.

Another example of the use of hadronic τ -decay data is the study of SU(3)–
breaking corrections to the strangeness-changing two-point functions [5,6,35,51].The
separate measurement of the |∆S| = 0 and |∆S| = 1 tau decay widths (associated
to the correlators Πud/us,LL) provides accurate determinations of fundamental pa-
rameters of the Standard Model, such as the strange quark mass and the Cabibbo-
Kobayashi-Maskawa quark-mixing |Vus|.

Very important phenomenological hadronic matrix elements and non-perturbative
QCD quantities can also be obtained from τ -decay data. Of special interest is the
difference of the vector and axial-vector spectral functions, because in the chiral limit
the corresponding V −A correlator (or LR correlator) is exactly zero in perturbation
theory. The τ -decay measurement of the V − A spectral function has been used to
perform phenomenological tests of the Weinberg Sum Rules [52–54], to compute the
electromagnetic mass difference between the charged and neutral pions [53], and
to determine several QCD vacuum condensates (see Chapter 5). From the same
spectral function one can also determine the ∆I = 3/2 contribution of the ∆S = 1
four-quark operators Q7 and Q8 to ε′K/εK , in the chiral limit [30, 41, 54–57].
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In this Chapter we will see how using Chiral Perturbation Theory (χPT) [58–60],
the effective field theory of QCD at very low energies, the hadronic τ -decay data can
also be related to order parameters of the spontaneous chiral symmetry breaking
(SχSB) of QCD [61]. χPT describes the SχSB Nambu-Goldstone boson physics
through an expansion in external momenta and quark masses and the coefficients of
that expansion are related to order parameters of SχSB.

There has been a lot of recent activity to determine the value of these low-energy
constant (LECs) from theory, using as much as possible QCD information [62–77].
This strong effort is motivated by the precision required in present phenomenological
applications, which makes necessary to include corrections of O(p6), where the huge
number of unknown couplings is the major source of theoretical uncertainty.

In this Chapter we present an accurate determination of the χPT couplings Lr10
and Cr

87, using the most recent experimental data on hadronic τ decays [78, 79].
Previous work on Lr10 using τ -decay data can be found in Refs. [32, 33, 53, 54, 80].
Our analysis is the first one which includes the known two-loop χPT contributions
and, therefore, provides also the O(p6) coupling Cr

87.

4.1 Chiral Perturbation Theory

Chiral Perturbation Theory [58–60] (see e.g. [81] for a pedagogical introduction)
is the effective field theory (EFT) of the strong interactions at low energies. The
central idea of the EFT approach was formulated by Weinberg as follows [58]: “... if
one writes down the most general possible Lagrangian, including all terms consistent
with assumed symmetry principles, and then calculates matrix elements with this
Lagrangian to any given order of perturbation theory, the result will simply be the
most general possible S–matrix consistent with analyticity, perturbative unitarity,
cluster decomposition and the assumed symmetry principles.”1

In the context of QCD these ideas have been applied to the interactions among
the Goldstone bosons associated with the spontaneous chiral symmetry breaking. In
this case, the effective theory is formulated in terms of the asymptotically observed
states instead of the degrees of freedom of the underlying QCD Lagrangian (quarks
and gluons).

A successful EFT program requires both the knowledge of the most general
Lagrangian up to a given order as well as an expansion scheme for observables. Due
to the small Goldstone boson masses and their vanishing interactions in the zero-
energy limit, a derivative and quark-mass expansion is a natural scenario for the
corresponding EFT. At present, in the mesonic sector the Lagrangian is known up
to and including O(p6), where p denotes a small quantity such as a four momentum
or a pion mass.

1This procedure will be applied in the construction of the effective Lagrangian of Chapter 6
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4.1.1 The effective Lagrangian

The starting point of mesonic Chiral Perturbation Theory is the QCD Lagrangian
for Nl massless (light) quarks:

L0
QCD =

Nl
∑

l=1

(q̄R,liD/ qR,l + q̄L,liD/ qL,l) −
1

4
Gµν,aGµνa , (4.1)

where qL/R,l denote the left/right-handed components of the light quark fields,
DµqL/R,l is the covariant derivative and Gµν,a are the corresponding gluonic field
strengths. Here, we will be concerned with the cases Nl = 2, 3 referring to (u, d)
or (u, d, s) quarks, respectively. This Lagrangian is invariant under separate global
SU(Nl)L/R transformations of the left- and right-handed fields and, in addition, it
has an overall U(1)V symmetry. Different empirical facts give rise to the assumption
that this chiral symmetry is spontaneously broken down to its vectorial subgroup
SU(Nl)V × U(1)V . For example, the low-energy hadron spectrum seems to fol-
low multiplicities of the irreducible representations of the group SU(Nl) instead of
SU(Nl)L×SU(Nl)R, as indicated by the absence of degenerate multiplets of opposite
parity. Besides, the lightest mesons form a pseudoscalar octet with masses much
smaller than those of the corresponding vector mesons. According to Coleman’s
theorem [82], the symmetry pattern of the spectrum reflects the invariance of the
vacuum state. Therefore, as a result of Goldstone’s theorem [83], one would expect
3 (8) massless Goldstone bosons for Nl = 2 (3) with vanishing interactions as their
energies tend to zero. The explicit symmetry breaking due to small but finite u, d
and s quark masses, that will be treated perturbatively, generates also small masses
for these Goldstone bosons.

The QCD symmetries and its symmetry breaking pattern —due to the quark
masses— are mapped onto the most general effective Lagrangian for the interaction
of the Goldstone bosons. This Lagrangian is organized in the number of derivatives
and quark mass terms [58–60,84–87]

LχPT(x) = L2 + L4 + L6 + · · · , (4.2)

where the lowest-order Lagrangian is given by2

L2 =
f 2

4
Tr
[

DµU(DµU)† + χU † + Uχ†
]

. (4.3)

Here,

U(x) = exp

(

i

√
2 φ

f

)

, φ =







1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8






,

is a matrix containing the Goldstone boson fields and f denotes the pion decay
constant in the chiral limit: fπ = f [1 + O(mu,d)] = 92.4 MeV. Under a chiral

2In the following, we will give equations for the three-flavor case.
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transformation qR,L → gR,L qR,L, where (gL, gR) ∈ SU(3)L × SU(3)R, the matrix U
transforms as U → gR U g

†
L.

When including external sources in the QCD Lagrangian, the covariant derivative
is defined as3

DµU = ∂µU − irµU + iUℓµ , (4.5)

DµU
† = ∂µU

† + iU †rµ − iℓµU
† . (4.6)

The small quark masses are contained in χ = 2B0M, where M = diag(mu,md,ms)
is the quark mass matrix and B0 is related to the quark condensate 〈q̄q〉0 in the
chiral limit.

The next-to-leading-order Lagrangian contains 10 low-energy constants Li [60]

L4(x) = L1 〈DµU
†DµU〉2 + L2 〈DµU

†DνU〉 〈DµU †DνU〉
+ L3 〈DµU

†DµUDνU
†DνU〉 + L4 〈DµU

†DµU〉 〈U †χ+ χ†U〉
+ L5 〈DµU

†DµU
(

U †χ+ χ†U
)

〉 + L6 〈U †χ+ χ†U〉2

+ L7 〈U †χ− χ†U〉2 + L8 〈χ†Uχ†U + U †χU †χ〉
− iL9 〈F µν

R DµUDνU
† + F µν

L DµU
†DνU〉 + L10 〈U †F µν

R UFLµν〉
+ H1 〈FRµνF µν

R + FLµνF
µν
L 〉 + H2 〈χ†χ〉 , (4.7)

where the field strength tensors are defined by

F µν
L = ∂µℓν − ∂νℓµ − i[ℓµ, ℓν ] , (4.8)

F µν
R = ∂µrν − ∂νrµ − i[rµ, rν] . (4.9)

The terms proportional to H1 and H2 do not contain the pseudoscalar fields and are
therefore not directly measurable

At O(p6), 90 (23) additional low-energy constant Ci=1,··· ,90 appear in the even
(odd) intrinsic parity sector [84–86]. We show here just one of the terms

L6(x) = C87〈∇ρf−µν∇ρfµν− 〉 + . . . (4.10)

for illustration and because we will determine in this chapter the value of this C87

parameter.
The low-energy constants fπ, B, Li=1,··· ,10 and Ci=1,··· ,90 are not fixed by sym-

metry requirements alone and have to be determined phenomenologically or using
non-perturbative techniques. The O(p2) and O(p4) couplings have been determined
in the past to an acceptable accuracy (a recent compilation can be found in Ref. [88])
but the O(p6) couplings Ci are much less well determined.

3 Here rµ ≡ vµ+aµ and ℓµ ≡ vµ−aµ are defined as the external sources added to the symmetric
Lagrangian (4.1)

LQCD = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s − iγ5p)q . (4.4)

This formalism is used to incorporate the explicit breaking of chiral symmetry through the quark
masses (making s = M) and also to incorporate the electromagnetic and weak interactions.
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4.1.2 Weinberg’s power counting scheme

In addition to the most general Lagrangian, one needs a method to assess the im-
portance of the various diagrams calculated from the effective Lagrangian. Using
Weinberg’s power counting scheme [58], one may analyze the behavior of a given
diagram calculated in the framework of Eq. (4.2) under a linear re-scaling of all
external momenta, pi 7→ tpi, and a quadratic re-scaling of the light quark masses,
m̂ 7→ t2m̂. The chiral dimension D of a given diagram with amplitude M(pi, m̂) is
defined by

M(tpi, t
2m̂) = tDM(pi, m̂), (4.11)

where, in n dimensions,

D = 2 + (n− 2)NL +

∞
∑

k=1

2(k − 1)Nπ
2k ≥ 2 in 4 dimensions , (4.12)

where NL is the number of independent loop momenta and Nπ
2k the number of

vertices originating from L2k(x). A diagram with chiral dimension D is said to be of
order O(pD). Clearly, for small enough momenta and masses diagrams with small
D, such as D = 2 or D = 4, should dominate4. Note that, for n = 4, loop diagrams
are always suppressed due to the term 2NL in Eq. (4.12) and therefore we have
a perturbative scheme in terms of external momenta and masses which are small
compared to some scale (here 4πf ≈ 1 GeV).

It can be shown that, when calculating one-loop graphs, using vertices from L2

of Eq. (4.3), one generates ultraviolet divergences that can be absorbed into the
redefinition of the fields and the parameters of the most general Lagrangian. Since
L2 of Eq. (4.3) is not renormalizable in the traditional sense, the infinities cannot be
absorbed by a renormalization of the coefficients f and B. According to Weinberg’s
power counting of Eq. (4.12), one-loop graphs with vertices from L2 are of O(p4) and
therefore one needs to renormalize the parameters of L4 to cancel one-loop infinities.
So we see that the theory is renormalizable order by order.

4.2 Theoretical Framework

During this chapter we will work with the LR correlator Π(q2) ≡ Π
(0+1)
ud,LR(q2) defined

in (3.6) that we repeat here

Πµν
ud,LR(s) = i

∫

d4x eiqx 〈0|T
(

Lµud(x)R
ν
ud(0)†

)

|0〉

= (−gµνq2 + qµqν) Π
(0+1)
ud,LR(q2) + gµνq2 Π

(0)
ud,LR(q2) , (4.13)

4The re-scaling of Eq. (4.11) must be viewed as a mathematical tool. While external three-
momenta can, to a certain extent, be made arbitrarily small, the re-scaling of the quark masses is
a theoretical instrument only.
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where Lµud(x) ≡ uγµ(1 − γ5)d and Rµ
ud(x) ≡ uγµ(1 + γ5)d. It is convenient to make

explicit the contribution of the pion pole to the correlator

Π(s) =
2f 2

π

s−m2
π

+ Π(s) . (4.14)

We will work in the isospin limit mu = md where Π
(0)
ud,V (q2) = 0. In particular we

will concentrate in this chapter in the QCD Sum Rules that are obtained for this
correlator and the weights w(s) = s−2, s−1, so that we only have to take our general
formula (3.15) derived in the previous chapter and particularize it to this situation.
In this way we have the exact relation
∫ s0

sth

ds

sm
ρ(s) +

1

2πi

∮

|s|=s0

ds

sm
ΠOPE(s) + DV[s−m, s0] =

2f 2
π

m2m
π

+ Res
s=0

Π(s)

sm
. (4.15)

For positive values of m the OPE does not give any contribution to the integration
along the circle |s| = s0 if we neglect the logarithmic corrections to the Wilson
coefficients. In order to calculate the residue at the origin of Π(s)/sm we expand
the V-A correlator in his Taylor series5

Π(s) = Π(0) + Π
′
(0) · s+

1

2
Π

′′
(0) · s2 + . . . , (4.16)

and one gets then:

∫ s0

sth

ds

sm
ρ(s) + DV[s−m, s0] =

2f 2
π

m2m
π

+
Π(m−1)(0)

(m− 1)!
=

Π
(m−1)

(0)

(m− 1)!
, (4.17)

where Π
(m−1)

(0) denotes the (m − 1)th derivative of Π(s) at s = 0. Therefore we
have the following two sum rules for the m = 1, 2 cases

∫ s0

sth

ds
1

s2
ρ(s) + DV[1/s2, s0] = Π

′
(0) , (4.18)

∫ s0

sth

ds
1

s
ρ(s) + DV[1/s, s0] = Π(0) . (4.19)

The interest of this relation stems from the fact that at low values of s the correlator
can be rigourously calculated within χPT. At present Π(s) is known up to O(p6) [89],
in terms of the LECs that we want to determine6. The choices m = 1 and m = 2
allow us then to relate the spectral function measured in τ decays with the theoretical
expressions of Π(0) and Π ′(0)

Π(0) = −8 Lr10(µ) + corrections , (4.20)

Π ′(0) = 16 Cr
87(µ) +

1

480 π2

(

1

m2
K

+
2

m2
π

)

+ corrections , (4.21)

5In principle one should perform the Laurent expansion of the V-A correlator, but we have
taken into account its analytic properties near the origin.

6See Appendix C for the complete expression of Π(s) at order O(p6).
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where the corrections will be calculated in Section 4.4. Here Lr10(µ) and Cr
87(µ)

are the renormalized low-energy constants at the scale µ and, as any µ-dependent
quantity, they are not directly observable. We define now the effective parameters

Leff
10 ≡ −1

8
Π(0) = Lr10(µ) + corrections , (4.22)

Ceff
87 ≡ 1

16
Π ′(0) = Cr

87(µ) +
1

7680 π2

(

1

m2
K

+
2

m2
π

)

+ corrections , (4.23)

that are µ-independent and directly observable as the sum rules (4.19) and (4.18)
show clearly. In the next section we will extract their value from the hadronic τ -
decay measurements, whereas in Section 4.4 we will calculate their exact relation
with the corresponding χPT parameters and derive numerical values for those LECs.

4.3 Determination of Effective Couplings

We will use the 2005 ALEPH data on semileptonic τ decays [3], shown in Fig.
3.3, which provide the most recent and precise measurement of the V − A spectral
function. As we have seen the effective chiral couplings can be directly extracted
from the following integrals over the hadronic spectrum:

− 8 Leff
10 ≡ Π(0) =

1

π

∫ s0

sth

ds

s
ρ(s) , (4.24)

16 Ceff
87 ≡ Π ′(0) =

1

π

∫ s0

sth

ds

s2
ρ(s) . (4.25)

These relations are exactly satisfied at s0 → ∞, whereas at finite values of s0 we
will have a contribution from the quark-hadron duality violation, that we have not
explicitly written. Therefore (4.24) and (4.25) assume that the OPE approximates
well the correlator Π(s) over the entire complex circle |s| = s0, or equivalently, that
that the integrals on the real axis from s0 to infinite are negligible (compared with
the experimental errors), what is expected to be true only for high enough values of
s0 and for accidental “duality points”. The kinematics of τ decay restrict the upper
limit of integration to the range 0 ≤ s0 ≤ m2

τ and therefore we are forced to work
with a finite value of s0.

If the cutoff s0 = m2
τ is high enough to neglect the DV error is something that we

have to conclude a posteriori, from the study of the sensitivity to s0 of the integrals
(4.24) and (4.25), although the particular weights of these sum rules are likely to
generate a small DV, since they suppress the high-energy region.

In Fig. 4.1, we plot the value of Leff
10 and Ceff

87 obtained from Eq. (4.24) and
Eq. (4.25) for different values of s0 using the ALEPH data. The band between the
continuous lines shows the corresponding experimental uncertainties (at one sigma).
As expected, the result is far from an horizontal line at low values of s0, where the
applicability of the OPE is suspect. The oscillatory behavior stabilizes quite fast
reaching a rather stable and flat result at values of s0 between 2 and 3 GeV2. The
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Figure 4.1: Results obtained for the effective parameter using the relations (4.24)
and (4.25) with the tau decay data and taking different values for s0.

weight factor 1/sm decreases the impact of the high-energy region, minimizing the
size of quark-hadron duality violations, and the integrals appear then to be much
better behaved than the corresponding FESRs with sn (n ≥ 0) weights, as we will
explicitly check in the next chapter.

In the case of Leff
10 if we look close enough (see Fig. 4.2) we find that the current

experimental data are sufficiently accurate to appreciate that the plateau is only
approximate, that is, the small DV is still larger than the experimental error. In the
case of Ceff

87 the DV is smaller and the experimental error band is compatible with
a perfect plateau, that is to say, the DV is smaller than the experimental errors (or
at most it is of the same order).
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Figure 4.2: Enlargements of the curves shown in the Fig. 4.1.

Consequently the choice of a specific value of s0 will not be relevant for Ceff
87 ,

but it will be for Leff
10 , where different values of s0 will produce incompatible values

of Leff
10 . Of course, one can just assign an overestimated error compatible with any

value s0 of the plateau, let’s say

Leff
10 = −(6.6 ± 0.3) · 10−3 , (4.26)

Ceff
87 = +(8.15 ± 0.20) · 10−3 GeV−2 , (4.27)

but as we have said this is an overestimated error (especially in the case of Leff
10 )

and we have theoretical information (the WSRs) that can be used to improve this
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determination. In order to exploit this theoretical information about the behavior
of the DV and estimate the central value for Leff

10 and its error, there are different
strategies available in the literature. We review them here with a critical analysis:

• Maximum value of s0.- The naive choice is to take s0 as large as possible
[42, 44, 53], that is s0 = m2

τ , in order to minimize the DV error. Although in
principle one expects that the larger is s0 the smaller is the DV, the WSRs
teach us that this reasoning can be too naive due to the oscillatory behavior of
the spectral function. Assuming than the lessons learned from the WSRs can
be applied to these sum rules (that is, that the weights are not dramatically
different), we know that the cancellations make s0 ∼ 2.5 GeV2 a much better
choice. Besides, the maximum s0 entails a big experimental error. Because of
these reasons we will not take this point.

• Representative-plateau point.- In order to minimize the DV (that de-
creases with s0) and the experimental error (that grows with s0) one can take
a point approximately in the middle of the plateau, that will be large but not
the maximum [33]

Leff
10 (s0 = 2.7 GeV2) = −(6.51 ± 0.08) · 10−3 (4.28)

Ceff
87 (s0 = 2.7 GeV2) = +(8.18 ± 0.12) · 10−3 GeV−2, (4.29)

where the errors are purely experimental and do not contain any estimation
of the DV contribution, that as we have seen in the figures is not negligible,
at least in the case of Leff

10 .

• Duality points.- Another possibility is to give the predictions fixing s0 at
the so-called duality points, where the first and second WSRs happen to be
satisfied (see Section 3.5.2). At the highest “duality point”, which is more
reliable, we obtain Leff

10 = −(6.45 ± 0.09) · 10−3, where the quoted error only
includes the experimental uncertainty. Being conservative, one could also take
into account the first “duality point”; performing a weighted average of both
results, we get Leff

10 = −(6.50 ± 0.13) · 10−3, where the uncertainty covers the
values obtained at the two duality points.

• Oscillations.- We know that the V-A spectral function should go to zero
as s0 increases and the expected behavior is oscillatory. Therefore assuming
that the integral (4.24) oscillates around his asymptotic value with decreasing
oscillations, one can get another estimate performing an average between the
maxima and minima of the successive oscillations. This procedure gives a
value Leff

10 = −(6.5± 0.2) · 10−3, that is perfectly compatible with the previous
results based on the duality points.

• Continuing the spectral function.- Using appropriate oscillating functions
defined in [22] which mimic the real quark-hadron oscillations above the data7

7We will develop this idea with great detail in the next Chapter.
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we can get another estimate. These functions are defined such that they match
the data at ∼ 3 GeV2, go to zero with decreasing oscillations and satisfy the
first and second WSRs. We find in this way Leff

10 = −(6.50±0.12) ·10−3, where
the error spans the range generated by the different functions used. This result
agrees well with our previous estimates.

• Pinched weights8.- We can take advantage of the WSRs to construct mod-
ified sum rules with weight factors proportional to (1 − s/s0), in order to
suppress numerically the role of the suspect region around s ∼ s0:

− 8 Leff
10 =

1

π

∫ s0

sth

ds

s

(

1 − s

s0

)

ρ(s) + ∆1(s0) , (4.30)

=
1

π

∫ s0

sth

ds

s

(

1 − s

s0

)2

ρ(s) + 2∆1(s0) − ∆2(s0) . (4.31)

The factors ∆1(s0) =
(

2f 2
π + C̃LR

2

)

/s0 and ∆2(s0) =
(

2f 2
πm

2
π − C̃LR

4

)

/s2
0 are

small corrections dominated by the f 2
π term, since C̃LR

2,4 vanish in the chiral limit
(see the OPE in Eq. (3.34) to see the definition of C̃LR

n ) . The sum rule (4.31)
has been previously used in Refs. [32,33]. The dashed and dot-dashed lines in
Fig. 4.3 show the results obtained from Eqs. (4.30) and (4.31), respectively. As
already found in Refs. [32,33], these PW minimize the theoretical uncertainties
in a sizable way, giving rise to very stable results over a quite wide range of
s0 values. One gets then Leff

10 = −(6.51 ± 0.06) · 10−3 using Eq. (4.30), and
Leff

10 = −(6.45 ± 0.06) · 10−3 from Eq. (4.31).

Taking into account all the previous discussion, we quote as our final result:

Leff
10 = −(6.48 ± 0.06) · 10−3 . (4.32)

We have made a completely analogous analysis to determine the effective cou-
pling Ceff

87 . The results are shown in Fig. 4.4. The continuous lines, obtained from
Eq. (4.25), are much more stable than the corresponding results for Leff

10 , owing to
the 1/s2 factor in the integrand. The dashed and dot-dashed lines correspond to the
results obtained from the modified sum rules:

16 Ceff
87 =

1

π

∫ s0

sth

ds

s2

(

1 − s2

s2
0

)

ρ(s) +
∆1(s0)

s0
, (4.33)

=
1

π

∫ s0

sth

ds

s2

(

1 − s

s0

)2(

1 + 2
s

s0

)

ρ(s) +
3∆1(s0) − 2∆2(s0)

s0
. (4.34)

8 As was explained in Section 3.5.3 the use of the PW is not always beneficial and they can
generate an underestimation of the errors. Due to this we have not based our analysis entirely on
them, but we have used other methods to check the compatibility of their results. In Appendix B
we analyze the use of the PW in these sum rules and in the next chapter we will prove (within our
parameterization) that they indeed minimize the experimental and DV error.
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Figure 4.3: Determinations of Leff
10 at different values of s0, using the modified ex-

pressions of Eqs. (4.30) (dashed line) and (4.31) (dot-dashed line). For clarity, we
do not include their corresponding error bands. We left the result obtained with the
standard weight Eq. (4.24) (solid line) for comparison.

The agreement among the different estimates is quite remarkable. We quote as our
final conservative result,

Ceff
87 = (8.18 ± 0.13) · 10−3 GeV−2 . (4.35)
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Figure 4.4: Determinations of Ceff
87 at different values of s0. The continuous lines

show the results obtained from Eq. (4.25). The modified expressions in Eqs. (4.33)
and (4.34) give rise to the dashed and dot-dashed lines, respectively. For clarity, we
do not include their corresponding error bands.

4.4 χPT results

In this section we will calculate the behavior near the origin of the V-A correlator
with χPT and therefore we will relate the effective parameters to the LECs of the
theory (at a certain renormalization scale). In particular we need to calculate the
value of Π(s) and his derivative in the origin.
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4.4.1 Calculation at order p4

Before going on to the O(p6) calculation it is interesting to present the more simple
O(p4) calculation, that it is equivalent conceptually but does not involve so long
expressions. Therefore we start from the well-known result [60]

Π(s) =
2f 2

π

s− m2
π

− 8Lr10 − 8Bππ
V (s) − 4BKK

V (s) (4.36)

where

Bii
V (s) ≡ 1

192π2
σ2(σ log

σ − 1

σ + 1
+ 2) − 1

32π2
(log

m2
i

µ2
+ 1) +

1

288π2
, (4.37)

σ ≡
√

1 − 4m2
i

s
. (4.38)

From this expression we have

−1

8
Π (0) = Lr10 + lim

s→0
Bππ
V (s) +

1

2
lim
s→0

BKK
V (s)

= Lr10 +
1 + log m2

π

µ2

192π2
+

1 + log
m2

K

µ2

384π2

= Lr10 +
1

384π2
log

m2
K

m2
π

+
1 + log m2

π

µ2

128π2
, (4.39)

and we can see that the effective parameter Leff
10 (l.h.s.) correspond to the low-

energy constant Lr10(µ) but for a correction that cancels the χPT renormalization
scale dependence of Lr10(µ) (and hence the name of Leff

10 ). We extend this notation
and define in the same way Ceff

87 , although in this case Cr
87 may not be the largest

contribution, since there is another contribution at order p4

1

16
Π

′
(0) =

−1

16

(

8 lim
s→0

d

ds
Bππ
V (s) − 4 lim

s→0

d

ds
BKK
V (s)

)

=
1

16

1

480π2

(

1

m2
K

+
2

m2
π

)

. (4.40)

Of course at this order we cannot extract Cr
87 from Ceff

87 because we do not have
still Cr

87 in the χPT Lagrangian, but we can just see how important is the O(p4)
contribution to Ceff

87 .
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4.4.2 Calculation at order p6

In this section we will start from the following result for the V-A correlator [89]

Π(s) =
2f 2

π

s− m2
π

− 8Lr10 − 8Bππ
V (s) − 4BKK

V (s) (4.41)

+ 16 Cr
87 s (4.42)

− 32 m2
π (Cr

61 − Cr
12 − Cr

80) (4.43)

− 32 (m2
π + 2m2

K) (Cr
62 − Cr

13 − Cr
81) (4.44)

+ 16

(

(2µπ + µK)(Lr9 + 2Lr10) − (2Bππ
V (s) +BKK

V (s)) Lr9
s

f 2
π

)

(4.45)

− 8 G2L(µ, s) , (4.46)

where the functions Bii
V (s) were defined in (4.37), G2L(s) represents the 2-loop con-

tributions (the explicit expression can be found in Appendix C , but we will work
with this notation in order to avoid endless expressions) and

µi =
m2
i

32π2f 2
π

log
m2
i

µ2
. (4.47)

It is convenient to analyze the different terms of this expression, looking not only to
their importance in the chiral expansion but also in the expansion in the number of
quark colors Nc [90]:

• (4.41) is the contribution of order p2 and p4. Notice that the one-loop correc-
tions given by the Bii

V (s) functions are suppressed by one power of 1/NC with
respect to the Lr10(µ) contact term;

• (4.42) is the s-dependent part of the O(p6) counterterms;

• (4.43) is a counterterm contribution suppressed by the factor m2
π;

• (4.44) is a counterterm contribution that is enhanced by m2
K/m

2
π with respect

to (4.43), but has a 1/Nc suppression factor because these LECs are associated
to operators with two traces [63, 85];

• (4.45) is the one-loop contribution of the order p4 χPT Lagrangian and there-
fore is also suppressed by a factor 1/Nc with respect to (4.43). It contains
LECs of order p4;

• (4.46) is the two-loop contribution, does not depend on any LEC, and it is
suppressed by a factor (1/Nc)

2 with respect to (4.43).
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From this expression we can calculate the value of the correlator and his derivative
in the origin, finding

Leff
10 ≡ −1

8
Π(0)

= Lr10(µ) +
1

128 π2

[

1 − log

(

µ2

m2
π

)

+
1

3
log

(

m2
K

m2
π

)]

+ 4m2
π (Cr

61 − Cr
12 − Cr

80)(µ)

+ 4
(

2m2
K +m2

π

)

(Cr
62 − Cr

13 − Cr
81)(µ)

− 2 (2µπ + µK) (Lr9 + 2Lr10)(µ)

+ G2L(µ, s=0) + O(p8) , (4.48)

Ceff
87 ≡ 1

16
Π ′(0)

= Cr
87(µ)+

1

7680 π2

(

1

m2
K

+
2

m2
π

)

− 1

64 π2f 2
π

[

1 − log

(

µ2

m2
π

)

+
1

3
log

(

m2
K

m2
π

)]

Lr9(µ)

− 1

2
G′

2L(µ, s=0) + O(p8) , (4.49)

where G′
2L(µ, s) ≡ d

ds
G2L(µ, s).

The derivative operation, when acting over the one-loop contribution to Π(s),
generates the terms proportional to inverse powers of the pion and kaon masses in
the second line. For simplicity, we relegate the explicit analytic forms of G2L(µ) and
G′

2L(µ), which are very lengthy and not too enlightening to Appendix C.

4.5 Determination of Lr
10 and Cr

87

In this section we want to use the relations (4.48) and (4.49) and the values of
the effective parameters Leff

10 and Ceff
87 obtained in Section 4.3 to determine the χPT

couplings Lr10 and Cr
87 at a certain value of the scale µ.

At O(p4) the determination of Lr10 is straightforward, since one only needs to
subtract from Leff

10 the term
[

1 − log (µ2/m2
π) + 1

3
log (m2

K/m
2
π)
]

/(128π2). Taking
µ = Mρ as the reference value for the χPT renormalization scale, one gets

Lr10(Mρ) = −(5.22 ± 0.06) · 10−3 . (4.50)

At order p6, the numerical relation is more subtle because it gets small corrections
from other LECs. As we have seen, it is useful to classify the O(p6) contributions
through their ordering within the 1/NC expansion. The tree-level term 4m2

π(C
r
61 −

Cr
12 −Cr

80), which is the only O(p6) correction in the large–NC limit, is numerically
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small because it appears suppressed by a factor m2
π. The three relevant couplings

have been determined phenomenologically with a moderate accuracy:

Cr
61(Mρ) = (1.24 ± 0.44)· 10−3 GeV−2 (from Π

(0+1)
ud,V (0) − Π

(0+1)
us,V (0)) [66, 67],

Cr
12(Mρ) = (0.4 ± 6.3)· 10−5 GeV−2 (from the Kπ scalar form factor) [71] ,

Cr
80(Mρ) = (2.1 ± 0.5)· 10−3 GeV−2 (from a1/K1 mass and

width differences) [72] .

These determinations agree reasonably well with published meson-exchange esti-
mates [65, 89] and lead to a total contribution

4m2
π(C

r
61 − Cr

12 − Cr
80)(Mρ) = −(6.7 ± 5.2) · 10−5 . (4.51)

The scale dependence of this combination of O(p6) couplings [84–86] between µ = 0.6
GeV and µ = 1.1 GeV is within its quoted uncertainty.

At NLO in 1/NC we need to consider the tree-level contribution proportional to
the combination of LECs (Cr

62 − Cr
13 − Cr

81). We are not aware of any published
estimate of these 1/NC suppressed couplings, beyond the trivial statement that
they do not get any tree-level contribution from resonance exchange [63, 65]. We
will adopt the conservative range

|Cr
62 − Cr

13 − Cr
81|(Mρ) ≤ |Cr

61 − Cr
12 − Cr

80|(Mρ)/3 , (4.52)

which gives a contribution

4(2m2
K +m2

π)(C
r
62 − Cr

13 − Cr
81)(Mρ) = (0.0 ± 5.8) · 10−4 . (4.53)

The scale dependence between µ = 0.6 GeV and µ = 1.1 GeV of this combination
of O(p6) couplings [84–86] is within its quoted uncertainty. The uncertainty on this
term will dominate our final error on the Lr10(Mρ) determination. At the same NLO
in 1/NC , there is also a one-loop correction proportional to Lr9(Mρ); using the O(p6)
determination Lr9(Mρ) = (5.93 ± 0.43) · 10−3 [74], this contribution gives

2(2µπ + µK) Lr9(Mρ) = −(1.56 ± 0.11) · 10−3 . (4.54)

Finally, the 1/N2
C suppressed two-loop function which collects the non-analytic con-

tributions takes the value G2L(Mρ) = −0.52 · 10−3, one order of magnitude smaller
than Leff

10 , but still eight times larger than the uncertainty quoted for Leff
10 in (4.32).

Taking all these contributions into account, we finally get the wanted O(p6) result:

Lr10(Mρ) = −(4.06 ± 0.04
L

eff
10
± 0.39LECs) · 10−3

= −(4.06 ± 0.39) · 10−3 , (4.55)

where the uncertainty has been split into its two main components. The final error
is completely dominated by our ignorance on the 1/NC suppressed LECs of O(p6).
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The determination of Cr
87 from Ceff

87 at this order in the chiral expansion does
not involve any unknown LEC (like the determination of Lr10 at order p4). The
contribution of order p4 in the relation (4.49) is

−1

7680 π2

(

1

m2
K

+
2

m2
π

)

= −1.41 · 10−3 GeV−2 , (4.56)

whereas the one-loop correction from L4(x), which depends on Lr9(Mρ), gives −(1.75±
0.13) · 10−3 GeV−2 and the two-loop contributions G′

2L(Mρ) = −0.28 · 10−3 GeV−2.
In spite of the chiral and 1/NC suppression, the different contributions go in the
same direction and the final correction is very sizable, decreasing the final value of
the O(p6) LEC:

Cr
87(Mρ) = (4.89 ± 0.13

C
eff
87
± 0.13LECs) · 10−3 GeV−2

= (4.89 ± 0.18) · 10−3 GeV−2 , (4.57)

where we see that in this case the error is equally shared by the experimental and
LECs uncertainties.

4.6 From Lr
10 to Lr

9

A recent reanalysis of the decay π+ → e+νγ [72], using new experimental data, has
provided quite accurate values for the combination of LECs L9 + L10,

Lr9(Mρ) + Lr10(Mρ) =

{

(1.32 ± 0.14) · 10−3 , O(p4),

(1.44 ± 0.08) · 10−3 , O(p6),
(4.58)

that can be used in combination with our results for Lr10(Mρ) to extract the value
of Lr9(Mρ):

Lr9(Mρ) =

{

(6.54 ± 0.15) · 10−3 , O(p4),

(5.50 ± 0.40) · 10−3 , O(p6),
(4.59)

in perfect agreement with the O(p4) result Lr9(Mρ) = (6.9 ± 0.7) · 10−3 of Ref. [88]
and the O(p6) result Lr9(Mρ) = (5.93±0.43) ·10−3 of Ref. [74]. This last comparison
represents an indirect check (in fact the only possible one for the moment) of our
O(p6) result for Lr10.

4.7 SU(2) χPT

Up to now, we have discussed the low-energy constants of SU(3) χPT. It is useful to
consider also the effective low-energy theory with only two flavors of light quarks to
perform high-accuracy phenomenological determinations of the corresponding LECs
at NLO. Moreover, recent lattice calculations with two dynamical quarks are already
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able to obtain the SU(2) LECs with high precision and this is an important check
for them.

In SU(2) χPT, there are ten LECs, li=1,..7 and h1,2,3, at O(p4) [59]. Using the
O(p6) relation between lr5(µ) and Lr10(µ), recently obtained in Ref. [91] we get

l5 = −192π2 Leff
10 + 1 + log

(

mK

m̂K

)

+ 768 π2m2
π(C

r
61 + Cr

62 − Cr
12 − Cr

13 − Cr
80 − Cr

81)(µ)

+ 1536 π2(m2
K − m̂2

K)(Cr
62 − Cr

13 − Cr
81)(µ)

− 384 π2(2µπ + µK − µ̂K)(Lr9 + 2Lr10)(µ)

− xK

[

−67

48
+

21

16
ρ1 +

5

8
log

(

4

3

)

− 17

4
log

(

µ2

m̂2
K

)

+
3

4
log2

(

µ2

m̂2
K

)]

+ 192 π2G2L(µ) + O(p8) , (4.60)

where m̂2
K = m2

K −m2
π/2 is the kaon mass squared in the limit mu = md = 0, xK =

m̂2
K/(16π2f 2

π), µ̂K = m̂2
K log(m̂K/µ)/(16π2f 2

π) and ρ1 ≃ 1.41602. The invariant
coupling l5 is defined by [59]

l5 ≡ −192π2lr5 − log
M2

π

µ2
, (4.61)

l6 ≡ −96π2lr6 − log
M2

π

µ2
, (4.62)

where we have defined also l6 for future convenience.
The first line in (4.60) contains the O(p4) contributions; the determination of

l5 at this order is then straightforward. The full O(p6) result, with the different
tree-level, one-loop and two-loop corrections, is given in the other lines. Following
the same procedure as in the SU(3) case, we get the results

l5 =

{

13.30 ± 0.11 , O(p4),

12.24 ± 0.21 , O(p6).
(4.63)

From a phenomenological analysis of the radiative decay π → lνγ within SU(2)
χPT, the authors of Ref. [73] obtained

l6 − l5 =

{

2.57 ± 0.35 , O(p4),

2.98 ± 0.33 , O(p6).
(4.64)

Using these results and our determinations for l5 one gets9

l6 =

{

15.80 ± 0.29 , O(p4),

15.22 ± 0.39 , O(p6).
(4.65)

9Actually, at order p4, the most precise value of the combination l6 − l5 is obtained if we
calculate it from the SU(3) combination L9 + L10 of Ref. [72], that is Eq. (4.58). In this way we
have obtained a prediction for l6 that supersedes that of Ref. [78].
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Making use of the recent results obtained in Ref. [92] we can also rewrite our
result for Cr

87 in the SU(2) χPT language, getting the first determination of cr50

cr50(Mρ) = (4.95 ± 0.18) · 10−3 GeV−2 . (4.66)

4.8 Summary and comparisons

Using the most recent hadronic τ -decay data [3] on the V − A spectral function,
and general properties of QCD such as analyticity, the OPE and χPT, we have
determined very accurately the chiral low-energy constants Lr10(Mρ), l5, Cr

87(Mρ)
and cr50(Mρ), working both at O(p4) and O(p6) in the chiral expansion. Taking into
account the results of Refs. [72,73] we have also extracted the values of Lr9(Mρ) and
l6. The results are summarized in Tables 4.1 and 4.2.

χPT2 χPT3

l5 = 13.30 ± 0.11 Lr10(Mρ) = −(5.22 ± 0.06) · 10−3

l6 = 15.80 ± 0.29 Lr9(Mρ) = (6.54 ± 0.15) · 10−3

Table 4.1: Results for the χPT LECs obtained at O(p4).

χPT2 χPT3

l5 = 12.24 ± 0.21 Lr10(Mρ) = −(4.06 ± 0.39) · 10−3

l6 = 15.22 ± 0.39 Lr9(Mρ) = (5.50 ± 0.40) · 10−3

cr50 = (4.95 ± 0.18) · 10−3 GeV−2 Cr
87(Mρ) = (4.89 ± 0.18) · 10−3 GeV−2

Table 4.2: Results for the χPT LECs obtained at O(p6).

Our error estimate includes a careful analysis of the theoretical uncertainties
associated with the use of the OPE in the dangerous region close to the physical
cut. Moreover, in (4.55) and (4.57) we have explicitly separated the error into its two
main components, showing that our present ignorance on the 1/NC suppressed LECs
dominates the final uncertainty of the Lr10(Mρ) determination at O(p6), whereas in
the Cr

87 case the error is equally shared by the experimental and LECs uncertainties.
We can find different determinations of these LECs in the literature, that we can

divide in phenomenological, theoretical and lattice determinations.
Phenomenological determinations.- Before the existence of τ -data Lr10 was

extracted from the form factors of radiative pion decay (where the combination
Lr10 + Lr9 appears) together with the knowledge of Lr9. Once τ -data was available
from DORIS at DESY [93] and PEP at SLAC [94] it was possible to perform the
first sum rule determination of Lr10 [80]. This determination used data-interpolated
functions extracted from [1] and did not assign any error to the result.

With the good quality τ -data coming from LEP at CERN several authors re-
peated this analysis, although in most of the cases they just got the effective pa-
rameter and did not extract the Lr10 value. Due to this, we show in Table 4.3 the
different values obtained for the effective parameter.
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Leff
10 · 103 Ref. Data
−6.0 [80] Argus Coll. (1986) [93]

−6.36 ± 0.19 [53] ALEPH Coll. (1998) [42, 43]
−5.80 ± 0.20 [54] ALEPH Coll. (1998) [42, 43]
−6.43 ± 0.08 [32] ALEPH Coll. (1998) [42, 43]
−6.45 ± 0.06 [33] ALEPH Coll. (2005) [3]
−6.48 ± 0.06 This work [78] ALEPH Coll. (2005) [3]

Table 4.3: Different determinations of Leff
10 .

The determination of Ref. [53] was done through a simultaneous fit of this pa-
rameter and the OPE corrections of dimensions six and eight to several spectral
moments of the hadronic distribution with the older 1998 ALEPH data [42, 43], in
good agreement with us, although obviously less precise.

The value of Ref. [54] is the only one that disagrees with ours, being 3.2 σ
smaller. It was extracted from τ data using the first “duality point” of the WSRs
and the older ALEPH τ -data. The difference comes from underestimated theoretical
uncertainties in this reference, as can be easily seen by choosing instead the second
duality point or varying slightly the value of the first duality point. In fact the same
Ref. [54] (see Eq. (10) therein) presents also a different estimate of Leff

10 that is in
very good agreement with our result.

In Ref. [32] Leff
10 was determined using the older ALEPH τ -data and an updated

re-analysis with the new data was given in [33]. We see that they are in good
agreement with our result, but their analysis relies completely on the use of the
pinched weights whereas ours includes a more detailed assessment of the theoretical
uncertainties, that discards a possible failure of the PW (see Appendix B).

Only in Ref. [53] the value of the chiral parameter Lr10 was extracted (at order
p4), finding

Lr10(Mρ) = −(5.13 ± 0.19) · 10−3, O(p4) , (4.67)

obviously also in good agreement with our O(p4) result. We can perform an indirect
check through the comparison of our O(p4) result for Lr9 with the value Lr9(Mρ) =
(6.9 ± 0.7) · 10−3 obtained from the charge radius of the pion [88]. We see a very
good agreement and a clear improvement in the precision10.

Our determination of Lr10 (l5) is the first one at O(p6), although again we can
make an indirect and interesting check comparing our O(p6) result for Lr9 (l6) with
the value Lr9(Mρ) = (5.93 ± 0.43) · 10−3 (l6 = 16.0 ± 0.5 ± 0.7) obtained from the
charge radius of the pion [74] ( [75]). The agreement is once more very good and
the improvement in the numerical value of l6 is remarkable.

Our determination of Cr
87 (cr50) is the first one performed phenomenologically,

although in Ref. [32] the value of Π
′
(0) was extracted using the same QCD Sum

10This is equivalent to use the old extraction of Lr
10 based on the use of the relation Leff

10 =
−1
12 f2

π〈r2
π〉 + 1

4FA.
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Rule that we have used (with the old ALEPH) data, and from there we can extract
the value Ceff

87 = (8.12 ± 0.13) · 10−3 GeV−2 that is in good agreement with ours.
Theoretical determinations.- Our determinations of Lr10(µ) and Cr

87(µ) at
µ = Mρ agree within errors with the large–NC estimates based on lowest-meson
dominance [62–64,76, 89]:

L10 = − F 2
V

4M2
V

+
F 2
A

4M2
A

≈ − 3f 2
π

8M2
V

≈ −5.4 · 10−3 ,

C87 =
F 2
V

8M4
V

− F 2
A

8M4
A

≈ 7f 2
π

32M4
V

≈ 5.3 · 10−3 GeV−2 .

They are also in good agreement with the result of Refs. [68, 69] for C87 based
on Padé Approximants. These predictions, however, are unable to fix the scale
dependence which is of higher-order in 1/NC. More recently, the resonance chiral
theory Lagrangian [63, 64, 95] has been used to analyze the LR correlator at NLO
order in the 1/NC expansion [70]. Matching the effective field theory description
with the short-distance QCD behavior, the two LECs are determined, keeping full
control of their µ dependence. The theoretically predicted values [70]

Lr10(Mρ) = −(4.4 ± 0.9) · 10−3 , (4.68)

Cr
87(Mρ) = (3.6 ± 1.3) · 10−3 GeV−2 , (4.69)

are in perfect agreement with our determinations, although less precise.
Lattice determinations.- The most recent lattice calculations find the follow-

ing results (order p4):

Lr10(Mρ) =

{

−(5.2 ± 0.5) · 10−3 [96],
−(5.7 ± 1.1 ± 0.7) · 10−3 [97],

l6 =

{

14.9 ± 1.2 ± 0.7 [98],
11.9 ± 0.7 ± 1.0 [99].

(4.70)

They are in good agreement with our determinations (although still far from the
phenomenological precision), but for the last one that is slightly smaller. As dis-
cussed in Ref. [99], this is partly due to the deviation of the lattice determination
of the pion decay constant from the χPT one.

Therefore we can conclude that the different analytical approaches and the var-
ious lattice calculations agree very well with our precise phenomenological values.

As a final remark let us say that the L10 parameter has a conceptual importance
that goes beyond the framework of χPT, since the analogous parameter in strongly
coupled extensions of the Standard Model (e.g. technicolor theories) is equal to the S
Peskin-Takeuchi parameter [100] but for a minus sign and some factors. It has been
suggested that a QCD-like theory will generate a positive value of S, what makes very
interesting its determination. Some works [101] indicated that the electroweak data
entailed S < 0, what led to the assertion that the electroweak symmetry breaking
does not mimic QCD, but more recent works showed that a positive S is still allowed
by the current experimental data [102].



Chapter 5

Estimating the Duality Violation

There is no such thing as a
theoretical uncertainty.
All there is is theoretical stupidity.

Guido Altarelli

The basic assumption behind the QCD Sum Rules is that the quark and hadron
degrees of freedom provide two dual descriptions of the same strong interaction dy-
namics. This quark-hadron duality is a consequence of the assumed confinement
of QCD. In more technical terms, a sum rule is a dispersion relation relating the
value of a given two-point correlation function at some Euclidean value of Q2 with
an integral over the corresponding spectral function in the Minkowskian domain.
Quark-hadron duality allows us to calculate this Minkowskian integral in terms of
hadrons, using the available experimental data. Ideally, the resulting QCD Sum
Rule is an exact mathematical relation arising from analyticity and confinement
(duality). In practice, however, as we have explained in Chapter 3 a series of approx-
imations need unavoidably to be adopted in its specific numerical implementation
(OPE truncation, cutoff in the hadronic integral, etc.).

The associated violation of quark-hadron duality is difficult to estimate, because
of our inability to make reliable QCD calculations at low and intermediate energies.
The normal way to assess the theoretical uncertainties of QCD Sum Rules consists
in estimating the OPE truncation error and testing the stability of the results with
variations of s0. However, this method is too naive (see Appendix B) and can
underestimate the DV.

Violations of QCD quark-hadron duality [17] have been poorly studied and often
disregarded. Its importance in Finite Energy Sum Rules (FESRs) has attracted
some attention recently [21–24], owing to the phenomenological need for higher
accuracies. To estimate the size of these effects is of course of maximal importance,
if we want to master the strong interaction at all energies and be able to perform
precision QCD calculations. This importance extends to all particle physics when
one realizes that those calculations are often necessary to disentangle New Physics
from the Standard Model. Moreover, duality violations will also be present in NP
scenarios characterized by a strongly-interacting dynamics. A better knowledge
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of duality violations in QCD would help to understand their role in more exotic
theories.

In the following, we present a detailed analysis of the possible numerical impact
of duality violations in the description of the LR correlator [25, 26]. Let us repeat
that this is a very good laboratory to test the problem because this correlator is
an order parameter of chiral-symmetry breaking: in the massless quark limit it
vanishes to all orders in perturbation theory, i.e. its operator product expansion
only contains power-suppressed contributions, starting with dimension six. In the
absence of any theory of duality violations, we will use a generic, but theoretically
motivated, model [17, 20] to assess the phenomenological relevance of these effects.

The theoretical ingredients of our analysis are presented in the next section.
Section 5.2 contains a detailed discussion of the behavior of the physical spectral
function at high energies. Using the most recent experimental data, we generate
a large number of “acceptable” spectral functions which satisfy all known QCD
constraints. Our numerical results, obtained through a careful statistical analysis
of the whole set of possible spectral functions, are given in section 5.3. Section 5.6
summarizes our findings.

5.1 Theoretical Framework

In this chapter we will work again with the LR correlator Π(q2) ≡ Π
(0+1)
LR (q2). As

we have explained carefully in the previous chapter, its analytic properties allow us
to derive the exact relation (3.15), that we show now for a weight function of the
form w(s) = sn, being n an integer number that can be positive or negative

∫ s0

sth

ds sn ρ(s) +
1

2πi

∮

|s|=s0
ds sn Π(s) = 2f 2

πm
2n
π + Res

s=0
[sn Π(s)] , (5.1)

Integrals of the chiral spectral function ρ(s) times the weight function sn from the
continuum threshold sth up to s0 are usually called spectral chiral moments Mn(s0);
when s0 → ∞ we will denote them Mn for brevity.

As was extensively explained in Chapter 3, in order to evaluate the contour
integral of (5.1), one approximates Π(s) with its OPE expression

ΠOPE(s) =
∑

k=3

C2k(ν) 〈O2k〉(ν)
(−s)k ≡

∑

k=3

O2k

(−s)k , (5.2)

where O2k are the so-called V-A condensates. So we can rewrite Eq. (5.1) as
∫ s0

sth

ds sn ρ(s) +
1

2πi

∮

|s|=s0
ds sn ΠOPE(s) + DV[sn, s0]

= 2f 2
πm

2n
π + Res

s=0
[sn Π(s)] , (5.3)

where

DV[sn, s0] ≡ 1

2πi

∮

|s|=s0
ds sn

(

Π(s) − ΠOPE(s)
)

(5.4)
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parameterizes the violation of quark-hadron duality that we are interested in. The
relation (5.3) contains all the elements of a standard QCD Sum Rule, with the
hadronic contribution (integral of the V −A non-strange spectral function), the
OPE contour integral at |s| = s0 and the possible residue at the origin calculable
with Chiral Perturbation Theory.

In order to analyse duality violation effects in different sum rules, we will use the
weights w(s) = sn, with n = −2,−1, 2, 3, that generate the following four FESRs:1

M−2(s0) ≡
∫ s0

sth

ds
1

s2
ρ(s) = 16Ceff

87 − DV[1/s2, s0] , (5.5)

M−1(s0) ≡
∫ s0

sth

ds
1

s
ρ(s) = −8Leff

10 − DV[1/s, s0] , (5.6)

M2(s0) ≡
∫ s0

sth

ds s2 ρ(s) = 2f 2
πm

4
π + O6 − DV[s2, s0] , (5.7)

M3(s0) ≡
∫ s0

sth

ds s3 ρ(s) = 2f 2
πm

6
π − O8 − DV[s3, s0] , (5.8)

where the effective parameters Leff
10 ≡ −1

8
Π(0) and Ceff

87 ≡ 1
16

Π
′
(0) were introduced

in the previous chapter, while O6,8 are defined in Eq. (5.2). These four sum rules
have been used in the past [30–33, 41, 42, 53, 61, 78, 104] to extract the values of
either the χPT couplings Lr10 and Cr

87, or the vacuum expectation values of the
dimension six and eight operators appearing in the OPE. In those works the DV
effects were just inferred from the s0-stability (if not just neglected), that as we will
see can be a misleading method. Here we want to analyze the effect of DV on these
four observables using a different approach that will be explained in the following
sections.

For the computation of the hadronic integral representation of the moments
Mn(s0) we will use the 2005 ALEPH data on semileptonic τ decays [3], shown in
Fig. 3.3, which provide the most recent and precise measurement of the V − A
spectral function ρ(s).

5.1.1 Theoretically known spectral moments

In the four sum rules introduced in the previous section, we use the experimen-
tal data to extract theoretical information, namely the value of the corresponding
parameters or, equivalently, the value of the spectral moments for s0 → ∞, Mn.
There exist a few additional sum rules where we know theoretically the value of the
spectral moments when s0 → ∞. These sum rules will play a special role in our
analysis because they give us very valuable information on the spectral function ρ(s)

1Here we neglect the logarithmic corrections to the Wilson coefficients in the OPE. The error
associated to this approximation is expected to be smaller than the other errors involved in the
analysis, as was found e.g. in Refs. [31, 103].
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for s ≥ s0. The three sum rules that we will use are:

M0 =

∫ ∞

sth

ds ρ(s) = 2f 2
π , (5.9)

M1 =

∫ ∞

sth

ds s ρ(s) = 2f 2
πm

2
π , (5.10)

∫ ∞

sth

ds s log
( s

λ2

)

ρ(s)|mq=0 = (m2
π0 −m2

π+)EM
8π

3α
f 2

0 . (5.11)

The relations (5.9) and (5.10) are the first and second Weinberg sum rules that were
already introduced in Section 3.5.2, while the third identity is the pion sum rule
(πSR) that gives the electromagnetic pion mass splitting in the chiral limit [105].
In the second WSR there are contributions of the form O(m2

qαSs0) [28], where s0 is
the upper limit of the integral, but they are negligible for the values of s0 that we
are considering.

5.1.2 Duality violation

To get vanishing DV in sum rules like (5.3) and (5.5–5.8) one could think working
with an infinite Cauchy radius s0, but this is clearly not an option because the
spectral function ρ(s) is only known up to smax = m2

τ . We can predict the value of
ρ(s) at high-enough energies using perturbative QCD, but there is an intermediate
region above smax where perturbation theory is still not reliable. Therefore we have
to deal with this DV unavoidably, and it is important to keep in mind that at
s0 ∼ 3 GeV2 it can represent a sizable contribution to the sum rules, as the WSRs
show clearly (see Section 3.5.2).

Since the solution to QCD is not known yet, DV is almost by definition a non-
calculable quantity and that is the reason why it has been taken to be negligible
very often. But in order to make precise and reliable predictions one must worry
about the size of this effect.

In our analysis we will study the DV from the perspective that gives us the
expression (3.43)

DV[w(s), s0] =

∫ ∞

s0

ds w(s) ρ(s) , (5.12)

that shows the DV effect as a hadronic integral that can be analyzed phenomeno-
logically.

We know from QCD that the spectral function ρ(s) has to vanish at high values
of s and, consequently, we expect the region right above s0 to be the most relevant
in (5.12). This makes the “pinched weights” (polynomial weight functions with a
zero at s= s0) an interesting tool to minimize the DV. However, in (5.12) we can
see something that is hidden in (5.4), namely that one has to worry also about the
possible enhancement of the contribution from the high-energy part of the integral
(s≫ s0) produced by the “pinched weights”. And thus, we see that the use of these
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weights can worsen the situation. Another direct consequence from (5.12), unless
accidental cancelations occur, is that by weighting less the high-energy part of the
spectral integral one can get smaller DV. In particular, for our spectral moments
Mn(s0), one expects the DV effects to increase with increasing values of n. Thus, the
size of the DV will be smaller in the determination of Leff

10 than in the determination
of the chiral moment M2.

To quantify the DV uncertainties of a given sum rule we must then estimate the
possible behavior of the spectral function beyond s0. The DV is an estimate of the
freedom in the behavior of the spectral function above s0, once all the theoretical and
phenomenological knowledge on that spectral function and on its moments has been
taken into account. For instance, QCD tells us that ρ(s) must go quickly enough to
zero when s→ ∞. This is a valuable information, but one can still imagine infinite
possible shapes for the spectral function and, therefore, the limits imposed on DV
effects are poor and not good enough for most phenomenological analyses.

Some theoretically motivated models for the DV were advocated in Refs. [17,
19, 20]. We will adopt a simple parameterization of the spectral function at high
energies, based in the resonance model proposed and studied in Refs. [17, 20, 21].
Following the discussion above, we add more physical constraints to the behaviour of
ρ(s) and require that it satisfies the WSRs and the πSR [22]. Our goal is to generate
a bunch of physically acceptable spectral functions and translate this information
into DV limits.

A similar work has been done in [23] to estimate the DV uncertainties associated
with the determination of αs from hadronic τ decay data. An important difference
of our present study with those works is that they make separate analyses for the
vector and axial-vector channels, without imposing the constraints from the WSRs
and πSR. In fact, one can easily check that those sum rules are not satisfied for the
vast majority of the generated spectral functions used in [23] (as can be seen in Fig.
2 of Ref. [24]). So the results found there cannot be applied to the V − A channel
that we want to study here.

5.2 Acceptable V − A Spectral Functions

5.2.1 Spectral-function parameterization

We split the integral of the spectral function ρ(s) in two parts. For the low-energy
part of the integral we will use the ALEPH data, whereas in the rest of the integration
range we will work under the assumption that the spectral function is well described
by the following parameterization

ρ(s ≥ sz) = κ e−γs sin(β(s− sz)) , (5.13)

that has κ, γ, β and sz as free parameters. From the ALEPH data we know that the
V −A spectral function ρ(s) has a second zero around 2 GeV2 (see Fig. 3.3), which
is represented in our parameterization through the sz parameter. We will take this
zero as the separation point between the use of the data and the use of the model.
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At high values of s this parameterization appears naturally in the equidistant
resonance-based model with finite widths introduced in Refs. [17, 20] and has also
been used in Refs. [21, 23] to study the DV of sum rules with different correlators.

In the region 2.0 GeV2 ≤ s ≤ 3.3 GeV2 the proposed parameterization is com-
patible with the ALEPH data; the corresponding χ2 fit gives the result

χ2
min(κ, γ, β, sz) = χ2(1.00, 1.05, 0.40, 2.03) = 4.4 ≪ d.o.f. = 41 . (5.14)

In fact the compatibility appears to be too good, in the sense that the minimum χ2

is much smaller than the number of degrees of freedom (d.o.f.): 41 = 45 points - 4
parameters. This low value of χ2

min was also found in Refs. [23, 50].

5.2.2 Imposing constraints

As we have already said, the WSRs and the πSR in (5.9), (5.10) and (5.11) are
an important source of information on ρ(s), for s values beyond the range of the
τ data. In the literature, the use of this information has been mostly limited to
define the so-called “duality points”, values of s0 for which the WSRs are satisfied,
i.e. DV[sn, s0] = 0 (n = 0, 1). These duality points are frequently used to evaluate
the other FESRs, but this introduces an unknown systematic error and several
ambiguities, like which duality point is the best option.

We will fully use that information by imposing that the spectral function ρ(s),
given by the latest ALEPH data below sz∼2 GeV2 and Eq. (5.13) for s>sz, fulfils
the two WSRs and the πSR within uncertainties. This requirement constrains the
regions in the parameter space of model (5.13) that are compatible with both QCD
and the data. We will find all possible tuples2 (κ, γ, β, sz) which are compatible with
such constraints by fitting the model. In this way, we analyse how much freedom is
left for the shape of the spectral function after imposing all we know on ρ(s) from
data plus QCD. We will also require the compatibility between model and data in
the region3 1.7 GeV2 ≤ s ≤ 3.15 GeV2.

2We will talk about “tuple” referring to a set of values (κ, γ, β, sz).
3Although we are assuming that the model describes correctly the spectral function beyond

sz ∼2 GeV2, we impose the compatibility with the data from 1.7 GeV2 to ensure the continuity of
the spectral function in the matching region between the data and the model.
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The four imposed conditions can be written quantitatively in the following form:4

∫ sz

0

ρ(s)
ALEPH

ds +

∫ ∞

sz

ρ(s; κ, γ, β, sz)ds = 2f 2
π = (17.1 ± 0.4)·10−3 GeV2, (5.15)

∫ sz

0

ρ(s)
ALEPH

s ds+

∫ ∞

sz

ρ(s; κ, γ, β, sz) s ds = 2f 2
πm

2
π = (0.3 ± 0.8)·10−3 GeV4, (5.16)

∫ sz

0

ρ(s)
ALEPH

s log
( s

1GeV2

)

ds +

∫ ∞

sz

ρ(s; κ, γ, β, sz) s log
( s

1GeV2

)

ds

= (m2
π0 −m2

π+)EM
8π

3α
f 2

0 = −(10.9 ± 1.5)·10−3 GeV4, (5.17)

χ2(κ, γ, β, sz) < χ2
crit = d.o.f. = 54 . (5.18)

5.2.3 Selection process of acceptable models

After defining the minimal conditions that a tuple has to satisfy in order to be
accepted, we perform a scanning over the 4-dimensional parameter space, looking
for physically acceptable tuples. We emphasize the importance of taking properly
into account the data correlations. For instance, if one analyses the compatibility
of a null spectral function with the ALEPH data in the region (2, 3.15) GeV2, the
resulting minimum χ2 is very sensitive to these correlations:

χ2(0.0, γ, β, sz)/d.o.f. = 0.99 (correlations included), (5.19)

χ2(0.0, γ, β, sz)/d.o.f. = 4.58 (correlations excluded). (5.20)

To perform the parameter-space scanning process, we adopt the following proce-
dure. First, we define a rectangular region such that it contains the four-dimensional
ellipsoid defined by χ2(κ, γ, β, sz) = d.o.f., and we create a lattice with 204 = 16 ·104

points, that is, 16 · 104 tuples (or functions). We find that 1789 of them satisfy our
set of minimal conditions; i.e., 1789 of them represent possible shapes of the phys-
ical spectral function beyond 2 GeV2. Fig. 5.1 shows the statistical distribution
of the parameters of our model after the selection process. In Fig. 5.2 we show
the distribution of the quantity χ2(κ, γ, β, sz) for those tuples that have passed the
selection process. We find that all accepted tuples generate values of χ2 larger than
10.0; i.e., tuples following the central values of the experimental points do not pass

4 The quoted errors in Eqs. (5.15) and (5.16) are just data errors, whereas in (5.17) the main
uncertainty comes from the fact that quark masses do not vanish in nature and we are using real
data (not chiral-limit data). We estimate this uncertainty taking for the pion decay constant the
value f0 = 87 ± 5 MeV, that covers a range that includes the physical value and the different
estimates of the chiral limit value [106,107]. We also include a small uncertainty coming from the
residual scale dependence of the logarithm, which is proportional to the second WSR. We consider
λ ∼ 1 GeV a good choice of scale because higher values would suppress the high-energy part of the
integral (the information that we want to use), while smaller values would generate larger τ -data
errors in (5.17), losing also information about the high-energy region.
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Figure 5.1: Statistical distribution of acceptable models in the parameter space κ
(upper-left), γ (upper-right), β (lower-left) and sz (lower-right).

the selection process; neither do the tuples that go above the central values. Thus
our model indicates clearly that the third bump of the spectral function should be
smaller than what the ALEPH data suggest (see Fig. 3.3). The size of this third
bump is an important issue that future high-quality τ decay data could clarify. For
illustrative purposes, Fig. 5.3 shows one of the hundreds of functions that satisfy
our set of conditions.

Figure 5.2: Distribution of χ2(κ, γ, β, sz) values for acceptable tuples between 0 and
χ2

crit = d.o.f. = 54.
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Figure 5.3: Spectral function ρ(s) generated with (κ, γ, β, sz) =
(0.24, 1.23, 2.82, 2.03), together with the experimental ALEPH data [3]. χ2 = 38.7
for this tuple.

5.3 Numerical Results

For each one of the hundreds of functions that have passed our selection process, we
can calculate the associated values of Ceff

87 , Leff
10 , O6 and O8, simply carrying out the

integrals of Eqs. (5.5–5.8) with s0 → ∞. The results of this analysis are summarized
in Fig. 5.4, which shows the statistical distribution of the calculated parameters5.
From these distributions, one gets the final numbers:

Ceff
87 =

(

8.167 +0.007
− 0.002 ±0.12

)

·10−3 GeV−2 = (8.17 ±0.12) ·10−3 GeV−2,(5.21)

Leff
10 =

(

−6.46 +0.03
− 0.01 ± 0.07

)

· 10−3 =
(

−6.46 +0.08
− 0.07

)

· 10−3 , (5.22)

O6 =
(

−5.4 +3.4
− 1.0 ± 1.2

)

· 10−3 GeV6 =
(

−5.4 +3.6
− 1.6

)

· 10−3 GeV6 , (5.23)

O8 =
(

−8.9 +12.4
− 7.1 ± 2.1

)

· 10−3 GeV8 =
(

−8.9 + 12.6
− 7.4

)

· 10−3 GeV8 , (5.24)

where the first error is that associated to the high-energy region (integral from sz to
infinity), that we compute from the dispersion of the histograms of Fig. 5.4, and the
second error is that associated to the low-energy region (integral from zero to sz),
that we compute in a standard way from the ALEPH data. These results correspond
to the 68% probability region (one sigma). Since the first error is not gaussian we
show also now the 95% probability results (95% of the acceptable spectral functions
give a result within the quoted interval):

Ceff
87 =

(

8.167 +0.011
− 0.007 ± 0.24

)

· 10−3 GeV−2 = (8.17 ± 0.24) · 10−3 GeV−2 ,(5.25)

Leff
10 =

(

−6.46 +0.04
− 0.03 ± 0.14

)

· 10−3 =
(

−6.46 +0.15
− 0.14

)

· 10−3 , (5.26)

O6 =
(

−5.4 +4.2
− 2.7 ± 2.4

)

· 10−3 GeV6 =
(

−5.4 +4.8
− 3.6

)

· 10−3 GeV6 , (5.27)

O8 =
(

−8.9 +16.9
− 15.1 ± 4.2

)

· 10−3 GeV8 =
(

−8.9 + 17.4
− 15.7

)

· 10−3 GeV8 . (5.28)

5We can see in Fig. 5.4 that O6 is negative for all the spectral functions, as expected from the
condition q2Π(q2) ≥ 0 for −∞ ≥ q2 ≥ 0, proven by Witten [108].
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Figure 5.4: Statistical distribution of values of Ceff
87 (upper-left), Leff

10 (upper-right),
O6 (lower-left) and O8 (lower-right) for acceptable models. The parameters are
expressed in GeV elevated to the corresponding power.

Our calculations have been done with a very simple, but physically motivated,
parameterization of DV [17]. Most likely this parameterization does not represent
the actual shape of the V − A spectral function, but it accounts for the possible
freedom of the function ρ(s) beyond 2 GeV2 and its consequences on the observ-
ables. Our statistical analysis translates the present ignorance on the high-energy
behaviour of ρ(s) into a clear quantitative assessment on the uncertainties of the
phenomenologically extracted parameters.

As expected, the DV effects have very little impact on the values of Ceff
87 and Leff

10 ,
because the corresponding FESRs (5.5) and (5.6) are dominated by the low-energy
region where the available data sits. Our results are in excellent agreement with
the most recent determination of these parameters, using the same ALEPH τ data,
performed in Ref. [78] and explained in the previous chapter: Ceff

87 = (8.18 ± 0.14) ·
10−3 GeV−2 and Leff

10 = −(6.48 ± 0.06) · 10−3. The smaller uncertainties quoted
in [78] are due to the use of the pinched weights (as we will see in the next section).

The situation is not so good for the moments M2 and M3 (or equivalently O6

and O8), which are sensitive to the high-energy behaviour of the spectral function.
The present ALEPH data, together with the constraints from the WSRs and the
πSR, are not good enough to determine the sign of O8 using the sum rule (5.8); the
DV uncertainties turn out to be too large in this case. Our results are slightly better
for O6, where there is no doubt in the sign, but again the effects of DV imply larger
uncertainties than what was estimated in previous works based on the relation (5.7).
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5.4 Using pinched weights

The above-explained approach to the calculation of the quark-hadron duality vio-
lation through the study of the freedom of the spectral function in the high-energy
region allows us to address the question of the convenience of the use of the pinched
weights (see Section 3.5.3 and Appendix B) and how to estimate the associated
DV [26]. We are interested in PW functions that do not generate new unknown
quantities (condensates of higher dimension), since in that case a clean analysis is
not possible anymore.

As we have explained in the Appendix B, in the case of the condensates the
pinched weights with a double zero at s = s0 are expected to minimize the DV
with respect to the standard weights sn, although the question of how large is the
remaining DV is still not clear6. In the case of the chiral parameters, the pinched
weights will be better or worse than the standard weights depending essentially on
how fast the spectral function goes to zero, in order to suppress the enhancement
that the pinched weights produce in the high-energy region (see Eq. (5.12)). In other
words, the key point is thfe value of the γ parameter, that as we have seen is around
one. Our simple calculations of the Appendix B indicate that this is high enough
to suppress the high-energy tail and so to benefit from the use of the PW. Now we
want to check it explicitly with our hundreds of spectral functions.

Let us remind that in addition to the DV error (estimated from the dispersion
of the histograms) we have the experimental ALEPH error, and both depend on the
used weight. In principle one expects the PW to minimize also the experimental
uncertainties, since they suppress the region near the kinematical end point.

We have repeated all our analysis with pinched weights w(s) that have a double
zero in s = spw, that is

P−2(s0) ≡
∫ s0

sth

ds
ρ(s)

s2

(

1 − s

spw

)2(

1 + 2
s

spw

)

= 16 Ceff
87 − 6

f 2
π

s2
pw

+ 4
f 2
πm

2
π

s3
pw

− DV[w(z), s0] , (5.29)

P−1(s0) ≡
∫ s0

sth

ds
ρ(s)

s

(

1 − s

spw

)2

= −8Leff
10 − 4

f 2
π

spw
+ 2

f 2
πm

2
π

s2
pw

− DV[w(z), s0] , (5.30)

P2(s0) ≡
∫ s0

sth

ds ρ(s) (s− spw)2

= 2f 2
πs

2
pw − 4f 2

πm
2
πspw + 2f 2

πm
4
π + O6 − DV[w(z), s0] , (5.31)

P3(s0) ≡
∫ s0

sth

ds ρ(s) (s− spw)2 (s+ 2spw)

= −6f 2
πm

2
πs

2
pw + 4f 2

πs
3
pw + 2f 2

πm
6
π − O8 − DV[w(z), s0] . (5.32)

6This was also analyzed in Ref. [21] in the particular context of a resonance-based model.
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Figure 5.5: Statistical distribution of values of Ceff
87 (upper-left), Leff

10 (upper-right),
O6 (lower-left) and O8 (lower-right) for the accepted spectral functions, using the
pinched-weight sum rules (5.29) - (5.32) with spw = sz ∼ 2.1 GeV2. The parameters
are expressed in GeV elevated to the corresponding power.

The results depend on the point where the weight is pinched, i.e. on the value of
spw. In order to suppress the experimental error it is convenient to pinch the weight
at the left of the matching point sz, whereas in order to suppress the DV-error
(dispersion of the histograms) it is convenient to pinch it at the right of sz. We
have scanned the region finding that the optimal choice of spw, that is, where the
errors are minimized7, is spw ∼ sz ∼ 2.1 GeV2. In the Fig. 5.5 we show the results
obtained in this case. As we see the histograms are much more peaked around their
central values and so we have better predictions (because as we said the data error
is also minimized by the new weights8). The associated numerical results are

Ceff
87 =

(

8.168+0.003
−0.004 ±0.12

)

·10−3 GeV−2 = (8.17 ± 0.12) ·10−3 GeV−2,(5.33)

Leff10 =
(

−6.444+0.007
−0.004 ± 0.05

)

· 10−3 = (−6.44 ± 0.05) · 10−3 , (5.34)

O6 =
(

−4.33+0.68
−0.34 ± 0.65

)

· 10−3 GeV6 =
(

−4.3+0.9
−0.7

)

· 10−3 GeV6 , (5.35)

O8 =
(

−7.2+3.1
−4.4 ± 2.9

)

· 10−3 GeV8 =
(

−7.2+4.2
−5.3

)

· 10−3 GeV8 , (5.36)

where we have followed the same convention about the errors. The 95% probability

7Obviously the optimal point is different for every sum rule (5.29) - (5.32), but the differences
are negligible within errors.

8Notice that in the case of O8 this is not true. This is because the pinched weight enhances the
low-energy region errors sizably.
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results are:

Ceff
87 =

(

8.168+0.005
−0.008 ±0.24

)

·10−3 GeV−2 = (8.17 ±0.24) ·10−3 GeV−2,(5.37)

Leff10 =
(

−6.444+0.011
−0.011 ± 0.1

)

· 10−3 = (−6.4 ± 0.1) · 10−3 , (5.38)

O6 =
(

−4.33+1.70
−0.68 ± 1.3

)

· 10−3 GeV6 =
(

−4.3+2.1
−1.5

)

· 10−3 GeV6 , (5.39)

O8 =
(

−7.2+6.3
−11.3 ± 5.8

)

· 10−3 GeV8 =
(

−7.2+8.6
−12.7

)

· 10−3 GeV8 . (5.40)

As theoretically expected, the use of the pinched weights is less beneficial to the
determination of the low-energy constants Leff

10 and Ceff
87 than to the determination of

the condensates. Our final results for the former are in excellent agreement with the
most recent determination of them [78], that we explained in the previous chapter:
Ceff

87 = (8.18± 0.14) · 10−3 GeV−2 and Leff
10 = −(6.48± 0.06) · 10−3. Notice that our

estimation of the error, obtained through a completely different method, is based on
more solid grounds than the error estimates of the previous chapter and represents
a confirmation of them.

We have obtained quite precise measurements for the condensates O6 and O8

using the pinched-weights FESRs (5.31) and (5.32). In this way we have checked
that the PW successes in minimizing the errors and we have that the most recent
experimental information provided by ALEPH, together with the theoretical con-
straints (WSRs and πSR), fix with accuracy the value of O6 and almost determine9

the sign of O8. Our results are compared in Fig. 5.6 with previous determinations
of O6 and O8. One recognizes in the figure the existence of two groups of results
that disagree between them. For O6 there is a small tension between a bigger or
smaller value, whereas in the case of O8 the disagreement affects to the sign and is
more sizable.

Our results agree with those of Refs. [30–33] since they also use pinched weights,
but it is based on much more solid grounds, due to the completely different approach
followed. We see in fact that the DV-error was slightly underestimated in Refs. [30,
31]. We also agree with the results of Ref. [41] based on the use of the second
duality point, although that technique has a much larger error. It is remarkable the
agreement with Ref. [104] that is the only one that follows a technique similar to
ours, trying to analyze the possible behavior of the spectral function but through a
neural network approach. Their result has a bigger uncertainty, maybe only due to
the fact they used the old ALEPH data. There is a reasonable agreement also with
the results of Refs. [109–111].

Our analysis indicates that the DV error associated to the use of the first duality
point is very large and was grossly underestimated in Refs. [37,38], where also higher-
dimensional condensates were neglected. In Refs. [68,112–114] the numerical values
obtained at this first duality point are supported through theoretical analyses based
on the so-called “minimal hadronic ansatz” (a large-NC-inspired 3-pole model) or
Padè approximants. Our results show however that the first duality point is very

9One can see in our final result (5.40) that at 2σ a positive value of O8 is already allowed,
but it must not be forgotten that the distribution is highly non-gaussian and we can see in the
corresponding histogram of Fig. 5.5 that the possibility of being positive is negligible.
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Figure 5.6: Comparison of our results for O6 (left) and O8 (right) with previous
determinations [3,30–33,37,38,41,42,44,53,68,104,109,111,113] (we show for every
method the most recent determination). The blue bands show our results at 65%
C.L., while the 95% probability regions are indicated by the dotted lines.

unstable when we change from the WSRs to the O6,8 sum rules, indicating that the
systematic error of these approaches is non-negligible. Essentially the same can be
said about Refs. [42, 53] where the last available point s0 = m2

τ was used.
Summarizing, our results agree within two-sigmas with the other estimates of

O6, but in the case of O8 show that its sign is negative, in disagreement with
Refs. [37, 38, 42, 53, 68, 113].

5.5 Beyond the dimension eight condensate

We can play the same game with higher dimensional condensates, where using again
pinched weights w(s) that have a double zero in s = spw we have

P4(s0) ≡
∫ s0

sth

ds ρ(s) (s− spw)2 (s2 + 2spws+ 3s2
pw

)

= −8f 2
πm

2
πs

3
pw + 6f 2

πs
4
pw + 2f 2

πm
8
π + O10 − DV[w4, s0] , (5.41)

P5(s0) ≡
∫ s0

sth

ds ρ(s) (s− spw)2 (s3 + 2spws
2 + 3s2

pws+ 4s3
pw

)

= −10f 2
πm

2
πs

4
pw + 8f 2

πs
5
pw + 2f 2

πm
10
π − O12 − DV[w5, s0] , (5.42)

P6(s0) ≡
∫ s0

sth

ds ρ(s) (s− spw)2 (s4 + 2spws
3 + 3s2

pws
2 + 4s3

pws+ 5s4
pw

)

= −12f 2
πm

2
πs

5
pw + 10f 2

πs
6
pw + 2f 2

πm
12
π + O14 − DV[w6, s0] , (5.43)

P7(s0) ≡
∫ s0

sth

ds ρ(s) (s− spw)2 (s5 + 2spws
4 + 3s2

pws
3 + 4s3

pws
2 + 5s4

pws+ 6s5
pw

)

= −14f 2
πm

2
πs

6
pw + 12f 2

πs
7
pw + 2f 2

πm
14
π − O16 − DV[w7, s0] . (5.44)
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Figure 5.7: Statistical distribution of values of O10,12,14,16 for the accepted spectral
functions, using the PW sum rules (5.41) - (5.44) with spw = sz ∼ 2.1 GeV2. The
parameters are expressed in GeV elevated to the corresponding power.

Working again with spw ∼ sz ∼ 2.1 GeV2 we find the results that are shown in the
Fig. 5.7. The associated numerical results are

O10 =
(

+4.1+1.8
−1.6

)

· 10−2 GeV10 , (5.45)

O12 =
(

−0.12+0.07
−0.03

)

GeV12 , (5.46)

O14 =
(

+0.2+0.1
−0.2

)

GeV14 , (5.47)

O16 =
(

−0.2+0.5
−0.4

)

GeV16 , (5.48)

where all the errors come from the dispersion of our histograms since the experi-
mental error is very much smaller for these higher dimensional condensates. The
95% probability results are:

O10 =
(

+4.1+5.6
−3.1

)

· 10−2 GeV10 , (5.49)

O12 =
(

−0.12+0.13
−0.16

)

GeV12 , (5.50)

O14 = (+0.2 ± 0.5) GeV14 , (5.51)

O16 =
(

−0.2+1.8
−1.1

)

GeV16 . (5.52)

It is really impressive that the sign of the condensates can be established for O10

and O12 since the importance of the high-energy region in their determination is
huge. One could have expected that the differences between our possible spectral
functions would generate a huge error in these higher dimensional condensates, but
our conditions (WSRs+πSR+data) have turned out to be very restrictive about the
possible spectral functions allowing quite precise extractions.
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O10 × 103 O12 × 103 O14 × 103 O16 × 103

This work +41+18
−16 −120+70

−30 +200+100
−200 −200+500

−400

Masjuan & Peris [68] −14 ± 12
Narison [37] −17.1 ± 4.4 +14.7 ± 3.7 −9.6 ± 3.1 +4.3 ± 1.9

Friot et al. [113] −13.2 ± 3.6 +13.3 ± 3.9 −12.8 ± 3.9 +11.9 ± 3.8
Zyablyuk [38] −4.5 ± 3.4

Almasy et al. [111] +66+40
−14

Bordes et al. [33] +72 ± 28 −240 ± 50
Latorre & Rojo [104] +78 ± 24 −260 ± 80
Cirigliano et al. [31] +48 ± 10 −160 ± 30 +430 ± 60 −1030 ± 140

Table 5.1: Comparison of our determination of O10,12,14,16 with other works. The
condensates are expressed in GeV to the corresponding power. The results shown
for Ref. [31] are those obtained with the old ALEPH data (with the OPAL data
the numbers are not very different), and the results shown for Ref. [113] are those
obtained with the minimal hadronic ansatz, that is, without the addition of the ρ′

resonance, that in any case modifies just slightly the results.

In Table 5.1 we show the different results available in the literature and we can
again observe the existence of two groups of results. As in the case of O6,8, our
results agree with Refs. [30–33,41, 104] but not with Refs. [37, 38, 42, 53, 68, 113].

Looking at the results of Ref. [31], obtained working with pinched weights and
the old ALEPH data, we can see what we have said several times through this work:
even in the case when the pinched weights generate less DV than the standard
weights sn, the observed plateau is in part artificially created and hides the DV.
That is why the errors of Ref. [31] are underestimated.

5.6 Summary

The phenomenological requirement for increasing precisions in the determinations
of hadronic parameters makes necessary to assess the size of small effects which
previously could be considered negligible. In particular, a substantial improvement
of QCD Sum Rules results, needed to determine many hadronic observables both in
the Standard Model and in models beyond it, could only be possible with a better
control of DV.

Violations of quark-hadron duality are difficult to estimate because those effects
are unknown by definition. They originate in the uncertainties associated with the
use of the OPE to approximate the exact physical correlator. As defined in Eq. (5.4),
DV effects correspond to an OPE approximation performed in the complex plane,
outside the Minkowskian region, which deteriorates in the vicinity of the real axis.
Using analyticity, the size of DV can be related with an integral of the hadronic
spectral function from s0 up to ∞, given in Eq. (5.12), which allows us to perform
a phenomenological analysis.
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We have studied the possible role of DV in the two-point correlation function
Π(s). This V −A non-strange correlator is very well suited for this analysis because:
i) it is a purely non-perturbative quantity in the chiral limit, ii) there are well-
known theoretical constraints, and iii) there exist good available data from τ decays.
Moreover, different moments of its spectral function provide hadronic parameters of
high phenomenological relevance.

We have assumed a generic, but theoretically motivated, behaviour of the spec-
tral function at high energies, where data are not available, with four free parame-
ters. This allows us to study how much freedom in ρ(s) could be tolerated, beyond
the requirement that all known QCD constraints are satisfied. Performing a nu-
merical scanning over the four-dimensional parameter space, we have generated a
large number of “acceptable” spectral functions, satisfying all conditions, and have
used them to extract the wanted hadronic parameters through a careful statistical
analysis. The dispersion of the numerical results provides then a good quantitative
assessment of the actual uncertainties.

This machinery has allowed us to address the question of the convenience of the
pinched weights and how to estimate the size of the still present DV. We have found
that it is worthwhile to use these weights and we have determined four hadronic
parameters of special interest: Ceff

87 , Leff
10 , O6 and O8

Ceff
87 = (8.17 ± 0.12) ·10−3 GeV−2, (5.53)

Leff10 = (−6.44 ± 0.05) · 10−3 , (5.54)

O6 =
(

−4.3+0.9
−0.7

)

· 10−3 GeV6 , (5.55)

O8 =
(

−7.2+4.2
−5.3

)

· 10−3 GeV8 . (5.56)

From the first two parameters one can extract the values of the χPT couplings
Cr

87(Mρ) and Lr10(Mρ). The vacuum condensate O6 is an important input for the
calculation of the CP-violating kaon parameter ε′K , it dominates the ∆I = 3/2
contribution to ε′K [30, 41, 54–57]. The determination of this contribution is an
important goal of lattice QCD calculations and independent information is required
to test the reliability of those results. We will study the consequences of our results
for ε′K in a forthcoming publication [115].

There is a small tension among the different determinations of O6 available in the
literature, and the discrepancy is higher for the condensate O8. Our results agree
with those of Refs. [30–33,41,104] and indicate that the other determinations [37,38,
42,53,68,113] (most of them associated to the first duality point) underestimated the
DV contribution, what was generating the different results. Our values show that
the analyses based on the use of pinched-weight FESRs have assigned a reasonable
uncertainty for the lowest dimensional condensates O6,8 but have underestimated
the error in the determination of higher dimensional condensates.

Our method indicates that the current experimental values for the V −A spectral
function in the region between s ∼ 2 GeV2 and s ∼ 3 GeV2 are somehow affected by
a systematic error that shifts the points towards higher values. It is worth noting
that this result is also suggested by the work of Ref. [104]. A significant improvement
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in the experimental knowledge of the spectral functions in this intermediate region
is expected with the future high-statistics τ -decay data samples. It will be very
interesting to check the presence of this systematic error and validate our approach.

It is worth noting that in particular our method shows that O6 and O8 are
both negative, whereas it suggests that the sign alternates for higher-dimensional
condensates.



Chapter 6

Going beyond the SM

The show must go on.
Queen

The impressive precision achieved by the low-energy experiments in combination
with improved theoretical control of hadronic matrix elements and radiative correc-
tions make semileptonic decays of light quarks (kaons, pions, nuclear beta decays,
hadronic tau decays, etc.) and purely leptonic decays (muon and tau physics) a
deep probe of the nature of weak interactions. As we will see this low-energy ex-
periments are sensitive to energy scales Λ on the order of the TeV, which will be
directly probed at the LHC.

While the consequences of these low-energy tests of the Standard Model have
been considered in a number of explicit New Physics scenarios, a model-independent
analysis of leptonic and semileptonic processes beyond the SM is missing. The goal
of this investigation is to analyze in a model-independent effective theory setup new
physics contributions to low energy charged-current (CC) processes. The resulting
framework allows us to assess in a fairly general way the impact of (semi)leptonic
processes in constraining and discriminating SM extensions.

Assuming the existence of a mass gap between the SM and its extension, we
parametrize the effect of new degrees of freedom and interactions beyond the SM via
a series of higher dimensional operators constructed with the low-energy SM fields.
If the SM extension is weakly coupled, the resulting TeV-scale effective Lagrangian
linearly realizes the electro-weak (EW) symmetry SU(2)L × U(1)Y and contains a
SM-like Higgs doublet [116, 117]. This method is quite general and allows us to
study the implications of low-energy precision measurements on a large class of
models. For example, it will allow us to understand in a model-independent way
the significance of these low-energy tests compared to collider measurements.

The interplay of these kind of model-independent approaches and the studies
in particular scenarios stimulated by the model-builders efforts is very important
since the former can point to unexplored directions and trigger new ideas among
model-builders, whereas the later are completely necessary to reduce the enormous
number of parameters of any effective field theory based approach.
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This chapter is organized as follows. In Section 6.1 we review the form of the
most general weak scale effective Lagrangian including operators up to dimension
six, contributing to precision electroweak measurements and (semi)leptonic decays.
In Section 6.2 we derive the low-energy (∼ 1 GeV) effective Lagrangian describing
purely leptonic and semileptonic CC interaction. We discuss the flavor structure
of the relevant effective couplings in Section 6.3 and section 6.4 contains our con-
clusions. In the next chapter we will apply this framework to the study of the
CKM-unitarity tests and its significance constraining New Physics.

6.1 Weak scale effective Lagrangian

As discussed in the introduction, our aim is to analyze in a model-independent
framework new physics contributions to both precision electroweak observables and
muon and beta decays. Given the successes of the SM at energies up to the elec-
troweak scale v ∼ 100 GeV, we adopt here the point of view that the SM is the
low-energy limit of a more fundamental theory. Specifically, we adopt the following
assumptions:

• There is a gap between the weak scale v and the scale Λ where new degrees of
freedom appear;

• The SM extension at the weak scale is weakly coupled, so the EW symme-
try SU(2)L × U(1)Y is linearly realized and the low-energy theory contains
a SM-like Higgs doublet [117]. Analyses of EW precision data in nonlinear
realizations of EW symmetry can be found in the literature [101,102,118,119];

• The particle content of our Lagrangian will be then that of the Standard
Model, including the SM-Higgs field and without considering the right-handed
neutrinos as low-energy degrees of freedom;

• We will not consider operators that violate total lepton and baryon number
(we assume they are suppressed by a scale much higher than Λ ∼ TeV [120]).

In the spirit of the effective field theory approach, we integrate out all the heavy
fields and describe physics at the weak scale (and below) by means of an effective
non-renormalizable Lagrangian of the form:

L(eff) = LSM +
1

Λ
L5 +

1

Λ2
L6 +

1

Λ3
L7 + . . . (6.1)

Ln =
∑

i

α
(n)
i O

(n)
i , (6.2)

where Λ is the characteristic scale of the new physics and O(n)
i are local gauge-

invariant operators of dimension n built out of SM fields.



6.1 Weak scale effective Lagrangian 77

6.1.1 The fields and the SM Lagrangian

The building blocks to construct local operators are the gauge fields GA
µ , W

a
µ , Bµ,

corresponding to SU(3) × SU(2)L × U(1)Y , the five fermionic gauge multiplets,

ℓi =

(

νiL
eiL

)

, ei = eiR , qi =

(

uiL
diL

)

, ui = uiR , di = diR , (6.3)

the Higgs doublet

ϕ =

(

ϕ+

ϕ0

)

, (6.4)

and the covariant derivative

Dµ = I ∂µ − igs
λA

2
GA
µ − ig

σa

2
W a
µ − ig′Y Bµ . (6.5)

In the above expression λA are the SU(3) Gell-Mann matrices, σa are the SU(2)
Pauli matrices, gs, g, g′ are the gauge couplings and Y is the hypercharge of a given
multiplet (Y (ℓ) = −1/2, Y (e) = −1, Y (q) = 1/6, Y (u) = 2/3, Y (d) = −1/3, Y (ϕ) =
1/2).

With this notation, the SM Lagrangian takes the form

LSM(x) = −1

4
GA
µνG

Aµν − 1

4
W I
µνG

Iµν − 1

4
BµνB

µν

+ (Dµϕ)†(Dµϕ) +m2ϕ†ϕ− 1

2
λ(ϕ†ϕ)2

+ ℓ̄ /Dℓ+ ē /De+ q̄ /Dq + ū /Du+ d̄ /Dd

+ (ℓΓee ϕ+ q Γu u ϕ̃+ q Γd d ϕ+ h.c.) , (6.6)

where the Γe,u,d are the Yukawa matrices (in flavor space).

6.1.2 The new physics corrections

Under the above-stated assumptions, it can be shown that the first corrections to
the SM Lagrangian are of dimension six. The list of dimension-six operators was
given by Leung et al. [116], Buchmüller and Wyler (BW) [117] and Burgess and
Robinson [121]. Only the later list is complete and none of them is minimal. We
will follow the BW-notation, with the following modifications in order to have a
complete and minimal basis

• The four-fermion operator Ot
lq=(ℓ̄aσ

µνe)ǫab(q̄bσµνu) must be added to the list
(the ǫ tensor is used to contract weak SU(2) indices)1.

1This operator and its scalar version must be added to the list of Leung et al. [116] to make the
list complete.



78 Going beyond the SM

• The operators O(3)
ll , O

(8,1)
qq , O

(8,3)
qq , O

(8)
uu and O

(8)
dd can be eliminated using the

Fierz transformation and the completeness relation of the Pauli (Gell-Mann)
matrices2,3:

∑

I τ
I
ijτ

I
kl = −δijδkl + 2δilδkj;

• The dagger in the operator (3.55) of Ref. [117] should be replaced by a T
(transpose symbol);

• The names OuG and OdG have been used twice in BW: operators (3.34, 3.36)
and operators (3.61, 3.63) of Ref. [117].

As a result of these observations, the eighty operators of BW are reduced to
seventy-six, and therefore truncating the expansion (6.1) at this order we have

L(eff)
BW = LSM +

76
∑

i=1

αi
Λ2

Oi . (6.7)

For operators involving quarks and leptons, both the coefficients αi and the operators
Oi carry flavor indices. When needed, we will make the flavor indices explicit, using
the notation [αi]abcd for four-fermion operators.

The above effective Lagrangian allows one to parameterize non-standard correc-
tions to any observable involving SM particles. The contribution from the dimension
six operators involve terms proportional to v2/Λ2 and E2/Λ2, where v = 〈ϕ0〉 ≃
174 GeV is the vacuum expectation value (VEV) of the Higgs field and E is the
characteristic energy scale of a given process. In order to be consistent with the
truncation of (6.1) we will work at linear order in the above ratios4.

We are interested in the minimal subset of the BW basis that contribute at tree
level to CP-conserving electroweak precision observables and beta decays.

Once the CP-assumption is taken into account, we have seventy operators in
our effective Lagrangian5. Moreover, we will not take into account the thirteen
operators that involve only quark and gluon fields6, because they will not appear in
our observables (precision EW measurements and semileptonic decays) at the level
we are working. Further operators that do not contribute to our observables are
OqG, OuG, OdG.

Since we are not considering processes involving the Higgs boson as an external
particle, we can remove more operators from our list: Oϕ, O∂ϕ (they only involve

2I would like to thank Alberto Filipuzzi for calling my attention about this fact.
3It is worth noting that in the (as far as we know) first work [122] where a complete list of

four-lepton operators was written the authors realized about this redundancy and their basis was
minimal. Somehow this was forgotten in the subsequent publications [116,117,121,123].

4When the SM amplitude vanishes the first contribution is quadratic in the ratios v2/Λ2 and
E2/Λ2, but in this case one can consistently work at this order and neglect the eight-dimension
operators, since their lowest contributions would be the interference with the dimension-six ampli-
tude, that is, of third order in the above ratios.

5The six operators removed are OX with X = G̃, W̃ , ϕG̃, ϕW̃ , ϕB̃, W̃B.
6OX with X = G, qq(1), qq(8), uu(1), dd(1), qq(1,1), qq(1,3), ud(1), ud(8), qu(1), qu(8), qd(1), qd(8).
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scalar fields), and seven more operators7 whose effect can be absorbed in a redef-
inition of the SM parameters g, g′, gs, v and the Yukawa couplings. In this way
we end up with forty-five operators that can produce a linear correction to the SM-
prediction of our observables. But a more detailed analysis of this list [124] shows
that twenty-one of them either do not produce linear corrections (because the inter-
ference with the SM vanishes) or produce effects suppressed by an additional factor
(for example, low energy four-quark operators of dimension seven).

So finally we end up with a basis involving twenty-four operators. In selecting
the operators, flavor symmetries played no role (in fact at this level the coefficients
αi can carry any flavor structure). However, in order to organize the subsequent
phenomenological analysis, it is useful to classify the operators according to their
behavior under the U(3)5 flavor symmetry of the SM gauge Lagrangian (the freedom
to perform U(3) transformations in family space for each of the five fermionic gauge
multiplets, listed in Eq. 6.3).

6.1.3 U(3)5 invariant operators

The operators that contain only vectors and scalars are

OWB = (ϕ†σaϕ)W a
µνB

µν , O(3)
ϕ = |ϕ†Dµϕ|2 . (6.8)

There are eleven four-fermion operators:

O
(1)
ll =

1

2
(lγµl)(lγµl), O

(3)
ll =

1

2
(lγµσal)(lγµσ

al), (6.9)

O
(1)
lq = (lγµl)(qγµq), O

(3)
lq = (lγµσal)(qγµσ

aq), (6.10)

Ole = (lγµl)(eγµe), Oqe = (qγµq)(eγµe), (6.11)

Olu = (lγµl)(uγµu), Old = (lγµl)(dγµd), (6.12)

Oee=
1

2
(eγµe)(eγµe), Oeu=(eγµe)(uγµu), Oed=(eγµe)(dγµd). (6.13)

Some comments are in order. In principle, in order to avoid redundancy (see dis-
cussion above) one must discard either O(3)

ll or O(1)
ll , but here we have followed the

common practice to work with both operators8. Moreover, we use the structure
L̄γµL · R̄γµR in operators (6.11), instead of their Fierz transformed L̄R · R̄L, that
BW use. They are related by a factor (−2).

There are seven operators containing two fermions that alter the couplings of
fermions to the gauge bosons:

O
(1)
ϕl = i(ϕ†Dµϕ)(lγµl) +h.c., O

(3)
ϕl = i(ϕ†Dµσaϕ)(lγµσ

al) +h.c., (6.14)

O(1)
ϕq = i(ϕ†Dµϕ)(qγµq) +h.c., O(3)

ϕq = i(ϕ†Dµσaϕ)(qγµσ
aq) +h.c., (6.15)

Oϕu = i(ϕ†Dµϕ)(uγµu) +h.c., Oϕd = i(ϕ†Dµϕ)(dγµd) +h.c., (6.16)

Oϕe = i(ϕ†Dµϕ)(eγµe) +h.c. . (6.17)

7OX with X = ϕW, ϕB, ϕ(1), ϕG, eϕ, uϕ, dϕ
8In the general case this redundancy is absurd, but in some particular frameworks, as MFV, it

will allow us to consider only flavor structures factorized according to fermion bilinears.
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Finally, there is one operator that modifies the triple gauge boson interactions

OW = ǫabcW aν
µ W bλ

ν W
cµ
λ . (6.18)

These twenty-one U(3)5 invariant operators contribute to precision EW mea-
surements (see Ref. [124]), whereas only five of them contribute to the semileptonic
decays, as we will see.

6.1.4 Non U(3)5 invariant operators

Three are three four-fermion operators

Oqde = (ℓe)(dq) + h.c., (6.19)

Olq = (l̄ae)ǫ
ab(q̄bu) + h.c., Ot

lq = (l̄aσ
µνe)ǫab(q̄bσµνu) + h.c., (6.20)

and one operator with two fermions

Oϕϕ = i(ϕT ǫDµϕ)(uγµd) + h.c. , (6.21)

which gives rise to a right handed charged current coupling.
These four operators contribute both to precision EW measurements and to the

semileptonic decays.

We conclude this section with some remarks on our convention for the coefficients
of the “flavored” operators: (i) in those operators that include the h.c. in their
definition, the flavor matrix α will appear in the h.c.-part with a dagger; (ii) for
the operators O(1,3)

ll and Oee, because of the symmetry between the two bilinears,
we impose [α]ijkl = [α]klij; (iii) in order to ensure the hermiticity of the operators
(6.9)-(6.13) we impose [α]ijkl = [α]∗jilk. None of these conditions entails any loss of
generality.

6.2 Effective Lagrangian for µ and quark β decays

Our task is to identify new physics contributions to low-energy CC processes. In
order to achieve this goal, we need to derive from the effective Lagrangian at the
weak scale (in which heavy gauge bosons and heavy fermions are still active degrees
of freedom) a low-energy effective Lagrangian describing muon and quark CC decays
[125]. The analysis involves several steps which we discuss in some detail, since a
complete derivation is missing in the literature, as far as we know.

6.2.1 Choice of weak basis for fermions

At the level of weak scale effective Lagrangian, we can use the U(3)5 invariance to
pick a particular basis for the fermionic fields. In general, a U(3)5 transformation
leaves the gauge part of the Lagrangian invariant while affecting both the Yukawa
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couplings and the coefficients αi of dimension six operators involving fermions.
We perform a specific U(3)5 transformation that diagonalizes the down-quark and
charged lepton Yukawa matrices YD and YE and puts the up-type Yukawa matrix
in the form YU = V † Y diag

U , where V is the CKM matrix. The flavored coefficients
αi correspond to this specific choice of weak basis for the fermion fields.

6.2.2 Electroweak symmetry breaking: transformation to prop-

agating eigenstates

Once the Higgs acquires a VEV the quadratic part of the Lagrangian for gauge
bosons and fermions becomes non-diagonal, receiving contributions from both SM
interactions and dimension six operators. In particular, the NP contributions induce
kinetic mixing of the weak gauge bosons, in addition to the usual mass mixing.
Therefore the next step is to perform a change of basis so that the new fields have
a canonically normalized kinetic term and definite masses.

Let us first discuss the gauge boson sector. We agree with the BW results on
the definition of gauge field mass eigenstates and on the expressions for the physical
masses9

W 3
µ =Aµ sin θ0

W (1−2 sin θ0
W cos θ0

W α̂WB) +Zµ cos θ0
W (1+2

sin θ0
W

3

cos θ0
W

α̂WB),(6.22)

Bµ =Aµ cos θ0
W (1−2 sin θ0

W cos θ0
W α̂WB) −Zµ sin θ0

W (1+2
c3

sin θ0
W

α̂WB), (6.23)

mW = m0
W =

1

2
g2v2 , (6.24)

mZ = m0
Z(1 + 2 sin θ0

W cos θ0
W α̂WB + α̂(3)

ϕ )

=
1

2
(g2 + g′2)v2(1 + 2 sin θ0

W cos θ0
W α̂WB + α̂(3)

ϕ ) , (6.25)

where θ0
W denotes the tree-level standard model weak angle

cos θ0
W =

g
√

g2 + g′2
, (6.26)

and where we have introduced the notation

α̂X =
v2

Λ2
αX . (6.27)

However, we find small differences from their results in the couplings of the W

9Notice that we have less operators than BW due to the reduced set of observables that we are
interested in.
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and Z to fermion pairs, which can be written as:

LJ =
g√
2

(

JCµW
+µ + h.c.

)

+
g

cos θ0
W

JNµ Z
µ , (6.28)

JCµ = ν̄Lγµη(νL)eL + ūLγµη(uL)dL + ūRγµη(uR)dR , (6.29)

JNµ = ν̄Lγµǫ(νL)νL + ēLγµǫ(eL)eL + ūLγµǫ(uL)uL + d̄Lγµǫ(dL)dL

+ēRγµǫ(eR)eR + ūRγµǫ(uR)uR + d̄Rγµǫ(dR)dR . (6.30)

Here the ǫ’s and η’s are 3 × 3 matrices in flavor space. In the case of the charged
current we find (BW do not have the † in α(3)

ϕl and α(3)
ϕq )

η(νL) = I + 2 α̂
(3)†
ϕl , (6.31)

η(uL) = I + 2 α̂(3)†
ϕq , (6.32)

η(uR) = −α̂ϕϕ . (6.33)

In the case of the neutral current (ǫ coefficients) we obtain the same results as
BW except for the following replacement:

α̂X → α̂X + α̂†
X , (6.34)

for αX = α
(3)
ϕl , α

(1)
ϕl , α

(3)
ϕq , α

(1)
ϕq , αϕe, αϕu, αϕd.

Finally, we need to diagonalize the fermion mass matrices. With our choice of
weak basis for the fermions, the only step that is left is the diagonalization of the
up-quark mass matrix, proportional to the Yukawa matrix YU = V †Y diag

U , where V
is the CKM matrix. This can be accomplished by a U(3) transformation of the uL
fields:

uL → V †uL . (6.35)

As a consequence, the charged current and neutral current couplings involving up
quarks change as follows:

η(uL) → V η(uL)

ǫ(uL) → V ǫ(uL) V
† . (6.36)

Similarly, appropriate insertions of the CKM matrix will appear in every operator
that contains the uL field.

6.2.3 Effective Lagrangian for muon decay

The muon decay amplitude receives contributions from gauge boson exchange di-
agrams (with modified couplings) and from contact operators such as O(1)

ll , O(3)
ll ,

Ole. Since we work to first order in v2/Λ2, we do not need to consider diagrams
contributing to µ → eν̄ανβ with the “wrong neutrino flavor”, because they would
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correct the muon decay rate to O(v4/Λ4). After integrating out the W and Z, the
muon decay effective Lagrangian reads:

Lµ→eν̄eνµ
=

−g2

2m2
W

[

(1 + ṽL) · ēLγµνeL ν̄µLγ
µµL + s̃R · ēRνeL ν̄µLµR

]

+ h.c. , (6.37)

where m2
W = (g2v2)/2 is the W mass and

ṽL = 2 [α̂
(3)
ϕl ]11+22∗ − [α̂

(1)
ll ]1221 − 2[α̂

(3)
ll ]1122− 1

2
(1221) , (6.38)

s̃R = +2[α̂le]2112 , (6.39)

represent the correction to the standard (V −A)⊗(V −A) structure and the coupling
associated with the new (S − P ) ⊗ (S + P ) structure, respectively.

6.2.4 Effective Lagrangian for beta decays: dj → ui ℓ
− ν̄ℓ

The low-energy effective Lagrangian for semileptonic transitions receives contribu-
tions from both W exchange diagrams (with modified W-fermion couplings) and the
four-fermion operators O(3)

lq , Oqde, Olq, Ot
lq. As in the muon case, we neglect lep-

ton flavor violating contributions (wrong neutrino flavor). The resulting low-energy
effective Lagrangian governing semileptonic transitions dj → ui ℓ

− ν̄ℓ (for a given
lepton flavor ℓ) reads:

Ldj→uiℓ−ν̄ℓ
=

−g2

2m2
W

Vij

[

(

1 + [vL]ℓℓij

)

ℓ̄LγµνℓL ū
i
Lγ

µdjL + [vR]ℓℓij ℓ̄LγµνℓL ū
i
Rγ

µdjR

+ [sL]ℓℓij ℓ̄RνℓL ū
i
Rd

j
L + [sR]ℓℓij ℓ̄RνℓL ū

i
Ld

j
R

+ [tL]ℓℓij ℓ̄RσµννℓL ū
i
Rσ

µνdjL

]

+ h.c. , (6.40)

where

Vij · [vL]ℓℓij = 2 Vij

[

α̂
(3)
ϕl

]

ℓℓ
+ 2 Vim

[

α̂(3)
ϕq

]∗
jm

− 2 Vim

[

α̂
(3)
lq

]

ℓℓmj
, (6.41)

Vij · [vR]ℓℓij = − [α̂ϕϕ]ij , (6.42)

Vij · [sL]ℓℓij = − [α̂lq]
∗
ℓℓji , (6.43)

Vij · [sR]ℓℓij = −Vim [α̂qde]
∗
ℓℓjm , (6.44)

Vij · [tL]ℓℓij = −
[

α̂tlq
]∗
ℓℓji

. (6.45)

In Eqs. (6.41-6.45) the repeated indices i, j, ℓ are not summed over, while the index
m is.
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6.3 Flavor structure of the effective couplings

So far we have presented our results for the effective Lagrangian keeping generic fla-
vor structures in the couplings [α̂X ]abcd (see Eqs. (6.38), (6.39), and (6.41) through
(6.45)). However, some of the operators considered in the analysis contribute to fla-
vor changing neutral current (FCNC) processes, so that their flavor structure cannot
be generic if the effective scale is around Λ ∼ TeV: the off-diagonal coefficients are
experimentally constrained to be very small. While it is certainly possible that some
operators (weakly constrained by FCNC) have generic structures, we would like to
understand the FCNC suppression needed for many operators in terms of a sym-
metry principle. Therefore, we organize the discussion in terms of perturbations
around the U(3)5 flavor symmetry limit.

If the underlying new physics respects the U(3)5 flavor symmetry of the SM gauge
Lagrangian, no problem arises from FCNC constraints. The largest contributions to
the coefficients are flavor conserving and universal. Flavor breaking contributions
arise through SM radiative corrections, due to insertions of Yukawa matrices that
break the U(3)5 symmetry. As a consequence, imposing exact U(3)5 symmetry on
the underlying model does not seem realistic. A weaker assumption, the Minimal
Flavor Violation (MFV) hypothesis, requires that U(3)5 is broken in the underlying
model only by structures proportional to the SM Yukawa couplings [126], and by
the structures generating neutrino masses [127]. We will therefore organize our
discussion in several stages:

1. First, assume dominance of U(3)5 invariant operators;

2. Consider the effect of U(3)5 breaking induced within MFV;

3. Consider the effect of generic non-MFV flavor structures.

6.3.1 MFV allowed structures

In order to proceed with this program, we show in this section the flavor structures
allowed within MFV for the relevant operators. We use Greek letters α, β, ρ, σ for
the lepton flavor indices, while i, j for the quark flavor indices, and we neglect terms
with more than two Yukawa insertions. Moreover, we denote by α̂X , β̂X , and γ̂X
the numerical coefficients of O(1)× v2/Λ2 that multiply the appropriate matrices in
flavor space. For the operators that have a non-vanishing contribution in the U(3)5

limit, we find:

[α̂
(3)
ϕl ]

αβ = α̂
(3)
ϕl δ

αβ + β̂
(3)
ϕl (∆

(ℓ)
LL)αβ + . . . , (6.46)

V im
[

α̂(3)
ϕq

]jm∗
= α̂(3)

ϕq V
ij + β̂(3)

ϕq (V ∆
(q)
LL)ij + . . . , (6.47)

V im
[

α̂
(3)
lq

]αβmj

= α̂
(3)
lq δαβ V ij + β̂

(3)
lq (∆

(ℓ)
LL)

αβ V ij

+ γ̂
(3)
lq δαβ (V ∆

(q)
LL)ij + . . . , (6.48)
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[

α̂
(n)
ll

]αβρσ

= α̂
(n)
ll δαβ δρσ + β̂

(n)
ll

[

δαβ(∆
(ℓ)
LL)

ρσ + (∆
(ℓ)
LL)αβδρσ

]

+ . . . , (6.49)

[α̂le]
αβρσ = α̂le δ

αβδρσ + β̂le (∆
(ℓ)
LL)

αβ δρσ + . . . , (6.50)

where ∆
(q/ℓ)
LL are the leading “left-left” flavor structures in the quark and lepton

sector, that read:

∆
(q)
LL = V † λ̄2

u V , (6.51)

∆
(ℓ)
LL =

Λ2
LN

v4
U m̄2

ν U
† . (6.52)

The notation here is as follows: we denote by λ̄u,d,e the diagonal Yukawa matrices;
m̄ν represents the diagonal light neutrino mass matrix; V denotes the CKM matrix,
while U is the PMNS [128] neutrino mixing matrix; v is the Higgs VEV and ΛLN is
the scale of lepton number violation, that appears in the definition of MFV in the
lepton sector (we follow here the “minimal” scenario of Ref. [127]).

For the operators that vanish in the limit of exact U(3)5 symmetry, we find:

[α̂ϕϕ]
ij = α̂ϕϕ

(

λ̄u V λ̄d
)ij

+ . . . , (6.53)

V im [α̂qde]
αβjm∗ = α̂qde λ̄

αβ
e (V λ̄d)

ij + β̂qde (λ̄e ∆
(ℓ)
LL)αβ (V λ̄d)

ij

+ γ̂qde λ̄
αβ
e (V∆

(q)
LLλ̄d)

ij + . . . , (6.54)

[α̂lq]
αβji∗ = α̂lq λ̄

αβ
e (λ̄uV )ij + β̂lq (λ̄e∆

(ℓ)
LL)

αβ (λ̄uV )ij

+ γ̂lq λ̄
αβ
e (λ̄uV∆

(q)
LL)

ij + . . . . (6.55)

The coefficient of the tensor operator, [α
(t)
lq ] has an expansion similar to the one of

[αlq].
Except for the top quark, the Yukawa insertions typically involve a large sup-

pression factor, as λ̄i = mi/v. In the case of SM extensions containing two Higgs
doublets, this scaling can be modified if there is a hierarchy between the vacuum
expectation values vu, vd of the Higgs fields giving mass to the up- or down-type
quarks, respectively. In this case, for large tanβ ≡ vu/vd the Yukawa insertions
scale as:

λ̄u =
mu

v sin β
→ mu

v
, (6.56)

λ̄d =
md

v cosβ
→ md

v
tanβ , (6.57)

λ̄ℓ =
mℓ

v cosβ
→ mℓ

v
tan β . (6.58)

6.4 Conclusions

From the most general effective Lagrangian with the SM particle content that re-
spects the baryon and lepton number symmetries, we have identified a minimal set of
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twenty-four weak scale effective operators describing corrections beyond the SM to
precision electroweak measurements and leptonic and semileptonic decays. In terms
of these new physics corrections at the TeV scale, we have derived the low-energy
effective Lagrangians describing muon and beta decays, specifying both the most
general flavor structure of the operators as well as the form allowed within Minimal
Flavor Violation.

In the next chapter we will analyze the phenomenology of this Lagrangian in the
simple flavor-blind case, that represents a good approximation to the MFV case.
We will see that the expressions simplify substantially and one can make a clean
phenomenological analysis of the NP constraints and their significance.



Chapter 7

NP constraints from CKM unitarity

Physics is like sex:
sure, it may give some practical results,
but that’s not why we do it.

R. P. Feynman

In the introduction of the previous chapter we said that the precise lifetime and
branching ratio measurements [129] combined with improvements also on the the-
oretical calculations make semileptonic decays of light quarks and purely leptonic
decays a deep probe of the nature of weak interactions. We want to show it in this
chapter explicitly, taking advantage of the theoretical framework developed previ-
ously.

In particular, the determination of the elements Vud and Vus of the Cabibbo-
Kobayashi-Maskawa (CKM) [130] quark mixing matrix is approaching the 0.025%
and 0.5% level, respectively. Such precise knowledge of Vud and Vus enables tests of
Cabibbo universality, equivalent to the CKM unitarity condition1 |Vud|2 + |Vus|2 +
|Vub|2 = 1, at the level of 0.001 or better. Assuming that new physics contributions
scale as α/π(M2

W/Λ
2), the unitarity test probes energy scales Λ on the order of the

TeV, which will be directly probed at the LHC.

The implications of the Cabibbo universality tests have bee analyzed in some
particular (mostly supersymmetric) scenarios [131, 132], but a model-independent
analysis is missing and we will tackle it here [125].

The use of an effective Lagrangian allows us to understand in a model-independent
way (i) the significance of Cabibbo universality constraints compared to other pre-
cision measurements (for example, could we expect sizable deviations from univer-
sality in light of no deviation from the SM in precision tests at the Z pole?); (ii)
the correlations between possible deviations from universality and other precision
observables, not always simple to identify in a specific model analysis.

1Vub ∼ 10−3 contributes negligibly to this relation.
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7.1 Phenomenology of Vud and Vus: overview

Using the general effective Lagrangians of Eqs. (6.37) and (6.40) for charged current
transitions, one can calculate the deviations from SM predictions in various semilep-
tonic decays. In principle a rich phenomenology is possible. Helicity suppressed
leptonic decays of mesons have recently been analyzed in Ref. [133]. Concerning
semileptonic transitions, several reviews treat in some detail β decay differential
distributions [134, 135]. Here we focus on the integrated decay rates, which give
access to the CKM matrix elements Vud and Vus: since both the SM prediction and
the experimental measurements are reaching the sub-percent level, we expect these
observables to provide strong constraints on NP operators.

Vud and Vus can be determined with high precision in a number of channels. The
degree of needed theoretical input varies, depending on which component of the
weak current contributes to the hadronic matrix element. Roughly speaking, one
can group the channels leading to Vud,us into three classes:

• Semileptonic decays in which the axial-vector component of the weak cur-
rent does not contribute. These are theoretically favorable in the Standard
Model because the matrix elements of the vector current at zero momentum
transfer are known in the SU(2) (SU(3)) limit of equal light quark masses:
mu = md (= ms). Moreover, corrections to the symmetry limit are quadratic
in ms,d −mu [136]. Super-allowed nuclear beta decays (0+ → 0+), pion beta
decay (π+ → π0e+νe), and K → πℓν decays belong to this class. The de-
termination of Vud,us from these modes requires theoretical input on radia-
tive corrections [137, 138] and hadronic matrix elements via analytic meth-
ods [65, 71, 139–141] or lattice QCD [142,143].

• Semileptonic transitions in which both the vector and axial-vector components
of the weak current contribute. Neutron decay (n→ peν̄) and hyperon decays
(Λ → peν̄, ....) belong to this class. In this case the matrix elements of the
axial current have to be determined experimentally [144].

Inclusive τ lepton decays τ → hντ belong to this class (both V and A current
contribute), and in this case the relevant matrix elements can be calculated
theoretically with the sum rule framework derived in Chapter 3 [5].

• Leptonic transitions in which the vector component of the weak current does
not contribute. In this class one finds meson decays such as π(K) → µν
but also exclusive τ decays such as τ → ντπ(K). Experimentally one can
determine the products |VudFπ| and |VusFK |. With the advent of precision
calculations of FK/Fπ in lattice QCD [145, 146], this class of decays provides
a useful constraint on the ratio Vus/Vud [147].

Currently, the determination of Vud is dominated by 0+ → 0+ super-allowed nu-
clear beta decays [139], while the best determination of Vus arises from K → πℓν
decays [132]. Experimental improvements in neutron decay and τ decays, as well
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as in lattice calculations of the decay constants will allow in the future competi-
tive determinations from other channels. In light of this, we set out to perform a
comprehensive analysis of possible new physics effects in the extraction of Vud and
Vus.

7.2 New physics effects on the Vij extraction

As outlined in the previous chapter, we start our analysis by assuming dominance
of the U(3)5 invariant operators. These are not constrained by FCNC and can have
a relatively low effective scale Λ. In the U(3)5 limit the phenomenology of CC
processes greatly simplifies: all Vij receive the same universal shift (coming from
the same short distance structure) and as a consequence, extractions of Vud,us from
different channels (vector transitions, axial transitions, etc.) should agree within
errors. Therefore, in this limit the new physics effects are entirely captured by the
quantity

∆CKM ≡ |V (pheno)
ud |2 + |V (pheno)

us |2 + |V (pheno)
ub |2 − 1 , (7.1)

constructed from the V (pheno)
ij elements extracted from semileptonic transitions using

the standard procedure outlined below. We now make these points more explicit.

7.2.1 U(3)5 limit

If we assume U(3)5 invariance, only the SM structure survives in the muon decay
Lagrangian of Eq. (6.37), with 2

ṽL = 4 α̂
(3)
ϕl − 2 α̂

(3)
ll . (7.2)

Therefore, in this case the effect of new physics can be encoded into the following
definition of the leptonic Fermi constant:

Gµ
F = (GF )(0) (1 + ṽL) , (7.3)

where G
(0)
F = g2/(4

√
2m2

W ). Similarly, in the U(3)5 symmetry limit, only the
SM operator survives in the effective langrangian for semileptonic quark decays
of Eq. (6.40), with coupling:

[vL]ℓℓij → vL ≡ 2
(

α̂
(3)
ϕl + α̂(3)

ϕq − α̂
(3)
lq

)

. (7.4)

As in the muon decay, the new physics can be encoded in a (different) shift to the
effective semileptonic (SL) Fermi constant:

GSL
F = (GF )(0) (1 + vL) . (7.5)

2Notice that we disagree with the result of BW on the sign of α̂
(3)
ll . This error propagates for

example to the work of Barbieri and Strumia [148] where the BW expression was used, although
in this case the sign of the operator is irrelevant (one must only exchange the columns of Table 3
in that reference).
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The value of Vij extracted from semileptonic decays is affected by this redefinition
of the semileptonic Fermi constant and by the shift in the muon Fermi constant Gµ

F ,
to which one usually normalizes semileptonic transitions. In fact one has

V
(pheno)
ij = Vij

GSL
F

Gµ
F

= Vij (1 + vL − ṽL)

= Vij

[

1 + 2
(

α̂
(3)
ll − α̂

(3)
lq − α̂

(3)
ϕl + α̂(3)

ϕq

)]

. (7.6)

So in the U(3)5 limit a common shift affects all the Vij (from all channels). The
only way to expose new physics contributions is to construct universality tests, in
which the absolute normalization of Vij matters. For light quark transitions this
involves checking that the first row of the CKM matrix is a vector of unit length
(see definition of ∆CKM in Eq. (7.1)). The new physics contributions to ∆CKM involve
four operators of our basis and read:

∆CKM = 4
(

α̂
(3)
ll − α̂

(3)
lq − α̂

(3)
ϕl + α̂(3)

ϕq

)

. (7.7)

In specific SM extensions, the α̂i are functions of the underlying parameters. There-
fore, through the above relation one can work out the constraints of quark-lepton
universality tests on any weakly coupled SM extension.

7.2.2 Beyond U(3)5

Corrections to the U(3)5 limit can be introduced both within MFV and via generic
flavor structures. In MFV, as evident from the results of Section 6.3, the coefficients
parameterizing deviations from U(3)5 are highly suppressed. This is true even when
one considers the flavor diagonal elements of the effective couplings, due to the small-
ness of the Yukawa eigenvalues and the hierarchy of the CKM matrix elements. As a
consequence, in MFV we expect the conclusions of the previous subsections to hold.
The various CKM elements Vij receive a common dominant shift plus suppressed
channel-dependent corrections, so that Eq. (7.7) remains valid to a good approxi-
mation. In other words, both in the exact U(3)5 limit and in MFV, ∆CKM probes
the leading coefficients α̂X of the four operators OCKM = {O(3)

ll , O
(3)
lq , O

(3)
ϕl , O

(3)
ϕq }.

In a generic non-MFV framework, the channel-dependent shifts to Vij could be
appreciable, so that ∆CKM would depend on the channels used to extract Vud,us.
Therefore, comparing the values of Vus and Vud (or their ratios) extracted from
different channels gives us a handle on U(3)5 breaking structures beyond MFV.
We will discuss this in the next chapter, where we will analyze the new physics
contributions to the ratios V 0+→0+

ud /V n→peν̄
ud , V K→πℓν

us /V 0+→0+

ud , V K→µν
us /V π→µν

ud , and
(Vus/Vud)

τ→ν h from both inclusive and exclusive channels. In summary, we organize
our analysis in two somewhat orthogonal parts, as follows:

• In the rest of this chapter we focus on the phenomenology of ∆CKM and its
relation to other precision measurements. This analysis applies to models of
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TeV scale physics with approximate U(3)5 invariance, in which flavor break-
ing is suppressed by a symmetry principle (as in MFV) or by the hierarchy
Λflavor ≫ 1 TeV

• In the next chapter we will explore the constraints arising by comparing the
values of Vus (Vud) extracted from different channels. These constraints probe
the U(3)5 breaking structures, to which other precision measurements (espe-
cially at high energy) are essentially insensitive.

Classification Standard Measurement Ref.
Notation

Atomic parity QW (Cs) Weak charge in Cs [149]
violation (QW ) QW (T l) Weak charge in Tl [150]

DIS g2
L, g

2
R νµ-nucleon scattering (NuTeV) [151]

Rν νµ-nucleon scattering [152]
(CDHS, CHARM)

κ νµ-nucleon scattering (CCFR) [153]
gνeV , g

νe
A ν-e scattering (CHARM II) [154]

Zline ΓZ Total Z width [155]
(lepton and σ0 e+e− hadronic cross section [155]
light quark) at Z pole

R0
(f=e,µ,τ) Ratios of lepton decay rates [155]

A
0,(f=e,µ,τ)
FB Forward-backward [155]

lepton asymmetries
pol A(f=e,µ,τ) Polarized lepton asymmetries [155]
bc R0

(f=b,c) Ratios of hadronic decay rates [155]

(heavy quark) A
0,(f=b,c)
FB Forward-backward [155]

hadronic asymmetries
A(f=b,c) Polarized hadronic asymmetries [155]

LEPII Fermion σ(f=q,µ,τ) Total cross sections for e+e− → ff [155]
production A

(f=µ,τ)
FB Forward-backward asymmetries [155]

for e+e− → ff
eOPAL dσe Differential cross section [156]

d cos θ for e+e− → e+e−

WL3 dσW Differential cross section [157]
d cos θ for e+e− →W+W−

MW MW W mass [155, 158]
QFB sin2 θlepteff Hadronic charge asymmetry [155]

Table 7.1: Measurements included in this analysis. This summary table was taken
directly from Table I of [124] and repeated here for convenience. We added some
details in the classification column as well as additional experimental references.
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7.3 ∆CKM versus precision electroweak measurements

In the limit of approximate U(3)5 invariance, we have shown in Eq. (7.7) that ∆CKM

constraints a specific combination of the coefficients α̂(3)
ll , α̂

(3)
lq , α̂

(3)
ϕl , α̂

(3)
ϕq . Each of

these coefficients also contributes to other low- and high-energy precision electroweak
measurements [124], together with the remaining seventeen operators that make up
the U(3)5 invariant sector of our TeV scale effective Lagrangian (see Sect. 6.1.3).
Therefore, we can now address concrete questions such as: what is the maximal
deviation |∆CKM| allowed once all the precision electroweak constraints have been
taken into account? Which observables provide the strongest constraints on the
operators contributing to ∆CKM? How does the inclusion of ∆CKM affect the fit
to precision electroweak measurements? Should a deviation ∆CKM 6= 0 be estab-
lished, in what other precision observables should we expect a tension with the SM
prediction? At what level?

Our task greatly benefits from the work of Han and Skiba (HS) [124], who studied
the constraints on the same set of twenty-one U(3)5 invariant operators via a global
fit to precision electroweak data. We employ a modified version of their publicly
available fitting code in what follows. The analysis utilizes the experimental data
summarized in Table 7.1. The procedure involves constructing the χ2 function for
the observables listed in Table 7.1, which contains 237 generally correlated terms.
Indicating with X i

th(α̂k) the theoretical prediction for observable X i (including SM
plus radiative correction plus first order shift in α̂k = αkv

2/Λ2), and with X i
exp the

experimental value, the χ2 reads

χ2(α̂k) =
∑

i,j

(

X i
th(α̂k) −X i

exp

) (

σ2
)−1

ij

(

Xj
th(α̂k) −Xj

exp

)

, (7.8)

where σ2
ij = σi ρij σj is expressed in terms of the combined theoretical and exper-

imental standard deviation σi and the correlation matrix ρij . For more details, we
refer to Ref. [124]. In our numerical analysis we essentially use the code of HS3 and
minimally extend it by including the ∆CKM constraint in the χ2 function. Given the
phenomenological input Vud = 0.97425(22) [139], Vus = 0.2252(9) [159], we obtain
the constraint [159]

∆CKM = (−1 ± 6) × 10−4 , (7.9)

that has essentially no correlation with the other precision measurements, due to
the small fractional uncertainty in the Fermi constant.

We perform two different analyses, one in which all operators OX are allowed
to contribute, and one in which only a single operator at a time has non vanishing
coefficient. These two regimes represent extreme model scenarios and possess differ-
ent characteristics. In the global analysis, due to the large number of parameters,
cancellations can dilute the impact of specific observables: the burden of satisfying

3 We prefer to quote final results in terms of the dimensionless ratios α̂k = αkv2/Λ2 (v ≃ 174
GeV) instead of ak = 1/Λ2

k as in HS.
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a tight constraint from a given observable can be “shared” by several operators. On
the other hand, within the single-operator analysis one may easily find correlations
between different sets of measurements. We think of the single operator analysis
as a survey of a simplified class of models, in which only one dominant effective
operator is generated.

7.3.1 Global analysis

In order to quantify the significance of the experimental CKM unitarity constraint,
we first calculate the range of ∆CKM(α̂k) allowed by existing bounds from all the
precision electroweak measurements included in Table 7.1. In terms of the best fit
values and the covariance matrix of the α̂i [124] obtained from the fit to electroweak
precision data, we find

∆CKM = − (4.8 ± 4.7) · 10−3 ≈ − (5 ± 5) · 10−3 (90% C.L.) , (7.10)

to be compared with the direct 90% C.L. bound |∆CKM| ≤ 1.×10−3 (see Eq. (7.9)).
The first lesson from this exercise is that electroweak precision data leave ample
room for a sizable non-zero ∆CKM: the direct constraint is five times stronger than
the indirect one! Therefore, one should include the ∆CKM constraint in global fits
to the effective theory parameters.

The next question we address is: what is the impact of adding the ∆CKM con-
straint to the global electroweak fit? The chi-squared per degrees of freedom changes
only marginally, from χ2/d.o.f. = 180.12/215 to χ2/d.o.f. = 173.74/216. We find
that essentially the only impact is to modify the allowed regions for α̂(3)

ll , α̂
(3)
lq , α̂

(3)
ϕl , α̂

(3)
ϕq .

To illustrate this, in Figure 7.1, we display the projection of the twenty-one dimen-
sional 90% confidence ellipsoid onto the relevant planes involving α̂(3)

ll , α̂
(3)
lq , α̂

(3)
ϕl , α̂

(3)
ϕq .

The black curves represent bounds before the inclusion of the ∆CKM constraint. The
dashed blue lines outline the allowed regions found by considering only the effect
of current ∆CKM bounds (Eq. 7.7): the regions are unbounded because large values
of any of the α̂i may be canceled by a correspondingly large contribution of other
operators. The situation changes when high-energy observables are taken into ac-
count, as can be seen from the combined fit solid blue curve. Despite the relatively
weak indirect ∆CKM constraints from high-energy data, the unbounded parameter
directions are cut off at the edge of the allowed black contour. In the orthogonal
direction, the combined ellipse is shrunk significantly by the strong ∆CKM bound.
Thus, the solid blue contour is rotated and contracted with respect to its parent
black region. As evident from the figure, the main effect of including ∆CKM is to
strengthen the constraints on the four-fermion operator O(3)

lq .
At this stage we may also ask how would this picture change if a significant

deviation from Cabibbo universality were to be observed. To answer this question,
we show in Fig. 7.1, the 90 % C.L. allowed regions (red solid curve) obtained
by assuming a ∼ 4 σ deviation, namely ∆CKM = −0.0025 ± 0.00064. One can see

4This value has been chosen for illustrative purposes and could be realized if the central value of
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Figure 7.1: 90% allowed regions for the coefficients α̂(3)
ll , α̂

(3)
lq , α̂

(3)
ϕl , α̂

(3)
ϕq . These are

projections from the 21 dimensional ellipsoid, obtained from the fitting code. We
include the results for high-energy observables alone (HEP, black unbroken curves),
high-energy data plus the current ∆CKM constraint (blue unbroken curve), high-
energy data plus the alternative value of ∆CKM = −0.0025 ± 0.0006 (red unbroken
curve) and the bounds from the current ∆CKM alone (blue dashed curve).

that changing the central value of ∆CKM has only a minor effect on the allowed
regions: the fit is driven by the comparatively small ∆CKM uncertainty, rather than
its central value. While the fitting procedure tends to minimize the χ2 contribution
from ∆CKM, this does not generate much tension with the remaining observables, as
other operators can compensate the effect of potentially non-vanishint α̂i ⊂ α̂CKM.

7.3.2 Single operator analysis

To gain a better understanding of the interplay between the ∆CKM constraint and
other precision measurements, we embark on a single operator analysis. We as-
sume that a single operator at a time dominates the new physics contribution and
set all others to zero. A similar analysis (not including the CKM constraints)
has been performed in [148]. We will only consider the operator set OCKM =

Vus from Kℓ3 decays shifted down to Vus = 0.2200, which is preferred by current analytic estimates
of the vector form factor (see Refs. [65, 71, 141]).
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{O(3)
ll , O

(3)
lq , O

(3)
ϕl , O

(3)
ϕq } that contributes to ∆CKM, because for the other operators

the analysis would coincide with that of Ref. [148]. In this simplified context we can
ask questions about

(i) The relative strength of ∆CKM versus other precision electroweak measure-
ments in constraining the non-zero α̂i;

(ii) The size of correlations among SM deviations in various observables.

In order to address the first question above, for each coefficient α̂i ⊂ α̂CKM we
derive the 90 % C.L. allowed intervals implied by: (a) the global fit to all precision
electroweak measurements except ∆CKM (first column in Fig. 7.2, also denoted by
horizontal gray bands); (b) the ∆CKM constraint via Eq. (7.7) (second column in
Fig. 7.2); (c) each subset of measurements listed in Table 7.1 (remaining columns
in Fig. 7.2). Missing entries in Fig. (7.2) signify that the measurement sets
are independent of the selected operator. The plot nicely illustrates that, for the
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Figure 7.2: 90 % C.L. allowed regions for the coefficients α̂i within the single operator
analysis. The first column displays the constraint from all precision observables
except ∆CKM, the second those constraint coming exclusively from ∆CKM, and the
rest the constraint derived from each subset of measurements listed in Table 7.1.
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operators Oi ⊂ OCKM, the direct ∆CKM measurement provides constraints at the
same level (for α̂(3)

ϕl ) or better then the Z pole observables. Looking at the size of

the constraints, we can immediately conclude that the operators O(3)
ll , O(3)

ϕl , O
(3)
ϕq ,

are quite tightly constrained by Z lineshape observables (fourth column in Figure
7.2), so that very little room is left for CKM unitarity violations. On the other
hand, the operator O(3)

lq is relatively poorly constrained by electroweak precision
data (LEP2 e+e− → qq̄ cross section provides the best constraint) and could account
for significant deviations of ∆CKM from zero (first column of the second panel from
top in Fig. 7.2). In this case, the direct constraint is by far the tightest.

Should a non-zero ∆CKM be observed, in the single-operator framework it would
be correlated to deviations from the SM expectation in other observables as well,
since there is only one parameter in the problem (the coefficient α̂k of the dominant
operator considered). We have studied quantitatively the expected correlation be-
tween ∆CKM and the most sensitive electroweak measurements. In Figs. 7.3 and 7.4
we report the correlation between ∆CKM and Z pole observables. In these figures,
each black line (solid or broken) corresponds to a given single-operator model, in
which only one α̂k 6= 0. Each point on the black line correspond to a particular
value of α̂k. A flat black line indicate that no correlation exists between the two

Figure 7.3: Correlation of various Z pole observables with ∆CKM . Operator O(3)
lq is

not constrained by these measurements. The O(3)
lq and O

(3)
ϕq lines are degenerate in

the AFB panel. The 1σ bands for ∆CKM and Z pole measurements are shown in red
and blue, respectively. The right panel bands are shaded differently to indicate e, µ
and τ measurements separately. In the lower left panel σ0 = (12πΓeeΓhad)/(M

2
ZΓ2

Z)
parameterizes the maximum Z-pole cross-section for e+e− → had.
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observables considered. The red shaded bands indicate the current 1-σ ∆CKM direct
constraint, while the blue bands correspond to the 1-σ Z-pole observables. We use
different blue shading to indicate various measurements included in the analysis.
For example, the forward backward asymmetries (AFB) and decay branching ratios
(R) are shown in different color for each charged lepton flavor.

Figs. 7.3 and 7.4 clearly illustrate how much we can move ∆CKM from zero before
getting into some tension with Z pole precision measurements. Moreover, should a
given ∆CKM 6= 0 be measured, we can immediately read off in which direction other
precision measurement should move, and by how much, within this class of models.

The model in which O(3)
lq is the dominant operator is somewhat special, as Z-pole

observables do not put any constraint. In this model, correlations arise among the
following four observables: ∆CKM, the LEP2 e+e− → qq̄ cross section, neutrino DIS
(in particular the NuTeV measurements of the ratios of NC to CC in νµ −N DIS),
and Atomic Parity Violation, which has only a very weak dependence on α̂(3)

lq . The
two tightest constraints arise from ∆CKM and LEP2. From the correlation plot in
Fig. 7.5 (upper panel, solid line) one can see how LEP2 data in principle leave room
for substantial quark-lepton universality violations, up to |∆CKM| ∼ 0.005 at the
1-σ level. In the lower panel of Fig. 7.5. we report the correlation plot between
∆CKM and the effective neutrino-nucleon coupling g2

L extracted from NuTeV data.
The striking feature of this plot is that an explanation of the deviation between the

Figure 7.4: Correlation of Z-pole polarized lepton asymmetries with ∆CKM. Oper-
ators O(3)

lq and O
(3)
ϕq are not constrained by these measurements. The 1σ bands for

∆CKM and lepton asymmetries are shown in red and blue, respectively. Different
blue shading correspond to different measurements.
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Figure 7.5: Upper panel: correlation between ∆CKM and σ(e+e− → qq̄)(
√
s =

207 GeV). Lower panel: correlation between ∆CKM and the effective neutrino-
nucleon couplings g2

L measured by NuTeV. The 1σ bands for ∆CKM and the other
observable are shown in red and blue, respectively.

SM prediction and the NuTeV measured range of g2
L in terms O(3)

lq (solid line) would
require a ∆CKM at least 16σ below its current value.

7.4 Conclusions

We have performed the phenomenological analysis assuming nearly flavor blind
(U(3)5 invariant) new physics interactions. In this framework flavor breaking is
suppressed by a symmetry principle, such as the Minimal Flavor Violation hypoth-
esis, or by the hierarchy Λflavor ≫ TeV. We have shown that in this limit, the
extraction of Vud and Vus from any channel should give the same result and the
only significant probe of physics beyond the SM involves the quantity ∆CKM ≡
|Vud|2 + |Vus|2 + |Vub|2−1. In the next chapter we will explore the constraints arising
by comparing the values of Vus (Vud) extracted from different channels. These con-
straints probe those U(3)5-breaking structures to which FCNC and other precision
measurements are quite insensitive.

We have shown that in the U(3)5 limit ∆CKM receives contributions from four
short distance operators, namely OCKM = {O(3)

ll , O
(3)
lq , O

(3)
ϕl , O

(3)
ϕq }, which also shift

SM predictions in other precision observables. Using the result of Eq. (7.7), one can
work out the constraints imposed by Cabibbo universality on any weakly coupled
extension of the SM. Here we have focused on the model-independent interplay of
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∆CKM with other precision measurements. The main conclusions of our analysis are:

• The ∆CKM constraint bounds the effective scale of all four operators Oi ⊂
OCKM to be Λ > 11 TeV (90 % C.L.). For the operators O(3)

ll , O
(3)
ϕl , O

(3)
ϕq this

constraint is at the same level as the Z-pole measurements. For the four-
fermion operator O(3)

lq , ∆CKM improves existing bounds from LEP2 by one
order of magnitude.

• Another way to state this result is as follows: should the central values of Vud
and Vus move from the current values [132], precision electroweak data would
leave room for sizable deviations from quark-lepton universality (roughly one
order of magnitude above the current direct constraint). In a global analysis,
the burden of driving a deviation from CKM unitarity could be shared by the
four operators Oi ⊂ OCKM. In a single operator analysis, essentially only the
four-fermion operator O(3)

lq could be responsible for ∆CKM 6= 0, as the others
are tightly bound from Z-pole observables.

Our conclusions imply that the study of semileptonic processes and Cabibbo univer-
sality tests provide constraints on new physics beyond the SM that currently cannot
be obtained from other electroweak precision tests and collider measurements.
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Chapter 8

Beyond MFV

The important thing is
not to stop questioning.

A. Einstein

As we said in the previous chapter, once we go beyond the flavor-blind case the
new physics corrections received by the Vij elements of the CKM matrix are channel
dependent and consequently the phenomenology is very rich. In this chapter we
will study which is exactly the form of these corrections in the main channels: Kℓ3,
Kℓ2/πℓ2, nuclear beta decays and tau decays.

It is important to study these corrections because with the expectable improve-
ments on the experimental and theoretical side these effects will appear sooner or
later. In fact in the recent past there have been some tensions between the results
obtained using different channels. It is important to know if these tensions, at the
precision level that we are nowadays can be due to new physics effects, or if this
possibility is ruled out by other precision measurements and the discrepancy comes
probably from the underestimation of errors or just statistical fluctuations.

Moreover, once we are working with a general flavor structure in our operators,
the new physics effects go beyond just the contamination of the Vij extractions. One
can for example study the corrections to the parameters that describe the angular
decay of polarized muons and we will also take a look at this.

In this chapter we will derive the formal results for all these new physics correc-
tions and the phenomenological analysis will be made in a future publication [160],
where we will analyze the new physics bounds that can be extracted from these
processes and the allowed discrepancies taking into account other precision mea-
surements. This information is of an enormous practical interest since different ex-
periments have been proposed to improve the determination of all these low-energy
observables and therefore the analysis of their sensitivity to new physics effects is
crucial.

The starting point of this Chapter is the low-energy effective Lagrangians gov-
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erning the muon and beta decay, derived in Chapter 6 and that we remind here

Lµ→eν̄eνµ
=

−g2

2m2
W

[

(1 + ṽL) · ēLγµνeL ν̄µLγ
µµL + s̃R · ēRνeL ν̄µLµR

]

+ h.c., (8.1)

Ldj→uiℓ−ν̄ℓ
=

−g2

2m2
W

Vij

[

(

1 + [vL]ℓℓij

)

ℓ̄LγµνℓL ū
i
Lγ

µdjL + [vR]ℓℓij ℓ̄LγµνℓL ū
i
Rγ

µdjR

+ [sL]ℓℓij ℓ̄RνℓL ū
i
Rd

j
L + [sR]ℓℓij ℓ̄RνℓL ū

i
Ld

j
R

+ [tL]ℓℓij ℓ̄RσµννℓL ū
i
Rσ

µνdjL

]

+ h.c. , (8.2)

where the coefficients ṽL, s̃R, vL, . . . were defined in Sections 6.2.3 and 6.2.4 in term of
the coefficients of the short-distance operators of the BW Lagrangian. For simplicity,
we will assume through this Chapter that our new physics coefficients are real, and
therefore they will not generate CP violation.

8.1 Muon decay

8.1.1 Muon lifetime

In the previous chapter (Section 7.2.1) we saw that the correction to the muon
lifetime in the U(3)5-limit was given by the combination ṽL = 4α̂

(3)
ϕl −2α̂

(3)
ll . Working

with the most general flavor structure we have an additional correction but it is
completely negligible compared with ṽL; namely we find

(

τ (exp)
µ

)−1
=
∑

αβ

Γ(µ→ eν̄ανβ) =
(

τSMµ
)−1

(1 + δµ) , (8.3)

where

δµ = 2 ṽL + 2
me

mµ
s̃R ≈ 2 ṽL , (8.4)

(

τSMµ
)−1

=
G2
Fm

5
µ

192π3
f

(

m2
e

m2
µ

)

(1 +R.C.)

(

1 +
3

5

m2
µ

m2
W

)

, (8.5)

and f(x) = 1 − 8x + 8x3 − x4 − 12x2 ln x . The expression for the R.C. (radiative
corrections1) can be found in [161] and the Fermi constant is defined in terms of
SU(2)L×U(1)Y standard model parameters as GF = g2

2/4
√

2m2
W (at tree level, i.e.,

lowest order in perturbation theory), where g2 is the SU(2)L gauge coupling and
mW is the W± gauge boson mass.

1 The R.C. expression is somewhat arbitrary. Most quantum loop corrections to muon decay are
absorbed into the renormalized parameter Gµ. For historical reasons and in the spirit of effective
field theories, R.C. is defined to be the QED radiative corrections to muon decay in the local V-A
four fermion description of muon decay. That separation is natural and practical, since those QED
corrections are finite to all orders in perturbation theory.
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Traditionally, the muon lifetime, τµ, has been used to define the Fermi constant
because of its very precise experimental value and theoretical simplicity, but we see
here that within our framework what we are really extracting is the value of the
combination

(Gµ
F )(pheno) = (Gµ

F )(0)

(

1 +
1

2
δµ

)

= (Gµ
F )(0) (1 + ṽL) . (8.6)

The error in the muon lifetime measurement has been improved remarkably by
the MuLan and FAST Collaborations [162] and both of them expect to reach the
part-per-million precision in the future. We quote here the PDG value [129]

G
(exp)
F = 1.166367(5)× 10−5GeV−2 . (8.7)

8.1.2 Decay parameters of polarized muons

The most general derivative-free four-lepton interaction hamiltonian for describing
the process µ− → νµe

−ν̄e, consistent with locality, Lorentz invariance and lepton-
number conservation, can be written as [163]

Hµ−→νµe−ν̄e
= 4

Gµe√
2

n=S,V,T
∑

ǫ,ω=R,L

gnǫω [eǫΓ
n(νe)σ]

[

(νµ)λΓnµω

]

, (8.8)

where the label n refers to the type of interaction:

ΓS = 1 , ΓV = γµ , ΓT =
1√
2
σµν ≡ i

2
√

2
(γµγν − γνγµ) , (8.9)

for the scalar, vector and tensor interactions, respectively. Once n and the charged-
lepton chiralities, ǫ and ω, are chosen, the neutrino chiralities σ and λ are uniquely
determined. Taking into account also that there are only two non-zero tensor terms
and that one global phase may be taken away, we end up with 19 real constants.

In our case, without right-handed neutrinos, all the g’s are zero except gVLL and
gSRR, that correspond to the ṽL and s̃R coefficients of expression (8.1).

For an initial muon-polarization Pl, the final electron distribution in the muon
rest frame is usually parametrized in the form [164]

d2Γ(Pl, x, cos θ)

dx d cos θ
=
mlω

4

2π3
(G2

FN)
√

x2 − x2
0 ×

×
{

x(1 − x) +
2

9
ρ
(

4x2 − 3x− x2
0

)

+ η x0(1 − x)

−1

3
Pl ξ

√

x2 − x2
0 cos θ

[

1 − x+
2

3
δ

(

4x− 4 +
√

1 − x2
0

)]

}

, (8.10)

where θ is the angle between the µ− spin and the electron momentum, ω ≡ (m2
l +

m2
l′)/2ml is the maximum e− energy for massless neutrinos, x ≡ Ee−/ω is the

reduced energy and x0 ≡ me/ω.
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For unpolarized µ′s, the distribution is characterized by the so-called Michel [165]
parameter ρ and the low-energy parameter η. Two more parameters, ξ and δ can
be determined when the muon polarization is known.

To determine the constraints on physics beyond the SM, it is convenient to
express the Michel parameters in terms of their deviation from the SM values. One
obtains (taking into account that most of the g′s vanish in our framework) for the
four parameters and the overall normalization factor

ρ− 3

4
= 0 ,

η =
1

2
Re
(

gSRRg
V ∗
LL

)

,

ξ − 1 = −1

2
|gSRR|

2
,

(ξδ) − 3

4
= −3

8
|gSRR|

2
,

N =
1

4
|gSRR|

2
+ |gVLL|

2
. (8.11)

Notice that even at this point, where we have not neglected the quadratic terms yet,
we see some consequences of not considering the right-handed neutrinos like the fact
that there is no NP correction in the ρ parameter and that the correction in ξ and
(ξδ) is the same (up to a factor 3/4). It is known that η is the only parameter that
receives a linear correction from these new physics terms (see e.g. Ref. [166]) what
makes it the most sensitive to NP of these four parameters2.

ρ− 3

4
= 0 ,

η =
1

2
s̃R = [α̂le]2112 ,

ξ − 1 = 0 ,

(ξδ) − 3

4
= 0 ,

N = 1 + 2 ṽL . (8.12)

The TWIST Collaboration has published the most precise values for the param-
eters ρ, δ and (ξδ) [167], and they expect to improve these measurements in the
next years. For the moment, the results are compatible with the SM predictions,
but if next measurements disagree in any of these parameters not only we would
have a sign of physics beyond the SM but at the same time we would have extracted
valuable information about the new physics structure. A discrepancy in ξ and/or
(ξδ) could be a quadratic effect of our g′s, but a discrepancy in δ would be more
interesting since it could be explained only with the introduction of right-handed
neutrinos.

2It is worth mentioning that even in the most general framework with right-handed neutrinos,
that is with all the g′s finite, if we write gV

LL = 1 + g
′V
LL and neglect the terms quadratic in the g′s

we will find that all the differences with the SM vanish except η = 1
2gS

RR.
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The situation is a bit different for the parameter η, that has been measured
at the PSI [168], because as we have seen it is the only one where a difference
with the SM can be generated linearly, what makes it the most sensitive to new
physics. From its measurement and working within our framework one can extract
the value of [α̂le]2112. Notice that is quite remarkable that this observable involves
only one of our coefficients. The current result working in this linear approximation
is compatible with zero [168], what can be translated into a bound on [α̂le]2112:

|η| < 0.015 → (Λ(eff.))2 ≡ Λ2

|[αle]2211|
=
v2

|η| > (2 TeV)2 (95% C.L.). (8.13)

If the quadratic terms are kept then the extracted value for η is not so precise [129],
η = 0.001 ± 0.024, what generates Λ(eff.) > 1.1 TeV.

8.2 Kaon and pion physics

The new results on the semi-leptonic decays Kl3 and Kl2 from BNL-E865, KTeV,
NA48, KLOE, and ISTRA+ allow to perform very stringent SM tests [132], being
some of them almost free from hadronic uncertainties, as the µ/e universality ratio in
Kℓ2 decays. Moreover, this experimental improvement have stimulated a significant
progress also on the theory side: most of the theory-dominated errors associated to
hadronic form factors have recently been reduced below the 1% level.

We will first briefly review how the Vus and the ratio Vus/Vud are extracted,
assuming that the Standard Model holds, and then we will analyze the effects of the
new terms in our low-energy effective Lagrangian on these extraction procedures.

8.2.1 Kℓ3 and Kℓ2 rates within the SM

The photon-inclusive Kℓ3 and Kℓ2 decay rates can be conveniently decomposed
within the SM in the following way

Γ(Kℓ3(γ)) =
G2
Fm

5
K

192π3
CKSew |Vus|2f+(0)2 IℓK(λ+,0)

(

1 + δKSU(2) + δKℓem

)2
,(8.14)

Γ(K±
ℓ2(γ))

Γ(π±
ℓ2(γ))

=

∣

∣

∣

∣

Vus
Vud

∣

∣

∣

∣

2
f 2
KmK

f 2
πmπ

(

1 −m2
ℓ/m

2
K

1 −m2
ℓ/m

2
π

)2

× (1 + δem) , (8.15)

where CK = 1 (1/2) for the neutral (charged) kaon decays, Sew is the universal
short-distance electromagnetic correction and δem and δKℓem are the channel-dependent
long-distance electromagnetic correction factors. IℓK(λ+,0) is the phase space integral
that depends on the slopes of the form factors (generically denoted by λ+, 0)

IℓK =
1

m2
Kf+(0)2

∫

dt λ3/2(t)

(

1 +
m2
ℓ

2t

)(

1 − m2
ℓ

t

)2

×
(

f 2
+(t) +

3m2
ℓ (m2

K −m2
π)

2

(2t+m2
ℓ)m

4
Kλ(t)

|f0(t)|2
)

, (8.16)
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λ(t) = 1 − 2rπ + r2
π − 2t/m2

K − 2rπt/m
2
K + t2/m4

K , (8.17)

where rπ,ℓ = m2
π,ℓ/M

2
K . The hadronic K → π matrix element of the vector current

is described by two form factors, f+(t) and f0(t), defined by

〈π− (k) |s̄γµu|K0 (p)〉 = (p+ k)µf+(t) + (p− k)µf−(t) (8.18)

= (p+ k)µf+(t) + (p− k)µ
m2
K −m2

π

t

(

f0(t) − f+(t)
)

where t = (p− k)2.
In order to compute the phase space integral (8.16) we need to know the form

factors f+,0(t). In principle, Chiral Perturbation Theory and Lattice QCD are useful
tools to set theoretical constraints, but in practice the t-dependence is better deter-
mined by measurements and by combining measurements and dispersion relations.
With the recent experimental data the quantities |Vus|×f+(0) and |Vus|/|Vud|×fK/fπ
can be determined with very good accuracy [132]:

|Vus| × f+(0) = 0.2166(5), (8.19)

|Vus|/|Vud| × fK/fπ = 0.2760(6) . (8.20)

The main obstacle in transforming these precise determinations into a determi-
nation of |Vus| at the per-mil level are the theoretical uncertainties on the hadronic
parameters f+(0) and fK/fπ.

On one hand the parameter f+(0), although not calculable in perturbative QCD,
it is very constrained by SU(3) and chiral symmetry. In the SU(3) limit (mu = md =
ms) the conservation of the vector current implies f+(0)=1. The chiral corrections
are protected by the Ademollo–Gatto theorem that forbids corrections linear in the
quark masses. The O(p6) chiral corrections have been computed following different
analytical approaches [65, 71, 169] and the different results, although in agreement
with the original estimate by Leutwyler and Roos [140] f+(0) = 0.961(8), are sys-
tematically larger than it. In any case, the size of the error is still around or above
1%, which is not comparable to the 0.2% accuracy which has been reached for
|Vus| × f+(0). Recent progress in lattice QCD gives us more optimism in the reduc-
tion of the error on f+(0) below the 1% level [143,170]. We will follow the FlaviaNet
group and adopt the lattice value from the UKQCD-RBC collaboration [171] is
f+(0) = 0.964(5).

On the other hand the pseudoscalar decay constants are not protected by the
Ademollo–Gatto theorem and as a result, in the determination of fK/fπ lattice
QCD has essentially no competition from purely analytical approaches. Again,
following the FlaviaNet group we adopt the lattice result from the HPQCD/UKQCD
Collaboration fK/fπ = 1.189(7) [146]3.

Using these numbers it is found:

|Vus| = 0.2246 ± 0.0012 , |Vus|/|Vud| = 0.2321 ± 0.0015 . (8.21)

3It is worth noting that this result is in good agreement with the recent determinations per-
formed by the MILC’09 [106] and BMW [172] Collaborations, using different lattice techniques.
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It is interesting to notice that this value of |Vus|, based on the recent experi-
mental data on kaon decays, is about two sigma higher than the previous one,
|Vus| = 0.2200(26) (PDG2004), that was based essentially on twenty years old mea-
surements.

8.2.2 Kℓ2 and πℓ2 beyond the SM

Working with our low-energy effective Lagrangian (8.2) we obtain

Γ(X−
ℓ2(γ)) =

(G
(0)
F )2 |Vuj|2 F 2

X

4π
m2
ℓMX

(

1 − m2
ℓ

M2
X

)2

(1 + δ(Xℓ2)) , (8.22)

δ(Xℓ2) = 2

(

δAjℓ −
M2

X

(mu +mj)mℓ
δPjℓ

)

, (8.23)

δAjℓ = [vL]jℓ − [vR]jℓ , (8.24)

δPjℓ = [sL]jℓ − [sR]jℓ , (8.25)

where X = π(j = 1), K(j = 2) and ℓ = 1(e), 2(µ).

Extraction of |Vus|/|Vud|
From this result we can calculate the following ratio4

Rℓ ≡
Γ(K−

ℓ2(γ))

Γ(π−
ℓ2(γ))

=
|Vus|2 f 2

KmK

|Vud|2 f 2
πmπ





1 − m2
ℓ

m2
K

1 − m2
ℓ

m2
π





2

(1 + δ(Rℓ)) , (8.27)

δ(Rℓ) = δ(Kℓ2) − δ(πℓ2)

= 2

(

(δA2ℓ − δA1ℓ) −
(

M2
K

(mu+ms)mℓ
δP2ℓ −

M2
π

(mu+md)mℓ
δP1ℓ

))

,(8.28)

that is used to extract the value of the ratio |Vus|/|Vud|. If we take into account the
new terms what we are really measuring is the following quantity

( |Vus|
|Vud|

)(pheno)

=
|Vus|
|Vud|

×
(

1 +
1

2
δ(Rℓ)

)

. (8.29)

4The correction found for Rℓ, Eq. (8.28), agrees with the result of Ref. [132]. In order to
check it, it is necessary to take into account that, as we do not have right-handed neutrinos,
CV

LR = CV
RR = CS

LL = CS
RL = CT

LL = 0 in our approach. Notice also that they write the
Lagrangian for X+

ℓ2 and add the h.c. whereas we have written the Lagrangian for X−

ℓ2 and add the
h.c. This produces that CS

RR is connected to sL and not to sR as one might have thought naively.
In the end we have

[

CV
LL

]

j
= [vL]

∗

jℓ /|Vuj | ,
[

CS
LR

]

j
= [sR]

∗

jℓ /|Vuj | ,
[

CT
RR

]

j
= [tL]

∗

jℓ /|Vuj | ,
[

CV
RL

]

j
= [vR]

∗

jℓ /|Vuj | ,
[

CS
RR

]

j
= [sL]

∗

jℓ /|Vuj | . (8.26)
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µ− e universality ratios

These µ− e ratios are very clean observables and can be used to put strong bounds
to their NP-corrections. In our framework they take the form

Rπ ≡
Γ(π−

e2(γ))

Γ(π−
µ2(γ))

=
m2
e

m2
µ





1 − m2
e

m2
π

1 − m2
µ

m2
π





2

(1 + δ(Rπ)) , (8.30)

δ(Rπ) = δ(πe2) − δ(πµ2)

= 2

(

(δA1e − δA1µ) −
M2

π

mu+md

(

1

me
δP1e −

1

mµ
δP1µ

))

, (8.31)

RK ≡
Γ(K−

e2(γ))

Γ(K−
µ2(γ))

=
m2
e

m2
µ





1 − m2
e

m2
K

1 − m2
µ

m2
K





2

(1 + δ(RK)) , (8.32)

δ(RK) = δ(Ke2) − δ(Kµ2)

= 2

(

(δA2e − δA2µ) −
M2

K

mu+ms

(

1

me
δP2e −

1

mµ
δP2µ

))

, (8.33)

8.2.3 Kℓ3 decay beyond the SM

In the general case we have, in addition to the vector-current matrix element, the
tensor and scalar ones, and therefore we will need new form factors. Actually we only
need to add the tensor one, since f0(t) allow us to parametrize also the scalar-current
matrix element. More specifically, we have

〈π− (k) |(s̄u)|K0 (p)〉 = − m2
K −m2

π

(ms −mu)
f0 (t) , (8.34)

〈π− (k) |(s̄σµνu)|K0 (p)〉 = i
pµkν − pνkµ

mK
BT (t) . (8.35)

Following the scheme of the FlaviaNet Kaon Working Group [132] it is found
that the difference between the Kℓ3 rate obtained with our low-energy effective
Lagrangian (8.2) to the SM one can be summarized as follows:

• Overall rescaling factor produced by the vector and axial-vector couplings

Γ(Kℓ3(γ)) → Γ(Kℓ3(γ)) × |CV |2 , (8.36)

CV ≡ 1 + [vL + vR]∗2ℓ . (8.37)

• Scalar and pseudoscalar contributions can be encoded by substituting

f0(t) → fH0 (t) = f0(t)

(

1 +
CS

msMW
t

)

, (8.38)

CS ≡ MW

mℓ

[sR + sL]
∗
2ℓ . (8.39)
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• The tensor coupling modify the phase space integral IℓK(λ+,0) of Eq. (8.14) by

IℓK(λ+,0) → IℓK(λ+,0) − [tL]
∗
2ℓ I

ℓ
T (λT,+,0) , (8.40)

where IℓT is defined below.

In conclusion, the integrated rate including electromagnetic corrections can be writ-
ten as

Γ(Kℓ3(γ)) =
G2
Fm

5
K

192π3
CK Sew |Vus|2f+(0)2

(

1 + δKSU(2) + δKℓem

)2

× |CV |2
(

IℓK − [tL]
∗
2ℓ I

ℓ
T

)

, (8.41)

where

IℓK =
1

m2
Kf+(0)2

∫

dt λ3/2(t)

(

1 +
m2
ℓ

2t

)(

1 − m2
ℓ

t

)2

×
(

f 2
+(t) +

3m2
ℓ (m2

K −m2
π)

2

(2t+m2
ℓ)m

4
Kλ(t)

|fH0 (t)|2
)

,

IℓT =
1

m2
Kf+(0)2

∫

dt λ3/2(t)
6 mℓ

mK

(

1 − m2
ℓ

t

)2

BT (t)f+(t)∗ , (8.42)

where λ(t) was defined in (8.17).
We see that we do not agree with the result of Ref. [132] for the IℓT integral.

Comparing with the results of Ref. [173] we find that we agree in the fact that there
is no interference between BT (t) and f0(t), and also in the interference between
BT (t) and f0(t) but for a global sign5.

Vus extraction

In most realistic new-physics scenarios the modification of the Kℓ3 scalar form factor
and the phase space integral is well below the present experimental and theoretical
errors. In this way we would have

Γ(Kℓ3(γ)) ≈ Γ(Kℓ3(γ))
SM×|CV |2 = Γ(Kℓ3(γ))

SM (1 + 2 [vL + vR]2ℓ) , (8.43)

and therefore

|Vus|phenoKℓ3
= |Vus| (1 + [vL + vR]2ℓ − ṽL) . (8.44)

5We find a negative interference (notice the minus sign in the Eq. (8.40)). Altough there is also
a minus sign in the interference found in Ref. [173] one must take into account the fact that there
is an extra minus sign (and also some factors) that appears when we write their constant Cℓ

T in
terms of our constant tL. And therefore we have the discrepancy in the sign of the interference.
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8.3 Nuclear beta decay

The nuclear beta decay gives us the most precise measurement of Vud through the
study of the 0+ → 0+ transitions, and also gives one of the most precise alternative
determinations through the study of the neutron decay. First we briefly review how
these determinations are made (considering only the SM physics) and later we will
analyze the new physics effects on these procedures.

8.3.1 Standard extraction of Vud from nuclear beta decay

Vud from 0+ → 0+ transitions

In order to find the appropriate formula needed for the extraction of Vud, we start
with the general expression for the differential rate for unpolarized nucleus:

dΓ

dEedΩedΩν
=
F (−Z,Ee)

(2π)5

G2
F

2
|Vud|2peEe(E0 −Ee)

2 ξ

{

1 + a
pe ·pν
EeEν

+ b
me

Ee

}

, (8.45)

where E0 is the electron endpoint energy and F (−Z,Ee) is the Fermi function that
can be parametrized in the Primakoff-Rosen approximation [174] (good if the Q
value6 is not too small) as:

F (Z,Ee) =
Ee
pe

2παZ

1 − e−2παZ
. (8.46)

The correlation coefficients a and b vanish in the SM, whereas ξ = 4g2
V for the overall

normalization7. Therefore we see that nuclear beta decays between 0+ states are
produced only via the vector component of the hadronic weak interaction. This is
important because the CVC hypothesis protects the vector coupling constant GV

from renormalization by background strong interactions (gV = 1 up to second order
corrections in isospin breaking) and thus we have GV = GFVud. Consequently, using
the GF value extracted from muon decay and measuring GV in nuclei we have the
value of the CKM matrix element Vud.

Performing the phase space integrations, the total decay rate reads:

Γ0+→0+ =
G2
F m5

e

2π3
|Vud|2 f , (8.51)

6The Q value is the difference in the atomic masses of neutral atoms in ground-state configura-
tions and the quantity E0 in Eq. (8.45) is related to Q by the equation E0 = Q − me.

7The constants gi ≡ gi(0) (i = V, A, S, T ) are defined [134] as:

gV (q2) p̄γµn = 〈p| ūγµd |n〉 , (8.47)

gA(q2) p̄γµγ5n = 〈p| ūγµγ5d |n〉 , (8.48)

gS(q2) p̄n = 〈p| ūd |n〉 , (8.49)

gT (q2) p̄σµνn = 〈p| ūσµνd |n〉 . (8.50)
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where f is the phase space integral.
To date, precise measurements of the beta decay between isospin analog states

of spin, Jπ = 0+, and isospin, T = 1, provide the most precise value of Vud [139].
A survey of the relevant experimental data has recently been completed by Hardy
and Towner [139]. For each transition, three experimental quantities have to be
determined: the decay energy Q (used to calculate the phase space integral f),
the half-life of the decaying state t1/2 and the branching ratio R for the particular
transition under study. In Eq. (8.51) we see that, in the limit where isospin is an
exact symmetry, the product ft (the partial half-life is defined as t = t1/2/R) is

ft =
K

2G2
FV

2
ud

, (8.52)

where K = 2π3 ln 2/m5
e = 8.1202787(11)×10−13 GeV−5. That is, according to CVC

the ft value is a constant independent of the nucleus under study. In practice,
however, isospin is a broken symmetry in nuclei, and so a ‘corrected’ ft value that
takes into account the radiative corrections is defined by

Ft ≡ ft(1 + δ′R) (1 − (δC − δNS)) =
K

2G2
FV

2
ud (1 + ∆V

R)
; (8.53)

so it is this corrected Ft that is a constant. Here ∆V
R = (2.631 ± 0.038)% [138] is a

nucleus-independent part that includes the universal short-distance component SEW
affecting all semi-leptonic decays. The others corrections are transition dependent
that require shell-model calculation.

In the upper panel of Fig. 8.1 are shown the experimental ft values from the
survey of Hardy and Towner [139] for 13 transitions. This data represent an impor-
tant test of the CVC statement that the Ft values should be constant for all nuclear
super-allowed transitions of this type. The disagreement between the different points
is completely absent in the corrected Ft values shown in the lower panel of Fig. 8.1,
principally due to the nuclear-structure-dependent corrections, thus validating the
theoretical calculations at the level of current experimental precision. The weighted
average of the 13 data is

Ft = 3071.83 ± 0.85 s. (8.54)

The CKM matrix element Vud is then obtained from

V 2
ud =

K

2G2
F (1 + ∆V

R)Ft
→ |Vud| = 0.97425 ± 0.00022. (8.55)

The error is completely dominated by theoretical uncertainties, principally by the
nucleus-independent radiative correction ∆V

R, that was recently reduced by a fac-
tor of two [138] and where further improvements will need some theoretical break-
throughs. Second in order of significance are the nuclear-structure-dependent cor-
rections δC and δNS.
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Figure 8.1: In the top panel are plotted the uncorrected experimental ft values
as a function of the charge on the daughter nucleus. In the bottom panel, the
corresponding Ft values as defined in Eq. (8.53) are given. The horizontal grey
band in the bottom panel gives one standard deviation around the average Ft.
(Figure taken from Ref. [139])

Vud from neutron decay

The extraction of Vud from neutron β-decay cannot compete yet with the extrac-
tion from 0+ → 0+ transitions, but it is interesting because the most complicated
transition-dependent radiative corrections δC and δNS do not appear in the analysis.
However, we still have δ′R, and the nucleus-independent radiative correction ∆V

R .
Neutron β-decay not only samples the weak vector interaction but also the axial-

vector. Because of this, three parameters are required for a description of neutron
β-decay: GF , λ ≡ gA/gV (the ratio of the weak axial-vector and vector coupling
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constants) and Vud. Thus, considering GF as an input parameter coming from muon
decay, measurements of at least two observables are required for a determination of
Vud.

A value for λ can be extracted from measurements of correlation coefficients in
polarized neutron β-decay. The differential rate for polarized neutrons reads [175]:

dΓ

dEedΩedΩν

=
1

(2π)5

(G
(0)
F )2

2
|Vud|2peEe(E(n)

0 −Ee)
2 × (8.56)

× ξ

{

1 + a
pe · pν
EeEν

+ b
me

Ee
+

J

J
·
[

A
pe

Ee
+B

pν

Eν
+D

pe × pν

EeEν

]}

,

where Ee (Eν) and ~pe (~pν) denote, respectively, the electron (neutrino) energy and
momentum; E(n)

0 = ∆ − (∆2 − m2
e)/(2mn) (with ∆ = mn − mp) is the electron

end-point energy, me is electron mass and J is the neutron polarization.
Neglecting recoil-order corrections, the overall normalization ξ and the correla-

tion coefficients can be expressed in terms of λ as [176]

a =
1 − λ2

1 + 3λ2
, A = −2

λ2 + λ

1 + 3λ2
, B = 2

λ2 − λ

1 + 3λ2
,

ξ = 2(1 + 3λ2), b = 0, D = 0. (8.57)

At present, the neutron β-asymmetry A yields the most precise result for λ.
A second observable is the neutron lifetime, τn, which can be written in terms

of the above parameters as [138, 177, 178]

1

τn
=
G2
Fm

5
e

2π3
|Vud|2(1 + 3λ2)f(1 + RC). (8.58)

Here, f = 1.6887 ± 0.00015 is a phase space factor, and (1 + RC) = 1.03886 ±
0.00039 denotes the total effect of all electroweak radiative corrections [138, 177].
Summarizing we have that Vud can be determined from τn and λ according to [138,
177]

|Vud|2 =
4908.7 ± 1.9 s

τn(1 + 3λ2)
. (8.59)

The current status of a neutron-sector result for Vud is summarized in Fig. 8.2.
Using the PDG recommended value of τn = 885.7 ± 0.8 s yields the result [129]

|Vud| = 0.9746 ± 0.0004τn ± 0.0018λ ± 0.0002RC, (8.60)

where the subscripts denote the error sources, showing that the uncertainty in the
value of λ is by far the largest contribution to the error. This value is in good
agreement with that from nuclear β-decay, although with an error bar that is a
factor ∼ 7–8 larger. The most recent result reported for τn of 878.5±0.7±0.3 s [179]
disagrees by 6σ with the PDG average, and would suggest a considerably larger
value, |Vud| = 0.9786 ± 0.0004τn ± 0.0018λ ± 0.0002RC.

An ongoing series of precision measurements of neutron β-decay observables aims
to reduce the error on λ and resolve the lifetime discrepancy.
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Figure 8.2: Current status of Vud from neutron β-decay, showing the current PDG
value of λ (vertical error band) and the constraints between Vud and λ (angled error
bands) coming from two values of the neutron lifetime: the PDG recommended
value, and that from a recent 6σ-discrepant result [179]. The horizontal error band
denotes the value of Vud from 0+ nuclear β-decays. (Figure taken from Ref. [159])

8.3.2 New physics effects on the standard extraction of Vud

Once we go beyond the Standard Model and take into account the existence of new
terms in the low-energy Lagrangian (8.2) we will have that the extracted value of
Vud using the standard procedure described above contained some new physics con-
tamination that we want to estimate. The expression of the correlation coefficients
of the beta decay in terms of the coefficients of the most general derivative-free,
four-fermion interaction lagrangian describing the β decay process, consistent with
locality and Lorentz invariance, are known [135,175], and so we only have to apply
these expressions to our particular Lagrangian8. We find:

C ′
V = CV = gV

g2

8M2
W

Vud

(

1 + [vL]ud + [vR]ud

)

, (8.61)

C ′
A = CA = −gA

g2

8M2
W

Vud

(

1 + [vL]ud − [vR]ud

)

, (8.62)

C ′
S = CS = gS

g2

8M2
W

Vud

(

[sL]ud + [sR]ud

)

, (8.63)

C ′
T = CT = gT

g2

8M2
W

Vud 4 [tL]ud . (8.64)

CP and C ′
P can be neglected in calculations of experimental observables because,

in a nonrelativistic treatment of nucleons, the pseudoscalar hadronic current p̄γ5n

8In making this step it is important to realize that there is a minus sign of difference between
our definition of γ5 and that of Refs. [135, 175].
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vanishes. To simplify the notation, we will use [vL]ud → vL, etc.

0+ → 0+ transitions

The correlation coefficients ξ, a, b that parameterized the differential rate for unpo-
larized nucleus (8.45) take the following values within our framework

ξ = 4g2
V (1 + 2vL + 2vR) , (8.65)

a = 1 , (8.66)

b = 2γ gS(sL + sR) , (8.67)

with γ =
√

1 − α2Z. Taking into account the new physics effects in the extraction
of GF from the muon decay and performing the phase space integrations, the total
decay rate reads:

Γ0+→0+ =
G2
µ m

5
e

2π3
|Vud|2 F

(

1 + ∆V
R

)

[

1 + 2vL − 2ṽL + 2vR + b
I1(x0)

I0(x0)

]

=

[

Γ0+→0+

]SM[

1 + 2vL − 2ṽL + 2vR + b
I1(x0)

I0(x0)

]

, (8.68)

where F and ∆V
R were defined above (see Eq. (8.53)), and where Ik(x0) are the

phase space integrals, defined by:

Ik(x0) =

∫ x0

1

dx x1−k (x0 − x)2
√
x2 − 1 , x0 = E0/me . (8.69)

Therefore we infer that the standard procedure to extract |Vud|2 determines the
combination:

|Vud|2
∣

∣

∣

0+→0+
= |Vud|2

[

1 + 2vL − 2ṽL + 2vR + b
I1(x0)

I0(x0)

]

. (8.70)

Neutron β decay

In this case the presence of the weak axial-vector coupling constant gA (or equiva-
lently λ) makes the expression of the correlation coefficients a bit more involved:

• Overall normalization:

ξ = 2 g2
V

(

1 + 3λ2
)

[

1 + 2vL + 2vR
1 − 3λ2

1 + 3λ2

]

; (8.71)

• Beta-neutrino correlation coefficient:

a =
1 − λ2

1 + 3λ2

[

1 + 2vR
8λ2

(1 − λ2)(1 + 3λ2)

]

; (8.72)
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• Fierz interference term:

b =
2

1 + 3λ2

[

gS (sL + sR) − 12λ gT tL

]

; (8.73)

• Beta asymmetry parameter:

A =
2λ(1 − λ)

1 + 3λ2

[

1 − 2vR
1 − 2λ− 3λ2

(1 − λ)(1 + 3λ2)

]

; (8.74)

• Neutrino asymmetry parameter:

B =
2λ(1 + λ)

1 + 3λ2

[

1 − 2vR
1 + 2λ− 3λ2

(1 + λ)(1 + 3λ2)

]

+ 2
me

Ee

[

gS (sL + sR)
λ

1 + 3λ2
− 4gT tL

1 + 2λ

1 + 3λ2

]

. (8.75)

Expressing G(0)
F in terms of the Fermi constant determined in muon decay (Gµ)

and performing the phase space integrations, the total decay rate reads:

1

τn
=

G2
µ m

5
e

2π3
|Vud|2(1+3λ2)f(1+RC) ×

×
[

1 + 2vL − 2ṽL + 2vR
1 − 3λ2

1 + 3λ2
+ b

I1(x
(n)
0 )

I0(x
(n)
0 )

]

=
[ 1

τn

]SM
[

1 + 2vL − 2ṽL + 2vR
1 − 3λ2

1 + 3λ2
+ b

I1(x
(n)
0 )

I0(x
(n)
0 )

]

, (8.76)

where x(n)
0 = E0/me. Evaluating numerically the phase space integrals defined in

(8.69) one has I1(x
(n)
0 )/I0(x

(n)
0 ) = 0.652.

So far we have considered λ as a theoretical quantity free from NP contributions
(the matrix element of the axial current operator between a neutron and a proton
at zero momentum transfer, calculable within Lattice QCD). But in practice, as
we have explained, since current lattice QCD calculation are not accurate at the
percent level, λ is usually extracted from the experimental measurement of the beta
asymmetry A.

In presence of New Physics terms, the measurement of A determines λ as a
function of the right-handed coupling vR. Explicitly, we may write Eq. (8.74) as

A(λ, vR) = A0(λ)

[

1 + vR δA(λ)

]

, A0(λ) =
2λ(1 − λ)

1 + 3λ2
. (8.77)
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Working to linear order in vR , one then has:

λ = λ0 − vRAexp
δA(λ0)

A′
0(λ0)

, (8.78)

where λ0 is determined by ignoring the NP contributions, as a solution of the equa-
tion A0(λ0) = Aexp (i.e. the standard procedure). This implies

1 + 3λ2 → (1 + 3λ2
0)

[

1 − vR
6Aexp λ0 δA(λ0)

(1 + 3λ2
0)A

′
0(λ0)

]

. (8.79)

Putting everything together, Eq. (8.76) tells us that the "standard" phenomenology
of neutron decay does not determine |Vud|2 but rather the combination:

|Vud|2
∣

∣

∣

n→peν̄
= |Vud|2

[

1 + 2vL − 2ṽL

+ vR

(

2(1 − 3λ2
0)

1 + 3λ2
0

− 6Aexp λ0 δA(λ0)

(1 + 3λ2
0)A

′
0(λ0)

)

+ b
I1(x

(n)
0 )

I0(x
(n)
0 )

]

.(8.80)

8.3.3 NP contributions to Vud ratios

Using the previous results we find

|V 0+→0+

ud |2
|V n→peν̄
ud |2

= 1+vR

(

12λ2
0

1 + 3λ2
0

+
6Aexp λ0 δA(λ0)

(1 + 3λ2
0)A

′
0(λ0)

)

+b0+

I1(x0)

I0(x0)
−bn

I1(x
(n)
0 )

I0(x
(n)
0 )

, (8.81)

where λ0 denotes the ratio gA/gV as extracted from the beta asymmetry measure-
ment (A) ignoring possible NP terms.

8.4 Inclusive τ decay

Thanks to the very precise measurement of the hadronic spectral functions of the
τ -decay (see Chapter 2) and making use of the theoretical framework explained in
Chapter 3, the τ -decay has been a very rich field to test the SM and determine
different parameters. In particular, the difference between the strange and non-
strange spectral functions have been used to determine Vus with good accuracy [5].
Another very important application of these decays is the most precise determination
of the strong coupling constant αS.

So we see that it is very interesting to analyze the new physics effects on the
hadronic tau decays and the possible contamination produced in the extraction of
the different parameters. In this section we will explain how to address the problem
and we will see the main features of the results, whereas a more complete analysis
including a phenomenological study will be made in a future publication [160].
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8.4.1 Vus determination from tau decays

As we carefully explained in Chapter 3 the inclusive character of the total τ hadronic
width makes possible an accurate calculation of the ratio

Rτ ≡ Γ[τ− → ντ hadrons (γ)]

Γ[τ− → ντe−ν̄e(γ)]
= Rτ,nS +Rτ,S , (8.82)

where Rτ,nS and Rτ,S are the Cabibbo-allowed and Cabibbo-suppressed contribu-
tions, respectively. In principle if we neglect the small SU(3)-breaking corrections
from the ms −md quark-mass difference, we can obtain the value of |Vus| directly
from experimental measurements, without any theoretical input:

|Vus|SU(3) = |Vud|
(

Rτ,S

Rτ,nS

)1/2

= 0.210 ± 0.003 , (8.83)

where we have used |Vud| = 0.97425± 0.00022, from Eq. (8.55), Rτ = 3.640± 0.010
and the value Rτ,S = 0.1617 ± 0.0040 [51], which comes from the recent BaBar
and Belle measurements [46]. It is worth noting that the previous value for the
strange contribution to the tau width was larger (Rτ,S = 0.1686±0.0047 [48]), what
translated into a smaller value of the |Vus| element (|Vus|SU(3) = 0.215 ± 0.003).

The shift in this determination of |Vus| due to the small SU(3)-breaking con-
tributions induced by the strange quark mass can be calculated through an OPE
analysis of the difference [5, 6, 35, 51]

δRτ ≡ Rτ,nS

|Vud|2
− Rτ,S

|Vus|2
, (8.84)

The only non-zero contributions are proportional to the mass-squared difference
m2
s − m2

d or to vacuum expectation values of SU(3)-breaking operators such as
〈0|mss̄s − mdd̄d|0〉. The dimensions of these operators are compensated by the
appropriate powers of m2

τ , what suppresses these contributions.
The value of the strange quark mass is obviously crucial for this analysis. Work-

ing with the range

ms(mτ ) = (100 ± 10) MeV [ms(2 GeV) = (96 ± 10) MeV] , (8.85)

which includes the most recent ms-determinations from QCD Sum Rules and lattice
[180], one gets δRτ,th = 0.216 ± 0.016, which implies [51]

|Vus| =

(

Rτ,S

Rτ,nS

|Vud|2 − δRτ,th

)1/2

= 0.2165 ± 0.0030 exp ± 0.0005 th , (8.86)

that is at 2.5σ’s from the value extracted from kaon decays (8.21) (and hence from
unitarity). Notice that if we use the old world average forRτ,S this tension disappears
|Vus| = 0.2212 ± 0.0031. In any case we see in (8.86) that experimental errors
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dominate over the theoretical ones, in contrast to the situation encountered in Kℓ3

decays, what makes this channel very interesting.

In the near future, the full analysis of the large BaBar and Belle data samples
could produce significant changes on the experimental determination of Rτ,S, and
hence on the result (8.86), although in any case the final error of the Vus determina-
tion from τ decay will probably remain dominated by the experimental uncertainties.
A 1% precision measurement of Rτ,S would make the τ decay a competitive source
of information about Vus.

In principle it is possible to perform a simultaneous determination of Vus and
the strange quark mass through a correlated analysis of several SU(3)-breaking ob-
servables constructed with weighted moments of the hadronic distribution [5, 6].
However, the extraction of ms suffers from theoretical uncertainties related to the
convergence of the associated perturbative QCD series, what limits the present de-
termination of ms [5, 6].

8.4.2 The effective lagrangian

The starting point for the study of the New Physics effects in the τ -decay is our
effective Lagrangian (8.2) (notice that in this case we need the h.c. part). For
notational convenience we define the following leptonic and quark currents

Lµ ≡ ν̄ℓLγµℓL , R ≡ ν̄ℓLℓR , Rµν ≡ ν̄ℓLσµνℓR

V µ
ij ≡ d̄jγµui , Aµij ≡ d̄jγµγ5u

i ,

Sij ≡ d̄jui , Pij ≡ d̄jγ5u
i , T µνij ≡ d̄jσµν(1 − γ5)u

i . (8.87)

and also the following combinations of effective couplings:

κV = 1 + [v∗L]ij + [v∗R]ij , (8.88)

κA = 1 + [v∗L]ij − v∗R]ij , (8.89)

κS = [s∗L]ij + [s∗R]ij , (8.90)

κP = [s∗L]ij − [s∗R]ij , (8.91)

κT = [t∗L]ℓℓij . (8.92)

8.4.3 The inclusive decay rate

The total rate for the τ → ντeν̄e decay reads:

Γ(τ→ντ eν̄e) =
G2
F

192π3
m5
τ

[

1 + O
(

m2
e

m2
τ

)

]

. (8.93)
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The inclusive τ decay rate reads:

∑

n

Γ(τ→ντn) =
1

2mτ

∫

dp3
ν

(2π)32Eν

1

2

∑

s,s′

∑

n

∫

dφn

×
∣

∣

∣
〈ντn| H(ℓ→νℓuid̄j) | τ〉

∣

∣

∣

2

(2π)4δ4(q − pn)

=
∑

j=d,s

G2
F

∣

∣Vuj|2
16πmτ

∫

ds

(

1 − s

m2
τ

)

×
{

Tr
[

LµL
†
ν

]

[

|κV |2 ρµνV V (q) + |κA|2 ρµνAA(q)

]

+Tr
[

LµR
†]
[

2 Re(κV κ
∗
S) ρ

µ
V S(q) + 2 Re(κAκ

∗
P ) ρµAP (q)

]

+Tr
[

LµR
†
νρ

]

2Re(κV κ
∗
T ) ρµνρV T (q)

}

, (8.94)

where q = pτ − pν and pn is the total momentum of the hadronic final state. The
spectral functions ρAB(q) were defined in Eq. (2.9). We write as an example the
VV case, with its Lorentz expansion:

ρµνij,V V (q) ≡
∫

dφn(2π)3δ4(q − pn)
∑

n

〈0| V µ
ij |n〉 〈n| V ν†

ij | 0〉 (8.95)

≡
(

qµqν − gµνq2
)

ρ
(1)
ij,V V (q2) + qµqνρ

(0)
ij,V V (q2) .

For the rest of the spectral functions the Lorentz-decomposition is the following (we
omit for simplicity the flavour indices i, j)

ρµνAA(q) =
[

qµqν − gµνq2
]

ρ
(1)
AA(q2) + qµqνρ

(0)
AA(q2) , (8.96)

ρµV S(q) = qµρV S(q
2) , (8.97)

ρµAP (q) = qµρAP (q2) , (8.98)

ρµνρV T (q) = i
[

qνgµρ − qρgµν
]

ρV T (q2) , (8.99)

where the factor i in the last line was extracted in order to have a real spectral
function ρV T (q2), as can be seen explicitly in the work of Ref. [13].
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Making use of these expressions and normalizing to the τ decay rate we get9:

Rτ =

∑

n Γ(τ→ντn)

Γ(τ→ντ eν̄e)
= 12π2|Vud|2

∫

ds

m2
τ

(

1 − s

m2
τ

)2

×

×
{

|κV |2
[

(

1 +
2s

m2
τ

)

ρ
(1)
V V (s) + ρ

(0)
V V (s)

]

+|κA|2
[

(

1 +
2s

m2
τ

)

ρ
(1)
AA(s) + ρ

(0)
AA(s)

]

+2 Re(κV κ
∗
S)

ρV S(s)

mτ
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As we know these spectral functions are equal to the imaginary part of the associated
correlators, applying to them the same Lorentz-decomposition. For example, in the
VV-case we have

Πµν
ij,V V (q) ≡ i

∫

d4x eiqx 〈0| T
{

V µ
ij (x)V

ν†
ij (0)

}

| 0〉

=
[

(

qµqν − gµνq2
)

Π
(1)
ij,V V (q2) + qµqνΠ

(0)
ij,V V (q2)

]

. (8.101)

As we have explained in previous chapters, this formal result for Rτ is not very useful
in this form, since we do not know how to calculate from pure QCD the spectral
functions for small value of q2 (we need them here in the range 0 − 3.15 GeV2),
where perturbative techniques are not valid. But making use of the QCD Sum
Rules framework, we can apply Cauchy’s theorem and rewrite the expression in
terms of contour integrals of the associated correlators:

Rτ = 6πi|Vud|2
∮
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×
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, (8.102)

9In order to save space with indices, we quote only the non-strange result, proportional to
|Vud|2.
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where the DV has been neglected. The value of the different correlators can be
calculated for |s| = m2

τ using the Operator Product Expansion. The results for
the (0) and (1) components of the vector and axial-vector correlators are very well
known and can be found in Ref. [4]. The VS and AP correlators can be calculated
from the (0)-component of the VV and AA correlators using the Ward-identities
following from chiral symmetry and the QCD equations of motion

q2Π
(0)
V ij(q

2) = (mi −mj)ΠV Sij(q
2) ,

q2Π
(0)
Aij(q

2) = (mi +mj)ΠAPij(q
2) . (8.103)

whereas at last the VT correlator to leading non-trivial order in the SU(3) breaking
(quark masses) can be found in Ref. [181].



Chapter 9

Conclusions

If I was young, I’d flee this town,
I’d bury my dreams underground;
as did I, we drink to die, we drink tonight...

Beirut

In this work we have addressed two different aspects of the theoretical challenge
of discovering the new theory that rules the physics at high energies. First, we
have dealt with the non-perturbative character of the strong interactions, analyzing
critically and applying the QCD Sum Rules, a useful tool in the search of precise
predictions for the different observables in the Standard Model. Secondly, we have
studied the impact of the New Physics on (semi)leptonic low-energy processes, where
the experimental and theoretical accuracy is so high that very strong bounds can
be obtained. We develop now our conclusions associated with these two aspects.

9.1 QCD Sum Rules

In Chapter 2 we have introduced the spectral functions and we have explained
how they can be measured in the hadronic τ decays. These observables represent
the experimental input of the subsequent analyses, and they encode very valuable
perturbative and non-perturbative information, as we have shown later.

In Chapter 3, we have performed a careful derivation from very general principles
like analyticity and unitarity of the expression of a generic QCD Sum Rule, a very
useful method that connects hadrons and quarks. Its different elements have been
introduced and thoroughly explained: (i) the Wilson operator-product expansion
that allows a QCD calculation of the correlator in the deep euclidean region, (ii)
Chiral Perturbation Theory that gives us the value of the correlator near the origin,
(iii) the spectral functions that are directly related with the experiment, and (iv)
the often disregarded duality violation.

In the subsequent phenomenological analysis, we have focused on the Finite En-
ergy Sum Rules and the non-strange left-right two-point correlation function ΠLR(s).
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This correlator is particularly well suited for the study of non-perturbative QCD for
different reasons:

• The perturbative contribution to ΠLR(s) vanishes in the chiral limit;

• There is valuable theoretical information, like the Weinberg Sum Rules;

• There is precise available data for its associated spectral function ρLR(s) com-
ing from the hadronic τ decays [3];

• And last but not least, the different moments of ρLR(s) provide hadronic pa-
rameters of high phenomenological relevance.

First, in Chapter 4, we have applied this theoretical framework to determine
very accurately, from the most recent hadronic τ -decay data, the chiral low-energy
constants Lr10(Mρ), l5, Cr

87(Mρ) and cr50(Mρ), working both at O(p4) and O(p6) in
the chiral expansion. Taking into account the results of Refs. [72, 73] we have also
extracted the values of Lr9(Mρ) and l6. The results are summarized in Tables 9.1 and
9.2 and they include a careful analysis of the theoretical and experimental uncer-
tainties. Our present ignorance on some LECs dominates the final uncertainty of the
Lr10(Mρ) determination at O(p6), whereas in the Cr

87(Mρ) case the error is equally
shared by the experimental and LECs errors. The different analytical approaches
and the various lattice calculations agree very well with our precise phenomenolog-
ical values, showing that the theoretical methods used in QCD are in good shape.

χPT2 χPT3

l5 = 13.30 ± 0.11 Lr10(Mρ) = −(5.22 ± 0.06) · 10−3

l6 = 15.80 ± 0.29 Lr9(Mρ) = (6.54 ± 0.15) · 10−3

Table 9.1: Results for the χPT LECs obtained at O(p4).

χPT2 χPT3

l5 = 12.24 ± 0.21 Lr10(Mρ) = −(4.06 ± 0.39) · 10−3

l6 = 15.22 ± 0.39 Lr9(Mρ) = (5.50 ± 0.40) · 10−3

cr50 = (4.95 ± 0.18) · 10−3 GeV−2 Cr
87(Mρ) = (4.89 ± 0.18) · 10−3 GeV−2

Table 9.2: Results for the χPT LECs obtained at O(p6).

In Chapter 5 we have performed a very careful study of the usually disregarded
quark-hadron duality violation, focusing on the FESRs generated by the weights
w(s) = 1/s2, 1/s, s2 and s3. The need of a determination of the DV effects is the
result of the advent of precise data and refined perturbative calculations, that make
relevant the contributions that before could be neglected.

Violations of quark-hadron duality are difficult to estimate and are originated in
the uncertainties associated with the use of the OPE to approximate the exact phys-
ical correlator. Using analyticity, the size of DV can be related with the following
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integral of the hadronic spectral function

DV[w(s), s0] =

∫ ∞

s0

ds w(s) ρ(s) , (9.1)

that has been the starting point of our analysis.
We have assumed a generic, but theoretically motivated, behavior of the spectral

function at high energies, where data are not available, with four free parameters.
This parameterization allows us to study how much freedom in ρ(s) could be tol-
erated, beyond the requirement that all known QCD constraints are satisfied. We
have performed a numerical scanning over the four-dimensional parameter space,
generating a large number of “acceptable” spectral functions that satisfy all condi-
tions, and we have used them to extract the wanted hadronic parameters through a
careful statistical analysis. The dispersion of the numerical results provides then a
good quantitative assessment of the actual DV uncertainties.

This machinery allows to address certain questions about the DV so far inacces-
sible, like the convenience of the pinched weights and how to estimate the size of
the still present DV. We have found that it is worthwhile to use these weights and
we have determined four hadronic parameters of special interest: Ceff

87 , Leff
10 , O6 and

O8

Ceff
87 = (8.17 ± 0.12) ·10−3 GeV−2, (9.2)

Leff10 = (−6.44 ± 0.05) · 10−3 , (9.3)

O6 =
(

−4.3+0.9
−0.7

)

· 10−3 GeV6 , (9.4)

O8 =
(

−7.2+4.2
−5.3

)

· 10−3 GeV8 . (9.5)

From the first two parameters one can extract the values of the χPT couplings
Cr

87(Mρ) and Lr10(Mρ), and the results obtained with this method are in perfect
agreement with those presented in Chapter 4. The vacuum condensate O6 is an
important input for the calculation of the CP-violating kaon parameter ε′K .

There is a small tension among the different determinations of O6 available in the
literature, and the discrepancy is higher for the condensate O8. We conclude that
some of the previous determinations of O6,8 underestimated the DV contribution,
what was generating the different results. Our values show that the analyses based
on the use of pinched-weight FESRs have assigned a reasonable uncertainty for
the lowest dimensional condensates O6,8 but have underestimated the error in the
determination of higher dimensional condensates.

Our method indicates that the current experimental values for the V −A spectral
function in the region between s ∼ 2 GeV2 and s ∼ 3 GeV2 are somehow affected by
a systematic error that shifts the points towards higher values. It is worth noting
that this result is also suggested by the work of Ref. [104]. A significant improvement
in the experimental knowledge of the spectral functions in this intermediate region
is expected with the future high-statistics τ -decay data samples. It will be very
interesting to check the presence of this systematic error and validate our approach.
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9.2 (Semi)leptonic decays beyond the SM

From the most general effective Lagrangian with the SM particle content that re-
spects the baryon and lepton number symmetries [116, 117], we have identified a
minimal set of twenty-four weak scale effective operators describing corrections be-
yond the SM to precision electroweak measurements and leptonic and semileptonic
decays. In terms of these new physics corrections at the TeV scale, we have derived
the low-energy effective Lagrangians describing muon and beta decays, specifying
both the most general flavor structure of the operators as well as the form allowed
within Minimal Flavor Violation.

We have performed the phenomenological analysis assuming nearly flavor blind
(U(3)5 invariant) new physics interactions. In this framework flavor breaking is
suppressed by a symmetry principle, such as the Minimal Flavor Violation hypoth-
esis, or by the hierarchy Λflavor ≫ TeV. We have shown that in this limit, the
extraction of Vud and Vus from any channel should give the same result and the
only significant probe of physics beyond the SM involves the quantity ∆CKM ≡
|Vud|2 + |Vus|2 + |Vub|2 − 1, that parameterizes the deviation from CKM-unitarity or
equivalently from quark-lepton universality. We have shown that in the U(3)5 limit
∆CKM receives contributions from four short distance operators, namely

O
(3)
ll =

1

2
(lγµσal)(lγµσ

al) , (9.6)

O
(3)
lq = (lγµσal)(qγµσ

aq) , (9.7)

O
(3)
ϕl = i(h†Dµσaϕ)(lγµσ

al) +h.c. , (9.8)

O(3)
ϕq = i(ϕ†Dµσaϕ)(qγµσ

aq) +h.c. , (9.9)

which also shift SM predictions in other precision observables. More specifically we
have found

∆CKM = 4
(

α̂
(3)
ll − α̂

(3)
lq − α̂

(3)
ϕl + α̂(3)

ϕq

)

, (9.10)

that can be used to work out the constraints imposed by Cabibbo universality on
any weakly coupled extension of the SM. We have focused on the model-independent
interplay of ∆CKM with other precision measurements. The main conclusion of our
analysis is that the direct constraint [159]

∆CKM = (−1 ± 6) × 10−4 , (9.11)

bounds the effective scale of all four operators to be Λ > 11 TeV (90 % C.L.). For
the operators O(3)

ll , O
(3)
ϕl , O

(3)
ϕq , this is at the same level as the constraints coming

from Z-pole measurements , whereas for the four-fermion operator O(3)
lq it improves

existing bounds from LEP2 by almost an order of magnitude.
This result can be restated as follows: should the central values of Vud and Vus

move from the current values [132], precision electroweak data would leave room for
sizable deviations from quark-lepton universality (roughly one order of magnitude
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above the current direct constraint). In a global analysis, the burden of driving
a deviation from CKM unitarity could be shared by the four operators, but in a
single operator analysis, essentially only the four-fermion operator O(3)

lq could be
responsible for ∆CKM 6= 0, as the others are tightly bound from Z-pole observables.

In this way our conclusions imply that the study of semileptonic processes and
Cabibbo universality tests provide constraints on new physics that currently cannot
be obtained from other electroweak precision tests and collider measurements.

We have also explored the scenario where the flavor structure is not flavor blind.
In this case the new physics corrections received by the Vij elements of the CKM
matrix are channel dependent and the phenomenology is very rich. We have studied
how the SM results are modified in semileptonic kaon and pion decays, muon and
tau physics and nuclear processes, and which bounds can be obtained by comparing
the values of Vud (Vus) extracted from different channels. These constraints probe
those U(3)5-breaking structures to which FCNC and other precision measurements
are quite insensitive.

It is worth stressing that there have already been some contradictory results in
the recent past between values obtained from different channels. It is important to
know if these tensions, at the precision level that we are nowadays, can be due to New
Physics effects, or if on the contrary this possibility is ruled out by other precision
measurements and the discrepancy comes probably from the underestimation of
errors or just statistical fluctuations.

The study of these analyses of low-energy processes and their relevance in the
search of New Physics is very opportune, since in the next years several experiments
will achieve unprecedented precision and the theoretical predictions are also expected
to improve. So we expect New Physics effects to appear in the near future in these
low-energy observables, what makes necessary the theoretical analyses of the possible
discrepancies with the SM.
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Conclusiones

En este trabajo hemos abordado dos aspectos diferentes del reto teórico que supone
descubrir la nueva teoría que gobierna la Naturaleza a energías altas. Primero,
hemos estudiado el carácter no-perturbativo de las interacciones fuertes, utilizando
y analizando con mirada crítica las Reglas de Suma de QCD, una herramienta muy
útil en la búsqueda de predicciones precisas para los distintos observables en el
Modelo Estándar. En segundo lugar hemos estudiado el impacto de Nueva Física
en los procesos leptónicos y semileptónicos de energías bajas, donde la precisión
experimental y teórica es tan alta que pueden obtenerse cotas muy fuertes. A
continuación desarrollamos nuestras conclusiones en relación con estos dos puntos.

Reglas de Suma de QCD

En el Capítulo 2 hemos introducido las funciones espectrales, explicando cómo
pueden medirse en las desintegraciones hadrónicas del leptón τ . Estos observ-
ables representan el input experimental de los subsiguientes análisis, y contienen
información de gran valor, tanto perturbativa como no-perturbativa, como hemos
demostrado posteriormente.

En el Capítulo 3, hemos realizado una cuidadosa derivación desde principios
muy generales, como analiticidad y unitariedad, de una Regla de Suma genérica,
un método muy útil que conecta hadrones y quarks. Sus diferentes elementos han
sido introducidos y minuciosamente explicados: (i) la expansión de Wilson de un
producto de operadores que permite calcular desde QCD el correlador en la región
lejana euclídea, (ii) la Teoría de Perturbaciones Quirales que nos da el valor del
correlador en las cercanías del origen, (iii) las funciones espectrales que están direc-
tamente relacionadas con el experimento, y (iv) la frecuentemente ignorada violación
de la dualidad quark-hadrón.

En el análisis fenomenológico posterior, nos hemos centrado en las Reglas de
Suma de Energía Finita y la función de correlación de dos puntos V-A sin extrañeza
ΠLR(s). Este correlador es particularmente apropiado para el análisis de los efectos
no-perturbativos de QCD por diversas razones:

• La contribución perturbativa a ΠLR(s) es nula en el límite quiral;

• Disponemos de valiosa información teórica, como las reglas de suma de Wein-
berg;
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• Existen medidas experimentales de gran precisión de la correspondiente fun-
ción espectral ρLR(s), obtenidas de las desintegraciones hadrónicas del leptón
τ [3];

• Y por último, aunque no por ello menos importante, se da la circunstancia de
que los diferentes momentos de ρLR(s) proporcionan parámetros hadrónicos
de gran relevancia fenomenológica.

En primer lugar, en el Capítulo 4, hemos hecho uso de este marco teórico para
determinar con precisión, a partir de los datos más recientes de las desintegraciones
del τ , las constantes quirales de energías bajas Lr10(Mρ), l5, Cr

87(Mρ) y cr50(Mρ),
trabajando tanto a orden O(p4) como O(p6) en la expansión quiral. Teniendo en
cuenta los resultados de las referencias [72,73] hemos extraído también los valores de
Lr9(Mρ) y l6. Los resultados, que aparecen resumidos en las Tablas 9.3 y 9.4, incluyen
un cuidadoso análisis de las incertidumbres teóricas y experimentales. Nuestra igno-
rancia actual en algunas LECs domina el error final en la determinación de Lr10(Mρ)
a orden p6, mientras que en el caso de Cr

87(Mρ) el error está compartido equitativa-
mente por la contribución experimental y la de las LECs. Los diferentes métodos
analíticos y los distintos cálculos en el retículo están en buen acuerdo con nuestros
precisos valores fenomenológicos, certificando que los métodos teóricos usados en
QCD están en buena forma.

χPT2 χPT3

l5 = 13.30 ± 0.11 Lr10(Mρ) = −(5.22 ± 0.06) · 10−3

l6 = 15.80 ± 0.29 Lr9(Mρ) = (6.54 ± 0.15) · 10−3

Table 9.3: Resultados para las constantes de energías bajas de χPT obtenidas a
order p4.

χPT2 χPT3

l5 = 12.24 ± 0.21 Lr10(Mρ) = −(4.06 ± 0.39) · 10−3

l6 = 15.22 ± 0.39 Lr9(Mρ) = (5.50 ± 0.40) · 10−3

cr50 = (4.95 ± 0.18) · 10−3 GeV−2 Cr
87(Mρ) = (4.89 ± 0.18) · 10−3 GeV−2

Table 9.4: Resultados para las constantes de energías bajas de χPT obtenidas a
orden p6.

En el Capítulo 5 hemos llevado a cabo un estudio muy cuidadoso de la violación
de la dualidad quark-hadrón, tantas veces ignorada, centrándonos en las Reglas de
Suma de Energía Finita generadas por los pesos w(s) = 1/s2, 1/s, s2 y s3. La
necesidad de una determinación de los efectos de DV surge como resultado de la
llegada de datos de precisión y de refinados cálculos perturbativos, que convierten
en relevantes las contribuciones que antes podían ser ignoradas.

Las violaciones de la dualidad quark-hadrón son difíciles de estimar y están
originadas en las incertidumbres asociadas con el uso de la OPE para aproximar
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el valor del correlador. Haciendo uso de las propiedades analíticas de la función de
correlación, la DV puede relacionarse con la siguiente integral de la función espectral
hadrónica

DV[w(s), s0] =

∫ ∞

s0

ds w(s) ρ(s) , (9.12)

que ha sido el punto de partida de nuestro análisis.
Hemos trabajado con un determinado modelo, motivado teóricamente y con cu-

atro parámetros libres, para el comportamiento de la función espectral a energías
intermedias, donde no tenemos datos disponibles ni predicciones teóricas. Esta
parametrización nos permite estudiar cuál es la libertad en el comportamiento de
ρ(s), más allá del requisito de que todas las restricciones conocidas de QCD sean sat-
isfechas. Hemos escaneado numéricamente el espacio de parámetros 4-dimensional,
generando un gran número de funciones espectrales aceptables que satisfacen todas
las condiciones, y las hemos usado para extraer los parámetros hadrónicos desea-
dos por medio de un cuidadoso análisis estadístico. La dispersión de los resultados
numéricos representa un método conveniente para la evaluación cuantitativa de las
incertidumbres asociadas a la DV.

Esta maquinaria nos permite abordar ciertas cuestiones sobre la DV que hasta
ahora eran inaccesibles, como la conveniencia de los pesos conocidos como pinched
weights o cómo estimar el valor de la DV en ese caso. Hemos concluido que el uso
de estos pesos es efectivamente beneficioso y hemos determinado cuatro parámetros
hadrónicos de especial interés:

Ceff
87 = (8.17 ± 0.12) ·10−3 GeV−2, (9.13)

Leff10 = (−6.44 ± 0.05) · 10−3 , (9.14)

O6 =
(

−4.3+0.9
−0.7

)

· 10−3 GeV6 , (9.15)

O8 =
(

−7.2+4.2
−5.3

)

· 10−3 GeV8 . (9.16)

De los dos primeros parámetros es posible extraer los valores de los acoplamientos
quirales Cr

87(Mρ) y Lr10(Mρ), y los resultados obtenidos con este método están en
perfecto acuerdo con los presentados en el Capítulo 4. El condensado en el vacío
O6 es un importante input para el cálculo del parámetro ε′K , que mide la violación
directa de la simetría CP en kaones.

Existe una cierta tensión entre las diferentes determinaciones de O6 disponibles
en la literatura, y la discrepancia es aún mayor para el condensado O8. De nuestro
trabajo se concluye que muchas de las determinaciones previas de O6,8 subestiman
la contribución de DV, lo que explica los diferentes valores obtenidos. Nuestros
resultados muestran que los análisis previos basados en el uso de Reglas de Suma de
Energía Finita con pinched weights han asignado una incertidumbre razonable para
los condensados de dimensiones más bajas O6,8 pero que han subestimado el error
en la determinación de los condensados de dimensión más alta.

Nuestro método indica que las medidas experimentales actuales para la función
espectral V −A en la región entre s ∼ 2 GeV2 y s ∼ 3 GeV2 (dominadas por la deter-
minación de ALEPH [3]) están de alguna forma afectadas por un error sistemático
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que mueve los puntos hacia valores mayores. Es interesante destacar que el trabajo
de la Ref. [104] sugiere también la presencia de este efecto. Podemos esperar una
mejora significativa en el conocimiento experimental de estas funciones espectrales
en esta región intermedia gracias a la llegada en el futuro cercano de nuevos datos
sobre las desintegraciones del leptón τ con una estadística mejorada. Será muy in-
teresante poder comprobar la presencia de este error sistemático y validar nuestro
método.

Desintegraciones (semi)leptónicas más allá del SM

Partiendo del Lagrangiano efectivo más general con el contenido de partículas del
Modelo Estándar y compatible con la conservación del número leptónico y bar-
iónico [116,117], hemos identificado un conjunto mínimo de veinticuatro operadores
efectivos a la escala electrodébil que describen las correcciones debidas a la Nueva
Física sobre las medidas de precisión electrodébiles y las desintegraciones leptónicas
y semileptónicas. En términos de estas correcciones asociadas a la física del tera-
electronvoltio (TeV), hemos derivado el Lagrangiano efectivo de energías bajas que
gobierna la desintegración del muón y de los quarks ligeros, especificando tanto la
estructura de sabor más general de los operadores como la forma permitida en el
contexto de Violación Mínima de Sabor.

Hemos llevado a cabo un análisis fenomenológico, suponiendo unas interacciones
de Nueva Física prácticamente independientes de sabor (invariantes bajo la simetría
U(3)5). En este caso, la rotura de esta simetría de sabor está suprimida por un
principio de simetría, como la Violación Mínima de Sabor, o por la jerarquía Λflavor ≫
TeV. Hemos demostrado que en este límite la extracción de Vud y Vus desde cualquier
canal da el mismo resultado y que el único observable sensible a la física más allá
del Modelo Estándar viene dado por

∆CKM ≡ |Vud|2 + |Vus|2 + |Vub|2 − 1 , (9.17)

que parametriza la desviación de la unitariedad en la matriz CKM, o equivalente-
mente de la universalidad entre quarks y leptones. Hemos mostrado cómo en el
límite en el que el Lagrangiano respeta la simetría de sabor U(3)5, esta cantidad
∆CKM recibe contribuciones de los siguientes cuatro operadores de corta distancia

O
(3)
ll =

1

2
(lγµσal)(lγµσ

al) , (9.18)

O
(3)
lq = (lγµσal)(qγµσ

aq) , (9.19)

O
(3)
ϕl = i(h†Dµσaϕ)(lγµσ

al) +h.c. , (9.20)

O(3)
ϕq = i(ϕ†Dµσaϕ)(qγµσ

aq) +h.c. , (9.21)

que también modifican las predicciones del Modelo Estándar en otros observables
de precisión. Más concretamente hemos encontrado el siguiente resultado

∆CKM = 4
(

α̂
(3)
ll − α̂

(3)
lq − α̂

(3)
ϕl + α̂(3)

ϕq

)

, (9.22)
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que puede usarse para extraer las cotas impuestas por la universalidad de Cabibbo
sobre cualquier extensión débilmente acoplada del Modelo Estándar. Sin embargo,
en este trabajo hemos optado por un análisis independiente del modelo y nos hemos
centrado en estudio de la sinergia de ∆CKM con otros observables de precisión. La
principal conclusión de nuestro análisis es que la medida directa [159]

∆CKM = (−1 ± 6) × 10−4 , (9.23)

pone un límite inferior la escala efectiva Λi de los cuatro operadores igual a 11 TeV
(con un intervalo de confianza del 90%). Para los operadores O(3)

ll , O
(3)
ϕl , O

(3)
ϕq , esta

cota está al mismo nivel que las que se derivan de las medidas en el polo del Z
(LEP1), mientras que para el operador de dos quarks y dos leptones O(3)

lq esta cota
mejora casi en un orden de magnitud el límite existente, que se obtenía básicamente
de LEP2.

Este resultado puede reformularse de la siguiente manera: en el caso en que los
valores centrales de los elementos Vud y Vus se movieran de sus valores actuales [132]
(como ha sido sugerido en el pasado reciente por algunas determinaciones), no se
tendría ninguna contradicción con las medidas de precisión electrodébiles, ya que
éstas dejan lugar para una considerable desviación de universalidad quark-leptón
(aproximadamente un orden de magnitud sobre el actual límite directo). En un
análisis global, el peso de esta desviación de unitariedad podría ser distribuido entre
los cuatro operadores, mientras que en el caso en el que sólo un operador está
presente sólo el operador de cuatro fermiones O(3)

lq podría ser responsable de ∆CKM 6=
0, ya que los otros tres están fuertemente acotados por las medidas en el polo del Z.

De esta forma, nuestras conclusiones implican que el estudio de procesos semilep-
tónicos y de los test de la universalidad de Cabibbo generan límites sobre la Nueva
Física que no pueden ser obtenidos actualmente por otros test de precisión electrodé-
biles ni por medidas realizadas en potentes aceleradores, como LEP o Tevatrón.

También hemos explorado el escenario donde la estructura de los operadores no
es independiente del sabor. En este caso las correcciones debidas a la Nueva Física
que reciben los elementos Vij de la matriz CKM dependen fuertemente del canal
y la fenomenología es muy rica. Hemos estudiado la forma en que los resultados
del Modelo Estándar se ven modificados en las desintegraciones semileptónicas de
kaones y piones, en la física del muón y el tau y en los procesos nucleares, y qué
cotas pueden obtenerse comparando los valores de Vud (Vus) extraídos de diferentes
canales. Estos límites exploran las estructuras que rompen la simetría U(3)5, a las
que las medidas de FCNC y otras medidas de precisión son esencialmente insensibles.

Cabe destacar que en los últimos años ha habido algunos resultados contradic-
torios entre los valores obtenidos usando distintos canales. Es importante saber si
estas tensiones, al nivel de precisión que nos encontramos hoy en día, pueden ser de-
bidas a efectos de Nueva Física o si por el contrario esta posibilidad está descartada
por otras medidas electrodébiles o de colisionadores y por tanto la discrepancia viene
probablemente de la subestimación de errores o de simples fluctuaciones estadísticas.

Estos análisis de procesos de energías bajas y su relevancia en la búsqueda de
Nueva Física es muy pertinente, ya que en los próximos años diversos experimentos
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alcanzarán precisiones sin precedentes, a lo que se sumará una considerable mejora
en las predicciones teóricas gracias a los avances en lattice QCD y en los enfoques
analíticos. Es por lo tanto de esperar que los efectos de Nueva Física sean detectables
en el futuro cercano en estos experimentos de energías bajas, lo que hace necesario
este análisis teórico de las posibles discrepancias con el Modelo Estándar.



Appendix A

Demonstration of dispersion relations

It is interesting to notice that in the Standard Model, given its (V-A)⊗ (V-A) struc-
ture, we will find only the VV and AA correlators in the calculation of observables.
Due to this, the usual derivation of the dispersion relations [8,11] assumes that the
two currents of the correlator coincide, i.e. A(x) = B(x). But once we go beyond the
SM, correlators with two different currents appear in the calculation of observables,
and therefore we will make the demonstration for the general case when the two
currents A(x) and B(x) are different and not necessary hermitian. We will follow
the scheme of the proof given in Ref. [8], but extending it to this more general case.

From the definition of the two-point correlation function of two scalar operators
A(x) and B(x) (the generalization to vector and tensor cases is straightforward) and
inserting a complete set of states

∑

Γ |Γ〉〈Γ| we have

ΠAB(q) ≡ i

∫

d4x eiq·x 〈0|T [A(x)B(0)†]|0〉 (A.1)

≡ i

∫

d4x eiq·x 〈0|θ(x0)A(x)B(0)† + θ(−x0)B(0)†A(x)|0〉 (A.2)

= i

∫

d4x eiq·x
∑

Γ

(

〈0|θ(x0)A(x)|Γ〉〈Γ|B(0)†|0〉

+ 〈0|θ(−x0)B(0)†|Γ〉〈Γ|A(x)|0〉
)

(A.3)

= i

∫

d4x eiq·x
∑

Γ

(

e−ipΓ·x〈0|θ(x0)A(0)|Γ〉〈Γ|B(0)†|0〉

+eipΓ·x 〈0|θ(−x0)B(0)†|Γ〉〈Γ|A(0)|0〉
)

, (A.4)

where in the last step we have made use of translation invariance, that tells us that

〈0|J(x)|Γ〉 = e−ipΓ·x 〈0|J(0)|Γ〉 , (A.5)

where pΓ denotes the sum of the energy–momenta of all the particles which define
the state |Γ〉. All the particles in the state |Γ〉 are on–shell. This constrains the
total energy–momentum pΓ to be a time–like vector: p2

Γ = t with t ≥ 0. With these
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constrains on pΓ we can insert the identity
∫ ∞

0

dt

∫

d4p θ(p0) δ(p2 − t) δ(4)(p− pΓ) = 1 (A.6)

inside the sum
∑

Γ over the complete set of states

ΠAB(q) = i

∫

d4x eiq·x
∑

Γ

∫ ∞

0

dt

∫

d4p θ(p0) δ(p2 − t) δ(4)(p− pΓ)

(

e−ipΓ·x〈0|θ(x0)A(0)|Γ〉〈Γ|B(0)†|0〉
+eipΓ·x 〈0|θ(−x0)B(0)†|Γ〉〈Γ|A(0)|0〉

)

(A.7)

= i

∫

d4x eiq·x
∫ ∞

0

dt

∫

d4p θ(p0) δ(p2 − t)

(

e−ip·xθ(x0)
∑

Γ

δ(4)(p− pΓ)〈0|A(0)|Γ〉〈Γ|B(0)†|0〉

+eip·xθ(−x0)
∑

Γ

δ(4)(p− pΓ) 〈0|B(0)†|Γ〉〈Γ|A(0)|0〉
)

(A.8)

= i

∫

d4x eiq·x
∫ ∞

0

dt

∫

d4p

(2π)3
θ(p0) δ(p2 − t)

(

e−ip·xθ(x0)ρAB(p2) + eip·xθ(−x0)ρB†A†(p2)
)

, (A.9)

where we have exchanged the order of the sum over Γ and the integration over t
and p, finding the AB spectral function defined by (3.17), that is a scalar function
of the Lorentz invariant p2 and the masses of the particles in the states |Γ〉 only.

In general, unless A = B or A† = A and B† = B, it is not trivial to prove that
ρAB(s) = ρB†A†(s), which we need in order to derive the spectral representation.
The proof can be achieved invoking micro-causality, which in turn implies that for
space-like distances the commutator of any two operators must vanish:

[

A(x), B(0)
]∣

∣

∣

x2<0
= 0 −→ 〈0|

[

A(x), B(0)
]

|0〉
∣

∣

∣

x2<0
= 0 . (A.10)

The equality ρAB(s) = ρB†A†(s) follows from

〈0|
[

A(x), B(0)
]

|0〉
∣

∣

∣

x2<0
=

∫ ∞

0

dt

[

∆+(x; t)ρAB(t) − ∆+(−x; t)ρB†A†(t)

]

(A.11)

=

∫ ∞

0

dt∆+(x, t)

[

ρAB(t) − ρB†A†(t)

]

, (A.12)

in which we have used that

∆±(x; t) =
1

(2π)3

∫

d4p e∓ix·p θ(p0) δ(p2 − t) (A.13)
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is an even function of x for x2 < 0 (one can choose x = (0, ~x) to evaluate the above
integral). So we have

ΠAB(q) = i

∫

d4x eiq·x
∫ ∞

0

dt ρAB(t)

∫

d4p

(2π)3
θ(p0) δ(p2 − t)

(

e−ip·xθ(x0) + eip·xθ(−x0)
)

(A.14)

= i

∫

d4x eiq·x
∫ ∞

0

dtρAB(t)
(

θ(x0)∆+(x; t) + θ(−x0)∆−(x; t)
)

.(A.15)

The combination that appears is nothing but the Feynman propagator function

∆F(x; t) = iθ(x0)∆+(x; t) + iθ(−x0)∆−(x; t) =

∫

d4p

(2π)4

e−ip·x

t− p2 − iǫ
. (A.16)

The two–point function ΠAB(q2) appears then to be the Fourier transform of a scalar
free field propagating with an arbitrary mass squared t weighted by the spectral
function density ρAB(t) and integrated over all possible values of t,

ΠAB(q2) =

∫

d4x eiq·x
∫ ∞

0

dt ρAB(t) ∆F(x; t). (A.17)

Integrating over x and p results finally the wanted representation

ΠAB(q2) =

∫ ∞

0

dt ρAB(t)
1

t− q2 − iǫ
. (A.18)

We would like to make some comments:

• The spectral function of two different currents is not positive definite in general
(we can see in Fig. 3.3 for the LR case);

• The spectral function is not real in general, but if the associated correlator
satisfies the Schwarz reflection property ΠAB((q2)∗) = [ΠAB(q2)]∗ (see Section
3.1.2), and using the identity (3.18), then we have

ρAB(q2) =
1

π
Im ΠAB(q2 + iǫ) , (A.19)

and ρAB(q2) is obviously real.

• There is a subtlety that we have ignored when going from (A.7) to (A.8). The
exchange of sum over Γ and integrations implicitly assumes good convergence
properties for the integrand. But in general the product of the distributions
θ(x0) and

∫∞
0
dt ρAB(t) ∆+(x; t) may not be a well–defined distribution. The

ambiguity manifests by the presence of an arbitrary polynomial in q2 in the
r.h.s. of the PP–integral

ReΠ(q2) = PP
∫ ∞

0

dt
1

t− q2

1

π
ImΠ(t) + a + bq2 + . . . . (A.20)
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Notice that the ambiguity of the short–distance behavior reflects only in the
evaluation of the real part of the correlator, not in the imaginary part. The
physical meaning of these coefficients depends of course on the choice of A(x)
and B(x). In general it is always possible to get rid of the polynomial terms
by taking an appropriate number of derivatives with respect to q2.



Appendix B

Convenience (or not) of the use of
the pinched-weights FESR

B.1 Definition and motivation

As we have explained in the main text (Section 3.5.3), the traditional definition of
DV is

DV[w(z), s0] =

∮

|z|=s0

dz

2πi

(

Π(z) − ΠOPE(z)
)

w(z)dz , (B.1)

where the main contribution to this integral comes from the region near the positive
real axis. Because of this, different authors have used polynomial weights that vanish
at s = s0 (pinched weights). Although it seems clear from (B.1) that these weights
will decrease the size of the DV, the alternative expression for the DV shows that
this is not that obvious1

DV[w(z), s0] =

∫ ∞

s0

ds w(s)ρ(s) , (B.2)

where we see that one does not have to care only about the point s = s0 but also
about not enhancing the rest of the high-energy region2.

We will say that the “duality region” has arrived when the DV is zero compared
with the experimental error. If we represent

I(s0) =

∫ s0

0

ds w(s)ρ(s) , (B.3)

we will see the arrival of this region with the appearance of a plateau. Due to the
oscillatory behavior of the spectral function, there will be a set of points (before
the arrival of the plateau) where the duality violation will vanish (duality points).
Notice that these points will change in general from a sum rule to another.

1Hereafter in this appendix we will work with the V-A case, although the ideas explained here
about the usefulness of the weight functions are obviously true beyond this particular case.

2In light of this expression, modifications of the pinched weights shifting the zeros to slightly
higher values have been also suggested [22].
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B.2 Example: extraction of Leff
10

Let us assume that we are interested in the determination of Leff
10 . The basic sum

rule is then (see Chapter 4)

− 8Leff
10 =

∫ ∞

sth

ds
ρ(s)

s
. (B.4)

Taking advantage of the WSRs3, we can write new sum rules that do not involve
new unknown parameters

− 8Leff
10 + 2α

F 2
π

s0
=

∫ ∞

sth

ds

(

1

s
+ α

1

s0
+ β

s

s2
0

)

ρ(s) = Iαβ−1(s0) +DV αβ
−1 (s0) (B.5)

where every sum rule will have a different set of duality points and a different value
of the plateau arrival.

B.2.1 Example with a toy function

For illustration let us assume we know the spectral function ρ(s) for any value of s
(see Fig. B.1).

Figure B.1: Hypothetical shape of the spectral function.

Although the choice of weight function used in order to extract the parameter
Leff

10 is irrelevant if we integrate our toy spectral function up to infinite, it becomes
very important given that we have access only to the value of the spectral function
between 0 and 3.15 GeV2. In other words, in order to estimate Leff

10 there are some
weights wαβ(s) more convenient than others. A weight that enhance the region that
is beyond s0 will produce large duality violations. Here we have an example of a
“bad” weight and a “good” one (see Fig. B.2)

wA(s, s0) ≡ 1

s
+ 5

s

s2
0

(B.6)

wB(s, s0) ≡ 1

s
− 1

s0
, (B.7)

respectively.
3It is worth emphasizing that without the existence of the WSRs all the weight functions would

be equivalent in the extraction of Leff
10 or any other individual parameter. The PW would allow us

in that case to extract with more precision certain combination of parameters.
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Figure B.2: Weight functions wA(s, s0 = 3 GeV2) (upper curve) and wB(s, s0 =
3 GeV2) (lower curve). The dashed line at s0 = 3 GeV2 separates the DV-region
from the experimentally accesible region.

In the Fig. B.3 we can see the figure obtained for Leff
10 using these two weight

functions. The difference is clear. The oscillations are almost negligible for the
“good” weight and very big for the “bad” one.

0.5 1.0 1.5 2.0 2.5 3.0
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Figure B.3: Curves obtained for Leff
10 (s0) using the expression (B.5) with the weights

(B.6) (blue dashed line) and (B.7) (red dotted line). The horizontal line represents
the true value of Leff

10 for our toy function.

Once we leave the toy function and go to the real case, we cannot answer the
question of which is the best weight because we do not know the spectral function
beyond s0 ∼ 3 GeV2. All we know is that it goes to zero in an oscillatory way,
but we do not know how fast it does. And that information, as we will see is very
relevant.

B.2.2 What about the pinched weights?

Here we want to show that the pinched weights may be more appropriate than the
ordinary weight 1/s or maybe not. It depends on how fast the spectral function
goes to zero4.

4Notice that even if we knew that the PW sum rules have smaller DV errors than the ordinary
FESRs, it would not mean that the arrival of the duality region is going to be before the end of
the data.
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We want to compare the following spectral functions:

w0(s, s0) ≡ 1

s
, (B.8)

w1(s, s0) ≡ 1

s
− 1

s0

, (B.9)

w2(s, s0) ≡ 1

s
− 2

s0
+

s

s2
0

, (B.10)

that are plotted in Fig. B.4. There we can see that the PW suppress more the region
between 3 and 4 GeV2, but the 1/s weight suppress more the region beyond 4 GeV2.

2 4 6 8 10
sHGeV2L
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0.8

1.0

wiHs,s0=3L

Figure B.4: Curves corresponding to the weights (B.8) (solid black line), (B.9) (blue
dashed line) and (B.10) (red dotted line), setting s0 =3 GeV2. The gray dashed line
at s0 =3 GeV2 separates the DV-region from the experimentally accesible region.

We can see that depending on how fast the spectral function goes to zero we
should take one weight or another:

• If ρ(s) decreases as e−s we can try to estimate the DV error associated to each
weight (see Fig. B.5)

DV0(s0) ≡
∫ ∞

s0

ds w0(s, s0)ρ(s) ∼
∫ ∞

s0

ds
1

s
e−s ∼ 0.0130 ,

DV1(s0) ≡
∫ ∞

s0

ds w1(s, s0)ρ(s) ∼
∫ ∞

s0

ds

(

1

s
− 1

s0

)

e−s ∼ −0.0035 ,

DV2(s0) ≡
∫ ∞

s0

ds w2(s, s0)ρ(s) ∼
∫ ∞

s0

ds

(

1

s
− 2

s0

+
s

s2
0

)

e−s ∼ 0.0020 ,

where we have taken s0 = 3 GeV2 for the numerical evaluation. So we can see
that w2(s, s0) is the best option and w0(s, s0) the worst.

• If ρ(s) decreases as e−0.1s we have (see Fig. B.5)

DV0(s0) ≡
∫ ∞

s0

dsw0(s, s0)ρ(s) ∼
∫ ∞

s0

ds
1

s
e−0.1s ∼ 0.9 ,

DV1(s0) ≡
∫ ∞

s0

dsw1(s, s0)ρ(s) ∼
∫ ∞

s0

ds

(

1

s
− 1

s0

)

e−0.1s ∼ −1.6 ,

DV2(s0) ≡
∫ ∞

s0

dsw2(s, s0)ρ(s) ∼
∫ ∞

s0

ds

(

1

s
− 2

1

s0
+

s

s2
0

)

e−0.1s ∼ 6.7 ,
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Figure B.5: Part of the integration that we “forget” and represents the DV, assuming
that ρ(s) decreases as e−s (left) and e−0.1s (right).

where we have again taken s0 = 3 GeV2 for the numerical evaluation. So we
see that now the order is the opposite and the best choice to minimize the DV
is w0(s, s0).

B.2.3 What can we do?

The question then is what should we do taking into account that we do not know
how fast goes to zero the spectral function, and if we must use the PW or not.

As was explained in Section 3.5.3, the observation of a plateau in the final part
of the data is a necessary but not sufficient condition, because the plateau could
be temporary. Given that the high correlations generated by the PWs do not make
possible a normal fit [30,31,36], one can only perform indirect checks. A possibility is
to extend the available window beyond s0 ∼ 3.15 GeV2 and demand the continuance
of the plateau5, until s0 ∼ 3.4 − 3.5 GeV2. Any separation of the curve from a
horizontal line can be used as an estimation of the DV error. Another check that
can be done is to use the modified PW [22] that are expected to produce smaller
DV.

We can see in Figs. B.6 that the plateau is very stable until that point for Leff
10 ,

and the very small oscillations can be included in the error. So we do not expect
the curve to leave that region if one includes new data beyond s0 ∼ 3.15 GeV2.

In Chapter 5 we follow a more sophisticated analysis, where we study the pos-
sible behavior of the spectral function beyond the end of the data, according to a
physically motivated parameterization and the QCD-known sum rules. This repre-
sents a qualitatively different approach and allows us to answer the question of the
convenience of the pinched weights. As can be seen in the results of that chapter,
we conclude that in the extraction of the parameters Leff

10 ,C
eff
87 ,O6,O8 the use of the

PWs minimizes the error with respect to the simple weights w(s) = sn. There we
take into account the presence of the experimental error, that can also be minimized
using the pinched weights.

5As was explained in [22] it does not matter if we do not know the value of the spectral function
between s0 ∼ 3.15 GeV2 and s0 ∼ 3.5 GeV2, because the weight suppresses that part.
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Figure B.6: Curve obtained from the ALEPH data [3] for Leff
10 using the PW w1(s, s0)

(left) and w2(s, s0) (right).

The same analysis can be done for Ceff
87 with the same conclusions. The only

difference is that the the weight 1/s2 suppresses more the high-energy region than
1/s and therefore, one needs a more decreasing spectral function for the PWSR to
be better than the simple FESR. In other words, the benefit of using PW will be
always smaller (and could even be negative) for Ceff

87 than for Leff
10 . Our data confirm

perfectly this conclusion.

B.3 Condensates

In the case of the V-A condensates O6,8 (see Chapter 5) the discussion is specially
important since the DV effects are larger. If we restrict ourselves to pinched weights
that have a double zero at s = s0 then it can be shown that the weights take the
form

wn(s, s0) = ±(s− s0)
2
(

sn−2 + 2s0s
n−3 + . . .+ (n− 2)sn−3

0 s+ (n− 1)sn−2
0

)

= ±
(

sn − n s sn−1
0 + (n− 1)sn0

)

, (B.11)

where the global sign is plus if n = 6, 10, 14, . . . and minus otherwise. It can be
easily shown that these particular pinched weights are such that

|wn(s, s0)| < sn , (s > s0) , (B.12)

or in other words these PW enhance less the high-energy region than the standard
weights sn, and therefore produce less quark-hadron duality violation6.

Therefore the first question is answered in this case: the pinched weights entails
a smaller DV than the standard weights. But we still have to address the question
about how to estimate the remaining DV error of the PW sum rule.

Let us look to the particular case of the condensates of dimension six and eight,
where we have

w6(s, s0) = (s− s0)
2 (B.13)

w8(s, s0) = −(s− s0)
2(s+ 2s0) . (B.14)

6Notice that this argument could be spoiled by accidental numerical cancellations due to the
oscillatory behavior of the spectral function.
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If we represent O6,8(s0) we find an acceptable plateau in the final part (between
approximately 2.3 GeV2 and 3 GeV2), and the usual conclusion is that the DV is
much smaller than the experimental error and can be neglected, but as we have
explained in the main text (see Section 3.5.3) this is not necessarily true because
the plateau could be temporary. A possible solution is to extend the working window
up to 3.5 GeV2. The results are shown in Figs. B.7. Apparently the nice plateau
disappears, but the experimental error grows up in such a way that we cannot be
conclusive.
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Figure B.7: Curve obtained from the ALEPH 2005 data [3] for O6,8 using the PW
w6(s, s0) = (s− s0)

2 and w8(s, s0) = −(s− s0)
2(s+ 2s0).

If we work with modified PW the graphics are very similar. So the problem here
is the following: the experimental errors are quite big and they prevent us from
knowing if the plateau is temporary or not.

Our investigations (see Chapter 5) with possible (realistic) spectral functions
indicate that the plateau does not disappear7.

7When we say that the plateau is temporary or not we mean within the experimental error.
Therefore if the plateau is temporary one should add the DV error (very difficult to estimate) to
the final error.
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Appendix C

O(p6) χPT expression of the V-A
correlator Π(s)

C.1 O(p6) χPT expression of the V-A correlator Π(s)

From the results of Ref. [89] we have1

Π(s) = − 8 Lr10 − 8Bππ
V (s) − 4BKK

V (s)

+ 16 Cr
87 s

− 32 m2
π (Cr

61 − Cr
12 − Cr

80) − 32 (m2
π + 2m2

K) (Cr
62 − Cr

13 − Cr
81)

+ 16

(

(2µπ + µK)(Lr9 + 2Lr10) − (2Bππ
V (s) +BKK

V (s)) Lr9
s

f 2
π

)

−8 G2L(s) , (C.1)

where

Bii
V (s) ≡ −
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1

192π2
σ2
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288π2
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σi ≡
√

1 − 4m2
i

s
,
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i

32π2f 2
π

log
m2
i

µ2
, (C.2)

and where G2L(s) refers to the two-loop contribution, that we can divide in four
parts just to organize the calculation:

G2L(s) =
−1

8f 2
π

(

GV
2L(s) −GA

2L(s)
)

=
−1

8f 2
π

(

GV
2L(s) − F1(s) −

F2(s)

s
− F3(s)

s

)

,(C.3)

1 In order to obtain this result it must be taken into account that there is a typo in the expression
(19) of [89]. In particular, the term with (Lr

9 +Lr
10) does not have the right dimensions. The factor

q2 must be removed.
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where

GV
2L(q
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The different H functions are defined as follows
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in terms of the functions HF
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Here we used
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The expression for Ψ depends on the relation between the various masses. For
the case λm ≤ 0
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The case m1 +m2 ≤ m3, with λm ≥ 0, is
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The cases m1 +m3 ≤ m2 and m2 +m3 ≤ m1 can be obtained from the last one by
relabelling masses. Li2(x) is the dilogarithm defined by

Li2(x) = −
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t
ln(1 − xt) , (C.23)

and Cl2(x) is Clausen’s function defined by
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C.2 Calculation of F2(0) + F3(0)

We expect the quantity F2(0) + F3(0) to be zero because the correlator has to be
non-singular at the origin. Now we are going to check it.

If we use the definition of HT , HM , HL
i and HF

i (m1, m2, m3; s) given in the
preceding section, we can write F2(s) + F3(s) in terms of the masses mπ, mK , mη,
s and the functions ψ, H and H

′
evaluated at different combinations of masses and

s. This expression is almost endless and therefore we will not show it here, but if
we evaluate it in s = 0 it takes the very simple form
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Using the Gell-Mann-Okubo relation3

3m2
η = 4m2

K −m2
π , (C.28)

we have that F2(0) + F3(0) = 0.

3This relation holds for the η8, but the difference between mη and mη8
is of order p2 in χPT,

and therefore is of order p8 in (C.27) and hence we can omit it.
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As we have seen the structure of this correction is
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where we have used F2(0) + F3(0) = 0 in the last step. For the first two terms we
have
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If we calculate the derivative of F2(s) + F3(s) we obtain another endless expression
that in this case does not simplify too much when we do s = 0. In order to simplify
it a bit, we use then that the H

F
(and their first derivatives) are zero at s = 0 for

any combination of masses. After that we write

mK = 3.586 mπ , mη = 3.966 mπ , µ = mρ = 5.618 mπ , (C.32)

in order to have only one dimensional parameter: the pion mass. After this, we
found a not so long expression
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)

= −4.290 · 10−3m2
π + Cψ + CH + Cprime , (C.33)

where we have split the result in four terms: the one that does not depend on any
not-defined (so far) function, the term that contains the ψ functions, the term that
contains the H functions and the term that contain the H

′
functions. We find4

Cψ = +1.69 · 10−3m2
π = 0.032328 · 10−3 GeV2 , (C.34)

CH = −4.79 · 10−6m2
π = −9.13 · 10−8 GeV2 , (C.35)

Cprime = 5.20 · 10−6m2
π = 9.92 · 10−8 GeV2 . (C.36)

Therefore, we have

F ′
2(0) + F ′

3(0) = −2.60 · 10−3 m2
π = −4.94 · 10−5 GeV2 . (C.37)

And hence

GV
2L(0) − F1(0) − F ′

2(0) − F ′
3(0) = 0 − 0.712 · 10−3m2

π − (−2.60 · 10−3 m2
π)

= +1.888 · 10−3m2
π = 3.600 · 10−5 GeV2 , (C.38)

G2L(0) = −0.236 · 10−3m2
π

f 2
π

= −27.642 · 10−3 GeV−2m2
π = −0.527 · 10−3 . (C.39)

4The big cancelation between CH and Cprime is not very surprising since we can see in our

expression for F ′

2(0) + F ′

3(0) that the coefficients of the H and H
′

are always of opposite sign.
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Again we have the following structure

G′
2L(0) =

−1

8f 2
π

(

GV ′
2L(0) − F ′

1(0) − lim
s→0

d

ds

F2(s) + F3(s)

s

)

, (C.40)

and we have for each term that

GV ′
2L(0) = lim

s→0

d

ds

(

4s

(

2Bππ
V (s) +BKK

V (s)

)2
)

=

(

log
(

m2
K

µ2

)

+ 2 log
(

m2
π

µ2

)

+ 3
)

2

9216π4
= 25.684·10−6 , (C.41)

F ′
1(0) =

1

(16π2)2

3

32
= 3.76 · 10−6 , (C.42)

lim
s→0

d

ds

F2(s) + F3(s)

s
=

1

2
(F ′′

2 (0) + F ′′
3 (0)) , (C.43)

where we have used F2(0) + F3(0) = 0 in the last step. If we calculate the second
derivative of F2(s)+F3(s) we obtain another endless expression that again does not
simplify too much when we do s = 0. In order to simplify it a bit, we use again that
the H

F
(and their first derivatives) are zero at s = 0 for any combination of masses.

This is not true for one second derivative of H
F

that appear in our expression, but
if we pay attention the exact form of that term is

(

m2
K − m2

π

4
− 3

4
m2
η

)

H
F ′′

(mη, mK , mK , 0) , (C.44)

that again is zero if we use the Gell-Mann-Okubo relation. Now we use again (C.32)
in order to have only one dimensional parameter: the pion mass. After this, we
found a not so long expression

F ′′
2 (0) + F ′′

3 (0) =

+214.278 · 10−6

+
1

m2
π

( − 9.393 · 10−6Ψ(mK , mπ, mK) − 1.03 · 10−7Ψ(mη, mK , mK)

+3.98 · 10−7Ψ(mπ, mK , mK) − 3.961 · 10−6Ψ(mπ, mπ, mπ)

+16H1

(

mK , mK , mη, m
2
π

)

+ 8H1

(

mπ, mK , mK , m
2
π

)

+24H21

(

mK , mπ, mK , m
2
π

)

+ 9H21

(

mη, mK , mK , m
2
π

)
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−3H21

(

mπ, mK , mK , m
2
π

)

+ 24H21

(

mπ, mπ, mπ, m
2
π

)

−20

3
H
(

mK , mK , mη, m
2
π

)

+ 154.306H
(

mK , mπ, mK , m
2
π

)

+70.79H
(

mη, mK , mK , m
2
π

)

− 5.5H
(

mπ, mK , mK , m
2
π

)

+
4

9
H
(

mπ, mη, mη, m
2
π

)

+
32

3
H
(

mπ, mπ, mπ, m
2
π

)

)

−8H
′
1

(

mK , mK , mη, m
2
π

)

− 4H
′
1

(

mπ, mK , mK , m
2
π

)

−12H
′
21

(

mK , mπ, mK , m
2
π

)

− 4.5H
′
21

(

mη, mK , mK , m
2
π

)

+1.5H
′
21

(

mπ, mK , mK , m
2
π

)

− 12H
′
21

(

mπ, mπ, mπ, m
2
π

)

+
10

3
H

′ (
mK , mK , mη, m

2
π

)

− 51.435H
′ (
mK , mπ, mK , m

2
π

)

−23.597H
′ (
mη, mK , mK , m

2
π

)

+ 2.5H
′ (
mπ, mK , mK , m

2
π

)

−2

9
H

′ (
mπ, mη, mη, m

2
π

)

− 10

3
H

′ (
mπ, mπ, mπ, m

2
π

)

= +214.278 · 10−6 +Dψ +DH +Dprime , (C.45)

where we have again split the result in four terms. We obtain for them

Dψ = −200.346 · 10−6 , (C.46)

DH = −14.743 · 10−6 , (C.47)

Dprime = +10.410 · 10−6 . (C.48)

We can see that there is a big cancelation between the first and second terms, that
finally gives

F ′′
2 (0) + F ′′

3 (0) = +9.6 · 10−6 . (C.49)

Then

− 8f 2
π G

′
2L(0) = GV ′

2L(0) − F ′
1(0) − 1

2
(F ′′

2 (0) + F ′′
3 (0)) = 17.1 · 10−6 , (C.50)

−1

2
G′

2L(0) = 1.07 · 10−6 1

f 2
π

= 0.13 · 10−3 GeV−2 . (C.51)
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