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Chapter 1

Prologo y antecedentes

1.1 QCD como teoria de las interacciones fuertes

A través de muchos experimentos se ha hecho patente que la Cromodidmica
Cudntica (QCD) parece ser la teoria adecuada para describir los procesos
hadrénicos [1]. En la regién de altas energias (E > 1 GeV) se puede ver que la
teoria acepta una descripcién perturbativa en términos de quarks y gluones.

En esta linea se han realizado muchos y exitosos calculos perturbativos a varios
Ordenes en el parametro de expansion, la constante de la interaccién fuerte a. Estos
resultados tedricos en la zona de altas energias -cortas distancias- han sido cotejados
con muchos experimentos dando un notable acuerdo en todos ellos. No obstante,
a través de andlisis basados en las ecuaciones del Grupo de Renormalizacién, es
bien sabido que el acoplamiento renormalizado ag(p) crece a medida que la energia
disminuye, de tal manera que alrededor de F < 2 GeV la expansion perturbativa en
ag(p) falla; debido a la no-conmutatividad de la simetria gauge de color SU(N¢)
la interaccién entre quarks y gluones se vuelve mis y mds intensa a bajas energias
—largas distancias—.

El resultado de esa interaccion tan fuerte a largas distancias es lo que se denom-
ina confinamiento. Los quarks y los gluones se ven por tanto “confinados” en el
interior de los hadrones. Son éstos precisamente los grados de libertad asintéticos
que se observan en la fisica macroscépica (de largas distancias en relacién al tamano
hadrénico, del orden del Fermi). Asi por tanto, los estados inicial y final en nuestros
experimentos de bajas energias no van a ser quarks y gluones sino hadrones sin carga
de color.

Tedricamente uno esperaria que existiera una transformacion que ligara el la-
grangiano de QCD y sus parametros con las propiedades de los estados hadrénicos.
A través de esta transformacion se convertiria una interaccién no perturbativa entre
quarks y gluones a largas distancias en una interaccién perturbativa entre estados
hadrénicos. Cudl puede ser esta transformacién o qué nuevo pardmetro de expansién
se ha de considerar es algo sobre lo que todavia hay controversia. En este trabajo
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se presenta un amplio resumen de algunos de los métodos con que se ha tratado
de afrontar este problema. Atn asi, debido a la complejidad de la interaccién no-
perturbativa todavia no se ha encontrado un resultado general que resuelva este
puzle que sigue siendo QCD.

En el capitulo 2 se introducird y estudiard la acciéon de QCD asi como algunas
de sus propiedades. En concreto estudiaremos una simetria que posee el lagrangiano
en el limite de masas cero, la simetria quiral. Sin embargo esta simetria se rompe
espontaneamente debido a fendmenos no-perturbativos y el vacio de la teoria deja
de ser invariante. Aunque no se conoce exactamente cémo se produce esta ruptura
espontdnea de la simetria quiral (SxSB) lo que actualmente nadie duda es que esto
es asi, ante el aluvién de indicios tedricos y fenomenolégicos [2, 3, 4].

Asi mismo en ese capitulo se estudiardn ciertas propiedades que muestra QCD
en el limite en el que el nimero de colores N¢ se hace infinito [5]. En ese limite
los loops fermidnicos vienen suprimidos por factores 1/N¢ y en la visién hadrénica
la contribucién dominante viene dada por los procesos a orden arbol, sin loops de
hadrones, que vienen suprimidos por 1/N¢. Este es el contaje que emplearemos en
la teoria efectiva a energias del orden de la masa de las resonancias y que conviene
no confundir con la expansién en potencias de momentos que aparecerd en la Teoria
Quiral de Perturbaciones. Hasta cierto punto el contaje en 1/N¢ se corresponderd
con un contaje en numero de loops, aunque también pueda haber contribuciones
subdominantes de los diagramas con mesones a orden arbol.

1.2 Teorias efectivas: La simetria quiral

Un método ampliamente utilizado de afrontar el problema ha sido a través de
teorias efectivas [6, 7]. Requiriendo las simetrias de la interaccién subyacente —
el lagrangiano de QCD en este caso— uno siempre puede contruir con los grados
de libertad relevantes a las energias consideradas el lagrangiano mas general que
preserva esa simetria (aunque a priori nada impide que la accién efectiva pueda
tener un ndimero infinito de términos).

En fisica hadrénica se emplean estos grados de libertad para construir los la-
grangianos efectivos. Las constantes no vienen fijadas por la simetria y deben por
lo tanto ser fijadas mediante experimentos o por otros argumentos tedricos.

Para afrontar QCD a bajas energias, durante estas décadas pasadas se han ido
desarrollando una serie de teorias efectivas de campos (EFT) basadas en la simetria
quiral del lagrangiano de QCD para los quarks ligeros [7, 8, 9]. Cuando se trabaja
por debajo del umbral de produccién del quark charm uno puede integrar los tres
sabores pesados —charm, bottom y top— y continuar con un lagrangiano efectivo de
QCD con sélo tres sabores ligeros [10, 11].

Las masas de estos quarks son mucho menores que la escala dindmica Agcp que
genera la interaccién no perturbativa, con lo que los términos de masa se pueden
tomar como una modificacién pequena al lagrangiano y tratarse perturbativamente.
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Asi, en el limite de masas cero QCD presenta una simetria extra de sabor, la simetria
quiral, que permite “rotar” independientemente los espinores derechos e izquierdos.
Sin embargo esta simetria del lagrangiano no se observa fisicamente ya que se en-
cuentra espontdneamente rota, es decir, el vacio de la teoria no es invariante bajo
este grupo de transformaciones SU(ny) x SU(ny). El subgrupo que contintia siendo
una simetria de la teoria es el subgrupo vectorial SU(ny)y. Debido a ello se genera
una serie de bosones de Goldstone (NGB), o més exactamente pseudo-bosones de
Goldstone (pNGB), ya que la simetria no es exacta sino aproximada.

Este desarrollo dio lugar a una EFT para describir las interacciones entre los
Goldstones a muy bajas energias (por debajo del umbral de cualquier otro estado
hadrénico) y que estuviera basada en la simetria quiral. Se denominé teoria de
perturbaciones quiral (xPT). Primeramente se construyé para el caso de dos sabores
ligeros u/d, con el grupo de transformaciones SU(2)r, x SU(2)r [8]. Posteriormente
se repiti6 el trabajo también para el caso de tres sabores u/d/s bajo la simetria
SU@3)L x SU(3)r [9]-

Para el caso de dos sabores el numero de generadores rotos es tres y aparecen ese
nimero de Goldstones, que se pueden identificar ficilmente en el espectro fisico con
los tres piones. En el caso de tres sabores aparecen ocho pNGB que se identifican
con el octete de pseudoescalares ligeros (7, K, ng). Debido a que el quark strange es
algo mas pesado los kaones y la eta tienen masas ostensiblemente superiores a las
de los piones, manteniéndose atn asi con masas bastante por debajo de las del resto
de hadrones.

xPT describe los observables mediante una expansién en potencias de los mo-
mentos y las masas de los pseudo-escalares sobre una escala caracteristica quiral
Ay ~ 4rF; ~ 1.2 GeV, siendo F; ~ 92.4 MeV la constante de desintegraciéon del
pion. Dentro del lagrangiano que permite la simetria no todas las piezas van a ser
igualmente relevantes a bajas energias. Las piezas con menor nimero de derivadas
dardn las contribuciones dominantes para F < A,. Se establece asi un contaje
en potencias de momentos que se denomina contaje quiral y que falla alrededor de
E ~ 0.5 GeV, al aproximarnos al primer multiplete de resonancias. Al nivel de
loops se observa que estd ordenacién se mantiene y que las correcciones radiativas a
un determinado orden en momento son de tamano similar al de los contratérminos.
Con esto el contaje queda bien definido al nivel cudntico. Para un amplio resumen
en xPT se pueden consultar las referencias [6, 12, 13, 14, 15].

1.3 Teoria quiral de resonancias: una teoria para mesones

Como se ha dicho antes la expansién quiral empieza a fallar segin aumentamos
la energia de los procesos. Para seguir manteniendo un nivel de precisiéon dado hay
que realizar el cdlculo hasta ordenes quirales cada vez més altos [16, 17, 18].

Sin embargo hay un punto en que no se pueden seguir ignorando el efecto del
intercambio no-local de resonancias. Desde la década de los anos cincuenta se ob-
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servo que en algunos canales las amplitudes presentaban picos concentrados entorno
a determinadas regiones con momento total al cuadrado s ~ M? y una anchura de
la regién As ~ MT'. Estos resultados experimentales sugirieron que estos picos de
amplitud podian estar producidos por el propagador de una particula intermedia
en el canal-s con los niimeros cudnticos del canal. Cuando la energia del proceso
estd cercana al polo del propagador se produciria un maximo en la amplitud. Las
energias a las que se producian estos picos era para M ~ 1 GeV, mucho mayores
que las masas del octete de pseudoescalares ligeros. Estas particulas empezaron a
ser incluidas en los modelos tedricos y fueron llamadas resonancias.

En los ochenta, ademas de desarrollarse xYPT, se empezaron los primeros trabajos
en que se construian teorias efectivas incluyendo los bosones de Goldstone de la SxSB
y la resonancia vectorial p(770) basdndose en la simetria quiral y considerando dos
sabores ligeros [8].

Trabajos posteriores lo extendieron al caso SU(3) y ahadieron otros canales
aparte del vectorial JF¢ = 177, como el axial-vector 1T+, el escalar 01F y reso-
nancias pseudoescalares 0~ [19]. A esta teoria se le denominé la Teoria Quiral de
Resonancias (RxT).

La expansion en momentos falla cuando se aumenta la energia de los procesos
por lo que el contaje quiral se vuelve inadecuado para estudiar los observables a
energias del orden de las masas de las resonancias. Sin embargo, en Ref. [5] fue
sugerida una expansion alternativa para los elementos de matriz en QCD —y para
sus descripciones efectivas— en potencias de 1/N¢, donde N¢ es el niimero de colores
en QCD, considerando Ngag constante. Aunque fisicamente uno tiene Ng = 3
y se esperaria una lenta convergencia de la serie, fenomenolégicamente se tienen
muchos motivos para creer que ésta es mucho mas rapida y que ya las contribuciones
a primer orden en 1/N¢ dan una muy buena descripcién de un gran nimero de
fenémenos 5, 20, 21].

Estudios posteriores en RxT y xPT han permitido encontrar restricciones al
orden dominante en 1/N¢ sobre algunos de los acoplamientos mediante comparacién
con el comportamiento a cortas distancias de QCD [21, 22, 23].

1.4 Canal vectorial: Anchura y resultado perturbativo

RxT da una buena descripcién de varios observables simplemente al orden do-
minante en 1/N¢ (LO). Sin embargo falla cuando la energia del proceso estd muy
cerca de la capa de masas de la resonancia. Como pasa en cualquier descripcién
en teoria de perturbaciones de cualquier teoria cudntica de campos, falla cuando
hay diagramas que no son one — particle — irreducible (1PI) y el propagador de la
particula intermeda se situa sobre la capa de masas. Estas situaciones se resuelven a
través de una resumacion a todos los ordenes en teoria de perturbaciones de Dyson-
Schwinger [24, 25]. Esta resumacién proporciona a todas las particulas inestables,
cuyos propagadores internos pueden ponerse sobre la capa de masas, una parte



1.4. Canal vectorial: Anchura y resultado perturbativo 11

absortiva imaginaria en el propagador de la resonancia, a veces denominada con el
nombre de anchura.

Esta resumacién debe hacerse también en RxT esencialmente del mismo modo
pero siguiendo una serie de pautas adicionales. En Refs. [26, 105] se estudié el
canal vectorial JP¢ = 17~ y se proporcioné una anchura para cualquier valor del
momento para la primera resonancia vectorial, la p(770). En el presente trabajo y
en las publicaciones que han derivado de ella se siguié el espiritu de la resumacién
realizada en Ref. [26] extendiéndola a un estudio de canales acoplados pion-pion y
kaén-kaén, y aplicAndola al caso de la primera resonancia vectorial. De igual modo
se han aplicado estas técnicas al canal escalar en un capitulo siguiente.

En el caso vectorial los resultados mostrados en este trabajo concuerdan con los
obtenidos en Ref. [26], donde se sumaban las anchuras parciales a piones y a kaones
obtenidas mediante estudios separados de canales desacoplados. Otros resultados
similares se pueden encontrar en las Refs. [27, 28, 29].

Las resumaciones de Dyson mostrardn como la interacién de estado final y la
modificaciéon de los propagadores se produce de un modo universal. Con esto se
quiere decir que la modificacién del propagador de cada particula dependerd no de
los estados inicial o final del proceso sino de los estados intermedios accesibles.

También se mostrard que este tipo de resumaciones de Dyson-Schwinger satiface
exactamente unitariedad y que por lo tanto reproducimos los resultados obtenidos
mediante métodos basados en unitariedad como el Método de la Amplitud In-
versa [30], resumaciones de Bethe-Salpeter [31] o el método N/D [32]. Se mostrard
cémo se recuperan sus resultados y cémo se explica la relacién fisica entre sus
parametros y los acoplamientos del lagrangiano de RT.

Sin embargo, en las resumacién de Dyson surge el problema de la renormalizacién
de loops de Goldstones. Es en ese punto cuando uno se plantea si es posible construir
una autentica teoria de campos para las interacciones fuertes en términos de mesones.
Por ello en el capitulo 6 se estudiard un elemento de matriz, el factor de forma
vectorial, a un loop. Se analizardn los problemas y complicaciones que surgen en el
célculo de procesos a segundo orden en 1/N¢ , asi como sus posibles soluciones.

El resultado de esta parte del trabajo serd por una parte una serie de deter-
minaciones, bien fundadas tedricamente, de los acoplamientos y masas del primer
multiplete vectorial al siguiente orden en 1/N¢ (no s6lo a primer orden como se
habia hecho hasta ahora). Por otro lado se pondrin de manifiesto cudles son las
lineas de investigacién y sobre qué detalles de la teoria efectiva hay que realizar un
trabajo mds profundo si se quiere llevar los estudios en 1/N¢ més alla del orden
dominante.
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1.5 Canal escalar: Poniendo en practica lo aprendido
en el sector vectorial

En el canal escalar iso-escalar JP¢ = 01+ tendremos que considerar dos reso-
nancias con esos nimeros cuanticos, la resonancia octete y la singlete, ambas dentro
del mismo nonete quiral. Veremos que debido a la ruptura explicita de la simetria
quiral por masas de quarks una resonacia octete puede convertirse en una singlete a
traves de un loop de pNGB (el correlador entre la corriente octete y la singlete no es
cero). Esto va a producir una mezcla entre ambos estados, que ahora dejardn de ser
los autoestados fisicos de masa. La obtencién de estos autoestados va a complicar
el procedimiento de obtencién de las anchuras que se seguia en el caso vectorial.

Mostraremos como es posible realizar un andlisis del factor de forma escalar a
energias del orden de la masa de las resonancias escalares, aplicando las técnicas
desarrolladas en el estudio del canal vectorial. De este modo, en el capitulo 7 se
muestra como es posible realizar una resumacién de Dyson con estados intermedios
de dos Goldstones (7w, KK y 7nn). Esta descripcién diagramitica implementa de
modo automatico unitariedad y analiticidad, de modo que tras las debidas conside-
raciones se puede relacionar con facilidad este resultado resumado con el obtenido
por otros trabajos basados en otros métodos [30, 31, 32].

Sin embargo en un primer anilisis se puede estudiar los observables a energias
por debajo del umbral KK y trabajar en QCD con dos quarks ligeros, up y down.
Es mas, bajo esta aproximacion, se puede aplicar una simplicacion extra que es
trabajar en el limite de masas de pion nulas.

Asi, en este capitulo se muestran los resultados que se obtienen de la com-
paracién de la fase experimental [35] en la regién eldstica y el resultado teérico de la
resumacion de Dyson. Se comprobara que la descripcion tedrica es bastante buena,
obteniéndose asi, una estimacién de la masa del primer multiplete escalar (siempre
teniendo en cuenta que en el cdlculo hay un grado de incertidumbre debido a tomar
los piones sin masa en lugar de con sus masas fisicas).

Por 1ltimo, al final del capitulo se mostrard cémo es posible obtener informacién
sobre el multiplete de resonancias escalares a partir de otros observables y otras
técnicas diferentes, pero manteniéndose bajo el marco de la RyT. Asi, se estudiarin
los resultados obtenidos en simulaciones en el reticulo para las constantes de desin-
tegracion del pion y del kaén. Se verd que es posible dar una explicacién con una
sélida fundamentacion tedrica a la dindmica que se viene observando en este tipo de
observables para altos valores de las masas de los quarks up y down. El estudio al
orden dominante en 1/N¢ mostrard que bajo este contaje es posible reproducir los
comportamientos observados. Del mismo modo, serd posible extraer algunas deter-
minaciones fenomenoldgicas (a partir de las simulaciones en el reticulo) de la masa
del primer multiplete qq de escalares y de los parametros quirales.
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1.6 Interacciones entre mesones B y Goldstones: Estu-
dio de simulaciones en el reticulo

En el capitulo 8 se presentard un estudio que se realizé en colaboracién con J.F.
Donoghue y A. Ross, y que llevé a la publicacién del trabajo que se puede ver en la
Ref. [33]. En él se hizo un estudio de las constantes de desintegracién del meson B,
fB, y su constante de mezcla B? — FO, Bp. Se tomaron resultados de simulaciones
en el reticulo [34], que han de ser generados para valores no fisicos de las masas de
los quarks up y down. Por ello en este trabajo se analiz6 como era posible realizar
una, extrapolacién hasta altos valores de masas de los quarks ligeros basiandose en
Teoria efectiva Quiral para mesones pesados (HMxPT). Con esta teoria se describen
de modo efectivo las interacciones entre los mesones pesados, D o B, y el octete
de pseudo-escalares ligeros, en el régimen energético cuando estos transportan una
fraccion del momento total mucho menor que la escala quiral A, ~ 1 GeV.

Sin embargo, al igual que pasa con la Teoria de Perturbaciones Quiral habitual,
las descripcién efectiva falla cuando los momentos o las masas de del octete de
psedo-escalares ligeros se vuelve muy grande. Se observa asi en los resultados de las
simulaciones en el reticulo que hay un cambio de régimen para m, > 0.5 GeV. El
comportamiento logaritmico prescrito por HM yPT desaparece.

Para describir este nuevo régimen, al mismo tiempo que se mantiene el buen
comportamiento de HMxPT a bajos valores de las masas, se realizo el cdlculo en la
teoria efectiva pero regularizando las integrales de los [oops con un cut—of f suave de
forma dipolar, A.,:. Este pardmetro se mantuvo a un valor finito entorno a Ay ~ 1
Gev y se tomé como una constante que permitia parametrizar el punto en que los
loops de HMxPT dejaban de ser relevantes y a partir del cual el comportamiento
del observable se volvia lineal en m2.

Aunque esto es un ansatz para describir los resultados de simluaciones en el
reticulo basdndose en ciculos de teorias efectivas y anadiendo ciertas suposiciones
razonables, los buenos resultados obtenidos en el capitulo 7 para el analisis de las
simulaciones para las constantes F y Fk permite suponer que existe una funda-
mentacién fisica méas profunda para este ansatz; la descripcién en 1/N¢ podria ser
una, util técnica a ser tenida en cuenta a la hora de analizar resultados de la fisica
de B’s.

1.7 Resumen de objetivos

Por tanto, resumiendo los puntos anteriormente explicados, los objetivos de la
presente tesis de doctorado se centran en:

e Mejorar la descripcion efectiva de las interacciones de resonancias. Se busca
aumentar la precisiéon y la consistencia de la teoria a través del andlisis de
observables a un loop, asi como el estudio de las complicaciones que surgen.
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e A través de este andlisis se puede obtener importante informacién con una

sOlida base tedrica sobre los acoplamientos, masas y propiedades de los mesones
vectoriales.

De igual modo, se emplearan en el canal escalar las técnicas desarrolladas en el
sector vectorial (que tiene una fundamentacién mucho mis establecida que la
que uno tiene en el sector de spin cero). A través de ellas se obtendran algunas
determinaciones de los pardmetros de este tipo de resonancias, en concreto de
aquéllas con iso-spin I = 0.

Finalmente se plantea un primer acercamiento a las simulaciones de Lattice
desde el planteamiento del contaje en 1/N¢. Se busca con ello mostrar cémo
es posible aplicar estas técnicas para describir desde un punto de vista més
fisico los comportamientos lineales observados en las simulaciones numéricas y
descritos por ansatze de uno u otro tipo



Chapter 2

Quantum Chromodynamics and
chiral symmetry

2.1 The QCD lagrangian

Quantum Chromodynamics (QCD) has been proved to be the theory to describe
the strong interactions. It describes the strong interaction by a set of fermions —the
quarks— and gauge bosons —the gluons-.

When the energy of the experiments increased it was realized that the hadrons
were not really point-like particles but they rather had a composite structure. They
were built by smaller fermions which were called quarks. The proton and neutron
contained three of them of two different classes, up and down. The discovery of the
baryon A1+ with spin and isospin 3/2, and baryon number B = 1, showed that
the description in terms of three single up constituents was inconsistent with the
Fermi Exclusion Principle unless they were three different up particles: It became
necessary to describe a quark not by a single Dirac spinor but by three of them
—Red, Green and Blue, as they were going to be called—. These N¢o = 3 different
“colours” could be put together into a N¢ vector of a new space —the colour space—,

qRed
q = qGreen ? (2 1)

quue

being g the up or down quark.

It is important to distinguish the three kinds of tensor structures that arise here:
Dirac spinor structure, flavour structure (up or down), and colour structure (Red,
Green and Blue).

Since it was impossible to identify the particular colour of each component of the
AT particle, there had to be at least a global symmetry SU(NC)gObal in the colour
space. It becomes obvious that the kinetic term for the coloured spinors is invariant
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under colour transformations when it is expressed in the colour-vector notation:
Ki . _
Lovark = 1799 — mqqq. (2.2)
When requiring the colour symmetry to be local, SU(N¢)%@ (SU(N¢) since
now on), one has to introduce the corresponding gauge bosons Gy, with a =
1, ..., (N4 —1). They transform under the adjoint representation of the group and
provide a fair explanation of how the strong interaction occurs.
To compensate the action of the derivative over the local transformation one
needs to construct the SU(N¢) covariant derivative:

Drg = [ —ig NG| g = [ - ig.C*@)e,  (@3)

with the No x N matrix [G*(z)]as = [2#]asG#(z). Notice that the covariant
derivative D* is also a N¢g X N¢ matrix in the colour space and that this operator
depends on the position. The gauge transformation of the fields is:

q(z) — q(x) = Ulz)qla),

q(z) — @)= q@)U'(2),
. (2.4)
Giz) — GM@)' = U(z)GH(2)UM(z) — g (0"U(2))Ul(a),

D# — (D" = U(z)D U (),

with the gauge transformation U(z) € SU(N¢). The coupling gs will be called the

strong coupling constant and in non-abelian theories the charge of all the fermions

must equal, i.e., all the quarks must couple with the same strength to the gluons.
To end with, one must consider the strength field tensor of the gluon field:

. a
Gr(z),= A [DMDY] = GG — GH — ig[Gr,G¥] = X G (a),
(2.5)
G (z) = OFGY —0"GE + gsf* Gl GY,
which transforms as
G (x) — G™(z) = U(z) G*™(z)U'(x), (2.6)

under the colour group, and, therefore, the colour trace Tr(G*'G,,) = %Gé”’GZ,,
remains invariant. This tensor provides the kinetic term for the gauge bosons keeping
the desired gauge invariance.

Therefore the QCD lagrangian for the quarks of n; different flavours reads:

1 .
f
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Those are all the non-irrelevant operators that one may construct keeping SU(N¢)
gauge invariance. Actually the symmetry allows as well one extra piece, but it
violates CP and experimentally it has been proved to be completely neglectful. There
is not a clear reason for this operator to be so suppressed and it is usually refered
as the strong CP problem. The influence of this #-term has not been considered in
this thesis.

The last step is the inclusion of the gauge-fixing and Faddeev-Popov terms in
order to properly quantize the fields. They remove the unphysical polarizations of
the gauge bosons by fixing the gauge and introducing a set of anticonmuting scalar
fields ~the Ghosts—. None of these terms contains quark fields.

2.2 Non-perturbative regime of QCD

Hence, Quantum Chromodynamics (QCD) describes properly the strong inter-
actions between the quarks and the gluons through a non-abelian gauge theory
with symmetry SU(N¢), being No = 3 the number of colours in the Standard
Model (SM). There we have six different flavours for the quarks: up, down, strange,
charm, bottom and top (from lighter to heavier). The existence of these flavours is
nowadays quite well established and their masses are known within well controlled
uncertainties. The three heavier ones own masses above 1.5 GeV. Moreover, since
the strong interactions do not change the flavour they must be produced in QQ pairs,
which puts their production within a loop beyond 3 GeV. Therefore, when studying
QCD around 1 GeV the heavy quarks charm/bottom /top may be integrated out of
the theory and the observables may be described by an effective QCD theory with
ny = 3 light flavours. Sometimes one may even integrate out the strange quark if
the analysis is to be done at very low energies, having a ny = 2 flavours effective
field theory (EFT) of full QCD.

The non-abelian interaction of the gluons generate large radiative corrections at
low energies. When analysing the strong coupling constant with the renormalization
group techniques one observes that it grows when decreasing the scale, becoming so
large that the perturbative series breaks down around 1 GeV.

The variation with the scale is given by the beta-function:

do
i af(a) (2.8)

which can be obtained from the perturbative calculation: B(a) = 812+ 2 (%)2 + .y
with a = g2/4w. At one loop we only obtain the first coefficient:

(2.9)

with the SU(N¢)-group constants Tp = %, C4 = Ng¢. In the standard model Sy
is negative and then the coupling increases when the scale decreases. For No = 3
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the theory would need a number of flavours ny > 17 to change this behaviour.
Therefore, QCD with just light quarks —with the heavy flavours integrated out— or
without quarks at all (quenched approximation from Lattice) maintain the same
non-perturbative behaviour at low energies as full QCD in the SM.

The solution to the renormalization group equation (RGE) from Eq. (2.8) at one
loop is then:

2 _27r
(6%
N B ) wG) )
27 Qo) LB/ g ,Bla(MO) /o QCD
(2.10)
where there arises a dynamical QCD scale A, due to the non-abelian interaction,
defined from 0 < —&27?“0) = Inyd — lnAéCD, this is, Ay, = uoexp{m}.

The values (po, a(po)) provide the initial conditions to the RGE. Thus, the non-
perturbative interaction generates the so-called Landau pole at low energies, where
the coupling constant becomes infinite.

Actually, the extrapolation of the one loop coupling to the non-perturbative
region is not valid. In addition, higher perturbative orders modify the position of
the Landau pole. What everybody agrees is that the renormalized constant becomes
large in the low energy range and that the perturbative description is not valid any
longer. Thence an effective description will be necessary for this region in terms of
the proper degrees of freedom, the hadrons.

2.3 Decomposition in chiral components

The QCD lagrangian for ny flavours can be written as:

Loop = Loep+ AL™,
EOQC’D = ’LWJD\II — %GZUGIGW + Lgr+ Lrp , (2.11)

AL™ = —TMVT

where ¥ = (4, d...) is a flavour vector containing the n 7 different fermionic coloured
fields, and M = diag{m,, mg, ms...} is a diagonal ny x n; matrix in the flavour
space, where m; is the mass of each quark. Lgr and Lrp are the gauge-fixing and
Faddeev-Popov terms which contain only gluon and ghost fields.

Notice that the QCD lagrangian has been split into two pieces. The quark mass
contributions have been separated in AL™. When observing the physical values
of the light u/d/s quark masses one realizes that they are much smaller than the
dynamical scale A,,, ~ 0.5 GeV generated by the non-perturbative interaction.
Therefore one may consider the massless QCD lagrangian and later on introduce
the quark masses as a small perturbation.
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Let us now express the Dirac spinors in the QCD lagrangian in terms of chiral
components in order to behold the new symmetry that arises in ['22() p- The left and
right components of a Dirac spinor are given by the projectors:

qr =
grR =

and the corresponding conjugate spinors g7 g = qL R0 are:

e =

N[ =N

- 1
{ ‘{L_q_(”%)%, (2.13)
R=4 2

Therefore, the product between spinors with the same chirality vanishes: grqr =
drgr = 0. Thence the mass term m,gg only contains the crossed combinations:
49 = 9198 + qRYL-
The contrary happens to the kinetic term. The effect of the v* on the right hand
side of qr, g is:
a* =" (1=75)
gy = a7 (1) g (2.14)
R =" (1+7%) 3
and therefore the crossed combinations now disappear with the massless lagrangian
becoming:
= = 1
Loop = 0PV + iTpPTg — 1GwGe” + Lar + Lrp (2.15)
having Uy, g = (ulf,d"...). where ¥, g are the left and right projections of each
of the Dirac spinors in the flavour vector W. This is telling us that the lagrangian
does not allow a mass-less left-spinor to flip into a right-spinor and viceversa, so
the left and right sectors do not talk each other. Nonetheless, the physical world
contains a small mass term which mixes the different chiralities:

AL™ = — U MUp — UrMT . (2.16)

In addition one will have to consider also the interaction with the electroweak sector
of the SM. This can be easily implemented, but by now let us analyse the massless
QCD situation where all the remaining interactions have been switched off.

In addition to these terms, the non-perturbative QCD regime is going to change
the structure of the physical vacuum |0), because the interaction allows a non-
negligible left-right flip.

2.4 Chiral symmetry

In the massless quark limit the term AL™¢ disappears and the lagrangian Lgocp
gains a set of new symmetries.
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First, it is possible to perform global phase redefinitions independently in the
left and right fields:

Y1, — P = exp(ifr) Y (2.17)
sz — Tﬁ;z = e:Ep(’ieR) '(ﬁR . (2.18)

This group is U(1), @ U(1)g = U(1)y @ U(1) 4. The transformations with 67, = 0g
belong to U(1)y = U(1)L+ g, and the ones with 8 = —0g to U(1)4 = U(1)g—r- The
U(1)y symmetry remains even with non-zero masses and gives rise to the baryonic
number conservation. However, the subgroup U(1)4 is anomalous and it is broken
at the quantum level.

The current associated to the U(1)y symmetry is B* = Uy#*¥, with the con-
served baryonic charge B = [di® B® = [d7® U+ 0.

The lagrangian owns as well an invariance under the action of the chiral group
G= SU(’)’Lf)L &® SU(nf)R,

Y — Y, = gL (2.19)
VYR — Y = grYR (2.20)

with the global transformations g;, € SU(nf);, and gg € SU(ny)g-
The Noether currents associated to the chiral group are:

e

J¢ = @Xw?qfx (X=LR; a=1,.,n}-1) (2.21)
where % are the generators of the group SU(ny) and the indices X = L, R point
out the type of current. These currents provide the corresponding Noether charges
Q% = [d7®J¥(z), satisfying the commutation relations

[Q%, Q%) = ifarcdxyQ% (2.22)

with fop. the SU(ny) structure constants.

A chiral transformation (gr,gr) can be observed in an alternative way, as a
combination of two transformations: a vector transformation g, € H = SU(ny) 41,
followed by an axial one E € G/H. One calls vector transformations g, = (h, h) to
those with g, = gg, and axial transformations Z = (¢,£7!) to those with g7, = g;zl.
Any element g = (g1,,gr) of the chiral group accepts the decomposition

2_ —1

(6,67 - (hh) = (€he7'h) "E" (Egn,g8) © T (grogr).  (228)
which is unique, being h and ¢ given by the relations ¢? = 9L91_zl and h = £gg.
One may be tempted then to write the group G as the direct product of the vector
subgroup times the axial one. However this is not true: Although this is right for
the vector subgroup, the axial transformations do not form a closed subgroup. Only
joining both types of transformation one gets a closed group, G.
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Therefore, it is possible to express the full group G in terms of vector and axial
generators. The corresponding vector and axial currents, J and Jl‘;’a respectively,
are then

a Aa
o= St T = TS (2.24)
_ e
Tt = Jip =i = 5T, (2.25)

with the 75 definition given by vsqr = +qr, V591 = —qr.-
In the chiral limit these currents are conserved. However in physical QCD they
obey partially conserved relations:

O (@) = 1(mg; —me)Giai 5 Ou (G7"15%) = i(mg; +mg;) G154 -
(2.26)
There are two types of charges associated to these currents: The vector charges
= Q% + Q4 and the axial ones Q% = Q% — Q¢. Under parity they transform as
scalars and pseudo-scalar respectively for vector and axial charges:

/df?’.]o 0,7 —s PQLP = /d;;:'i*’Jg(:cO,—f) = Q%,

o = [a5r6ts) — PP = [di® (g6 -D) = ~Q4.

(2.27)
This feature will be relevant when observing their actions over the vacuum.
These charges satisfy now some different commutation rules:
Q% Q%) = ifune @ (2.28)
[Q?ﬁb Q?ﬂl] = ifach%/ ) (2.29)
[Q?éb Q(XJ/] = ifachi} . (2.30)

These charges are going to commute with the massless QCD hamiltonian H, %C D
due to the current conservation:

[QVaHQCD] [QAaHQC’D] =0 =1, 7713" -1 . (2.31)

Vafa and Witten [36] proved that the lowest energy state (the vacuum |0) by defi-
nition) had to be necessarily invariant under vector transformations:

Q3 10) = 0. (2.32)

Nonetheless, there are two alternative possibilities for the action of the axial charges.
The two available realizations are shown in Tab. (2.1) [37]. The non-perturbative
interaction is going to play a fundamental role and the physically observed realization
is the Nambu-Goldstone one; the chiral symmetry becomes spontaneously broken
due to the strong interaction and the vacuum turns out to be non-trivial.
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£10)=0 £10) #0
Wigner-Weyl realiz. of G Nambu-Goldstone realiz. of G
Symmetric bound state Asymmetric bound state
(O] ¥R¥L[0) =0 (0] TrTL[0) #0
Ordinary symmetry Spontaneous Symmetry Breaking
Spectrum: Spectrum:
Parity degeneration Nambu-Goldstone bosons
Degenerate multiplets of G' | Degenerate multiplets of SU(3), , C G

Table 2.1: Alternative realizations of the chiral group G = SU(3); x SU(3);.

2.5 Spontaneous chiral symmetry breaking

The massless limit —with exact chiral symmetry— is a very good approximation
for the up and down quark sector, with masses of the order of m = (my + mq)/2 ~
10 MeV. They are clearly much smaller than the QCD scale, of some hundreds of
MeV. This approximation is also still suitable —but not as good- for the strange
quark mgs ~ 150 MeV [82].

When considering the massless limit the unique energy scale in the theory is
then Agcop. It is generated dynamically through the strong interaction and it does
not know anything about the quark masses, just depends on the size of as(ug) at
a reference scale pg. The masses of the heavy hadrons (the baryons and the u/d/s
resonances —~with M ~ 1 GeV-) are mainly proportional to Agcp and the quark
masses only produce tiny modifications.

The phenomenology below the first resonance multiplet , the vectors of the p(770)
multiplet, shows only a spectrum of eight light pseudo-scalars, much lighter than
any other hadron. The three lightest —the pions— form a nearly degenerate multi-
plet (7%, 7%), and the remaining five, (KﬂK‘,fO,KO,n), own larger masses and
contain strange-ness (the kaons) or a s§ component (the 7).

This group of mesons can be easily classified in an octet of SU(3)y. Actually,
the light pions form a triplet of the isospin group SU(2)y. When exchanging the
quarks in the triplet (u,d, s) one has the analogous transformation in the mesons
corresponding to the octet representation. For instance, the exchange d <+ —s, which
can be seen in Fig. (2.1), is reflected in the mesons as the exchanges 7% < —K*,
K% «+ —KY and a more complicate change for the neutral pion and the 1.

Now one may wonder about what happens when applying axial transformations.
When applying a general axial transformation over a particle of the octet we would
generate a state with a component of opposite parity. A mirror scalar octet should
be found in that case. However it is not observed in the QCD spectrum. The closest
group of scalars is placed around 1 GeV, and the difference cannot be attributed
to the explicit chiral symmetry breaking from the quark mass term. These mirror
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K° K*
d u \
\ e m° m
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K~ K’
S

Figure 2.1: Actuation of the SU(3)r+r transformation d <» —s over the quarks and
the light pseudo-scalars.

scalars are not found even for the pions for which the chiral limit is rather good.

Therefore the approximate chiral symmetry of the lagrangian is not beheld in
the physical spectrum, which does not show the expected degeneration in parity.

A given symmetry may be not observed in the spectrum for two reasons. On
one side the symmetry may be explicitly broken in the lagrangian, i.e., not being
invariant under the symmetry. On the other side the symmetry may be sponta-
neously broken, i.e, the physical vacuum is not trivial and is not invariant under
these transformations.

The explicit breaking in QCD cannot explain the spectrum and therefore one
finds that the non-perturbative interactions generate dynamically a spontaneous
breaking of the chiral symmetry (SxSB).

The necessity of SxSB can also be observed by other arguments. One may
analyse the vacuum expectation value (v.e.v.) of some QCD operators. In a given
QFT, if the physical vacuum |0) is invariant under a given group G then the unique
operators O that can get a non-zero v.e.v. are those being G-invariant:

G |0) = |0)
—  (0|0]0) =0 . (2.33)
O #£GOG!

This can be expressed in other way: If an operator owns a non-zero v.e.v. then
either the operator O is G-invariant or the the vacuum is not G-invariant.

G |0) # 10},
oo £0 = or (2.34)
0=GOG!.

Since the theory is invariant under Lorentz transformations, parity and charge
conjugation, the unique candidates that can gain a non-zero v.e.v. are scalar oper-
ators. The simplest ones to analyse are those with the form §;q;, which can be put
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together in the form WW. This operator is not invariant under the full chiral group
G = SU(nys)r x SU(ns)g but just under its vector subgroup H = SU(ns)+r C G.

Therefore, if this non-G-invariant operator gets a non-zero v.e.v. one may con-
clude that the vacuum is not invariant under G. However, since this operator is
invariant under H, the vacuum may still remain invariant under this subgroup even
if the operator gets a v.e.v. different from zero, as it was required from other anal-
yses [36]. This v.e.v. is therefore an order parameter of the chiral symmetry phase
transition and it is usually named as the quark condensate.

There are many indications from QCD studies pointing out that in fact this
v.e.v does not vanish. Thus, recent Lattice calculations [80] have obtained the
value (Gq) ~ —(250 MeV)3. The QCD sum rules have also yielded a value of the
same order, (gq), 5., ~ —(250 MeV)?3 [2]. Some analyses of the divergence of the
vector and axial quark current correlators provide the related invariant quantity
(qq) = —[(194 + 8) MeV]? [3], which is proportional to the quark condensate
and point out a clear non-zero value. In addition, once assumed the hypothesis of
SxSB it is possible to develop an EFT that when compared with the phenomenology
provides a consistent non-vanishing v.e.v. [8, 9].

Therefore, one finds an overwhelming amount of hints that point out that the
chiral symmetry becomes spontaneously broken; there is a set of Nambu-Goldstone
bosons (NGB) and the way the symmetry is broken will be an essential ingredient
to implement when constructing the corresponding low energy EFT.

In other words, the state of minimal energy, |0), is not invariant under G, just
under H. As we saw before, the axial charges commute with the massless QCD
hamiltonian [37]. These charges Q% generate i = 1, (nfc — 1) states Q4 |0) different
from the vacuum |0), with the same energy E = 0 as the bound state:

HQepQ410) = QuHyep0) =0 . (2.35)

The spectrum contains eight states for ny = 3, Q' 10), ... Q% |0) with E = 0, i.e.,
eight massless particles, the Nambu-Goldstone bosons from the SySB. Moreover,
these states have the same quantum numbers as the axial charges that create them:
spin zero, odd parity and they transform as the adjoint representation of the group
—octet in SU(3), triplet in SU(2)-.

Summarising: The QCD lagrangian owns the chiral symmetry G but the physical
spectrum and the vacuum must be invariant only under the vector subgroup H. The
SxSB generate (n?c — 1) Nambu-Goldstone bosons. This breaking is due to the non-
perturbative QCD dynamics and its mechanisms remain still not well understood.

2.6 The Ng — oo limit in QCD

Many experiments have shown that the number of colours in physical QCD has
to be N¢ = 3 [1]. However, although being extremely successful in the high energy
region, nobody has been able to fully solve the strong interaction at low energies.
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Many years ago 't Hooft and Witten [5] proposed a limit where QCD suffered
large simplifications. They studied QCD in the limit of large number of colours
N¢ > 1, but keeping a;N¢ as an O(1) constant (this means that «y scales as
1/N¢). The assumption was that the physical theory with No = 3 was qualitatively
and quantitatively close to the theory in the No — oo limit. Thus, solving the large
N¢ theory one could recover the bulk of physical QCD. In this limit the theory
could be expressed as a series of powers of 1/N¢, providing a formally well founded
expansion. When considered the physical expansion 1/N¢ = 1/3 one would have a
maybe slowly convergent series but which would provide a clear estimate about the
size of the neglected terms in the perturbative calculations. The NLO contribution,
~ O(1/3), may become large due to an unexpected large coefficient, but it is much
more difficult that the NNLO, ~ O(1/32) turns out to be as big as the LO, ~ O(1).

Many works have shown that the convergence is much better than expected and
that the LO provides the main contribution [23, 21, 59]. The authors even suggested
the possibility of further suppressions due to factors ﬁ from the loop kinematics.
However, this point is still not clear at all.

The 1/N¢ expansion is based on the fact that when there is a loop with some
state running inside, it is not equally important when it is a quark or a gluon, since
the number of them are N and (NZ — 1) ~ N2 respectively. From a more careful
study one realizes that every quark loop is suppressed by a 1/N¢ factor whereas the
planar gluon loops are O(1) in the 1/N¢ counting. There are also some other gluon
diagrams (the non-planar diagrams) which start contributing beyond LO in 1/N¢.

A clarifying example is the gluon self-energy. The diagram with two gluons
has a factor g; ~ y/1/N¢ in each vertex and an extra combinatorial factor N¢
from the summation focdfbed — 0 4§9% = Nc§%. However, the combinatorial factor
that arises from the quark-antiquark loop is O(1), coming from the summation
Tr(%%b) = Tpé® = %5“(’. One may construct diagrams including a larger number
of loops and prove that, in general, every quark loop is suppressed by 1/N¢ and
that the non-planar gluon topologies (they cannot be painted on a plane without
cutting or jumping over a propagator) are order 1/NZ. As result of this, the gluon
self-energy is O(1) in the 1/N¢ expansion and it is dominated by the gluon loops.

Another indication of the dominance of the gluon diagrams in QCD is that the
low energy behaviour of the strong coupling constant is mainly ruled by the gluon
loops. The one loop contribution to the S-function from the quark loops is much
smaller than that from the gluons (2ny < 11N¢). Actually the confining feature
of QCD is essentially due to the gluon interactions. The increasing of N¢ makes
the theory more confining and increases the QCD scale A, ,. Actually the quarks
and gluons are confined within the hadrons because the number of colours is “large
enough” . For No = 2 the theory would become weakly interacting at low energies
for ny > 11 (for N¢ = 3 it was ny > 17).

There are a series of phenomenological results that seem to hint that the 1/N¢
expansion is a good approximation to what happens in the physical world:
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. In hadronic physics one observes a suppression of the gg sea: In the

N¢ — o0 limit the pair creation disappears and the ¢q sea does not exist any
longer. For some years the Lattice simulations have being emulating QCD
but in the quenched approximation (this is, without quark loops), with results
quite close to the experimental ones. Even nowadays, that the quark loops can
be simulated, one observes that the influence from the sea ¢g pairs is small.

. Due to this same reason the quarks in the hadrons do not suffer interactions

with the ¢q loops in the large N¢ limit and therefore the exotic states with a
large number of quarks (e.g. ¢Gqq) decouple of the ¢§ mesons.

. Zweig rule: The mesons become classified in U(3) nonets. In the N¢ —

oo limit the axial anomaly disappears and the group U(nyf)r @ U(ns)g is
reestablished [4].

. Two body decay dominance: There is the experimental fact that the un-

stable meson decays are mainly to two bodies almost on their mass-shells.
Some of these products may be unstable resonances, giving further decays af-
terwards.

In the large N¢ limit the amplitude for an unstable meson going to two
mesons is O(1/y/N¢), whereas a higher number of final mesons would give a
larger suppression in 1/N¢.

. Spontaneous chiral symmetry breaking: In the No — oo limit it was

proven that a U(ns)r, ® U(ny)g chiral theory had an spectrum of nfc massless
pseudo-scalar particles, which could be put together within a U(ny) multi-
plet [4]. These particles are nothing else but the NGB from the SxSB.

All these hints point out the thorough efficiency of the 1/N¢ arguments. In the

next chapters we will see that, at energies around the mass of the resonances, it is
not trivial what kind of perturbative counting to handle. The 1/N¢ expansion will
prove to be a quite successful tool to describe the hadronic processes in that range.



Chapter 3

Chiral Perturbation Theory

As it was realized in the last chapter, in the massless limit the QCD lagrangian
gains an extra symmetry, the chiral symmetry. Actually the lagrangian owns small
mass terms but the chiral symmetry limit is still a fair approximation for the light
quarks. However, QCD does not show this invariance nor small deviations from it.
The symmetry becomes spontaneously broken and the vacuum turns non trivial.
Thence, a set of massless NGB appears in the spectrum. Nonetheless, they are
not exactly massless but the NGB have small masses, since there is a tiny explicit
symmetry breaking in the real QCD lagrangian. For this reason these particles are
very often called pseudo-Nambu-Goldstone bosons (pNGB).

In this chapter one will find the way to construct their EFT. This is the Chiral
Perturbation Theory (xPT) and, as it happens with the EFTs, it accepts more than
one unique realization. However, all the set of equivalent EF'Ts must provide exactly
the same on-shell amplitudes.

The range of validity of the theory is provided by a characteristic chiral symmetry
breaking scale A, and all the hadronic scales in QCD are proportional to it. When
computing loops of Goldstone bosons one will obtain an expansion in inverse powers
of Ay ~ 4nF ~ 1.2 GeV, being F ~ F; = 92.4 MeV the pion decay constant.
At low energies there are also contributions from the heavy mass resonance to the
local counterterms which introduce a scale of the same size, A, ~ Mp ~ 1 GeV.
For sake of this, the expansion in powers of the momenta of xPT naturally breaks
down when approaching to the first resonance multiplet, My ~ 770 MeV. At high
energies one has non-local interactions through the exchange of heavy resonances.
At low energies they generate contributions to the low energy constants, being these
contributions “suppressed” by p?/M%, denoting p the external momenta of the
considered process.

A last comment before passing to the construction of the EFT. As it was re-
minded before, a peculiarity of these EFTs is that the Green functions are not
really described by a unique effective lagrangian. There is an infinite number of
realizations in which the symmetry can be implemented. In the next chapter we will
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add the resonance fields. There will be some ambiguities around the definition of
the resonance fields and the resonance lagrangian. Moreover, there will be some am-
biguities about what is a local NGB interaction and what is resonance interaction.
There are several options to describe the Green functions and all of them are right
if the Green functions are equivalently described, obeying their QCD requirements.

3.1 Effective description of the Goldstone bosons

At the end of the last chapter we saw that the QCD chiral symmetry became
spontaneously broken to the vector subgroup H = SU(nf)r+L-

Below the first resonance multiplet (F < M, ~ 770 MeV) the QCD spectrum
contains the octet of light pseudo-scalars (m, K,7g), which in the last chapter was
related to the Nambu-Goldstone bosons from the SxSB. The pions, with m, ~ 138
MeV, are somewhat lighter, whereas the kaons, with mg ~ 496 MeV, and the 7g,
with m,, ~ 547 MeV, form the heavier components of the octet.

Among the full QCD spectrum we are now interested in these light degrees of
freedom, including the resonances in the next chapter. These are the relevant ones
for the processes at very low energies.

The quark masses can be considered as small compared to the dynamical QCD
scale Ay,op, my(l GeV) = (5.0 £2.5) MeV [82], my(l GeV) = (8.5 + 2.5)
MeV [82], ms(1 GeV) = (160733) MeV [74, 75]. On the contrary, the remaining
quarks own masses much larger than this scale, m.(m.) = (1.23 = 0.09) GeV [81],
my(mp) = (4.0 — 4.4) GeV [82], my(my) = (168.2798) GeV [82], so the heavy quark
sector is decoupled from the theory, and only the light quarks are considered.

The decoupling theorem (Appelquist-Carazzone theorem [10, 11]) states that a
theory with a light field ¢ and a heavy field ®, with masses m and M respectively,
can be described at low energies (F < M) in terms of just the light degrees of
freedom. Take a high energy theory with action S[¢, ®]. The parameter A will
denote the set of couplings for terms that contain at least one field ® and g for those
operators with only light fields ¢. Then, the theorem says that the Green function
with only light particles on the external legs can be given by an effective action
S[¢4]. This action, up to corrections of order O(E /M), is obtained from the initial
S[¢, ®] through omitting the terms of it containing the heavy fields ® and replacing
the original mass m and the light couplings g by new parameters m and g. These
new parameters will be functions of the high energy ones, i.e. m(m,g, M,\) and
g(m,g, M, \).

The hypothesis the theorem is based on is that both the original action S[¢, ®] [10]
and the low energy effective action S[¢] [13] must be renormalizable. Thus, in our
case with QCD for a number n; of flavours at momenta s < m? ~ (1.5 GeV)?
one may consider QCD with just the light quarks u/d/s, satisfying the Appelquist-
Carazzone theorem since QCD is renormalizable for any number of flavours n;.

However, in other cases when one of the theories —the original or the low energy
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one— is not renormalizable the conditions of applicability of the theorem are not
well known. Thus, later we will study a theory including heavy resonances (Mp ~ 1
GeV) and the light octet of pseudo-scalars and will compare the result with that
expected from the decoupling theorem. Due to the non-renormalizability of both
theories (they are renormalizable order by order) one may not ensure that when
integrating out the resonance degrees of freedom there are not large contributions
in the form of logarithms of the high scale over the light one. Something similar to
this happens in the electroweak theory with the SU(2);, doublet (¢,b) when trying
to build an EFT for just the quark b. For the scales of the low energy theory,
my ~ 5 GeV, there are large contributions from logarithms of the form In (m/my)
with m; ~ 150 GeV, since the effective theory with just the quark b breaks the
electroweak gauge symmetry, spoiling the renormalizability of the theory [13].

In QCD with just u/d/s one realizes that all the information from the heavy
quarks is within the couplings of the three-light-flavour QCD (together with the low
energy constants of effective operators suppressed by the heavy quark masses).

Once the heavy degrees of freedom (d.o.f.) are removed from QCD one observes
that, even so, the quarks and the gluons are not the suitable d.o.f. since their
interactions become strong and perturbation theory fails.

In order to construct the EFT lagrangian one will consider the massless QCD
lagrangian, adding the masses later as a perturbation.

The massless d.o.f. that appeared from the SxSB were associated to the genera-
tors of the chiral group that did not leave the vacuum invariant, the axial generators.
Thus, when an infinitesimal axial transformation g4 acts over the vacuum it gener-
ates a NGB state 7* with the quantum numbers of the given generator Q%:

ga10) = {1+:Q4 + O} [0) = [0) +ie’x*) + |O(?))  (3.1)

where the axial charges Q% are the generators of the transformations on the Fock
space [58]. At this point one realizes that the definition of the NGB fields is not
unique beyond infinitesimal transformations. This has nothing to do with QCD
itself. Even in the simplest case of spontaneous symmetry breaking, with a complex
field ® and a quartic potential, the NGB can be realized either as ® = %(04— d+im)
oras® = %(’U-I— ¢)explim/v], with v the vacuum expectation value of ®. Only when
computing the on-shell amplitudes all the realizations provide the same result.
Therefore we are going to parametrize —to map— all the possible NGB states. We
will perform arbitrary chiral transformations =(z) € G over the vacuum |0). This
will characterize any possible state |¢(z)) of the Fock space of Goldstone bosons:

[®(z)) = E(z) [0). (3.2)

Notice that now the transformations are not local and are different for every point
z. This set of general transformations E(z) = Z[e4 (2)Q4, €2 (z)Q%] € G are not in-
finitesimal in general, but when taking the infinitesimal limit =(z) = 1+ €%(z)Q% +
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€2 (2)Q% + O(e?) they must reproduce the result in Eq. (3.1). Through this pre-
scription one may characterise the Goldstone fields at the infinitesimal level by
€%(2)Q%|0) = |m(z)). Therefore one may replace the charges by the NGB fields
when working in a concrete realization. Some extra factors may be left dividing or
multiplying, in order to have their corresponding kinetic terms normalized and the
scalar fields with their canonical dimension [7] = E.

The €* parameters of the transformations are now €*(z) but the action of the
charges has not changed. Moreover, if a global group leaves the vacuum invariant, the
same group with local transformations also leaves the vacuum unchanged. Therefore
one has that for g, (z) = (h(z),h(z)) € H, then g, (z) |0) = |0). Thus our description
of the states |®(z)) is ambiguous since

E(z) 0) = (E(@)g)(@)gn(@)[0) = (E(z)g}(=)) |0). (3-3)

The same state is then described by a set of equivalent transformation Z(z) g (z)", for
any gp(z) € H. The set of transformations is divided then in classes of equivalence
[E(z)] = {E(z)gn(z)" : gn(z) € H}. Therefore one must choose a representative
of each class of equivalence, Z(z) = (£1,(x),&r(z)). Thise choice of representatives
breaks the ambiguity and maps uniquely all the NGB states.

However, the fact of choosing a representative of the class modifies the transfor-
mation properties of the fields: When applying a chiral transformation g = (g1, gr)
over the NGB state Z(x) |0), the new state may not be a representative of its class:

G

€c(8), Er(¢) — (&, &R) = (9282(8), grER($)) - (3-4)

Therefore, one has to apply a compensating transformation g (g, Z(z))! on the right
which depends on either the initial state and the chiral transformation:

+
—_ g9 =
g -2 B E(@) =g-

(1]

(z) - gn(g,E)T, (3.5)
which for each coordinate means
+
g -
grér(z) 2 & (x) =g éu(z) h(g,B)T,

T
grér(z) % Eh(z) = grér(z)h(g, D),

(3.6)

and in such a way that El(x) is again a representative of its class. Obviously the
compensating transformation depends on our choice for the chiral group represen-
tation.

3.1.1 Different representations

There are many different options for this mapping but I will consider in this work
just the two main ones used in the bibliography:
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I) Representation U(z):

This is the one used by Gasser and Leutwyler in their initial papers [8, 9]. Here
one of the coordinates &, g is set to unit (we will use {;, = 1). The coordinates
are then expressed as elements of the chiral group with the form (1,U(z)), with
U(z) € SU(ny). In order to represent the NGB fields, one has to choose also how to
map these U(x) transformations in such a way that an infinitesimal transformation
of the group reproduces what is expected from equation Eq. (3.1). In this work I
will use a matrix representation of the NGB fields, through

0

T 8 + +

\a itve T KO
K- J G

V6

in such a way that an infinitesimal transformation must be equal to

(u@)tnl@) = {1+ 7580 +0@)| a@. G
1

where the factor 75 is not really relevant and normalizes the fields in the canonical
way and to the standard scalar field dimensions. The vector component of the trans-
formation, gy(z) € SU(ns)r+r C SU(nys)r ® SU(ns)g, would leave the vacuum
unchanged: g,(z) |0) = |0).

For this representation it means that an infinitesimal U(z) must be equal to
Ulz) =1+ %@ + O(®?), with the remaining vector component being g, =
(1 — %@ +0(®%),1 - %CD + O(®?) ) Even at this level there are many ways
to map the matrix U(z), and all of them are going to have the same chiral transfor-
mation properties.

The most usual choice of coordinates is the exponential realization:

Uz) = exp{%@(m)}. (3.9)

However there is an infinity of available realization. Another could be for instance,

. -1 .
Uw) = (1- 4:8) (14 A=), with this U(z) also belonging to SU(n;). Al
though all of them provide the same on-shell description, they generate different
off-shell behaviours, pointing out the fact that the EFT is uniquely defined only for
amplitudes with the fields of the external legs being on-shell.

The chiral transformation properties for this choice of coordinates will be:

T 1 1
(1,U@) S (gr,gxU(x)

?

(1, U')) = (1, grU(z)g})
(3.10)
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where in this case the compensating transformation is just g}: = (g}[, gE) and does

not depend on the coordinates. The coordinates transform then as:

U(¢) % grU(¢) gL, - (3.11)

Notice that the coordinate U(z) transforms linearly under the chiral group but
not so the NGB fields ®(z) in it. For vector transformations , thisis g = (g1,9r) =
(h,h), the compensating transformation is ®-independent and values gp(g,$) =
(h,h). In that situation, the NGB fields transform linearly as the coordinates, i.e.,
® — & = hdhl.

IT) Representation u(x):

An alternative representation of the chiral group, which is also employed later
in the resonance EFT, is the Callan-Coleman-Wess-Zumino formalism in terms of
u(z). It simplifies the construction of chiral invariant operators and it is employed
for instance in the O(p%) xPT lagrangian [16]. It is also employed when building up
the effective theory of Goldstones and resonances [19].

In this case the set of representatives has the form Z(z) = (u(z)', u(x)), i.e., the
corresponding left-right coordinates obey the relation £x(z) = &1 (z)1.

The action of the chiral group is then given by a compensating transformation
g}: which depends also on Z(z)

+
Whuw 5 (ulgrw) @) = (g ulh(gu), gr uhigw)),
(3.12)
with h(g,u) such that u/(z) = gg u(z) h(g,u)’ = h(g,u) u(z) g;f:.

Similarly to the previous realization, when one has an infinitesimal transforma-
tion it reproduces the structure in Eq. (3.8). This contains an ambiguity in the
realization of the non-infinitesimal transformations. In general the usual choice is

the exponential:

= A 2 SU(3 3.13
u(¢) = exp [ZTF] = exp {Zﬁ] e SU@3) . (3.13)

Again, in general the action of the chiral group over the NGB fields is not linear.
However, it becomes so when it is the vector subgroup who acts. When one has a
chiral element g = (h, hT) from the vector subgroup the compensating transformation
turns out to be independent of the state ® and equal to gn[g,¢] = (h, h). Then
the u(z) tensor and the NGB fields transform similarly: v — «' = h u k! and
®— @ = hdhl

Now that we have seen two alternative realizations of the NGB fields let us
proceed to construct the most general chiral invariant lagrangian. However, before
that, a last modification will be performed to the QCD lagrangian in order to repro-
duce some QCD properties in a straight-forward way and to compute some matrix
elements.
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3.2 QCD in the presence of external currents:
Local chiral symmetry

When analysing the massless QCD lagrangian one observes that it is invariant
under global chiral transformations. However it leaves several problems open: How
to introduce the quark mass effect, how to compute the matrix elements of a quark
current, and what is more important, the question about the validity of the Ward
identities from QCD in the EFT.

The solution to all these problems is given by the external field method. With it
we introduce some auxiliary fields (v#, a*, s, p) which, although external fields, they
make the lagrangian invariant under local chiral transformation if they are trans-
formed properly. These fields do not have any kinetic term and do not propagate;
their unique purpose is to gauge the symmetry. Thanks to them, the chiral gauge
symmetry ensures that the relations for the vector and axial current conservations,
derived in QCD can be directly applied in the EFT [58]:

(oo 00" g )T = (e (g — mg)igy )T (3.14

evaluated for a given initial and final state, denoted by the bra-ket (...). It happens
similarly for the other Ward identities.
Thus, we perform an extension of the QCD lagrangian such that

Ly = LYcp + IV (vp +75a,) ¥ — U(s —iysp) T =
(3.15)
= Lycp + VL1,V + Upy!r,Ur — U(s —iysp) T,

with r, = v, + ayu, ly = vy — ay. The external fields are put together into the
ny X ny flavour matrices s , p , v* and a”. In order to have a hermitian lagrangian
these external field matrices must be hermitian (s = s',...). Likewise, since we
are interested by now just on the SU(ny) transformations (non-singlet) the flavour
matrices of the external fields will be traceless.

In order to make the action invariant under local chiral transformations these
new fields must change in a proper way:

Gl ocal

T L(z) ¥y
\I] Glocal
R — gR(x) ,
local
L = gu(a) ugL( )t + igr(z) Ougr(z)t (3.16)
local
T = 9r(7) Ty gr(T )]L + igr(z) 8MgR($)Jr ,
local
(s+ip) 5 gr() (s+ip)gr@)

with gz, (z) € SU(Ny)leeal, gr(z) € SU(Ny)eat.
At this point one may recover the rest of the Standard Model through these
external fields. One has to incorporate the quark mass terms and the electroweak
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interactions. These terms lacking are nothing else but a particular choice of the
chiral gauge. This is, one must break the chiral symmetry by setting this external
fields to a given value. The essential point is that one may play the same game in
the EFT: first constructing a chiral gauge invariant EFT lagrangian and afterwards
fixing the same gauge as in the Standard Model. This gives:

ry = eQA,,

ZIL = GQAH + m(WJT+ + h.C.), ( )
3.17

s = M,

p = 0,

where Q = %diag(2, —1,—1) and M = diag(my, mg4, ms) denote the diagonal ma-
trices of charge and quark mass respectively. The n; x nymatrix T, contains the
Cabibo electroweak mixing angles,

T, = (3.18)

o O QO
OOS
ISH
OOS
Y

Thus, our effective lagrangian will contain not only the NGB fields but also the
external fields, in all the possible forms that preserve the local chiral symmetry. The
vector and axial-vector fields v*, a# will be related with the operators containing
derivatives, since the local transformations may leave undesired extra pieces. They
will enter through the covariant derivatives.

As we have now not only the SxSB but also the explicit symmetry breaking the
NGB properties change slightly. They will gain masses due to the quark masses.

3.3 Effective lagrangian in the U(z) formalism

As one knows that the massless QCD lagrangian is chiral invariant, the effective
lagrangian for the NGB will contain all the possible terms containing these fields
which preserve the invariance. In the U(z) formalism the NGB are introduced
through the chiral tensor U(z). In addition, once the symmetry has been gauged,
one must introduce as well the external fields {v#, a*, s, p} in all the possible invariant
ways. The symmetry will tell us the available structures for the operators but the
values of the couplings in front have to be fixed by other means.

Then, one may construct a series of infinite terms preserving the chiral symmetry.
In this set of terms there will be some kind of ordering depending on the importance
of their contributions. Each term in the lagrangian will contain a given number of
derivatives. In the chiral counting the external fields will scale as the momenta of
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the Goldstones, providing at the end a consistent construction, as we will see. This
ordering of the terms and the observables in powers of the NGB momenta is known
as the chiral counting.

At low momenta the most important terms will be those with lower number of
derivatives. However, when the energy increases all terms become equally important
and we loose this ordering. The power of xPT is that in addition to this ordering,
the chiral symmetry allows to relate an infinite number of low energy processes,
since each operator containing U(x) owns an infinite series of powers of NGB fields.

Our EFT will be then predictive just at low energies. When studying larger en-
ergies one will need to include terms of higher chiral orders to keep a given accuracy.
Finally, when reaching energies around a characteristic chiral scale, A, ~ 47F; ~
1.2 GeV, one looses all predictability since all the terms have the same size. By
analysing the observables one realizes that the NLO calculation reaches momenta
up to E < 400 MeV and that the NNLO calculation increases the range of validity
not further than 500 MeV. Higher order calculations become terribly complicated so
effectively this is the limit range of validity of yPT. Moreover, since we know that
there is a vector multiplet with My ~ 770 MeV which has not been included in the
EFT, this sets an extra limitation to the validity of xPT.

The external fields v,, a,, s, p have been introduced into the QCD action and we
have to include them as well into the effective action. The extension of the global
chiral group to gauge chiral transformations simplifies the obtention of the QCD
Ward Identities in the effective picture [12, 14, 58].

We know how these fields transform under the chiral group and how the pNGB
representative U(®) changes. It contains the Goldstone fields to build up the most
general EFT with. Notice that in order to preserve the local invariance the gauge
fields v,,a, may only appear either through the covariant derivative of the U(z)
tensor,

DU = 3,U — ir,U + iUl, (3.19)
(o) = 8ut + wvtr, — Ut (3.20)

or through the strength field tensors,

FIY = MY —¥IF —a[I*1"] (3.21)
FI’éV = oY = 9"rt —irt,r"] . (3.22)

Since the external left-right fields are hermitian (r, = ’I‘L, l, = ZL) and traceless in
the SU(ny) scenario, one finds that Fy'p = F}f,"RT

The scalar and pseudo-scalar external fields are usually put together in the chiral
tensor x = 2By (s + ip), which transforms as U(x). It has dimensions of [y] = EZ.
The choice of the constant By in the definition of x (with dimensions [By] = E) is
arbitrary, but it simplifies the construction of the yPT lagrangian. Actually it is
nothing else but the constant that would arise in the simpler term that one could
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Tensor P C h.c. x order
® % T ® ~1
U Ut ut Ut ~1

DU | (D) | (D) | (D) | ~p
vy vk —v;‘f Uy ~p
ay —at az ay ~Dp
Ty i —lg Ty ~Dp
Ly rH —7‘5 Ly ~D
X X' X" X' ~ p?

FR' | Fow | -(F)T | FR° | ~p?

Fi” | Frw | =(FE)"| F” | ~p?

Table 3.1: Transformation properties under C, P and hermitian conjugate of the tensors in
the U(z) formalism.

make with just one scalar field, in the Lo, lagrangian that we will see below. In this
form the physical meaning of this constant becomes clearer. Hence, the combination
in y will scale as O(p?) in the chiral counting, since it is essentially the square mass
of the Goldstones.

The chiral tensors x, (D,U) and F}’é:'L transform then covariantly as the coordi-
nate U(¢) in Eq. (3.11).

3.3.1 LO lagrangian: Order O(p?)

Due to Lorentz invariance the number of derivatives must be even. The terms of
the lagrangian with U(z) and no other field or derivative just contribute adding a
trivial constant term, since U'U = UUt = T.

The first non-trivial term will be O(p?):

F2
Loy = I<DHUTDHU + Uy + x'U) (3.23)

with (...) short for the trace in the flavour matrix space.
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At this point one realizes the physical meaning of F' and By, since the expansion
of the lagrangian up to order ®? is:

Loy = %(8@8%—230/\4@2) + F?0 <—) , (3.24)

where the external fields have been substituted by v# = a* = p =0, s = M, and
then the square mass of the NGB fields is given by the matrix 2By M:

2
mZ = 2By, m3% = Bo(h + my), m?, = 2B (% + 73”3> . (3.25)

where the isospin limit has been considered (m, = mg = m).

The constants F' and By were at first introduced when defining U(z) and x in
a very arbitrary way. One could even avoid introducing this constants, leaving the
NGB fields with dimension [¢%] = 1 and with [x] = E. In that case, the NGB
propagators would not have the canonical dimensions and would be A(p?) ~ Fﬁi?’
appearing F? in the lagrangian just as the constant in front of the O(p?) chiral
operators. In addition, the constant By would appear in the constant term as an
explicit parameter of Lo, .

These are the unique terms preserving all desired properties: Lorentz, charge-
conjugation, parity invariance and hermiticity of the lagrangian, and of course chiral
symmetry.

The F' coupling is obtained from the pion decay amplitude at LO in the chiral
expansion. Its value is F' ~ F; = 92.4 MeV and when calculating loops it is going
to provide the characteristic chiral scale A, ~ 47F ~ 1.2 GeV from the chiral
expansion in the radiative corrections.

3.3.2 NLO lagrangian: Order O(p*)

The terms allowed by the symmetry at NLO ~O(p*)- are:

Ly = Li(D,UDFUY? + Ly(D,U'D, U D*UID"U)
+ L3(D,U'D*U D,U'D*U) + L4(D,U'D*U Y U'tx + x'U)
+ Ls{ D, UTDFU (U + x1U)) + Le(Utx + xTU)?
+ L(Utx — x'U ) + Le(UixU'x + xIUX'U)
— iLg( FE'DFUDU' + FI*DFUTDYU ) + Lio(U'FR'UFyL,)
+ H1<FRuuF§V+FLuuF£V> + HQ(XTX> ’

(3.26)

where the terms with H; and Hs do not contain NGB fields and are not measurable
in QCD. They just help to make some processes finite.

The symmetry allows to add a extra term as ( D,UD,UDFUT DU ) but through
SU(3) algebra relations (Appendix E) one can see that it can always be decomposed



38 Chapter 3. Chiral Perturbation Theory

in other operators already in the lagrangian:

(D,U'D,UD*U'D'U — D,U'D, UD'U'D*U ) =

-3(D,UTDFUD,UTDU ) + %(DNUTD“U)Q + (D, U'D,U Y D*UTD"U),
(3.27)
with them already in the former O(p?) lagrangian.
In addition there are two more independent terms. Nonetheless, they vanish
when employing the equations of motion (EOM) of the O(p?) lagrangian Loy,

1
OBou(U) = (DU -U(D*V)! - (xU' - Ux*)+n—f<xUT—UxT) = 0. (3.28)

These extra terms are of the form

L7t = Ly (Ut - UxH) OFOM(U)) — Liop( OFOM (U)OECM (U)'T) , (3.29)
and they do not produce modifications in the NLO calculation. That is the reason
why they are not usually considered. They are equivalent to field redefinitions and
only become relevant at next-to-next-to-leading order.

Already at O(p*) one realizes that the number of unknown extra couplings L;
are ten. These constants parametrize our lack of knowledge about low energy QCD.
In principle all the effective constants stem from the QCD parameters. The L;
couplings do not depend on the quark masses —which may enter only through the
chiral tensor x— and therefore depend only on ag. Nevertheless, since this derivation
is still not possible one has to fix them through the low energy phenomenology. But
once fixed, they relate many processes and their value are the same in all of them.

One technical detail when computing NLO computations is the fact that al-
though L, provides a canonically normalized kinetic term, this is not so for Lo, +
L4, or higher orders. They contain more terms quadratic on the NGB fields which
require field redefinitions in order to have the kinetic term properly normalized.
Similarly these higher order terms modify the relations between the NGB and the
quark masses.

In the two flavour xPT one considers m; > m,, mq and the strange quark
is integrated out of the theory. The available chiral invariant operators are now
less numerous, as the number of low energy couplings. There are some structures
from SU(3) that still remain and the constants are renamed in the bibliography
(the coupling Lg from three flavours is changed by —£¢/2 in SU(2)). Some other
structures vanish due to relations between 2 x 2 matrices. The ny = 2 lagrangian is
shown in Appendix D.

Comparing the lagrangians Loy and L4, one may perform an estimate for the
size of the coupling constants L; [6]. The radiative corrections at NLO due to the
vertices from Lo, are of the order ~ mp‘l whereas those from L4, are ~ %p‘l.
If the EFT has any sense the radiative corrections are of the same order as the



3.4. Effective lagrangian in the u(z) formalism 39

counterterms and therefore L; ~ ﬁ ~ 5-1073. Observing the phenomenological
values obtained from the experiments (Appendix D) one can see that this estimate
is rather good.

Beyond O(p*) the number of allowed terms increases considerably (57 new terms
in SU(2) and 94 in SU(3)). The calculations become more and more complex and
the improvements in the accuracy are smaller and smaller. Due to this and the
experimental uncertainties most of the O(p®) couplings own large errors that only
allow estimating the order of magnitude of the couplings.

An overview of the O(p%) lagrangian is left for the last section of the chapter [16].

3.4 Effective lagrangian in the u(z) formalism

The lagrangians from (3.23) and (3.26), expressed in the U(z) formalism, can
also be written in the formalism in terms of u(z).

The chiral tensor u(z) transforms now in a different way. The compensating
transformation h(g, ¢) appears now explicitly and one must join the pieces in the
proper way to cancel it.

A very useful way to construct the lagrangian is through chiral tensors X [16, 19]
which vary covariantly as

X 5 hig,4) X hig, $)T - (3.30)

Thus, the trace of a product of tensors of this kind would be chiral invariant.
Likewise, one wants to introduce partial derivatives of this operators, 9*X. The
problem is that the partial derivative is not chiral invariant. One needs to construct

a new covariant derivative V# for objects transforming as Eq. (3.30). Therefore we
have to introduce a connection term [T, -]:

VX = 8,X + [, X], (3.31)

with the connection

1
Ty =3 {uf (@0 — iry)u + (@, — ily)ul} . (3.32)
It is easy to check that (VMX)‘L =V, (XT). Notice that I';, does not transform
covariantly as Eq. (3.30). It will be useful in the next chapter when introducing the
chiral multiplets of resonances R, which transform in this way. With this connection
one may also construct the covariant tensor

T = 8,0, — 8,0y + [T, (3.33)

which is antisymmetric under y <> v and will be useful when studying relations
among different chiral operators.
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The simplest operators —O(p?)- including the NGB tensor u(x) and the external
fields are:

Uy, = 'L'u]LD“Uu)r = —iuDHUTu = uL ,
UpUy
hyw = Vyuu, +Vyu,
’ .34
Uy = 'L'u]LD“D,,Uu]L 5 (3.34)
x+ = ulyu!+uxlu
g uFI’J“’uJr + uTFﬁyu ,
transforming all of them covariantly as in Eq. (3.30).
Some trace properties of these tensors in SU(ny) are:
{ug) =0, (3.35)
(uw ) = {uyuy,).
There are also some relations among them:
Vuuy = Uy + %[uuuy +u,uy
Vhy? — Vb = — f* (3.36)

VA VV]X = [IT™, X].
All these pieces and products of them transform as a singlet under the chiral
group when taking the trace: (wyu, ), (Xx+)--

The way how they transform under C, P and hermitian conjugation can be found
in Table (3.2).

3.4.1 LO and NLO lagrangian in terms of u(zx)
The O(p?) lagrangian in terms of these tensors is:

F2
EQX = I(uuu“ + X+) ; (337)

and at O(p*) one has
Liy = L1(u,m“)2 + Lo(uuu” )(vw*uy ) + L3{uyufu,u”)
+ Ly(uuuf ) (x4 ) + Ls(ugufxy) + Le(x4)* + Lr(x-)?
+ Lsg(x3 +x2) = iLo(fL uyuy) (3.38)
+ Lios{ frum Y — fou )

+H1%<f+uufﬁy+f—w/fﬁy> + HQ%(X%‘)&—) 3
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Tensor P C h.c. | x order
P ~9 o ® ~1
U uf ul ul ~1
Uy —ut u:lf Uy ~p
r# 'y —uT —I# ~p
Uy —utvt “Z;u ULV ~ p?
X+ tx+ Xt tx+ | ~p
Yo e | FAT | ]~
Vyu, | =VHu” (Vuuu)T V iy ~ p?

Table 3.2: Transformation properties under C, P and hermitian conjugate.

Now the EOM from Ls, is:

05M () = Vyut — % (x- - i<><— )) = 0. (3.39)
ny

These operator allows constructing two more invariant operator that however do not
contribute to the on-shell matrix elements at this order:
—shell EOM EOM EOM
Lo 7 = L (x-057M (w) — Lin( O5PM (O (w)F) . (3.40)
At this point one realizes that if one takes the same exponential realization —

either in the U(z) or the u(z) formalism— then both lagrangians are identical even
off-shell.

3.5 Systematic chiral counting at the loop level

We have seen till now how the chiral symmetry helps us to build an effective
lagrangian to describe the NGB interactions. A well defined ordering in powers of
the momenta can be established when computing processes at tree-level. In this
section I will show how to handle the chiral counting when computing quantum
loops.

The loop integrals are functions of the external momenta and the pNGB masses
(which in the chiral counting scale as the external momenta). The analytic part of
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these integrals is an homogeneus function of this parameters and also its non-analytic
part up to logarithmic factors of the type In(p?/u?). A general diagram containing
Ny vertices of dimension O(p?) will be considered. By that it is meant a vertex
with any number of outgoing Goldstone bosons with a power p? of the momenta of
the particles in the vertex. This diagram may contain L loops, with a number 7
of internal propagators and F of external particles. A dimensional analysis of the
diagram shows that it scales as p”, with D equal to:

[ee]
D=4L - 21 + Y dNy, (3.41)
d=2

where each loop introduces four powers of momenta from the integration / dk* (a

dimension-4 space has been assumed), each vertex of dimension d introduces this
number of powers of the external momenta p, and each internal propagator scales as
~ 1/p%. In addition, the number of internal lines is related to the number of loops
and the number of vertices: L =1+1 — 3 ; Ng, thisis, I = L —14 Y ; Ng4. Thus
the superficial degree of divergence becomes

o0
D=2L+2+ > (d-2)Ng. (3.42)
d=2

This simple formula classifies the diagrams in a given order O(p”). The loops
are going to provide non-analytic structures (logs, dilogarithms...) multiplying to
polynomial terms of the external momenta. The diagrams of lowest order —O(p?)—
will be those with L = 0 and all the vertices with d = 2 coming from the lagrangian
Loy, i.e. they are provided by the leading lagrangian of xPT at tree-level. The
next-to-leading order contributions ~O(p*)- is given by two kind of diagrams: a)
diagrams with L = 0 containing just one vertex with d = 4 from L4, (and any
number from Ly, ); b)diagrams with L = 1 and just dimension d = 2 vertices.

In all the cases the increasing of the order of momenta through the loops is
always compensated by the dimensionful constants of the vertices. For instance, the
vertices of dimension d = 2 always provide the corresponding factors of F? dividing,
in order to keep the dimensions of the observable unchanged. In addition, each loop
introduces a phase-space factor 1/(4m)2. Thus, an observable T is given by the series
of contributions coming from any number of loops:

o 2 1 P2 r
;) (4m)* F
Therefore at the loop level the characteristic expansion scale which provides the
lagrangian Lo, is A, ~ 47 F. If the effective theory is well defined one expects that
this scale to be around the same size as the characteristic scale for the diagrams with
vertices from L4, and higher orders. This is well observed experimentally, where
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the O(p?) contributions from the couplings L; are of the same order as the radiative
corrections from the one loop diagrams.

When constructing the Ry T lagrangian at the loop level the same kind of argu-
ments will be employed. One will consider that the local counterterms are of the
same order as the radiative corrections.

3.6 Overview of the O(p°) Lagrangian

As it was said before, the number of independent structures that can be built
at O(p®) is huge. However, when analysing a given process the amount of relevant
couplings is not that big.

In this work we are interested mostly in the pion vector form factor. In that case
there are only two operators contributing at tree-level:

EGX = ...i051(fo_|’f”[hup,u,,]) + ’I:C53<v“ ﬁu[h,,p,up] ) . (344)

These operators contribute both in the SU(2) and in the SU(3) cases [16]. Actually
only the combination ryo = 4F? (cs3 — c51) will be relevant in the pion vector form-
factor that will be analysed later.

A more extended study of the construction and development of the O(p®) la-
grangian can be found in Ref. [16].

3.7 xPT and large N¢

Since xPT is the EFT of QCD at low energies one may analyse the dependence
of its parameters on the number of colours N¢ of QCD [5, 20, 46].

Let us make some previous considerations first. The two-current correlator
(J(z)J'(y)), built with two bilinears of the form J = ¢T'q, is described in the large
N¢ limit by a single quark loop connecting both currents surrounded by a cloud
of planar gluons. Thus, this correlator is proportional to the number of colours of
the quarks that can run within the loop, i.e., ( J(z)J(y)) ~ O(N¢). In this limit,
the only intermediate hadronic states will be those ¢g mesons M; with the proper
quantum numbers, exchanged at tree-level. Therefore, Using the Optical Theorem
one finds that Im({ J(x)Jf(y) ) ~ [(0| J|M; )|?, so the form factor of a bilinear current
into a meson is O(v/Nc¢).

At lowest order ~O(p?)- the chiral lagrangian contains only two parameters: F
and By. The coupling F is the pion decay constant at LO, given by (0| J5 |7~ (p) ) =
iv/2Fpt. Since we saw that this matrix element is O(/N¢) then one has that

F ~ 0(/No) (3.45)

The constant By is related to the quark condensate together with the coupling
F through the LO equality (0| gig; |0) = —F?Bgé;;. This matrix element is propor-
tional to N¢ (the summation on the colour indices is assumed in gg). Since F? is
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also of that order one concludes that
By ~ O(NQ). (3.46)

For the NLO lagrangian L4, in Egs. (3.26) or (3.38) the dependences are some-
thing more complicated. The terms with one trace imply one quark loop and those
with two traces have an extra quark loop. Thus, the operators with two flavour
traces will be suppressed by 1/N¢ with respect to those with just one. Through
an analysis of the observables similar to the one at LO one finds that the two-trace
couplings L4, Lg, Ly are order O(Ng), and those corresponding to the one-trace
operators, L, Ls, Lg, Lg, Lig, are O(Ng).

The couplings L; and Lo demand a further study. These two terms contain
two traces so naively they are expected to be order O(N). To show that this
not really so we will consider the 3 x 3 matrix relation shown before in Eq. (3.27).
That operator ( D,U D,UTD*U DU could have appeared in the lagrangian Ly, .
It was omitted since it was not independent from the terms with Li, Lo y Ls.
Thus, the symmetry allows this one-trace O(p*) operator, with a coefficient C' of
order O(N¢). When decomposing this operator through Eq. (E.7) the other Ly,
couplings would gain the contributions AL; = C/2, ALy = C and ALz = —2C, all
of them order O(N¢). Since the information of the non-independent operator of C
has been shuffled to L 23 then one has that L; and Ly become order O(N¢) (that
happened already with Ls). Nevertheless the combination 2L; — Ly is O(NQ) since
the contribution from C is removed.

Summarising;:

* O(Nc) Ll, LQ, L3, L5, Lg, Lg y Ll().
*O(): 2Ly — Ly, L4, Lgy L.



Chapter 4

Resonance Chiral Theory

Already in the 50’s and 60’s, when the first analyses of pion-nucleus scattering, it
was discovered that there were peaks of probability in fixed channels around some
values of the total momentum squared, e.g. two final pions with I = J = 1. These
peaks were quickly associated and described with intermediate heavy meson states,
formed by a ¢q pair, when the quark model was started.

Models with resonances included these fields to explain analogous features in
the amplitudes when these intermediate states pop up on their mass-shell in the
s-channel. These resonances, as they were named, had different parities, angular
momenta and strangeness. They had masses of the order of Mp ~ 1 GeV and
they were constituted by light quarks u/d/s and gluons. In addition, they could be
classified in SU(3) flavour multiplets, as the NGB. Actually they accepted better a
U(3) classification, as will be stated under the large N limit in the next section.

With time, several works showed how it was possible to describe the pNGB inter-
actions out of the resonance range through local interactions provided by xPT [83,
84, 8, 9]. It was understood that the resonance contribution could be integrated
out providing contributions suppressed by the resonance masses to the yPT opera-
tors [8, 19, 41], with Ay, ~ Mp ~ 1 GeV.

However, for momenta of the order of the resonance mass yPT breaks down and
one has to design a quantum field theory including also the resonance fields. The
chiral counting fails in this range of energies and an alternative procedure is required
if one wants to provide an effective description. As it was introduced in a former
chapter, the alternative procedure considered here is the 1/N¢ counting. The large
N¢ limit together with the QCD short distance behaviour —provided by the operator
product expansion (OPE)— and the QCD large distance energy region —provided by
xPT— will help us to fix many of the parameters of the theory.

Some of the first steps were already walked when developing the xPT lagrangian.
Knowing the transformation properties, Gasser and Leutwyler also built up in their
SU(2) analysis the most general lagrangian at O(p?) being chiral invariant and
including the vector resonance p(770) [8]. Afterwards, it was generalized for three
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flavour and adding also axial-vector, scalar and pseudo-scalar resonances [19, 83, 84].
This chiral invariant EFT was named Resonance Chiral Theory (RxT) and was
remarkably successful at tree-level. In this chapter we will see how it is possible
to establish a well defined perturbative counting and a systematic renormalization
procedure.

4.1 Resonances in the large N¢o limit

At large N¢ the qg resonances get classified into chiral multiplets with one
chiral-singlet field and (n% — 1) chiral covariant resonances [5]. Also the pNGB get
grouped in that way and for three flavours we have the nine lighter pseudo-scalars,
(ﬂ-aKa 7]81"71)'

In the 1/N¢ framework the leading contributions to the amplitudes are given by
tree-level diagrams whereas every loop must be suppressed by a power of 1/N¢ [5].
In the next section I will show a lagrangian that obeys this kind of requirements.
Actually, the effective lagrangian is not unique. The vector fields may be described
by several different formalisms: antisymmetric tensors, Proca fields, and vectors
considered as gauge fields. Beside this, for a given formalism the lagrangian is not
unique. We will work under the chiral symmetry. This constrains the possible
operators that one can have in the effective lagrangian. Nonetheless, the number of
terms that one may construct is infinite, since one may add more and more powers
of the momenta either to the Goldstones or to the resonance fields.

There are some points that I will consider in order to develop a reasonable
effective field theory for the meson interactions at the quantum level:

1. Chiral Symmetry: The peculiar nature of the NGB fields yields that pro-
cesses with different number of external pions are not independent. The ax-
ial transformations modify the vacuum and change the number of Goldstone
bosons. The 77 scattering, for instance, is given in xPT by the same constant
as the pion decay. The resonance fields, on the contrary, have a different origin
than the Goldstones and the chiral transformations do not vary their number.

The power of working under the chiral symmetry is that, —as it will be shown
below— although the infinite number of unrelated QCD Green functions can-
not be described by a finite number of effective couplings, the chiral symmetry
establishes relations among observables with a different number of external
Goldstones. This class of processes will be given by a finite number of cou-
plings. The number of out-going resonances will not change under the chiral
group but there will be an infinity of related diagrams. Moreover, the renor-
malization of one of the diagrams of the class ensures the renormalizability
of the related ones. In addition, once the QCD constraints are imposed on a
given amplitude and the matrix element obeys the right scaling ~ p” at high
energies, then it is shuffled automatically to the rest of the processes of the
class since the chiral transformations do not change the scaling in momenta.
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. Effective description of a class of processes: There is an infinite number

of possible Green functions in QCD; they can have an arbitrary number of
external legs. In perturbative QCD they are all related through one single
parameter, the strong coupling constant. However it is not possible to argue
that all the QCD information can be recovered through a finite number of
effective couplings. A lagrangian with a finite number of terms will be valid
to describe just a class of QCD Green functions and all the processes related
through chiral symmetry up to a given order in the 1/N¢ counting. The
analysis of other observables and higher orders in 1/N¢ requires the addition
of extra operators to the lagrangian. Thus, the study of Green functions with
more and more external currents and resonances requires a lagrangian more
and more complicated.

. High and low energy limits: One of the strongest constraints to the EFT

of the meson interactions is given by the asymptotic behaviours of QCD both
at short and long distances. The EFT is expected to be dual to QCD and it
must be recovered in the limits where it is already known. At high energy the
EFT must match the OPE description and at low energies one must reproduce
XxPT. Both limits must be reproduced at every single order in the 1/N¢ expan-
sion. The requirement that the Green functions should follow the momentum
dependence of QCD in those regimes will be very useful to constrain the theory
and to fix many of the effective parameters. From the next analyses one real-
izes that the low energy behaviour is recovered not only at tree-level but also
at one-loop. Therefore, it seems quite likely that yPT can be automatically
recovered at low energies once the chiral symmetry is imposed on the effective
lagrangian with resonances. Although there is not a strict demostration prov-
ing this statement we will see in the next calculations that it is immediately
obeyed without any kind of tuning of the EFT couplings.

. Minimal Hadronical Ansatz: The large N¢ analysis of QCD predicts that

at LLO the observables are given by the tree-level exchange of an infinite tower
of mesonic states. However, phenomenologically it is well known that the
operator product expansion (OPE) —QCD in the perturbative regime- starts
working at energies /s ~ 2 GeV. Beyond this point the resonant structure
(here, only resonances with u/d/s content are considered) disappears and one
observes a continuum. Therefore, the finite number of active multiplets within
the non-perturbative range of QCD converge to OPE not at /s — oo but
already around a finite value /s — ,/5,,, ~ 2 GeV. Thus, the EFT with
a finite number of resonances will approach asymptotically to the OPE de-
scription. The Minimal Hadronical Ansatz (MHA) states that one needs to
consider just a minimal number of resonances to fulfill the QCD short distance
constraints in addition to the low energy requirements [55]. The infinite pile of
resonance multiplets is then truncated, keeping just a finite number of them.
The information of the dropped states is assumed to be absorbed within the
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effective couplings of our finite theory. In addition, the minimal number of
multiplets required by MHA may vary from one class of processes to another,
since they are given by different sets of terms of the lagrangian.

5. Spectrum of the EFT: Under the MHA the series of resonance multiplets
become truncated but keeping a number enough to recover the low and high
energy limits. Nevertheless, the intermediate region may contain more reso-
nance multiplets which are not required to fulfill QCD. For instance, the vector
form factor requires just one vector multiplet but there is more than one vec-
tor multiplet observed experimentally. When increasing the energy in the form
factor it comes close to the second multiplet p’ of vectors, whose influence was
neglected for energies away of the p’ pole. However, this degree of freedom
must be included for momenta close to its mass-shell.

Summarising

At LO in 1/N¢ our amplitudes will be given by tree-level diagrams. Depending
on the range of energies to consider, the spectrum of the EFT will be extended
to include the corresponding multiplets of mesons. However, the amplitudes must
obey the short and long distance asymptotic behaviour of QCD. This requires the
inclusion of at least a minimum number of resonance multiplets.

4.1.1 Lagrangian in the antisymmetric formalism

Now we will see the lagrangian that was put forward in Ref. [19]. This is the
formalism and the lagrangian that will be employed to provide the LO in 1/N¢
amplitudes in all the calculations performed in this work.

The present formalism describes the vector and axial-vector mesons as antisym-
metric tensors V#” and A*Y. In the next sections other formalisms are also presented
and compared.

The compensating transformation h(g, ¢) defined when one chooses the chiral
representation of the Goldstones in Eq. (3.12) is the ingredient required to describe
the properties of the chiral transformations on the resonance fields. We will choose
for the NGB the representation in terms of the tensor u(z). The action of the chiral
group over this tensor is:

ulg) L gr u(@) hi(g,¢) = hig,9) ul¢) g} (4.1)

where at LO in 1/N¢ the axial anomaly vanishes and the eta singlet becomes the
ninth NGB:

oM om + +
\a ﬁ-l-\/é%—\/g i 7Tﬂ_ " KO
— a __ — _m 8 0
K- K’ —20s 4
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We are going to describe resonances transforming as a U(3) nonet. The multiplet
is provided here by the matrix:

8
/\a,
R =) =R, (4.3)
a=0 \/E

containing the fields transforming like an octet, a = 1,2...8, and like a SU(3)y
singlet, a = 0. For instance, the vector resonances in the antisymmetric tensor
formalism are given by:

v — A pa_
w =/
%PO + %ws + %M pr K**
_ - 1 0, 1 1 *0
= P \/ﬁp + \_/6318 + \/§w1 , K ) ’
K K —%LUS + %un uw
(4.4)
where it also usually employed the “ideal-mixing” combinations w = \/gwg +

\/gwl, D = —\/gwg + \/gwl.
The transformation properties of these resonance multiplets under an element of
U(3) ® U(3) is given by:

R % h(d.9) R b9 (4.5)

In order to preserve the local chiral invariance one needs to define a covariant
derivative for any tensor X transforming as Eq. (4.5). This covariant derivative V,X
was introduced before in Eq. (3.31). That definition ensures that the object V,X
transforms as X under the chiral group, being X = R or any of the chiral tensors
introduced in the u(z) formalism of xPT (u”, x4...) transforming as in Eq. (4.5).

The resonance fields become then coupled to the Goldstone field through their
covariant derivatives: The resonance kinetic term is going to provide interactions
between Goldstones and two resonance fields.

The transformation properties of the resonance fields under C, P and hermitian
conjugated can be observed in Table (4.1). With these ingredients and the NGB
tensors it is possible to construct the most general chiral invariant lagrangian.

Therefore, the most general lagrangian linear in the resonance fields with an
O(p?) chiral tensor of Goldstones and including vectors (V), axial-vectors (A), scalars
(S) and pseudo-scalar resonances (P) is:

Ly = Z {Lkin(R) + L2r} , (4.6)
R=V,A,S,P
with the kinetic terms
Lxn(R=V,A) = —L1(VR,,V,R" - Y2 pR, gy,
(4.7)
Lxin(R=S,P) = 3(VFRV,R— M}R?).
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Resonancia P C h.c.
Viw ot _‘7/4‘7; Viw
A —A# | A i A

S S ST S

P -P pT P

Table 4.1: Transformation properties of the resonance fields under C and P.

The interaction terms with one resonance field and Goldstone fields are given
by:

L — EL Vi mv ﬁl& Vi u’ v ,
2V 2}}/§<u +)+2\/§<u[uu])
_  r'A 1324
ACQA — 2\/5 <A/u/f7 >’ (4.8)
Los = cq{(Suyut) +cm (Sx+),

Lop = idpy (Px—).

In the antisymmetric formalism the vector interactions are of order O(p?) and
it was proven that at LO in 1/N¢ there are no local NGB interaction except that
given by the O(p?) term:

F2
Loy = Z(“”Uu + X+ ) - (4.9)

For the former resonance lagrangian it was demostrated that the couplings for
the O(p*) chiral operators had to be zero at LO in 1/N¢:

L =0, (4.10)

where this are the couplings of the RxT lagrangian —the high energy theory— not
the ones of YPT —the low energy theory—, which I denote as the usual L;. At the
end of the day both representations of the vector fields are equivalent and give the
same descriptions at LO in 1/N¢. Actually, the freedom is not so large once you
require the amplitudes to behave in a given way at high and low energy.

Using the antisymmetry properties of V# and A*” under p <> v one finds that
the singlet vectors and axial-vectors decouple from the Goldstones. Nevertheless, in
the case of the scalars and pseudo-scalar resonances both octets and singlets interact
with the NGB fields.

When going to low energies the resonances disappear from the theory and one
observes local interactions between Goldstones instead of the exchange of a heavy
resonance propagator. I will show that this feature happens not only at LO in 1/N¢,
i.e. at tree-level, but even at the one-loop level. A complete list of the contributions
to L; from the xPT low energy lagrangian L4, can be found in Appendix D.
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4.1.2 Proca field

At the same time that the antisymmetric formalism was developed, also the
lagrangian in terms of the Proca field was studied [41, 42, 23]

For the local NGB interactions they considered not only the lowest chiral la-
grangian but also the one at order O(p*):

‘CX = ﬁgx + Z4X7 (4.11)

where £~4X contained the same operators as the usual xPT lagrangian L4, but the
couplings L; were different since one was now in a theory with explicit resonance
fields.

For the vector and axial resonances I use now the vector fields Vw Au and its
strength field tensors:

Vul/ = V[,LVIJ - VUV[J, ) Auu = V,ufziu - VI/A[L ) (412)
with all of them transforming covariantly as

V., — hV,hf,

- p (4.13)
A, — hA,RT,
and the covariant derivative defined as before.
The resonance lagrangian contains now a kinetic term:
. 1 . . .
LEMR=V,A] = — (R B = 2MER,R"Y, (4.14)

and the interaction terms

<Vuu ﬁy) - W_V(Vuy[uu’uv]),

_ __Iv
b= o 2v2 (4.15)

[f2A = 5%<Auufﬁy>

Although they show a structure similar to the one in the antisymmetric formalism
these terms contain one more power of the momentum and therefore they produce
a contribution to the amplitude which needs of the terms £~4X to fulfill the QCD
constraints.

4.1.3 Hidden local symmetry

The last analysis about how introducing the vector field has to do with a remnant
symmetry of the effective lagrangian. It is based on the freedom that exists to
choose the representatives of the coset G/H of the chiral group G over the vector
subgroup [43].

Let us focus the attention on the chiral tensor U(¢(z)) which contains the Gold-
stone fields and is given by the combination of coordinates of the chiral group
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U(z) = &r(z)€n(z)f. One realizes that there occurs an extra symmetry —or ambi-
guity, as one could call it as well-. The tensors (£1,£g) get changed under a chiral
transformation g = (g, gr) and modify U(z) in the way shown before,

_){ £L —>€2 = gLth(g,gb)T,

U— U =grUg} (4.16)

Er — & = h(g,#)ér g,

However, it contains an extra freedom. The compensating transformation
h(g, #(z)) € SU(n f)l‘ﬁc“l is provided by the chiral element g and by the value of the
Goldstone field in each point ¢(z). It takes the transformed element from (¢1,&R)
back to the coset space class representative. However, there is a freedom in the
choice of the representative class element which is easily illustrated by the fact
that we can compensate the chiral transformation either with h(g, ¢(z)) or with
9urs () h(g, $), being g,., . (x) € SU(ny), and recover exactly the same transformed
tensor U’ = §,R§I}L:-

In the Hidden Local Symmetry model the vector mesons are considered as au-
thentic gauge bosons of the former local symmetry. These gauge bosons transform
therefore as

v, — hVuhT+§h8uhT, (4.17)

where the mesons are described through a vector field V, and g is the gauge coupling
constant.

The kinetic term for the vector field must be chiral invariant so one uses the
Maurer-Cartan 1-form I', —employing the nomenclature in Ref. [43]- which is the
connection defined before in xPT [43, 23]:

. 1,- - 1 - i1’
L = _Z<VuuVW> + §M12/< [Vu_éru] )y (4.18)

with V/w the strength field tensor of Vu:
Vuu = auvu - auVu - ig[VuaVu]- (4.19)

Notice the relation existing between this tensor and the one from the Proca formal-
ism, V, = V,,—(i/9)Ty, that gives Vi, = Vi, —ig[Vyy, Vi ]+(i/49) [up, wo]+(1/29) f+ -
This shows that the former kinetic term for the vector field is equivalent to the Proca

A

lagrangian for mesons (up to O(V)) for a precise value of the coupling constant,
fv =1/9v2 and gy = 1/2gv/2. A

To describe the axial-vector meson one employs a similar field A,. This fields
do not transform as the vectors under a chiral transformation but as

~

A, — hA,nt. (4.20)

To build its kinetic lagrangian the other Maurer-Cartan 1-form v* is employed:

. 1, . = 1 . 1 12
£l = (A 4 [t ] ), (421)
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where again the former structure of the Proca lagrangian is recovered once the
mixing axial-Goldstone term is removed through a field redefinition.

For the NGB fields the Hidden Local Symmetry model provides just the same
term as the antisymmetric formalism,

F2
Loy = (), (4.22)

but adding also a scalar o-partner multiplet o = 3, 04 \e/V2, to the pseudo-scalar
multiplet of Goldstones when choosing the the representative of the G/H coset:

{r,r(T) = exp {ZUF&} exp {:I:“;_,ﬂ} . (4.23)

g ™

These o4(z) are the Nambu-Goldstone bosons of the Hidden Local Symmetry which
are eaten by the gauge vector bosons in a given gauge and provide the masses to
the vectors. Thus, in that gauge the o states disappear, the vectors gain the mass
term shown before and the coset coordinates of G/H become the usual ones from
xPT in the u(z) formalism, &1, (z) = u(z)' and &x(z) = u(x).

One of the advantages of the Hidden Local Symmetry model is that its lagrangian
contains terms with just two power of the momenta, on the contrary to the Proca
description which contained as well terms of order p*. We will see later that when
computing loops this becomes an important point since the diagrams behave badly
at high energies and one needs more sophisticated cancellations to make the full
amplitude behave asymptotically as QCD prescribes at short distances.

However, the gauge nature of the vector mesons is not a very clear explanation
and it may introduce some artificial constraints. The number of parameters is smaller
but in the worst case one might reach some inconsistency due to the over-constraint
of the EFT. Anyway, the study of this model is still open and can provide some
interesting information about the structure of the vector meson interactions.

4.2 QCD short distance constraints at LO in 1/N¢

In this section the dependence of the resonance couplings on the number of colours
is studied.

As it was shown in the former chapter, the matrix element of a bilinear quark
current producing a meson, ( M;|J |0), is O(v/N¢) and is just given by the tree-level
meson production. It easy to check that these processes are given by the couplings
of the resonance lagrangian

FV, FA, Cm, dma ~ O(VNC) - (424)

The remaining couplings Gy and ¢y will be obtained from the decay of a vector or
a scalar into a pair of Goldstones. Through similar reasonings [5] one may prove that
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the vertex functions with three external legs of mesons are of order O(1/v/N¢) [46, 5].
Thus, the computation of the vector decay shows that it is proportional to Gy /F2.
Since F' ~ O(v/N¢), one has that

Gy ~ O(WNc) . (4.25)

For the scalar decay in the chiral limit —zero quark masses— (which is independent
of the number of colours) the amplitude is proportional to cq/F? and therefore

ca ~ O(WNc) . (4.26)

The rest of parameters of the EFT, masses, momenta and external fields scale
as O(NQ) in the 1/N¢ counting.

Moreover one may go further than simply estimating the 1/N¢ order. By im-
posing the QCD high energy behaviour to the amplitudes it is possible to fix all the
parameters at LO in 1/N¢ in terms of F' [21, 22, 23].

From the analysis of the vector, axial-vector and scalar form factors [22, 23] one
gets the relations:

(4.27)

Cd; = Cm; -

The requirement that the IT;z(s) current correlator vanishes faster than 1/s? in
the chiral limit provides the first and second Weinberg-sum-rules [48]:

F? -5, (F% - F%) =0,
(4.28)
¥ (M3 F - M3F3) = 0.

For massless quarks the two-scalar current correlator minus the two-pseudo-
scalar one, IIgs_pp(s), vanishes as 1/ s? as s — 0o with a coefficient proportional to
as(qq)? ~ asB2. The EFT result diverges at first as s and provides two constraints
when matching the OPE behaviour [49]:

2
(4.29)
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where in the 1/N¢ counting the strong coupling constant scales as as ~ O(N; h.
Observing every relation one realizes that they are consistent with the former
estimations of the 1/N¢ order and that all the terms are of the same order for a
given equality. In addition, if just one multiplet is considered, they fully determine
the value of the seven couplings for the interactions with the Goldstones,
Fy

V2 = V2Gy =F4 = 2¢4 = 2¢p, = 2V2d,, = F ~ O(VNc), (4.30)

and relate the different masses,
M3 = 2M%, M2 = 2M3 (1-9) ~ O(NY), (4.31)

with the small order O(NQ) correction § = 3mas F?/M2 ~ 0.08c, which is numer-
ically negligible.

Through them one gets the low energy xPT couplings at LO in 1/N¢ in terms
of just three parameters, My, Mg and F [21]:

(4.32)
2

AMZ’

2 2
L3: 3F2 + F L5=§-L8:

_ Ly =L =0
8MV 4 6 )

with all the non-zero L; being of O(N¢). The coupling L7 would have contributions
from the pseudo-scalar resonances. However, one would have to consider the pseudo-
scalar meson 7;. Being a NGB in the large N¢ limit, it gains a large mass in
physical QCD for N¢ = 3 due to the axial anomaly and its exchange gives the main
contribution to the yPT coupling, L7 = —F2/(16Mgl).

These relations will be employed in the following chapters when computing the
vector and scalar form factors.

4.3 1/N¢ counting at the loop level

At this point one needs to control the order in 1/N¢ of any diagram that one
may construct, not only those at tree-level. If the idea is to construct an effective
field theory at the quantum level one must be able to control the perturbative order
of the diagrams beyond tree-level. In this way, it will be possible to estimate the size
of the radiative corrections coming from the loops of the LO lagrangian. Assuming
the fact that the counterterms must be of the same order as the radiative corrections
this analysis will be very instructive about how these counterterms must be.

Consider any diagram constructed through the vertices from the LO lagrangian.
The interacting terms of the resonances show the structure:

2 ¢
Lop ~ FrRp Zﬁ’ (4.33)
k
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where Fp = Fy,Gy,cq4... are the different couplings of each resonance field R and
all become proportional to the pion decay constant F' in the large N¢ limit (Fy =
F\2, Gy = F/V?2, cq = F/2...), and therefore they scale as Fr ~ F ~ N(;l/z. The
factor p? in Eq. (4.33) stands for any of the O(p?) structures of derivatives, pNGB
masses or external fields that one find in the lagrangian. Finally, the infinite series
>k %—: takes into account the expansion of the chiral tensors in terms of the NGB
fields ¢. Taking into account that in the 1/N¢ counting the NGB fields has the same
scaling as the resonance fields, i.e. R ~ ¢ ~ ¥, then one has that the interacting

terms are of the form y
Y
Lop ~ F?p* ) —, (4.34)
w
where U denotes any meson field.
The interacting kinetic terms of the resonances show the same structure:

) k
Lgln ~ p2 R2 (1 T Z %) — F2 p2 Z
k k'

Tk
=, (4.35)

F
where the series of NGB interactions come from the connection in the covariant
derivative.

To end with, I demostrate that this structure appears also in the O(p?) term
from yPT lagrangian:

Loy ~ F?p* > — = F?p* > —. (4.36)

Let us now consider a vertex of the diagram, coming from the LO lagrangian,
and with k external legs. This vertex will come from a term of the lagrangian with
k powers of the fields ¥. Therefore, that vertex will be proportional to p? F2k,
keeping in mind that p? ~ O(N2) and F ~ O(NZ).

We will assume that the diagram contains Ny, vertices with k legs. It will contain
a number L of loops, I of internal propagators and E of external legs. Here one must
be careful since there appear to kind of countings, the counting in momenta and the
counting in 1/N¢. The integration over the momenta of the loop does not modify
the 1/N¢ order of the diagram, since it is given by the couplings of the vertices.
Then, it is easy to check that the amplitude 7 obeys the 1/N¢ counting:

1/Ng order — Ty ~ FouMe@ k) o N2uNeOH2 0y 4

It is equally simple to obtain the superficial divergence order p” by an analysis
similar to that in xPT:

pP order —» Ty ~ p4L_2[+Zk2N’°, (4.38)
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where now all the vertices are O(p?).

One may use the relations between the number of vertices, loops and external
and internal lines: ), Nyk = E + 2] and L =1+ I — ), Ni. Therefore one may
replace the exponents that depend on the number of vertices by the expressions
Yk Nik/2=FE/2+1and Y, Ny =1+ I — L, getting:

1/N¢ order — Ty ~ F2-E-2L NéfE/QfL’

(4.39)
pP order — Ty ~ p*th,
which can be put together into
22 E A 22 E L

where one phase-space factor ﬁg appears from every loop.

These interesting results show many things. First of all, one can see that for
a given process all the diagrams with the same number of loops are of the same
order in the 1/N¢ counting; the number of external legs does not change and the
suppression in 1/N¢ is given just by the number of loops as it was expected from
qualitative arguments [5].

The formal 1/N¢ expansion is given in the EFT by the powers p?/(47F)?. More
exactly the number of colours enters in the EFT through the dimensionful parame-
ters, the meson masses M> = m3, My ~ O(Ng) and F ~ F? ~ O(Ng). How-
ever, the result in Eq. (4.40) shows that the dimensionless expansion parameter is
o= %. This p is what one expects to become small in the large N limit. Thus

the former expression Eq. (4.40) can be given in terms of ¢ and an order O(Ng)

function f (§%) of the external momenta p; and the meson masses:

7EL) ~ p2F2_E . QL . f(L) (%) . (4:.41)

The real problem in all this argumentation is that the function f (§;) from every

individual diagram behaves as a power series on momenta f, (£7) Br(p®)t +
Br_1(p*)*~! + ..., so the radiative corrections always become large above some

energy. However, it is at this point where the matching with QCD short distance
can save the convergence of the 1/N¢ expansion. Assuming that the behaviour of
the observable at LO in 1/N¢ is the same as that for the whole observable, and also
requiring that order by order 1/N¢ the observable vanishes faster than a power of
the momenta at short distances, then one finds that the function f&)(p;(M) can
grow at most as a constant. This ensures that the subleading corrections do not
grow indefinitely and follow the same power behaviour as the LO:

: (4.42)

‘7EL+1)‘ < Cioyry -0 ‘7ZL)
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where the O(1) bound C(z1)e depends on the shape of f, ({). In order to
preserve the convergence of the 1/N¢ series this bound should be smaller than 1.
However, there is no general argument that ensures this for all the amplitudes and
Green-functions, only having demostrations for some observables. For instance, the
imaginary part of the pion vector form factor (F(s)) coming from the 77 cut obeys
the relation [Im{F(s)}| = |ox F(s)* Trs(s)| = or|F(s)||Tr,5(s)| < |F(s)|, with
the (I,J) mm — mr partial wave |T7 (s)| < 1. This at NLO in the perturbative
level implies that |Tm{F()(s)}| < [Fg)(s)]-

4.3.1 Ultraviolet divergences

At this point it is good to remind that p stands till now for either momenta, meson
masses and external fields. The non-analytic structures that are going to arise from
the loop calculation will be proportional to the corresponding power p?*2L obtained
before.

In addition, the ultraviolet divergences will be proportional to p?*2L. At one
loop, L = 1, one is going to find ultraviolet divergences of order p*. The lagrangian
developed at LO contains just O(p?) vertices and therefore it is unable to provide
the counterterms. Through this derivation it appears manifestly the necessity of
introducing a NLO lagrangian with chiral tensors of O(p?).

The structure of the divergences must obey precise rules. Since the Feynman
integrals must be defined for any value of the parameters —external momenta p;,
meson masses M; and external fields (v#,a*, s, p)— therefore they must be well de-
fined when they are evaluated at zero. In order to have the amplitudes well defined
for any value of the external parameters the divergences must not contain poles of
of them: The divergent piece of the amplitude will be a O(p?*2L) polynomium of
them.

Nevertheless, some of these higher order divergences are really proportional to
masses of resonances (which are chiral invariant) and may be renormalized by lower
order operators. But those of order p?*2% containing genuine derivatives can be
reabsorbed just by new operators with a larger number of derivatives, as it was said
before.

There is only one detail missing here: The non-physical degrees of freedom of
the vector mesons (the longitudinal ones in the Proca formalism). As it already
happened in the Standard Model, the existence of massive vector fields gives some
problems at high energies and when renormalizing. The Standard Model solved
the problem providing the mass to the gauge bosons through the Higgs Mechanism
of spontaneous symmetry breaking. Thus, the renormalizability properties were
preserved at the same time that the vector bosons looked like massive for some
choices of the gauge.

This is a typical problem in the Proca formalism R¥. On the other hand, in
the antisymmetric formalism R*¥ one does not have problems with the longitudinal
modes of the field but with a given set of components of the tensor R*” —the



4.3. 1/N¢ counting at the loop level 59

projection of the field—. The operator ©2(0) is defined in Appendix B and will appear
in a next chapter when performing the perturbative calculation.

In RxT the effect of the Q-projection of the vector propagator (longitudinal
modes in the Proca formalism) produces the presence of poles 1/M?Z , in the ampli-
tudes for My, 4 = 0. In the NLO calculation of the vector form factor (Chapter 6)
one observes the appearance of this kind of poles on My in the loop with a cut of
two vectors (it is explained with more detail in Appendix C). In addition, although
the expected scaling of the one-loop diagram would be O(p*) ~ ¢*(p" —p_)v ()4,
the actual momentum structure is ¢*/M3; (ph, — p¥_)v(z),, where v(z)* is the aux-
iliary vector field introduced before. Therefore the 1/N¢ ordering of the diagrams
turns out to be spoiled by these 2-modes; the renormalization requires not only the
O(p*) operators but also some O(p®) structures. However, these extra degrees of
freedom (€2 or longitudinal modes, depending on the formalism) do not appear at
high energies in perturbative QCD, which is a theory of massless states (once the
quark masses are neglected).

This problem is much more dismaying than what it looks at first glance. One
may think that it is just a problem of introducing new NLO operators in 1/N¢.
However one must also take into account the absorptive contributions. The non-
analytic functions that arise at the loop level cannot be compensated with any local
operator. Thus, returning to the latter example of the form factor, one finds that the
Q—components of the vector propagator produce not only a divergence of the form
q*/MZ(phy — pk_)v(z), but also the logarithm ¢*In(—¢?) /M (pty — pi_)v(z),.
The way how the extra modes disappear at high energy is something that remains
out of the reach of this work but it is definitely something that will have to be
analysed in future.

4.3.2 Short distance asymptotic behaviour

At this point one is ready to analyse the high energy behaviour of the quantum
loops. The observables in perturbative QCD are functions of the number of colours
and of the momenta. The OPE provides an expansion in powers of the momenta
whose coeflicients are functions of the number of colours and the strong coupling
constant. Therefore it is reasonable to argue that every single OPE coefficient ac-
cepts an expansion in 1/N¢ and that, therefore, the observable obeys the asymptotic
behaviour order by order in 1/N¢ independently. This means that the short dis-
tance cancellations must occur not only in the calculation at LO but also in the
perturbative calculation at NLO, NNLO and so on.

In the EFT picture one would compute the one loop diagrams and the corre-
sponding tree-level amplitudes including a NLO vertex. If the effective description
has any sense the dependence in momenta of the NLO amplitude —once all the con-
tributions are summed up- cannot become dominant compared with the LO one, i.e.
it must not grow faster in the momenta. Otherwise we would be dropping out an
infinity of higher orders with larger dependences on the energy and our perturbative
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& LO LO

Figure 4.1: Absorptive cuts at one loop in the pion vector form factor.

calculation would turn meaningless.

Once it becomes clear that the comparison with the OPE behaviour must be
done separately order by order, there arises the question about how the cancella-
tions occur. Through the former analysis of the superficial degree of divergence
one realises that every individual one-loop diagram has a power p? more than the
tree-level amplitudes. Therefore, there must be subtle cancellations between dia-
grams in order to decrease this extra power of the momenta, in addition to those
that already happened at LO in 1/N¢; as it was shown before, the form-factors and
correlators have been imposed to follow the QCD high energy behaviour at LO in
1/N¢. Through them we could fix the values of the couplings in the lagrangian at
LO in 1/N¢. But, how do these cancellations occur at the loop level?

On the contrary to what at first it may seem, the problem is not in the analytic
part of the loops, which can fixed by tuning the counterterms; moreover, the short
distance constraints would fix the counterterms up to the considered order. The
problem comes from the non-analytic part of the one-loop amplitude. It cannot be
varied by any NLO term that one may introduce in the lagrangian. They are only
ruled by the LO vertices. Thus, the high energy behaviour at one loop is ruled by
the high energy behaviour of the diagrams at tree-level.

Consider now the one-loop amplitude. Take all the diagrams with a given ab-
sorptive cut X —e.g. an intermediate state with two resonances (actually at one loop
there can be at most two particles in an intermediate state)—. The first part of the
diagram is nothing else but the form factor to that mesonic state X at LO in 1/N¢,
and it must obey the scaling ~ 1/¢? at short distances.

The second part of the cut diagram, which can be beheld in Fig. (4.1), would
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correspond to the tree-level scattering of the intermediate state X —in the former
example the two resonances— into a 77 pair. The superficial dimensional analysis
shows that it behaves like ~ p?F?~F with E the number of external legs in the
scattering. Therefore, assuming that the X—form factor behaves as ~ 1/¢?, a naive
overview would tell us that the amplitude related to the absorptive cut X diverges
as ~ p? ~ (p!, — p!_)v(z),. This would mean that the one-loop form factor would
go as a constant and would not vanish at infinite momentum transfer, even although
if every form factor at LO in 1/N¢ was well behaved.

There are two possible ways out to this riddle:

a) Either every channel X — 77 suffer cancellations between diagrams so the
summed up tree-level amplitude 7(X — 77) tends to a constant at short
distances,

b) Or there is a more complicated cancellation between different channels once
all are summed up.

Obviously, the second one seems to be a more complicated solution and not so
clear once we go to analyse other observables. The first option looks more natural
and solves at once the problems for any possible observable at one loop: All the tree-
level amplitudes diverge as dimensionless constants at high momentum and then
the non-analytic structures from the one-loop diagrams diverge also as a constant,
keeping the same behaviour as the tree-level matrix elements.

A hint of the first choice as the right one comes from the 7w — 77 scattering
behaviour. Let us assume that the partial wave of angular momentum J behaves as
T; ~ sP when s — co. Unitarity provides the inequality

Im Ty > o |Ty)*. (4.43)

This implies that the imaginary part grows at least as fast as ImT; > %P, so there-
fore D = 0 and the partial wave amplitudes goes as Ty ~ s° at infinite momentum.
At the perturbative level this is reflected as

Im TNO > o, |TFO2. (4.44)

One can see that the saturation of the Froissart bound at LO in 1/N¢ [54], i.e.
s < THO < 2, spoils the behaviour at NLO since ImT'N*© > s%. In general the
requirement of perturbative unitarity demands that the asymptotic behaviour of the
scattering amplitude at every order in 1/N¢ is the same as the whole amplitude.
Using the same arguments of unitarity it is possible to demostrate that the
scattering amplitude to any state must behave as a constant at high energies:

Tm (7r|T|rr) = Z/C@X (X|T|rm )2, (4.45)
X
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where one has the summation on every available intermediate state X and integrat-
ing over its space-phase. The left-hand-side has been proven to go as a constant.
Then each individual term —which is positive— must go at most as a constant. There-
fore the amplitude of 7w — X tends to ( X|T|nm) — const. when s — oco. The
requirement of every order in 1/N¢ to behave as the whole observable ensures the
constant behaviour also at the perturbative level.

4.4 Construction of the NLO lagrangian in 1/N¢

Following the steps commented in the former section we are going to build up
to the NLO lagrangian required to renormalize the one-loop diagrams [106]. In
this work the attention has been focused on the pion vector form factor and only
the terms contributing to this process will be given. Nevertheless, the analysis of
the scattering amplitudes and other form factors at one loop would provide the
remaining NLO terms.

4.4.1 Subleading lagrangian

For the VFF we need to compute several types of 1PI Green functions. At one
loop the Feynman integrals produce ultraviolet divergences which the former L.O
lagrangian is not able to renormalize. New divergent structures appear at NLO in
1/N¢ demanding the inclusion of extra pieces in the lagrangian.

The LO lagrangian will be extended by the inclusion of just those pieces needed
to renormalize the one loop diagrams. These new pieces will contain tensors of
O(p*), i.e. with four derivatives or equivalent, as it was derived in the analysis of
the superficial degree of divergence. Higher order operator are supposed to be zero
at NLO since the radiative corrections for those orders are zero and a counterterm
much larger than the radiative corrections would not have any sense.

The only exception to what I have just referred comes from the loop with two
vectors, as it was announced before. The (2-modes of the massive vectors spoil the
ordering and one has to introduce some O(p%) operators.

Higher orders in yPT

We need to include new terms for the interactions among Goldstones. Since they
must be chiral invariant they have the structure of the higher order yPT lagrangian
but with different couplings because we are now in a different theory. The terms of
the O(p*) xPT lagrangian relevant for the tree-level vector form-factor are:

s il 7 2 2

Lo = S0 wnw]) = Ba( 050 0Fon) (4.46)
where the dots represent the remaining structures which do not contribute to the
VFF at tree-level and (’)JQE%M = Viu, — % (X— - %(X— )), being ny = 2 in the
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SU(2) theory. I also remind the different definitions of the couplings in the two—
and three—flavour theories, £g = —2Lg.

We will use the tilde to refer the chiral couplings in the theory with explicit
resonance fields, and without it to refer the parameters in standard yPT. These ’;
are at most O(1) in the 1/N¢ counting, i.e. NLO compared with the usual xPT /; in
Ref. [8, 16], which are O(N¢). The last structure in Eq. (4.46) does not contribute
to the VFF when it is included in a tree-level diagram with the external legs on-shell.
However, it serves to renormalise the O(p*) divergence in the pion self-energy.

Also a subleading lagrangian with the structures of the O(p%) xPT lagrangian
L will be necessary but with NLO in 1 /N¢ couplings different to the usual ones in
regular xPT [16]. For the process under analysis only a pair of terms contribute:

ZGX = 151 foﬁy[hupa uy]) + iCs3( Vufﬁu[hup, uf]). (4.47)

In fact, only the precise combination of the couplings 7y, = 4F?(¢s3 —¢51) is going to
be relevant for the pion vector-form factor that will be computed in a next chapter.

Higher orders in the resonance Lagrangian

To renormalize some Green functions including resonances we are going to need
new terms with higher derivatives: Pieces to renormalize the vector-vector Green
function (VA (z) — VroW)),

Liz = (V9,9 V) + X9, Va) VI (97,991 V)

+§f‘—3<{v0,va}vw Vi, Va} Vig ) + e,

(4.48)
and we will define X, = X, + Xz, + Xz,; pieces to renormalize the current-vector
resonance Green function (v(z)* — VF?(y)),

Lir = Xr( VuVVQf-qlfu )+ X Viw {V¥#,Va} fﬁu ) s (4.49)

where we make the definition Xr = Xp + XF,; and pieces to renormalize the
vector-Goldstone-Goldstone Green function (V*(x)w(y)7(z)),

Lic = X, ({V Vi V¥ [uy, ua] ) + Xy (V™ [hap, h2]) + .y (4.50)

with the definition X¢ = Xg, — %XGI. The ellipsis denotes more operators allowed
by the symmetry but not entering in the VFF at this order in 1/N¢. The dimensions
of the couplings are [Xz] = E~2 and [Xp] = [Xg,] = E~!, and Xz = O(1/N¢)
and Xp,, Xg, = O(1/v/N¢) in the 1/N¢ counting.
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4.4.2 Equations of motion at LO in 1/N¢

From the LO lagrangian one can derive the corresponding equations of motion
(EOM), which are obeyed up to NLO in the tree level processes. The relevant EOM
for the vector form factor are the ones corresponding to the vector fields:

VEV, VW — VYV, VP =  — M2V — % - "%’ [, u] (4.51)
The derivation has been done for a single multiplet. For a series of vector multiplets
without mixing terms one would have separate EOMs for every vector with the
corresponding couplings for every case.

Analysing some processes (vector, axial-vector [23] and scalar [22] form factors)
we obtained the large N¢ relations for the resonance couplings from Eqgs. (4.30)
and (4.31). However, at one loop they suffer next-to-leading order deviations (NLO),
as it was observed in Ref. [105]. Since our calculation is at one loop, the large N¢
relations can be substituted in the one loop diagrams as the modifications would go
to next-to-next to leading order. Only in the tree-level diagrams will be important
to take into account the NLO value of the renormalized vector couplings, Fy,, GY,
and Mjy,.

At the order of the present calculation these terms only enter trough tree level
diagrams (with the resonances only as internal lines). Thence, a great simplification
can be made in the lagrangian: Through the EOM in Eq. (4.51) we get a new
lagrangian completely equivalent to that up to NLO, [Loy+Lag] + [Lay,6x+Lar],
but now containing only O(p?) interactions for the resonances. Also there arise
operators with the structures of the O(p*) xPT lagrangian. We have now pieces
from L4z:

X M4 v X M2F v 1 X MQG v
LM = SRV + SETE (VL ) + SRV, )

+ X2 By Gy ey, ) +

(4.52)
pieces for v(z)* — VF(y),
v ZXFGV v
LHOM = —XpMH(Vu ) - 7 2 Tup,w]) + oo (4.53)
2
and pieces from the V#(z)nr(y)n(z) interaction,
LiEOM = 2 XaME(V™ [uayun]) — iV2XeFy ( f1 [up,us]) + . (4.54)

The dots denote other terms which are not relevant for the VFF at this order: other
O(p*) and O(p®) xPT terms and extra vector-vector-NGB interactions.

One can easily observe that the higher-order-derivative resonance lagrangian in
Egs. (4.48), (4.49) and (4.50) is something spurious and that it is just equivalent
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to a shift in the LO resonance couplings and the xyPT couplings. The shifts in the
relevant couplings for VFF are:

ngf — ZG + 2X7FyGy — 2\/§XFGV — 4\/§Xng,

Fl = Fy + 2X;M2Fy — 2v2Xp M2,
(4.55)
G = Gy + 2X;M2Gy — 4v/2XgM2,

2
M = ME 42X, M

Notice that the modifications introduced by the EOM come at NLO, so in the one-
loop diagrams one will have Fy ~ FY; ~ Fyelt (and similarly for Gy and My).

In chapter 6 we will make the renormalization of the vector form factor through
the higher order lagrangian. Afterwards we will apply the EOM transformations to
eliminate these spurious parameters. What phenomenology is going to fix is just
the effective parameters. The relations (4.55) are valid also for the renormalized
couplings. Therefore after the EOM transformation the new effective couplings own
a different running due to the X7 . ;(p) contributions.

Next steps in forthcoming works are the inclusion of higher multiplets of reso-
nances and the renormalization of other interesting observables like the scalar form
factor and the scattering amplitudes. However, the addition of extra resonances
presents the problem of the mixing and other interesting features.



66

Chapter 4. Resonance Chiral Theory



Chapter 5

Vector sector

The vector sector is one of the most worked out areas in the hadronic phenomenol-
ogy. The fact that the interaction between leptons and hadrons are mediated by
vector gauge bosons makes this channel one of the easiest to produce and analyse
experimentally. A lot of information has been obtained either through tau decays
or through e*e™ collisions. The presence of maximums in the cross section for de-
termined energies points out the presence of hadronic resonances with J = 1. Below
the first vector resonance xPT provides a fair description of the amplitude [40]. RxT
considers the resonance fields once the energy increases and it has provided many suc-
cessful results describing the first multiple within a QFT framework [26, 27, 63, 105].
However a theoretical explanation for the hadronic spectral function between 1 and 2
GeV is still lacking although some works point out in that direction [44, 105]. Below
the second multiplet of vectors the main channels are the two-Goldstone channel,
and just 7w below the KK threshold. Multiparticle states are clearly suppressed
kinematically.

In this chapter I will show several analysis that have done about one of the sim-
plest matrix elements in hadron physics, the pion vector form factor. Nevertheless,
in spite of its relative simplicity it has been shown to be one of the most fruitful and
relevant observables, for instance, in the g — 2 determination.

Besides, its theoretical simplicity nowadays we own a large amount of experi-
mental data either from tau decay or from ete ™ colliders. Some experiments of this
kind can be found in Refs. [65, 66, 67, 68, 69].

5.1 The vector form factor

Within the Standard Model the leptonic particles couple to the hadronic states
just through the exchange of electroweak vector bosons (W*,Z%~). At leading
order in the electroweak coupling the interaction is provided by the exchange of
a single boson. This produces a quark-antiquark pair that hadronizes due to the
non-perturbative action of the gluons. One of the typical examples of this is the



68 Chapter 5. Vector sector

tau lepton decay (which is the only lepton heavy enough to decay into hadrons).
It generates a tau neutrino beside some outgoing hadrons Xg. This hadronic state
X carries the quantum numbers of the intermediate gauge boson, i.e., total angular
momentum J = 1. In Fig. (5.1) one can observe a scheme of the tau decay.

Since the tau mass is m, = 1.777 GeV and the neutrino one is negligible, the ex-
periment yields information about the available hadronic states Xg[.JJ = 1] between
the lowest threshold —the two-pion channel, with invariant square mass 4m2 = (275
MeV)2- up to the tau mass.

A%

Hadroniz.

Figure 5.1: Decay 7~ — v,m~ n°.

The production of hadrons through a vector quark current is one of the cleanest
ways to explore QCD due to the simplicity of the interaction. Once the gg pair is
produced it evolves just due to the QCD action (neglecting the contributions from
extra electroweak exchanges). Hence we have a clear initial state in terms of quarks
and clear final states in terms of hadrons. It is essentially a perfect experiment to
obtain information about the complex mechanisms of hadronization in QCD.

The absence of interaction between the quark and leptonic sectors allows a fac-
torization of the amplitude into a electroweak and a strong interacting part. For
instance, for the charged current present in the tau decay one has the amplitude:

<XH(Q)a VT(pl/)|T|T(P’T) ) =

= (Xu(g)|7£10) x [4igh cosbc AL ] x (v )|T2I7(Py)) + Olaly),

(5.1)

where A,SW_) is the W~ propagator, gy is the weak gauge coupling and 6¢ is the

Cabbibo angle. The quark left current for the tau decay is J¥ = %J’y“(l —v5)u and

contains a vector and an axial-vector component. The leptonic matrix element can
be computed directly.

Since the energy we are considering (1/s < 2 GeV) is much lighter than the weak

boson mass (My = 80 GeV), its propagator becomes point-like and the matrix
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element turns into

(Xu(q), vr(p)|TIT(Pr)) =

= (Xu(@|T]0) x [V2Gr cos b0 g ] X tu, (p)7" (1 = 5)ur (Br) + Olgly),

(5.2)

with the Fermi constant Gp = v/2g%, /M3, and the leptonic matrix element already
substituted.

Therefore the amplitude is given by a set of well known electroweak parameters
together with the hadronic matrix element ( X (g)|J#|0). One of the main channels
is the two-pion production. It only gains contributions from the vector part of the
left current. The rest are going to be less relevant at low energy due to phase
space suppression. However, at some energies one can generate a resonance in the
s—channel with the proper quantum numbers being near its mass-shell. It then
provides there the main contribution to the cross section. However, since the mesonic
resonances own widths of hundreds of MeV they cannot be taken as asymptotic states
for the energies treated in this thesis (s < 1 GeV). For the range of momenta studied
here the only asymptotic states are the pNGB. Thus, we will take just pNGB as
final states. As the momentum transfer increases more states are available and one
has to perform a couple channel analysis.

The most general Lorentz structure for the production of two pNGB PP’ —the
PP’ vector form factor (VFF)- is:

(P(p1)P'(p2)|J010) = (o1 = p2)* f+ () + (o1 +p2)*f-(d%), (5-3)

where P and P’ are the outgoing pseudo-scalars and the scalar functions f.(q?)

carry all the information. For the charged current we will have the I = J =1

vector current Ji, = dy*u, whereas for the neutral case its corresponding I = J =1
1

combination is J} = 7 (#y"u — dy*d). One is just an isospin rotation of the other.

For the isospin I = 1 charged channel the only available two-pseudoscalar states are
7~ n’ and K~ K°.

In the isospin limit (m, —mg¢ = 0 and agy — 0) the mass of the two outgoing
pNGB is the same and therefore f (¢°) = 0. In addition, the conservation of
the associated vector charge implies f1(0) = 1 [39]. In order to accomplish this
normalization condition the pNGB propagators must be renormalized in the on-
shell scheme.

Therefore, the general form for the I = 1 VFF in the isospin limit is:

(P(p1)P'(p2)|J5 10) = V2(p1 — p2)* F(q*) (5.4)

with ¢ = (p1 + p2) and Ji; being the charged or neutral current. For the neutral
case P(p1) will correspond to the positive charged particle whereas for the charged
current it will denote the negative charged meson.
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When analysing the data from eTe™ experiments one must remember that be-
sides the I = 1 interaction the electromagnetic current contains also a I = 0 com-
ponent. This fact does not occur in the tau decay. This gives an extra contribution
to the VFF from the I = 0 channel. In general it is tiny but it becomes relevant
near the p(770) peak due to a large enhancement from the I = 0 vector resonance
w(782). This variation is easily described through mixing terms [46, 28] In addition,
the process emr — em allows us to obtain data for the w7 photo-production in the
negative g2 region [66].

5.2 VFF in perturbative QCD

Before more sophisticated EFT were developed to explain the low energy phe-
nomenology lots of work had already be done to describe the pion VFF. Its asymp-
totic behaviour for ¢> = —Q? < 0 was obtained through partonic analysis based on
QCD. They showed that a infinite momentum transfer Q? = —¢? its behaviour —up
to O(1/Q?%) and O(a?) corrections— was [50, 51]:

(5.5)

where a5(Q?) is the strong coupling constant at the scale u? = Q2 and provides
a logarithmic dependence. Actually the whole form factor would be given by the
infinite series of subleading powers in 1/Q?:

_ v %m
2@

(5.6)

where the coefficients C(;) are functions of a s(Q?) which grow at most as a power of
In Q2. Actually, these coefficients accept an expansion in 1/N¢ starting at order O(1)

in this counting, since the VFF is O(1): C,) = C([z])—{—c[;]) ., with C([ ]) ~Q0 (N—lk)
C

Therefore the VFF from QCD can be expanded in an infinite series in 1/N¢:

el
Z [Z (Qg”)n] : (5.7)

Thence, order at order in 1/N¢ the form factor vanishes as ¢? tends to infinity.
Therefore the asymptotic behaviour will be imposed not only to the whole VFF but
also to every individual order in 1/N¢.

Through analytic continuation one gets that in general the VFF vanishes at
least as F ~ 1/¢? in the limit |¢?| — oo. This will be an essential result in our EFT
constructions. Eventually the hadronic description must approach asymptotically
to the perturbative QCD one. The large N¢ analysis [5] showed the EFT requires
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a pile of infinite resonances. However it is clear that resonant behaviour disappears
for \/s 2 \/5op5 ~ 2 GeV and one observes just the perturbative QCD continuum
(here I am talking just about light quark u/d/s mesons).

Thus, the asymptotic QCD short distance conditions can be also applied to the
truncated EFT that follows the behaviour not only at s — oo but even above a finite
value /s 2, V3orz ~ 2 GeV. The uncertainty in the resulting relations are expected
to be of the order MEFT /Mgegl', where MEFT are the masses of the resonances
included in the EFT and M Igegl' the ones from the higher mass multiplets that had
not been considered.

Therefore we will assume the Minimal Hadronic Approximation [55] (MHA). We
will truncate the infinite pile of resonances but taking at least the minimum number
of multiplets needed to fulfill the QCD short distance conditions. For the amplitudes
studied here I will work with just the first multiplet of vector, scalar, axial-vector
and pseudo-scalar resonances. A second multiplet will be only considered in order
to estimate possible variations to the first multiplet parameters.

5.3 VFF in xPT

In xPT we have now an EFT expressed in terms of mesons. To solve the question
about how to relate these fields with the quark currents one has to use the auxiliary
fields v#, a*, s and p introduced in the QCD and xPT lagrangians. The essential
assumption is that the QCD generating functional W[v#, a*, s, p]9“P is completely
equivalent to the EFT one, W[v*,a*, s, p]*F'T.

To obtain a Green Function (...g(z)I'q(z)...) with one bilinear quark current
one has to functionally derive the QCD generating functional with respect to the
corresponding auxiliary field. For instance, the vector current would be given by:

Vran(g) ) = ocp _, 089¢P
(oGi(@)ugj(T)..) = 751]%(3:)...14/ = <...5U%($)...), (5.8)

where vj; is the (i, j) element of the ny x ny flavour matrix v*.
To get the current expressed in terms of hadrons one repeats the same procedure
but over the effective action:

. . B 5 — SSEFT
(oeGi(@) 75 (7) ) = 6v£§-(w)"'W - <...5v%($)...), (5.9)

where now the Green Function is given in terms of mesons, which can be contracted
directly with the corresponding outgoing hadronic fields. This derivation does not
depend on what EFT we are considering if it is equivalent to the QCD action, so it
will be employed as well in the RxT calculation.

By similar procedures one can also compute the EFT picture for more compli-
cated Green Functions containing a higher number of quark currents.
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The xPT calculation has yielded precise descriptions for the processes among
pNGB at low energies (1/q2 < 400 MeV). The pion VFF up to O(p?*) in SU(3) xPT
gives a good description of the experimental data within that range [40, 9]:

oL 242 1.
FEd@®) =1 + ;:2" ) - = [322() + 5322(’()], (5.10)

with the finite part of the Feynman integral
r,(P 1 2 02 -
B = g [§ 4 (5F)] - F7riat -

m2 2
= 1 > [ln(u—é’) + SW;P — % + 0P1n<opﬂ)

(5.11)

bl

1927

with the phase-space factor op = (/1 —4m2%/q>. The finite function

Jpp(g?) = 16;2 (2 opln (U}’j +1)) is the scalar two-propagator Feynman integral

Bo(g%;m%,m%) subtracted by By(0;,%,m%). Their relations with the divergent
Feynman integrals can be found in Appendix A. The contribution from the one loop
diagrams are given by this function and F' = 92.4 MeV is the pion decay constant
at LO in the chiral counting. The scale dependent parameter Lj(u) is the coupling
from the O(p*) xPT lagrangian ,64 renormalized in the M'S — 1 scheme.

This coupling can be obtalned through the measurement of the VFF at low
energies. Expanding it in powers of ¢? one gets the pion electromagnetic charge
radius, F(¢?) = 1 + §(r?>)T ¢* + O(¢*). Tts relation with the effective coupling

2
is Ly(p) = 3F2(r*)] + 5= (ln 2z +1ln mK) + 35-7. The experimental charge

radius is (r2)7, = (0.439 £ 0.008) fm?, which provides L§(M,) = (6.9£0.7)1073 [9].
Actually the importance of the strange flavour is not very high at low energies
and sometimes the SU(2) calculation is good enough [8]:

F2t) 2y 7. _ 1y, o _
xPT () = 1+ 967r2F2(£6_3) 6F2 “—FJIprp(e®) =
(5.12)
g 2¢* pr(n
-1 _ 6};(’,“) ¢ lg B§2( )( 2

The parameter {g is a scale independent combination of the renormalized coupling
2
and the logarithm ln Z which is given in Appendix B. The two flavour (mu, mg <K

In Zx

ms) and three flavour results are easy to relate through £§(u) = —2L5(p)+ 1927T2 ( 5

1).
Moreover, may times the massless calculation is also very useful and carries the
bulk of the form factor. The ny =2 VFF in this limit becomes

2 2
(@+4) 2y _ 1 _ L(p) o q ?_1 _9 5.13
fXPT (q ) F2 q + 967T2F2 3 n HQ ’ ( ) )

2
+
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The result for the ny = 3 theory (in the m, = mq = m,; = 0 limit) is completely
analogous but with 2L§(x) instead of (—£(u)).

In order to improve the accuracy and to carry the description on to slightly
higher energies (¢ < (500 MeV)?) one has to include the next chiral order, O(p®).
The contribution to VFF at this order in the SU(2) theory [18, 17] is given by

md
= (Py +Uy) , (5.14)

where the polynomial part of the amplitude is

‘7:)((61;T(3)

Py = g? [%kl sak2 + ke + 9(4 )?(” sl + 5ls — 5 H — 33 — 19221Zw)?)

trio] + @[~k + tha — dka + She — £(205 + gr)

+36(47r)2H + 576(471')2 + 864(47r) + TV1]
(5.15)
and the dispersive part is

Uy = By(x) [%f’"( 2% + 4z) + 05(2? — dx) + 3045(z — 4) + $05(—2? + 4z)

a5 H (2% + 82 — 48) + ;i (155 2? — Sz + )]

+ 1K) + $Ko(o) [fa2—z+4] + LKs(@) [z - §] - 3Ku(s)
(5.16)
being z = Tgl—; and H = @2 ) In ( e ) The L4, couplings /] are also within the ¢; and
k; definitions as given in Appendix B [17]. The L, couplings are encoded within the
r7,; parameters (other works consider alternative combinations of couplings f7). The

one-, two-, three- and four-propagator Feynman integrals are given by the functions
By(z) and K;(z). Their definitions appear in Ref. [17].

5.4 VFF with resonances: LO in 1/N¢

When introducing the resonance fields the chiral counting becomes inadequate.
The introductions of heavy scales Mg spoils the chiral expansion. However at en-
ergies below the first multiplet one can recover xPT through an hybrid expansion
either in the energy as ¢?/(47F)? and in ¢?/M% (or in the pNGB masses). Thus

the heavy propagators m turns out to be —MLIQ% (1 + 1\151_212% + ) and gives con-

tributions to all chiral orders.
Even at the loop level one recovers the yPT interaction at low energies if the
resonance lagrangian is appropriately constructed preserving the chiral symmetry.
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L, Ly

Figure 5.2: Two-pion production in the limit Ng — oo.

Since the chiral counting is not valid around the mass of the resonances we will
consider an alternative counting, the 1/N¢ counting. As it was told in the former
chapters the LO will be provided by the tree level diagrams (which can also contain
subleading contributions). The naive counting gives a 1/N¢ suppression by each
mesonic loop. We will see in the next section that this suppression is obeyed in the
one loop calculation either formally and numerically.

QCD short distance analysis [23] have proved that at LO in 1/N¢ the O(p*)
xPT low energy couplings are given just by the exchange of heavy resonances, when
working in the antisymmetric formalism for the vector and axial resonances. This
means that in the large N limit there are not O(p*) pieces with yPT structure
when working in a theory with active resonance fields, RxT. This does not mean
that these terms do not exist in the lagrangian but that they are subleading in the
1/N¢ counting. It is very important not to confuse the low energy couplings L; from
xPT with the analogous high energy couplings L; from RxT.

The Proca formalism for the vectors and axials gives equivalent results but the
low energy couplings are not fully saturated by the exchange of heavy resonances
and the local interactions from Z4x are necessary even at LO in 1/N¢. From now on
I will employ the antisymmetric formalism due to the simpler form of the lagrangian.

Focusing our attention on the observable we are now studying one can see that
at LO in 1/N¢ there are just two contributions (Fig. (5.2)): The direct production
of the two pions through a vertex from L,; and the production through an inter-
mediate vector meson. Below 1 GeV the main contribution is given by the p(770).
The inclusion of higher multiplets introduces just small modifications for the region
considered here and they will be neglected. Nonetheless, they become essential to
describe the observables between 1 and 2 GeV [44].

The tree-level calculation yields:

Gy ¢
F? M‘Z,—q2

Fl@®) =1 + (5.17)
The couplings Fy and Gy characterize the strength of the interactions v — p and
p — 7w respectively. Some phenomenological determinations on the p(770) peak
quote them as Fy ~ 154 MeV (from Tegpy(p® — ete™)) and Gy ~ 69 MeV (from

Leap(p —= mr)).
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Figure 5.3: VFF at leading order in 1/N¢ with one and two vector resonances. For the two-
resonance case we have adopted the input parameters My, = 775 MeV, My, = 1450 MeV,
Fy,Gy,/F? = 1.1 and Fy,Gy,/F? = —0.1. Data from ALEPH [65] and NA7 [66].

At this point one may argue that the asymptotic behaviour of QCD should be
also obeyed at large momentum: the pion VFF at LO in 1/N¢ should vanish in the
limit ¢? — oo. This gives us the LO in 1/N¢ constraint:

FyGy
-
which together with other constraints on the axial form factor [23] fixes completely
the values of the vector couplings at LO: Fyy = Fv/2 = 2Gy. For F = 92.4 MeV
this means Fyy = 132 MeV and Gy = 66 MeV, giving an relatively good agreement
with the former experimental determinations.

When using this large N¢ relations for just one multiplet of resonances Eq. (5.17)
becomes the known monopole result for the Minimal Hadronic Approximation (MHA):

1

=0, (5.18)

M2
F()yua = W‘:S ) (5.19)
It is important to remark that this is a theoretical prediction of large No (MHA
would be more accurate) and QCD short distance constraints. It does not contain
any free parameter but the mass of the resonance. In Fig. (5.3) one can see the
comparison between this theoretical prediction for My = 770 MeV and some exper-
imental results. It also includes the O(p*) xPT prediction, which agrees perfectly
with both experiment and MHA at low energies.
The inclusion of higher multiplets in the EFT is completely straight forward.
Assuming that the interaction with the pNGB has the same structure from Loy but
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owning different couplings Fy;, Gy;, then the tree-level VFF is:

(5.20)

The exigency of the QCD asymptotic behaviour in this extended theory gives a
slightly modified relation for the LO in 1/N¢:

1- 3 FviGv _ (5.21)

2
~ F
where the couplings now do not become completely fixed but related among them.
In Fig. (5.3) I plot the VFF at LO in 1/N¢ for RxT with one and two vector
multiplets.

5.5 VPFF calculation near the resonance mass:
Dyson-Schwinger resummation

5.5.1 The p(770) width

In the former section the vector meson dominance expression (VMD) in Eq. (5.19)
was obtained. As it can be observed in Fig. (5.3), it provides a good description
of the VFF to higher energies than those reached by xPT, either at order O(p*) or
O(p°).

Thus, VMD accurately describes the data up to /s < 1 GeV. However the
result fails in the resonance peak, since one has the real pole s = M 3 in the tree-
level vector propagator and the amplitude diverges. This obviously does not happen
experimentally, where one observes a resonance with given non-zero width, instead
of a real pole. In a recent work [72] it has been suggested the construction of soft-
collinear effective field theories in order to describe the decays of a heavy meson
(the rho meson) into light particles (the pions). In order to provide a rigorous
description one should construct an effective field theory identifying the relevant
degrees of freedom for that range of energies (the collinear modes). Eventually the
effective couplings could be determined by a matching with the EFT away from the
resonance peak. In this work I just make a simplified analysis by resumming the
important contributions to resonance pole with the RxT lagrangian introduced in
the former chapter.

The difficulties in Eq. (5.19) are given because one has included only the LO
contributions in 1/N¢. If we were able to do an all order calculation our real
pole would be modified by a contribution from the self-energy. This would shift

the real tree-level pole M 3 to a complex value in an unphysical Rienman sheet,

pote _ (M;Ole — z'l"f,oze /2)%. Thus, when varying our value of ¢ throughout the real

axis the VFF would a peak in the amplitude in the nearest point to the complex pole.
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The resonance becomes narrower and more pronounced as the value of the width
P];ole is smaller and smaller. It is good to notice at this point that the bibliography
employs usually two different definitions of the resonance mass. Here it is used even a
third one, My, which will be the parameter of the lagrangian, renormalization scale
dependent, and will be related with the other two scale independent definitions.
One of the definitions is the latter, pole mass and width, M, 7 and T”°. The
other is the Breit-Wigner definition, defined through the pomt q 20 where
the phase-shift of the scattering amplitude in that channel crosses 900. In the case
of the form factor that we will compute later only the denominator of the VFF,
D(q?), contains imaginary pieces. The Breit-Wigner mass will be given by the
value where D(g?) becomes purely imaginary. In the same way it is often given a
Breit-Wigner definition for the width coming from the slope of the scattering phase-
shift [29], and which at first order is given also by the value of the denominator
at the Breit-Wigner mass: —iMpwTpw = D(¢?> = M%y,). All the definitions are
equally physical —they provide the same information for the VFF— and they can be
related one each other. Actually, at LO in the perturbatlve parameter of mteractlon,
all choices take the same value, i.e. My ~ Mpoe ~ Mpw and I'gy ~ I‘poe In
this work I will also called as off-shell width to that provided by the imaginary part
Im{D(¢?)} = —My Ty (q?) for real ¢°.

In Ref. [26] some important information about the denominator D(g?) was ob-
tained. The ultraviolet divergences from the loops —which are real- go to the real
part of D(g?), what points out a renormalization problem that will be studied in the
next chapter. However, one observes from Ref. [26] that the width of the resummed
expression denominator gets a finite value.

When performing the resummation I will employ not the chiral counting but
the counting in 1/N¢, which means also a counting in the number of loops. One
must also remember that at LO in 1/N¢ the couplings take the values Fy = 2Gy =
V2F ~ O(v/Ne).

The VFF is mainly given by the tree-level production of the two pions, either
directly through the vertex form Lo, or through an intermediate vector meson. In
order to build up our resummation one must think first of a way to systematize the
construction of the diagrams and of avoiding the double counting. At the same time
it is convenient to have present which are the important contributions and which are
suppressed. Since this analysis is focused on the width calculation, the important
ones will be those with absorptive cuts; the tadpoles will be neglected.

What available intermediate states are there in this channel? The initial vector
current selects only those with that quantum numbers. The simplest are those with
one intermediate vector mesons and those with two intermediate mesons with total
I = J = 1. In the analysis of the VFF in the momentum range s ~ M 3 only the
two-pNGB cut is considered. Other cuts will be suppressed by 1/N¢ and phase-
space. Thus, I will not consider four-pNGB cuts, two resonances, one resonance and
two Goldstones... They only become relevant away from the rho peak.

The self-energy arises at NLO and therefore the width of the resonances is zero.
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The standard way to regularize the propagators near their mass shell is through a
Dyson-Schwinger summation of self-energies. This procedure allows obtaining the
value of the resonance width in the neighbourhood of its mass-shell beyond the lead-
ing order. Nonetheless, the 1/N¢ counting introduces very important modifications
that produces variations in the momentum dependence of the off-shell width. The
usual Dyson-Schwinger summation sums a series of one particle irreducible blocks
(1IPI) linked by free propagators. When considering the 1/N¢g counting the re-
scattering through a tree-level resonance propagator is of the same order as a local
scattering vertex. Thus, one finds that this local-vertex re-scatterings produces a
similar series that modifies the resonance propagator at the same order as the usual
self-energy.

This can be computed in many ways, since there are many ways to order and
classify the diagrams and to perform the summation. Working out the LO lagrangian
form RxT one realizes that the LO scattering vertices can be combined into a sim-
ple effective vertex, and similarly with the LO vertices connecting a current and
two pions [26, 105]. These calculations performed a re-summation of the main con-
tributions to the propagator, the nn loop. However when computing the whole
calculation one finds also other more complicate diagrams that needs a more general
systematic of classification. Let us first analyse the standard way to compute the
NLO calculations, in order to realize where the modifications occur.

5.6 One-vertex irreducible sub-diagrams

In a usual QFT calculation, the one-particle irreducible sub-diagrams (1PI) are
defined as those that cannot be split just by cutting one internal propagator. This
provides a general classification and decomposition of any complex diagrams in terms
of 1PI blocks linked by propagators which do not run within a loop.

Nonetheless, there exists a further decomposition of the 1PI blocks which shows
that the local interactions may produce a shift into the resonance pole. Some of this
1PI diagrams are composed by two independent blocks joined just by a local vertex.
The momentum structure of the linking vertex may be more or less complicated
depending on the incoming and outgoing particles and the perturbative order in
the counting. However, the locality of this vertices requires that they are analytic
functions of these momenta, i.e., they are polynomials and therefore the contribution
of each monomial to the loops in one block does not interfere the loops in the
other. The general result is given by the summation of the contributions from every
monomial of the intermediate vertex. This means that the amplitude is equal to a
summation of terms, being each one a product of a Feynman integral from the loops
in the first block times another function from the loops in the second block.

This procedure can be repeated for the 1PI diagrams built by three blocks linked
by a pair of intermediate local vertices. Again the amplitude can be decomposed
in a sum of products of three independent Feynman integrals. In general I will
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Figure 5.4: Geometrical series in the 1PI Green functions. Their summation to all orders
generates a pole structure that modifies the resonance mass and width.

call each of these blocks —linked in a series one each other by just a local vertex—
one-vertex irreducible blocks (1VI). Thus, a 1PI amplitude has contribution from
diagrams with just one 1VI block, with two 1VI blocks, three and so on.

When analysing some specific channel —defined isospin or angular momentum-—
the intermediate vertices get simplified. In the simplest cases the part of the vertices
contributing in that given channel turns out to be just a monomial, a product of some
tensor depending on the incoming momenta times another tensor depending just on
the outgoing momenta. Then, a 1PI amplitude M (q) with a decomposition in two
1VI blocks becomes equal to two independent calculations M(q) = Si(q) - S2(q),
where the appropriate Lorentz structures are assumed in the product. The diagrams
composed by a larger series of 1VI blocks generate a similar structure of products.
It is easy to realize that in these cases the summation of 1VI blocks for a number
N = 1,2... of 1VI blocks produces a result completely analogous to the one in the
Dyson-Schwinger summation.

These decompositions depend on many details and turn more and more compli-
cated as the order of the calculation increases and the available intermediate 1VI
blocks can be more and more complex. At lowest order in 1/N¢ the 1VI blocks must
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contain the lower number of loops. This gives as result that the LO contribution
to the 1VI blocks is given by the one loop diagrams with two propagators linking
one intermediate vertex and the next one. More complicated structures (crossed
channels...) only may occur at two loops.

Therefore one can see that the calculation of the resonance width is a highly non-
trivial problem. The 1PI topologies accept a geometrical series resummation already
before performing the Dyson-Schwinger resummation of self-energies. It is possible
to do this 1VI resummation for each 1PI topology relevant for the VFF: the external
current to two pions, the external current two a vector resonance, and the vector
resonance to two pions (in addition to the pion and vector self-energies). However,
for practical purposes, for the 77 and KK absorptive contributions studied in the
next section, it will be simpler to perform the 1VI resummation and the vector self-
energy resummation at the same time, introducing effective scattering vertices in
the fashion developed in Ref. [26].

This work analyses the width at energies much lower than the two-resonance
threshold and at first approximation these channels may be neglected. The attention
is focused then on the loops of two pNGB. The only intermediate local vertex is then
7w — mw from the Ly, lagrangian in SU(2). In the three-flavour theory one has
also mm —- KK, KK — nm and KK — KK. Nevertheless, afterwards it is shown
how the resummation can be also generalised to 1VI blocks with a bigger number
of loops. We will see also how to take into account the intermediate vertices with
resonances and their influence below their production threshold.

5.6.1 The effective vertex resummation

At leading order in 1/Ng, the vector form factor fép) (¢?) is easily computed

through the diagrams shown in Fig. 5.5(a). The label (P) denotes the pair of pseudo-
scalars which are produced in the final state, either 7~ 7% or K~ K?.

The two form factors ]-'ép)

. ™) (2 Gv. 2
e (43) - 022 e} (3) oo

0 A

(¢?) are put together within the vector

For the one multiplet situation, the short-distance QCD constraints yield Fy, =
2Gy; = V2F at the large-N¢ limit [23]. However, since we are going to work
at higher orders in 1/N¢, we will leave these couplings free. Their deviations of
the experimental values from the large-N¢ predictions will be tested afterwards
a posteriori. We will see that they are small and within the expected order of
fluctuation in 1/N¢.

At energies close to the mass of a resonance we need to know the denominator
of the resonance propagator beyond the leading, bare, order in 1/No. What is
usually done is a Dyson-Schwinger summation, as for instance in the QED photon
polarization. That is, summing diagrams composed by a series of propagator, 1PI
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Figure 5.5: Effective vertices for the vector current insertion producing two pseudo-scalars

(a) and for the two pseudo-scalar scattering (b). The first terms come from ES?T and the
second ones from the interaction via an intermediate resonance due to the [’KXT lagrangian.

block, propagator, ..., and so on. This summation regularizes the pole of the bare
propagator. It gives a self-energy with its corresponding absorptive part, up to the
perturbative order employed for the 1PI block. In RxT, however, at the same order
as the resonance-exchange contribution there is also a local interaction from the Lo,
lagrangian. The Dyson-Schwinger summation must be then slightly modified. One
constructs effective current vertices and effective scattering vertices [26], by adding
the contribution from intermediate resonance exchanges in the s—channel to the local
xPT interaction Lyy. Both contributions are of the same order in the 1/N¢ counting.
These effective vertices, shown in Fig. 5.5, are independent of the explicit formulation
adopted for the spin-1 fields [23, 26]. With the Proca formulation one would have
to take into account the local interaction from the O(p*) xPT lagrangian as it is
described in Ref. [23]. The re-scattering through local vertices is not important on
the resonance peak but it turns out to be relevant when separating away from it.

For the moment, we are only interested in the imaginary part of the self-energy.
Therefore, we will concentrate ourselves on the summation over diagrams with ab-
sorptive cuts. For the range of energies we are interested, the most relevant contri-
butions come from intermediate states with two pseudo-scalars; states with a higher
number of particles being suppressed by phase space and 1/N¢ counting. Thus, we
are going to sum diagrams' constructed with an initial effective current insertion
connected to an effective scattering vertex through a two-pseudoscalar loop. The
pair of outgoing pseudo-scalars from the scattering vertex are again connected to
another effective scattering vertex through another two-pseudoscalar loop, and so
on, as it can be seen in Fig. 5.6.

'This diagrammatic construction solves the Bethe-Salpeter equation [31] in an iterative way.
The effective vertices provide the corresponding “potentials” at LO in 1/Ng¢.
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P P- P- P
P.’ P’ Ps’ P’

Figure 5.6: Diagrammatic summation at N loops.

The off-shell effective current vertex shows the momentum structure
V= V2 [FoPp + FoPl | (m—po)”, (5.23)

with P#" =gl — ‘1—231 and Pf V= ‘1—‘;31 the usual transverse and longitudinal Lorentz
projectors. The vector Fj is the on-shell VFF at tree-level from Eq. (5.22). In the
isospin limit, the momentum structure with the second term F’y vanishes when the
outgoing pseudo-scalars are both on-shell. Notice that this off-shell function depends
on the adopted parameterization of the fields, but the final on-shell amplitude does

not depend on it. They have the values:

1
- 2
~7:0 {1+Zz FV%GV% 1 } )

F* My —q 1
V2
(5.24)
Fy.G 2 !
Fr— _y. tvGv g
0 2 2 M‘in_‘f 1
V2

When the current insertion I_/"O” is connected to a successive number of loops and
effective scattering vertices one gets the amplitude V¥ = /2 [.7? NP + Fr NPEV] (p1—
p2)¥, where N points out the number of intermediate loops in the diagrammatic
chain shown in Fig. 5.6. In can be proved iteratively that the momentum struc-
ture remains. Inductively, one has the linear recurrence from N to N + 1 loops,

.7:](\?)4_1 =2 M .7-"](\?), where the label i = 1 stands for 77 and i = 2 for KK. This
feature can be expressed in the matrix form

Fyii =MFy =M Fy 1 =-o = MVTL Ry, (5.25)

with Fy the on-shell vector form factor at N loops. The 2 X 2 recurrence matrix
takes the form

M = — 37T 57! (1927 Byy), (5.26)
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with the diagonal matrix ¥ = diag (0, 0k ), beingop = y/1 — 4m%/q?. The matrix

7 2GY, ¢ L5

S _ %

Tio = 5677 {1+; 72 M%_QQ} =1 2, (5.27)
V2 2

is the s—channel partial-wave scattering amplitude with I = J = 1, at LO in 1/N¢

[Fig. 5.5(b)]. The diagrams with resonances in the crossed channels produce a tiny

contribution in this range of energies and will be analysed later. In Eq. (5.26) there

is as well the diagonal matrix By = diag (Bg), Bg{)), with the two-propagator
Feynman integral Bg) given in Appendix A.

Since the on-shell VFF at N + 1 loops, fN+1, do not depend on the off-shell
form factor at N loops, .7-_"]'\,, then the initial off-shell parameter fé do not influence
the on-shell VFF. Therefore it will not be considered any longer.

Summing the result in Eq. (5.25) for any number of loops, one gets a geometrical
series which can be resummed:

FoS Ay - (z MN> B (—M) A -
N=0

N=0

1

T Fo. (5.28)

The last identity is not trivial and stems from some properties of the matrices
ST ,E ! and Fo. The Y178 %! matrix is proportional to a dimension-one
projector and Fy is precisely an eigenvector of this projector. Thus, M" acting
over .7?0 reproduces again the vector .7?0 times a number. The mathematical details
can be found in Appendix B:

MFy = ) B = - 22 |1 206Gy o B 4 Lpil

(5.29)

where Tr(...) stands for the trace of the 2 x 2 matrix.
The interest of this resummation is to compute the LO contributions to the
width. Therefore, only the absorptive diagrams have been included and only the
imaginary part is under control. The factor #(M) from the all order summation,

together with the tree-level pole in fo, generates a complex denominator. In the
single resonance case it takes the usual self-energy structure M‘Q,1 —q? — £(q%). This
denominator contains a non-controlled real part plus a finite imaginary term, given
by

Im €£(¢°) = Im &(q®) +Im €x(q?) (5.30)

coming from the two-pseudoscalar loop summation. This provides separated con-
tributions from the 77 and the KK channels. The corresponding partial widths
are:

I 2y — (¢ M2 22G%/12 ‘12‘7?90242 1
mép(q") = Cp a4+ 72 0 ) 967 12 (¢" —4mp), (5.31)
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with C; =1 and Ck = % When we substitute the coupling at LO in 1/N¢, Gy, =

F/+/2, these imaginary terms Im £p(q?) agree with the partial widths M ,J‘%P) (¢?)
obtained in Refs. [27, 26] from a simplified single-channel analysis. This energy
dependence for the width was long ago considered by Gounaris and Sakurai from
general arguments [29]. As well, they had exactly the same logarithm in their work
as the one which naturally appears in our calculation of the absorptive contribution
through the Feynman integral Bég).

The correlator of two vector currents and the I = J = 1 partial-wave scattering
amplitude, can be computed in a similar way. For the correlator we begin with a
current effective vertex, like for the form factor, and connect it to a N-loop final-
state interaction, which ends into another current effective vertex. For the scattering
amplitude we start from a scattering effective vertex and go on connecting loops
and scattering vertices in the same way. A similar re-scattering effect appears in the
three quantities. The resulting (s—channel) I = J = 1 scattering amplitude takes
the form:

1

1 — Tr{M} Tio-

[ee]
T = 2(2 MN> ST =% Q-M)TIETh T =
N=0
(5.32)
The matrix structure (1 — M) ! only depends on the scattering effective vertex
and on the two-intermediate particle loop. As these are identical for the three
quantities (VFF, correlator and scattering), the final-state interaction dresses the
bare resonance pole in a universal way, providing the same complex pole for all
processes.

5.6.2 Low-Energy Matching Conditions

All the former calculations must reproduce the QCD low-energy behaviour pro-
vided by the xyPT framework. This allows to fix the polynomial ambiguities at a
given order in the chiral expansion. The procedure to handle this ambiguities will be
to consider the divergences A, from the infinite Feynman integrals Bas as a constant
parameter which needs to be fixed. This is really what one does when renormalizing
a process in QFT, although in a more careful and rigorous way. The aim of this
subsection will be to provide this “unknown constant” with the proper value in
order to reproduce adequately the low energy dynamics of QCD, which is xyPT.

Therefore, the resummed VFF from Eq. (5.28) is expanded in powers of the
momenta up to order O(E*) (notice that for the form factor this means two powers
less of the momenta, i.e. O(qg?), since one power is in the external current and other
in the Lorentz structure):

Fy, Gy, q2 2q2 1 _(x
F=1+Y 7 M 3T {Bg’ + 5352)} + 0(qY). (5.33)
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It is then compared with the standard O(E*) result from the yPT calculation.
We will take the ordinary M S — 1 renormalization scheme [40]:

2Ly(w)g* 24

f:1+ F2 F2

1
{BD (s + 588 sy} + 0l (53)

where the divergence Ay, has been subtracted in Bg) (#4)3r5_1>» which now depends
in the renormalization scale y. However, it is exactly canceled out with the u-
dependence in the low energy coupling L{(u).

At leading order in 1/N¢, we have the well-known saturation [19, 21]:

=3 PGy, (5.35)

L
ol 2 M7,

Ng—oo -

3
with Fy;, Gy, and My, the LO parameters in the RxT lagrangian. Therefore the
full renormalized constant contains a fixed LO contribution plus an unknown term

NLO in 1/NC:

Fy,Gy;
Li(p) = L9|Nc_mO + ALg(u) = Z m + ALg(p), (5.36)
1 i
where the whole p dependence of Lg(p) is in ALg ().
Through this relation one may match both form factors —Eq. (5.33) and Eq. (5.34)—
and determine the finite values which the Feynman integrals Bg) must take. Hence

r(P)

this Feynman integrals become finite and are denoted as B
order of the matching, they are equal to [27, 26, 63]

and, up to the chiral

Bi" = BE (Wars 1 — %ALg(M) =

2
= —219; [UP ln(”P+1)+ln( )—g—}—smp]—%ALg(u),

(5.37)
The renormalization scale dependence of the O(E*) xPT coupling Lf(u) —provided
by ALg(u)- cancels out with the explicit logarithm In (m%/u?) in the Feynman
integral. Therefore Bf,[ALg(1), ;1] depends on ALg(u) but it is really a scale inde-
pendent quantity.

The resulting vector form factor from (5.28) takes then the form

FyGy, ¢
1+Z F2 M2 _

q 2q _
<1+Z F2 M2_ >F2 [B()+ B22()

—_

F o=

Sl-

(5.38)
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With the information obtained from the VFF we obtain as well the (s—channel)
1 = J =1 partial-wave scattering amplitude,

2
2 _ 00K
. 967rf2< +E o M&— ) o V2
= 2
X, P \2 [ L] | Tz %k
1+<1+Z O >F2 [B22”+23 ] V2 9
(5.39)

with B;’Q(P) being the same as in the VFF due to the optical theorem.

5.6.3 Scale Running

When the low-energy matching was performed, the term ALg(u) was left as a
free parameter. It appeared as an extra constant in B;’Q(P). This also pointed out
an ambiguity in the election of the scale and in the renormalization scheme, usually
MS — 1 but not the unique one.

For simplicity we will analyze this feature in the single resonance case and with
the leading values in 1/N¢ of the couplings, Fy; = v2F = 2GY;.

In this situation the VFF becomes

9 1
F= 2 A24V1
2M7, q 1
My —q¢* + f‘;l ( r(ﬂ)+2B22( )> V2
1
= 2 2 M‘Q/l( )
2M q 1 ’
M) — ¢+ DT (i L) =) \
f MS—1 NC
(5.40)
where ALL()
2
My (p) = M¢, [1 - 7le) : (5.41)

The terms order 1/NZ in the denominator of the second line of Eq. (5.40) must
be dropped out since our calculation included just the one loop contribution, i.e.
O(1/N¢). In addition, this second line is easily obtained by multiplying the nu-
merator and denominator of the first line by the factor [1 — %M‘zfl ] After

this operation ALg(u) shuffles from B;’Q(P) to the combination of parameters given
in M (). Thus instead of two independent constants, ALg(p) and M, one only
has the combination MX2/1 (1) replacing everywhere the parameter M‘Q,1 . The term

ALg(u) disappears from Bg’Q(P), hence leaving in the regularized Feynman integral
an explicit dependence on p.

b
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Moreover, the use of the effective parameter M¢, (1) in (5.35) allows us to recover
the whole value of the xPT running coupling:

Fy, Gy ( 1 )
Li(p) = L AL (p) = A L o) | 5.42

Therefore the parameter M‘z,1 () captures the right dependence of Lg(u) on the
renormalization scale, up to the considered order in 1/N¢ of the calculation (this
order lays even beyond the order O(E*) in xPT). In the phenomenological analysis,
we will adopt the usual reference value y = 770 MeV. Later on, a numerical study
at different scales p will be performed, examining the corresponding values of Lj(u)
derived through (5.42). We will see that the neglected NNLO in 1/N¢ corrections
are indeed tiny and that the results are compatible with xPT for any scale. The
prescription of eliminating ALg(u) from B;’Q(P) is assumed in the following.

When studying the experimental data, we will observe that the couplings Fy,
and Gy, are not exactly the ones provided by the large-N¢ limit, but they own
small deviations. These parameters suffer also slight variations when more than one
resonance is taken into account. In that case, the scale dependence does not go
in such a straightforward way to the parameter My, (i) as we have seen in (5.41),
although the relation is still obeyed within a given accuracy. The other parameters
are going to suffer very tiny modifications with the scale but, at the precision of our
study, they remain like constants.

5.6.4 Phenomenology

We are going to analyze the experimental data for the vector form factor, which
is much cleaner than the one from 77 scattering. The vector form factor can be
experimentally tested in the photo-production of pseudo-scalars from ete™ annihi-
lation or in 7 decay. Although there are many data from eTe™ [66, 67], we have
decided not to consider them, as we have not taken into account the w—p mixing.
We have studied the 7 — v;27 data from ALEPH [65], which provides a covariance
matrix to account for experimental error correlations. Similar data from CLEO [68]
and OPAL [69] are also available.

The range of validity up to which we will extend our fit is at most /g2 < 1.2 GeV.
Beyond this energy, multiparticle channels become important. First we perform a
fit to the modulus of the VFF (ALEPH data) with the p(770) resonance only. This
yields the parameter My, (1) and the couplings Fy, and Gy,. We choose as matching
scale uy = 770 MeV, take the pion decay constant F' = F;; = 92.4 MeV as an input,
and fit the region 2m; < /s < A = 1.2 GeV. We obtain the values shown in
Table 5.1, with a x?/dof= 24.8/25. The corresponding VFF is shown in Fig. 5.7.
In order to estimate the systematic errors, we have varied the chiral parameter F'
in the interval F' = 92.4 + 1.0 MeV and the final point of the fit A,,, between 1.0
and 1.2 GeV. All these effects yield a more conservative result with a broader error.
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Chiral Coupling p(770) p(770) + p(1450)
My, (o) 845.4 + 1.1 798 MeV 839.4 + 1.4 735 MeV
|Fy. | F| 1.696 + 0.008 *9-959 1.669 + 0.008 + 0.017
|Gy, | F| 0.695 -+ 0.004 3911 0.670 + 0.005 3912
Fy, Gy, |F? 1.178 £ 0.010 *3:909 1.119 £0.012 +5:0%
Ly (o) = X 2F P | (7.04%0.055532) 1072 | (6.79 +0.09539) - 102
My, 776.0 £ 1.6 733 MeV 773.9 £2.0 193 MeV
| - 156.2 £ 1.6 133 MeV 150.2 £ 2.0 97 MeV
Mpere 764.1 £2.7759 MeV 770 £ 3 4 3 MeV
T'pole 148.2+1.9750 MeV | 137.3 +2.6 2.6 MeV

Table 5.1: Determination of some RxT and xPT couplings, at the scale ug = 770 MeV, from
the VFF fit. The parameters Fy, /F and Gy, /F have the same sign since Fy, Gy, /F? > 0.

The first error in Table 5.1 is the one provided by MINUIT [70], while the second is
our estimated systematic uncertainty.

Besides the lagrangian parameter My, (i), we can determine the more usual
“physical” masses: the Breit-Wigner mass M,,, and the pole mass M;,’°le. The
energy where the phase-shift ¢, = 7 defines the Breit-Wigner mass M, and the

=M, %= 29]. The complex pole
BW

BW ds

of the observables in the second Riemann sheet, sho' = (Mp°'e — i I'5°"/ 2)2, defines
the alternative pole parameters. In Table 5.1 we have written the resulting values for
these two different mass and width definitions. In order to derive those numbers, we
have taken into account the correlations among the fitted parameters My, (uo), Fy;
and Gy, . Owing to the off-shell g2 behaviour of the denominator, the pole mass turns
out to be lower than the Breit-Wigner mass, in agreement with former works [71].
The opposite behaviour would have been obtained from a constant Breit-Wigner
width parameterization.

In Fig. 5.8 we plot the phase-shift ¢, . In the low-energy region /s < 0.7 GeV,
the experimental data appears to be slightly above the predicted values. The same
behaviour can be observed in previous theoretical studies [27, 28, 30, 32, 63]. The
experimental errors are probably underestimated in this region, although higher-
order chiral corrections could induce small variations to our predictions. Other
studies [71] seem to have a better control of the region closer to the 77 threshold

corresponding width is given by 1/T"

s=M?2 [
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Figure 5.7: VFF fits for /s < 1.2 GeV to the 7 — v,2r ALEPH data [65], with one and
two p resonances. ete” — 27 data points from NA7 [66] are also shown.

and dominated by the xyPT constraints. Beyond this region the agreement of our
one-resonance analysis with the scattering data is good up to /g2 <1 GeV. Above
this point the prediction for the scattering amplitude begins to fail.

In order to better study the region around /s ~ 1 GeV, we include a second
vector multiplet with the p(1450). The effect of the tail of the p(1450) can modify
slightly the distribution in this region, where still the p(770) dominates. Nonetheless,
we cannot study energies much higher than /s ~ 1.2 GeV, since some not well-
known strong inelasticities do arise (the experimental phase-shift data does not
seem to pass through 37/2 at the p(1450) mass [99]). Clearly, the two-pseudoscalar
loops cannot incorporate all the inelasticity needed to describe the p(1450) region.
Other multiparticle intermediate states may be responsible for this large effect.

We have fitted our theoretical determination of the scattering amplitude with two
resonances to the experimental phase-shift in the region 0.7 GeV< /s < 1.2 GeV.
The fit is not very sensitive to the p(1450) mass, allowing a wide range of values.
Nevertheless, it requires that My, (10) 2, 1550 MeV. Taking My, (110) = 1550 MeV,
the fit to the phase-shift gives My, (o) = 841.8+0.6 MeV, Gy, /F = 0.6631+0.0027
and Gy,/F = 0.373 £ 0.028, with x?/dof= 18.8/22. The fitted value of Gy,/F
increases for larger masses of the p(1450) resonance; the central value grows to 0.57
for My, (10) = 2000 MeV. The precision of Gy, /F is improved, as expected, because
the phase-shift has a larger sensitivity to this parameter. The differences between
the analyses of ¢, with one and two resonances are tiny for /s < 1 GeV. Beyond
Vs ~ 1.2 GeV, the description breaks down because the pathological T(2n + 1)
behaviour of the phase-shift in the neighbourhood of the p(1450) still remains [see
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Figure 5.8: Phase-shift ¢, of the 7 scattering amplitude. The parameters employed for
the one-resonance graph are the same as in Fig. 5.7. The curve with two resonances takes
the values from the fit to the scattering amplitude, with the inputs My, (uo) = 1550 MeV
and F = 92.4 MeV.

Fig. 5.8].

We have performed next another fit to the VFF ALEPH data, with two vector
multiplets and taking A, = 1.2 GeV. Since in this region the data have very small
sensitivity to the p(1450) mass and the coupling Gy,, we introduce as an input the
value of My, (10) and the corresponding coupling Gy, obtained from the phase-shift
fit. The results of this VFF fit, given in Table 5.1, have a x2/dof= 14.7/24. The
systematic errors have been estimated varying the pion decay constant in the interval
F =92.441.0 MeV and the value of My, (o) in the range? from 1550 to 2000 MeV,
which implies Gy, /F = 0.37 + 0.03 732, In this analysis we have recovered as well
the Breit-Wigner and pole masses and widths for the p(770) meson. We have not
tried to determine the p(1450) pole, because it would lie in a region which is not
well described. We also give in Table 5.1 the yPT coupling Lg(u0) at the matching
scale pg = 770 MeV.

The VFF fit is sensitive to the product of couplings Fy,Gy,/F?2. One gets,

Fy, Gy, /F? = 0.007 £ 0.024 70 0% . (5.43)

For the range of Gy, /F values quoted before, this implies Fy, /F = 0.02 £ 0.06 4_'8'_82.

*Notice that the one-resonance results indicate that My (po) is around 100 MeV larger than M,
or MP°®. The experimental situation of the p(1450) is rather unclear and it might be possible that
it has an even higher mass or that a strong interference of two vectors, p(1450) and p(1700), is
needed to properly describe the data [82]
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Figure 5.9: Comparison between the usually quoted value of the chiral coupling L}(p) [6]
(shadowed band) and some determinations from the fit at several matching scales: L} () =

PP 212;‘2?(2) The smaller error intervals are the statistical uncertainties given by MINUIT,

the larger ones indicate the total errors including systematic contributions.

Modifications of the p(1450) inputs produce sizable variations on the p(770)
couplings. Thus, a better knowledge of the p(1450) is needed to get more accurate
values of the p(770) parameters from a two-resonance fit. The results are consistent
with the more precise determinations from the fit with only one resonance, which
we take as our best estimates. Notice, that although the two resonance fit has a
slightly better x?, it leads to a worse behaviour at higher values of s outside the
fitted region (s > 1.2 GeV).

5.6.5 Running of Lj(u)

We have seen in Section 4, from a simplified theoretical analysis, that the param-
eter My, (1) depends on the xPT renormalization scale adopted in the loop function
B;’2(P), in such a way that the physically measurable VFF is scale independent as it
should. The dependence of My, (i) with the scale was given by the equation

M2 M2 _ M‘z/l 1 u% 544
1/1(#2)— Vl(M)_647r2F2 n M_% ) (5.44)

as L (u2) — I (11) = AL (ptg) — ALg (1) = —m5iz In (%) The theoretical running

of M?, (1) induces a scale dependence on the predicted value of L(u) in Eq. (5.42).
Notice that this relations are true just up to NLO in 1/N¢. In fact, in the right-
hand-side of Eq. (5.44) one finds the factor M7, /647> F? without specifying the scale



92 Chapter 5. Vector sector

02
A R R R
T I T I T I T I T I e T I T
1 -08 -06 -04 -02 ® 02 04
R -02-F

Figure 5.10: Allowed region in the (Ry,R4) plane. The shaded zone on the left corre-
sponds to the one-resonance study, while the dotted zone results from the analysis with two
resonances.

for My, since its variations contribute at NNLO in 1/N¢.

When the phenomenological fit is performed at different values of u, the param-
eter My, (i) increases with y. The other parameters of the fit remain essentially
unaffected, this is, they suffer modifications much smaller than their errors. Varying
the scale y in the wide range between 0.5 GeV and 1.2 GeV, the x? varies less than
2%.

The fits provide a full table of values for the parameters, similar to Tab. (5.1),
for every scale y. From them one may derive the corresponding low energy constant
L§(u) —through the expression of Eq. (5.42)-. These results are compared in Fig. 5.9
to the usually quoted values from xPT [6]. At the standard reference scale pg = 770
MeV, one obtains from the resummed expression

Li(po) = (7.04 +0.05312) . 1073, (5.45)

which improves considerably previous determinations [6, 100]. The systematic errors
would increase to 00 if we would have considered the fit with two resonances.
The lack of knowledge about the second multiplet parameters introduces an extra

uncertainty of the same order as the one we have with only one resonance.

5.6.6 Large—N¢ relations

As we work at higher orders in 1/N¢, our experimental results have next-to-
leading deviations from the LO values provided by the two short-distance QCD
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relations from the vector and axial form factors at LO in 1/N¢:

2
1o MO g rAzzw:O. (5.46)
- i My,

We are going to test now how well they are satisfied. One must be careful. At
LO in 1/N¢ one has in the former relations a set of non-zero terms which cancel
out when summing up. However at NLO one expects deviations of order 1/N¢ in
each term which make the relations be not fully fulfilled. However, it is possible to
estimate the deviation as roughly 1/N¢ times each term, with N¢ = 3 in physical
QCD. The largest contribution in the summations are given by the first multiplet
parameters. In the first relation the contribution from the p(770) is Fy; Gy, /F? ~ 1
and the expected deviation is Ari? = 1 x 1/N¢. For the axial form factor relation
The deviation in the axial form factor constraint should be of Ari{‘ =3-1072 x 1/Ng,
because its larger term is 2Fy, Gy, /M‘Q/1 ~ 4Ly ~ 3-1072. In Fig. 5.10, the variables
(Ry, R4) have been plotted employing our phenomenological determination:

Ry = Ry

= 5.47
A’f‘%ﬁ' ( )

AP

where ry and 74 have been conveniently normalized with the appropriate factors
Arth and Ar'}, such that the expected deviations from zero are O(1). A scanning
of the range of values has been performed in the graph, using the RxT couplings
obtained from the VFF fits. One can see in the figure that the separation from the
large—N¢ QCD relations is indeed of the expected order for both types of fits (with
one or two resonances). Thus, the short-distance relations in Eq. (5.46) are well
satisfied, within the given accuracy.

A simpler check can be done just by analysing the experimental determination
for Fy and Gy with the expected results at LO in 1/N¢ for the single resonance
case (Fy = 2Gy = F/2):

v = B _ 1 — 0.199 +0.00600%
FV|NC—)oo FvV2 —0.020
(5.48)
Gy _ Gy _ +0.016
=1 = — 1 = —-0.017 £ 0.006
Gv|Ng>oo F/\V2 —0.027 »

which, as expected, deviates from the theoretical prediction within a range of the
1/N¢ = 33%.

5.6.7 Uncertainties from Higher-Order Corrections

There exist many more diagrammatic contributions which have not been included
in the former results. I show now that, when the production of multiparticle states
is neglected, it is possible to define a generalized summation of Feynman diagrams
with two-body topologies. It makes use of a kernel function I, associated with the
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two-body scattering amplitude, which incorporates those contributions not included
in our effective s—channel vertex of Fig. 5.5(b). The resulting VFF can be formally
written in a very compact form, given in Eq. (5.58). Making a 1/N¢ expansion of the
kernel K, one can easily check that our s—channel result in Eq. (5.28) corresponds
to the leading-order approximation. The first correction originates from a single
resonance exchange in the f—channel, which induces a subleading contribution of
O(1/N¢) to the kernel K. The exchange of n meson fields contributes to the kernel
at O(1/Ng).

Summation of general two-pNGB absorptive cuts

The Dyson-Schwinger summation performed before incorporates the dominant
s-channel contributions. Moreover, the adopted matching procedure to the low-
energy xPT results takes care of tadpoles and local contributions, to the considered
order in the momentum expansion. There are, however, many more diagrammatic
topologies which have not been considered yet. Neglecting the small corrections at
these energies coming from multi-particle intermediate states, it is possible to define
a generalized summation of Feynman diagrams with two-body topologies.

As we saw before, the effective vertex in Fig. 5.5(a) for the vector current inser-
tion producing a PP pair of pseudo-scalars shows the momentum structure:

—

VE)M = (p1 —pg)y [fo(s) PTl,j -+ .7:""0(5) PLIIf ] \/ﬁ, (549)

with PR” = gt — %3# and P} = %3# the usual transverse and longitudinal Lorentz
projectors. In a similar way, the effective vertex in Fig. 5.5(b) describing the s—
channel scattering of two pseudo-scalars, when projected on the P-wave (I = J = 1),

takes the form:

,7?):

(p1 = p2)? [B71T(s) D7 Prg + BT 0() ST oG] (= B5E) (ky — ko)a

(5.50)

with p1, pa (k1, ko) the outgoing (incoming) momenta. The matrix T}, is the
corresponding I = J = 1 partial-wave scattering amplitude.

Let us define a general kernel jc(man) (K1, k2, p1,p2) associated with the two-body
scattering amplitude from (n)-type pseudo-scalars to (m)—-type pseudo-scalars. This
kernel, shown in Fig. 5.11(c), contains the identity operator (no scattering) plus all
interaction diagrams without intermediate effective vertices (5.50).

Now let us connect the effective vector current insertion 170“ to the kernel K(m),
as shown in Fig. 5.11(a). The outgoing pseudo-scalars from the kernel are joined
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Figure 5.11: Basic pieces of the general summation of two-body topologies. The first row

shows the general kernel K while the second one only includes the contributions from ladder
diagrams.

again into an effective scattering vertex (5.50). This generates the dressed structure:

Vi = (p1—po)’ [ STITE(5) ST Pr§ + BT (s) B P |
(5.51)
x [[(s) Prty, + T(s) Poy] | Fols) Prle + Flo(s) Pt | V2,

with the matrices II(s) and II'(s) defined from the kernel integral

H(mm)(s) PTZ + Hl(m,n)(s) PLZ _ (_48_;”) y
q
dk'?  dk? N i
/WW { (kll _k,2)aA( )(kl?)A( )(klg)

KO (', K, ke, ko) A (62) A®) () (ky — ko) }

(5.52)

where A(™)(k?) is the propagator of a (m)-type pseudo-scalar. Performing the

trivial products of Lorentz projectors, the vector current matrix element with one
intermediate kernel and ending into an effective scattering vertex takes the form:

vE =

(b1 — p2)” [S1T (5) S (s) Fo(s) Prls + B7MT%50()S 1T (s) Fro(s) Pt V2.
(5.53)
When the outgoing pseudo-scalars are both on the mass shell the longitudinal term
becomes zero.
We can easily iterate this algebraic procedure and consider a series of N interme-
diate kernels and effective scattering vertices, attached to the current insertion. The
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first kernel is connected directly to Vo“ ; then it comes an effective scattering vertex
To, followed by another kernel, and so on. The outgoing pseudo-scalars are attached
to the final effective vertex. The resulting contribution to the VFF is expressed as:

Vi = (- p)’ | CTS TN F Prit 4+ (ST TIT)Y Fo Pt | V2,
(5.54)
Thus, the summation from N = 0 to infinity becomes:

P —

(p1 = po)” [(1 = BB~ FpPrt 4 (1 = 57105, S 1T) L P Pt V2.
(5.55)
This sums all diagrams ending in an effective scattering vertex. Finally, we add
the diagrams where the last effective vertex is connected to the outgoing pseudo-
scalars through the kernel. This extra contribution is given by the form factor G
of the factorized element (p; — p2)”,
Gty = (pr—p2)? |G Pty 4 G/min) Prig| =

(m,n

(5.56)

dk?
oyt K et 1) ACVGR) A ()

shown in Fig. 5.11(a), which we have separated into transverse and longitudinal
parts. The summation of all types of diagrams gives then,

Vi = (p1 = po)” [G (1 = 21135 10) L Fy Prt
(5.57)
+ g (1= SIS F Pl [ V2.

With the outgoing pseudo-scalars being on-shell, the resulting VFF takes the
compact form:

- —1 -
F=g-(1-37'15,37m) - A, (5.58)

The simplest kernel is the trivial direct connection of the incoming and outgo-
ing pseudo-scalars (X =1I). In that case, the integral (5.52) reduces to the usual
two-propagator loop, Il = —1927 Byg, and G = I. One recovers then the expression
(5.28), obtained through a Dyson-Schwinger summation of s-channel scattering ver-
tices. Eq. (5.58) provides a systematic way of improving the result, with the use of
more complex kernels. The calculation could be organized with the use of a 1/N¢
expansion of the kernel K; the trivial identity operator corresponding to the lowest-
order approximation in this expansion. The first correction comes from a single
resonance-exchange in the ¢ channel, which induces a contribution of O(1/N¢) to
the kernel. The exchange of n meson fields would contribute at O(1/N2).
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Ladder Diagrams

The calculation of higher-order diagrams with an arbitrary number of resonances
exchanged in the ¢ channel turns out to be a very complicated problem as each loop
is connected to others. However the optical theorem relates the form factor diagrams
Fig. 5.11(d) with the scattering amplitude through ladder diagrams, Fig. 5.11(f), in
the familiar way [28, 30, 32]:

ImT" = T'-%,-T', (5.59)
Imgt = »irte~t.x8.gt, (5.60)
implying
T = [Tﬁo—1+0(1)—z'20]_1, (5.61)
¢ = [L+0a/Ne) i (37Tl 5T rO/N)) S5, (5.62)

where the terms O(1), O(1/N¢) and O(1/NZ) correspond to NLO contributions
in 1/N¢, all of them real in the physical region when multi-particle channels are
neglected. The matrix 77, is the tree-level scattering amplitude through a crossed
resonance and the diagonal matrix Yy is just the phase-space matrix but with each
op multiplied by a threshold factor 6(g* — 4m?2).

The basic behaviour of these quantities is driven by the tree-level term, as the
crossed scattering amplitude is tiny at the energies we are considering. It turns
to be important at very high energy, where the {—channel becomes the dominant
amplitude. Thus, the matching of G to the lowest-order contribution plus the
diagrams with only one t—channel resonance exchange is a suitable assumption:

G =~ [1 _ g{R]*l , (5.63)

with Im Gt = S~IT¢ =~1. 53

The general calculation of those higher-order corrections is a formidable task.
We know, however, that in the energy region we are studying the tree-level scat-
tering in the t—channel is much smaller than the one coming from the s—channel,
what seems to imply that they contribute as a small perturbation. To estimate the
size of those corrections, we have analyzed the leading contribution from t—channel
resonance exchange between the final pions. According to the result for the kernel
resummation, it induces a multiplicative correction into the VFF:

7 ¢ 17t —lps 51 r\7 2
Fr[1-6l] 1437557 927Bs)| A, (5.64)
where G! ., is the contribution from a single t-channel exchange.

The complete calculation of G!p is rather involved, since it makes necessary
to address the renormalization of RxT. This is a very interesting issue, which is
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analysed in the next chapter, where a full next-to-leading order in 1/N¢ calculation
of the VFF will be performed. By now, we are only interested in the numerical
impact on the results presented in the previous sections. For simplicity, we will
study G!p, in the SU(2) theory; i.e. we neglect the tiny contributions from diagrams
with kaons in the intermediate loop or in the final state (gffg"’K) = gfng’") =
gt (K.K) = 0). Moreover, we will work in the chiral limit (m, = 0).

Although there are several Feynman diagrams contributing, we only need to con-
sider the dominant one where the current vertex (k}' — k5) produces a 7= (k1) 7% (k2)
pair, which is re-scattered through a ¢—channel resonance. This diagram generates
the interesting non-analytic contributions, plus a divergent local correction which
should combine with the local contributions from the other diagrams to provide a
physical finite result. Since we are interested in the region /s < 2My (i.e. we work
below the two-resonance cut), there are no additional sources of non-analytic terms.
The local ambiguity can be fixed to O(E*) by matching Eq. (5.64) with the known
xPT result. This requires G!p ~ O(E*). The exchange of a vector resonance can
be easily computed in this way. One gets:

e GL M (] 2 - My, My
gt mm) _ W{FQ(lJrﬁ_%)_Lu(l)] (2 qX1+5 q¥1+2
1

2 M? 1 42 MZ 9 35 2
[T | (25 +4+ 2L | 2= -2 - 4 L.
(M‘Qfl>< ¢’ 6Mv1> ’

Since gf‘ﬁm) ~q* /M?,, we can neglect the exchange of higher-mass vector res-
onances. However, we will also consider the t—channel exchange of scalar reso-
nances from the lightest multiplet, with a mass Mg ~ 1 GeV [19, 82] and couplings
¢4, cm ~ F/2 [22]. It provides the contribution:

2
gisgﬂ'yﬂ') — _cdj_ui { |:L12 (1 +

(4m)?f*
2 M2 1 2 M2 1 1 2
+1n<—ﬂ‘2—§) (2?£+6]\q4—§> —2?&—5+%J\QI—§} .
(5.66)
This result includes contributions from the singlet and the octet scalars.

At energies below and around the p(770) peak, these t—channel diagrams give
a correction smaller than 5%, which is within the uncertainties of the numerical
analyses performed in the previous section. However, above E ~ 1.2 GeV the vector
contribution becomes larger than 10% and these topologies cannot be neglected any

more. This kind of diagrams turn out to be very important at high energies.
We have repeated our prev1ous fits to the VFF ALEPH data, including the
correction induced by gf }% = gt () + G Smr . The results of these fits are
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compatible with the ones obtained before, showing that our former studies neglecting
crossed channels provide a good description within the given precision.

5.6.8 Summary of the Dyson-Schwinger summation

A quantum field theory description of strong interactions at energies around the
hadronization scale, F ~ 1 GeV, requires appropriate non-perturbative tools. While
a fundamental understanding of the confinement region of QCD is still lacking, sub-
stantial phenomenological progress can be achieved through effective field theories
incorporating the relevant symmetries and dynamical degrees of freedom.

Using an effective chiral lagrangian which includes pseudo-scalars and explicit
resonance fields, we have investigated the VFF and related I = J = 1 observables
in the interesting 2 ~ 1 GeV energy range. The heavy particles make the standard
chiral counting in powers of momenta useless, because their masses are of the same
order as the chiral symmetry breaking scale. Therefore, we have adopted instead
the more convenient large—N¢ expansion, which provides a powerful tool to organize
the calculation.

At the leading order in 1/N¢, one gets an excellent description of the VFF, far
away from the resonance singularities. A proper understanding of the zone close to
the p(770) pole, requires the inclusion of next-to-leading contributions providing the
non-zero width of the unstable meson. The dressed propagator can be calculated
through a Dyson-Schwinger summation of the dominant s—channel re-scattering cor-
rections, constructed from effective Goldstone vertices containing both the local yPT
interaction and the resonance-exchange contributions [27, 21, 26, 63].

We have extended the Dyson-Schwinger summation of effective vertices to han-
dle problems with coupled channels in a systematic way, through the recurrence
matrix M. The inverse matrix (1 — M)fl, generated by final-state interactions,
provides the right unitarity structure of the observables [28, 30, 32]. Moreover, with
an SU(3)-symmetric dynamics (the vertices contain only derivatives and no quark
masses), (1 — M)~ acts just like a pure number [1 — tr{M}]™}. Hence, there is no
mixing among loops and the total decay width is simply given by a sum of sepa-
rate contributions from the different channels, which correspond to the partial decay
widths. An improved diagrammatic summation of more general two-body topologies
has been also given. It includes the smaller ¢—channel corrections, through the 1/N¢
expansion of a non-trivial interaction kernel K associated with the two-pseudoscalar
scattering amplitude.

The Feynman loops fully determine the non-analytic contributions, which are
dictated by unitarity and chiral symmetry. The local corrections, however, are
functions of the theoretically unknown couplings of the effective lagrangian. They
incorporate the short-distance dynamics and take care of the regularization and
renormalization prescriptions adopted in the calculation. A significant reduction
on the number of free parameters is obtained, requiring the different amplitudes to
satisfy the appropriate QCD constraints at large momentum transfer [19, 23]. In fact,
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a very successful prediction of the most relevant O(E*) xPT couplings is obtained,
under the reasonable assumption that the lightest resonance multiplets give the
dominant effects at low energies [21]. We have resolved the local ambiguities of the
VFF, imposing the QCD short-distance constraints and performing a low-energy
matching with the known O(E*) xPT result.

Working within the single-resonance approximation [21], we have obtained a
good fit to the ALEPH 7 — 1,27 data [65], in the range 2m, < /g2 < 1.2 GeV.
At the chiral renormalization scale puy = 770 MeV, the fit gives the values shown
in Table 5.1 for the main p parameters. The corresponding resonance pole sP°'¢ =
(Mpee — iT5%/2)? in the second Riemann sheet is found to be at:

Mo = 764.1 £2.7152 MeV Iocle = 1482+ 19707 MeV.  (5.67)
We have achieved an improved determination of the yPT coupling
L3 (uo) = (7.04 £ 0.057039) - 1073, (5.68)

at uo = 770 MeV. Performing the phenomenological fit at several scales u, ones
obtains the proper running of Lg(u) as prescribed by xPT.

To test the convergence of the 1/N¢ expansion, we have analyzed the deviations
between the fitted parameters and the corresponding theoretical large—N¢ predic-
tions [23]. The differences are found to be of the expected O(1/N¢) size, showing
that the limit No — oo provides indeed an excellent description of the local chiral
couplings.

We have also investigated the corrections induced by the tail of the p(1450)
vector resonance at the higher side of our energy range. The effects are sizable, but
the sensitivity is not good enough to make a precise determination of its parameters
or to disentangle the existence of several higher-mass states. In order to do that, one
would need to study higher energies where other multi-particle final states, beyond
the two-body modes that we have analyzed, become relevant. Moreover, a better
calculation of t—channel contributions would be needed, because they are no longer
small above 1.2 GeV.

To summarize, we have performed a detailed analysis of the p(770) region, impos-
ing all known theoretical constraints. The main p parameters and the xPT coupling
Ly(p) have been determined with rather good precision. More work is needed to
extend the results at higher energies. It would also be very interesting to investigate
in a similar way the scalar sector, specially the pathological I = J = 0 observables.
We plan to address these issues in forthcoming works.



Chapter 6

Perturbative calculation of the
VFF

6.1 The next-to-leading order VFF

It is generally accepted from the analysis of several strong interacting observ-
ables that the LO in 1/N¢ diagrams provide the main contribution [6, 19, 21, 107].
Nonetheless the LO is not always accurate enough and it is not able to accommo-
date the experimental data. Moreover, since the 1/N¢ counting is not an expansion
on a parameter of the lagrangian, it is important to estimate the size of the NLO
terms. The 1/N¢ ~ 33% variation may be a rough bound and further studies should
explore deeper the basis of the 1/N¢ expansion. In this section I show the NLO
calculation for the pion VFF [47, 106]. We will see how the parameters vary due to
radiative corrections within the expected 1/N¢ margin, as expected.

In this chapter I will study the VFF at NLO in 1/N¢, this is, up to one loop.
The detailed contribution from each diagram has been relegated to the appendix
C. In the next sections I will show just the summation of all the diagrams for each
1PI topology. First I show the renormalized self-energies up to NLO in 1/N¢ of the
particles involved in the LO diagrams. Afterwards I renormalize the remaining 1PI
topologies which are relevant for the VFF up to NLO.

Since we are just interested in the renormalization of the ultraviolet divergences
we will consider the massless quark limit. This eliminates the contribution from all
the possible pNGB tadpoles. We have made the calculation for both ny = 2 and
ny = 3 theories in the massless quark limit. The results are completely equivalent
except that for three flavours one has the constant in front of the operator is called
2Lg instead of the definition (—/¢) in the ny = 2 theory.

The renormalization procedure will be the following: First of all we will compute
the renormalized propagators Aj(z,y) = (T{¢"(z)¢"(y)}) of the particles relevant
in this calculation. After that we will compute the renormalized 1PI Green functions
(.9 ()" (y)d" (2)...). Actually we will obtain the amputated Green functions
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I"(...u,v,w...), defined through

(T{...¢"(2)¢" (y)¢" (2)...}) =
(6.1)
= /...dudv dw... A% (z,u) A% (y, v) Ay (2, w)..I" (..u, v, w...) .

The amplitudes can then always be expressed as a set of finite renormalised 1PI
topologies I'"(...u, v, w...) linked by finite renormalised propagators Aj(z,y) (here I
mean the full propagator, not the free one).

For the VFF with physical (renormalized) pions there are only two possible
decompositions in 1PI sub-topologies. They are shown in Fig. (6.1). The first possi-
bility is the production of the renormalized pions without any intermediate tree-level
propagators. The second possibility is given by the diagram with an intermediate
renormalized vector propagator. Therefore the only propagator that we can put at
tree-level is the vector one in the second option. Any other internal propagator will
be within a loop in the 1PI blocks. Through this decomposition one has a general
classification for any possible Feynman diagram.

The matrix element will be then given by the summation of both contributions:

V2F(q*) b —p2)* = V2F(q") (bl —p2)* + i9"(q)hg - AT (q)*” -il“r(pl,p(z)pa),

6.2
where F, (¢?) contains the contributions from the first type of diagrams, i@"(q)gﬂ
is the amputated renormalized Green function vector current — vector resonance,
A{,(q)o‘ﬁ’p" is the propagator of the renormalized vector field, and iI'" (p1, p2)ps is
the amputated renormalized Green function V' — @w. Each of these elements is
finite and will be computed in the next subsections.

To end with, just remind that in the case of more than one vector multiplet, one
may also have topologies as the ones in the second option but with a renormalized
propagator from each different multiplet in the intermediate state. This case requires
a further study and it is not considered here.

6.1.1 Chiral singlet mesons

In real QCD, with N¢ = 3, the U(1) 4 symmetry generator breaks down at the
loop level. Thus the Goldstones turn out to be an SU(ny) multiplet instead of a
U(ny) one.

However this axial anomaly is proportional to 1/N¢ and thence in the large N¢
limit the symmetry gets restored. This provides a clear explanation of the U(ny)
classification of the resonance multiplets instead of the naively expected SU(ny) [5].
Moreover, there arises an extra Goldstone boson, singlet under the chiral group,
which must be put together with the remaining n?c— 1 mesons from the spontaneously
chiral symmetry breaking.

When studying phenomenology one should also consider that this Goldstone
singlet, 71, gains mass both from quark masses and a contribution proportional to
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Figure 6.1: General 1PI decomposition in terms of renormalized fields. .

1/N¢ from the axial anomaly. Nevertheless in our ny = 2 calculation the part
coming from the u and d quarks will be small. At first one should consider also the
7o mass proportional to 1/N¢ but since the 7’s only occur at the one loop level, the
mass effects come at the NNLO in our counting. Thus we expect the massless limit
to provide a fair initial estimation.

Not considering this singlet produces large asymmetries between the ny = 2 and
ny = 3 cases. If the 7o is not included one obtains large renormalizations for two
flavours which become small for three. Once all the mesons, Goldstone bosons and
resonances, are classified in U(ny) multiplets this queer effects disappear. To obtain
the renormalizations for n;y = 3, in the chiral limit, one just has to multiply by a
factor 3/2.

The meaning of the 77 meson in U(2) may seem something more obscure than in
U(3). In U(3) one actually has two n’s with a contribution to their masses propor-
tional to the mass of the strange quark. When going to U(2) m; is taken to infinity
and one combination of the n’s decouples whereas the orthogonal combination (with
mass just proportional to 1/N¢ from the axial anomaly) remains as an 7 singlet in
U(2). Thus this “light” degree of freedom gets a mass proportional to 1/N¢. Since
at this level of calculation the n’s do not appear in the absorptive cuts of the VFF,
the amplitude is analytic on the 7 mass. Thus, being it already 1/N¢ and occurring
the n just at the one loop level, one can fairly assume that the NNLO corrections
from the 7 mass are small.

6.1.2 Pion self-energy

The first step in any quantum calculation is to make the two-point Green function
finite. Here, I will refer to the charged pion though the neutral case is completely
equivalent. Since we are working in the chiral limit this renormalization is identical
for every pNGB.
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The free propagator for the bare field is the usual

_ d'q (e
ASTB)(x,y)‘F = <T{7TE;?) (.’E)ﬂ'(B) W} Fr = /(271-)4 e~ 14(x—y) A;B)(q2)‘F . (6.3)
with its representation in the momentum space,
AB(P)| = 6.4
D@, = (6.4)

Nevertheless when computing loops this Green function can be decomposed in a
set of 1PI sub-diagrams linked by free propagators of the bare particle:

(Tl @) W)}) = (T{nly (@75 W)} )r +

+ / d*ud*v (T{r ) (@) (W)} ) (=2 (u,0)) (T{nly ()75 W))F + -
(6.5)
and thus following the geometric series of the Dyson summation. This can be easily
expressed in the momentum space:

AP @) = APl + AP —inP?) AP, + =

¢ -2
(6.6)
The propagator of the bare fields is not physical due to the ultraviolet divergence
which lies within the bare self-energy —i%(5) (z,y). To make it finite one has to per-
form a wave-function renormalization, 7r(lLB) =(1+ 5Zﬁ)%7r;t. As we will see below
in the explicit calculation, there is an extra divergence which can be removed either
through a field redefinition or through extra counterterms in the lagrangian propor-
tional to the EOM. Both procedures are equivalent but none of them physical: At
NLO order, the observables are not dependent on this higher order renormalization.
Hence one has the finite propagator of the renormalized fields,

Al(z,y) = (D{n} (@), W)}) = Z; (Tl @m0} = 2 AP (,y),
(6.7)
which again admits the decomposition in 1PI blocks linked by renormalized free
propagators in terms of the renormalized mass:

(T{r"(z)n"(y)}) = (T{n"(z)n"(y)} )F +
(6.8)
+ / dhu dbo (T (@) ()} p (=57 (u,v)) (T{x" ()7 (1)} e + -



6.1. The next-to-leading order VFF

105
V,S ~
7N 57 11, Tho
Tt Tt Tt {1 Tt
¢
a) b)
Figure 6.2: Pion self-energy at NLO in 1/N¢ .
and in the momentum space:
AL(@®) = AL@)|p + AP (—iXh(e?) AL@)|p + - =
z. (6.9)

¢ -Th)

And this defines the renormalized self-energy that is computed in this work. The
pion self-energy will be renormalized in the on-shell scheme —i.e., the expansion in ¢
of the renormalized self-energy —i¥)7 (p?) starts at O(p*)—. Nevertheless, the usual
M S — 1 subtraction scheme will be employed for the remaining Green functions.
The diagrams that contribute to the pion self-energy at this order can be seen
in Fig. (6.2). It receives contributions from vector and scalar resonances.
The one loop amplitude in Fig. (6.2) yields

~loop (2 2GY ng 2 s, pt 2 2\2 (.2 2
4c2n 4 9—
+i7f o {Ao(Mé) [pz + —J{'}z] + (v* — M3) J(qZ;o,Mé)} =
S

. omg [2G3 MZ [3) 3 M 1
P _2L{ 72 F‘Q; 13';02 T sz +322”2 "
oy Acqg Mg [_ Ao 1 Mg, 12]}
F? F? | 162> 16x%  p? @ 327
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which contains ultraviolet divergences which need to be renormalized. The function
#(x) which appears in the O(p*) term is defined by:

2
4 (37) -
=(p2—M2)27(p2;0,M2)—p2dip2[(p2—M2)27(p2;0,M2)] = (611
p2=0
(2 ar2\2 5,2, 2_2M2
- (p M) J(p aOaM) p 327’(2,

being ¢(0) = —1/6.
The counterterms from the LO lagrangian come from the pion kinetic term,

‘Cfm[ﬂ-ztB)] = BMWF—B)(?MW(_B)’ (6.12)
through the wave-function renormalization m(p) = (1 + 62 )%
Ly nip] = LX) + 62y Qumt Oim, (6.13)

The wave-function redefinition §Z, can be tuned to cancel out the O(p?) divergences.
However, some extra terms with the O(p*) xPT structure are required to remove
the O(p*) infinities:

Liy = .. +ily(x— 052 (u)) — La( OFM (u) OFCM (u) ) (6.14)

where the hermitian operator (’)EOM (u) vanish when the equations of motion from
the Lo, lagrangian are applied, as given in Eq. (3.39) and it is hermitian. In the
massless case only Elg is needed. Actually at this level the parameters 611, 612 are
not physical and are equivalent to pNGB field redefinitions. However I include them
here for completeness.

Therefore one has the counterterm contribution to the pion self-energy:

4,
—iS(p?) = i6Z, p® — wlfz(“ )t (6.15)
which for the renormalizations
_ 2G%Y 3ME ny
(6.16)
4¢% M3 nf{ M§_1}
M AT A L i S
and
N . N - np2G3 +4c2 X
lia = Biy(p) + 0012 (p) ; by (p) = — L2V =4 2 (67

2 F? 6472
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eliminates the divergences in —iX.loP.
Summing the counterterms to the one-loop diagrams the renormalized pion self-
energy starts now at order O(p*):

4 2 2 2
- 2 _ . p 2 7 QGan MV P
—i% (") =~ {6471' o) + 3 [n7+¢ ;
4c§nf M2 p?
e I | (S

At NLO in 1/N¢ the only contribution to the VFF comes through the wave-
function renormalization §Z; of the Goldstone fields and the VFF is independent of
£13.

LO evaluation: Fy = 2Gy = 2v2¢; = F/2

Since we are working at the NLO level one can substitute the value of the res-
onance couplings at LO in 1/N¢. These were obtained through some QCD short
distance analysis on a set of form factors, Green functions and scattering ampli-
tudes [23, 22, 21]. This gives:

_ ng (M -3MP) ny 3 My My 1
0%z = 3 Hg2pr Mo Tiger B2 Topt
ng Mg {1111\_42% _ 1} (6.19)
2 167°F 7 2(
-~ n
Slia(p) = —=f 32?2 -

6.1.3 p self-energy

We will renormalize the p° field which is the relevant one in the neutral current
matrix element. However, in the chiral and large N limits all vector self-energies
are identical.

The free propagator for the vector field in the antisymmetric formalism is:

V,po v o d4q vV, po
AP @)l = TV @ VWD) = [ 5 M@, (620)
being the free propagator in the momentum space
2 2

Aer(g) = 2 Ag) + Q) (6.21)



108 Chapter 6. Perturbative calculation of the VFF

with the projectors

A wvpo = # (Guplo — Govuds — (p <> 0)) ,

[\

(6.22)

# (gNPQUQJ — 9ov9ube — q29upgua — (p ~ 0') ) ,

NP pwpo = -
Some properties of these projectors and the free propagator can be found in the
Appendix B.

In quantum field theory a massive spin S = 1 field can be expressed either by a
4-vector V* (Proca formalism) or by an antisymmetric tensor V** of order two. In
this second formalism the tensor actually contains six degrees of freedom; it describes
not one but two vector states. The operators A(g)hy and Q(g)hy project over each
of the two vector particles. Since RxT for the lightest resonance multiplets contains
just one vector multiplet with a pole at ¢> = M‘Q, the second state (the one related
to the Q-projection) must not propagate. Its propagator does not contain poles (it
is constant) and its degrees of freedom are frozen.

When the vector field interacts the free propagator gets modified. However, it
can be still decomposed in a set of 1PI blocks connected by free propagators. The
renormalized self-energy —iXqp .4(u,v) of a vector field is finite and is defined from
the two-point Green function of the renormalized fields, as it was for the pion field:

(T{V™(z) VP2 (y)}) = (T{V*VP7h)r +

[dtudto (TR @ VI E (<8 l,0) (TVAD V@] +
(6.23)
with the self-energy —iEZb,cd(u, v). It obeys the symmetry properties

M (2,y) = —AP (2,) = —AF (@) = AP (@) (6:24)

Due to this antisymmetry of the vector fields V' the self-energy definition is am-
biguous. However, at the end of the day the only part contributing is the one obeying
the antisymmetric properties of the tree-level propagator. A general review of its
properties can be found in Appendix B.

In the momentum space the full propagator would be

§ B , v.ab . d, _
AP (g) = APl + AY()| (DY, @) AP+ =

= (el — M), CiShaa) ) A ()

bl

F

(6.25)
with the antisymmetric identity operator,
1
Ipu,pa = 5 (gupgua _g[wgup) ) (6'26)
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Figure 6.3: p self-energy at NLO in 1/N¢ .

Moreover, the self-energy can be decomposed in the two Lorentz structures

1

. 1, i
—iSgp.0q(q) = —512“5@2):4((1)@,@; — Elzg(qz)Q(Q)ab,cda (6.27)

where the factor % is introduced in order to recover the usual scalar self-energy
convention. The full propagator gets then simplified:

21 2

AP (q) = Alg)Pe +
v ME - ¢ - 2% M - S9(q°)

Qg™ . (6.28)

Notice that once one goes to the quantum loop level the propagator of the second
vector state (the Q-projection) might gain some contribution and one may naively
think that a spurious pole can be generated. However, the vector self-energy at
leading order is proportional to A(g) preventing that, although nothing is known
yet about higher orders.

Moreover, even being a non propagating state, the Q-projection gives a non-
vanishing contribution to the v(z)* — 7w Green function. This contribution is re-
sponsible of the obtention of ¢*/F? terms and of its bad asymptotic behaviour at
large momentum.

The diagrams contributing to the renormalized rho self-energy up to NLO in
1/N¢ can be seen in Fig. (6.3). The part coming from the one-loop diagrams is

_/L'El‘3017(q)uu,p0' _

. 6.29)
; P ns 2G% A B(¢%/1? (
= L A(q lq47f O {_960;2 n (qﬁ/u ) 4 14i72 _

Hence, the factor between the brackets |...] is the projection ¢} defined before and
at this order one finds % = 0.
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The redefinitions of the bare vector mass and the vector wave-function renor-
malization in the RxT lagrangian yield:

LEmy®) = v+

S M 1 M}y
+ =TV V) + 0Zy (=5 VAV VL VPR + =2V V)

(6.30)
where V(‘g) =1+ (5Zp)%VT’“’ and M(QB)V = M2 + 6MZ cannot renormalise the
O(q*) one-loop divergence. An operator with four derivatives is required. Chiral
symmetry allows us to construct the most general chiral invariant terms containing
four derivatives and two vector fields [47, 106]. These operators are not in the LO
lagrangian and their couplings are subleading in 1/N¢. Not all contribute to the
self energy but just three pieces:

Lig = 2PV, V)V, ) + 222({V,,Va} VA {V7,V%} V,, )

+ 2BV, VULV (Y, Va} Vig )
(6.31)
Actually the self-energy depends only on a precise combination Xz = Xz, + Xz, +
Xz, of them.
These counterterms from L£&™ + £, contain an infinite part which kills the
divergences from the loops:

2 .
—iXH (g7 = z'—‘iMZ/I TIHAPT — 57y A;““’”’”\F + 5 A(g)"P7 20X 7(p)g* =

2
= A(q)"re [z'—‘”g" +z"5%(M€, — @) +i0Xz(u)q"| +

2
o [0 +i%ear]

(6.32)
through the values
Mg = 0,

0Zy = 0,2G2 . (6.33)

Xy(p) = -2V _As

6Xz(n) F2 2 19272F2

Summing up everything the renormalized self-energy becomes:

IS (g)r = —ig Al S (6.34)

with the renormalized A-projection,

A2 4 . 2GY ny | Bo(d*/p%) 1
) = {—2XZ(u>+ Oy | Bola i) 11 (635)
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Figure 6.4: Perturbative contribution at NLO in 1/N¢ to the VFF from the p self-
energy.

The finite function By(¢?/u?) is the massless Feynman integral By(g?;0,0) with its
divergence subtracted in the M'S — 1 scheme (Appendix B).

At the perturbative level this one-loop self-energy gives a contribution to the
VFF in the way shown in Fig. (6.4):

FY (1) GY (1) ¢
AF, = TGy =
z F? M (p)? — ¢° — 30 (d°)
_ F&(M)C;?{/(M) q22 , + BvGv 2612 ; E?(q2)2 + 0 <L2)
F My (1) —q F= My —q” My —q Nf(i 325)

where the first term in the second line is the tree-level production and the second
one is the diagram with one intermediate self-energy.

The perturbative description however fails when s ~ M‘2/ and one has to perform
a whole order resummation. The usual Dyson-Schwinger self-energy resummation
is the first step to regularize the real pole. Thus, when computing the physical VFF
one must replace the free propagator Ay (q)**?|, for the dressed one Af, (g)*"*?
in Eq. (6.2). This expression showed the contribution from each 1PI topology to
the VFF. However, as it was shown in the former chapter, this resummation is
incomplete since there are other diagrams that also modify the pole at the same
order as the self-energy and are not resummed.

LO evaluation: Fy = 2Gy = 2v/2¢q = FV/2

Evaluating the results for the values of the couplings at leading order in 1/N¢,
one obtains the renormalizations

SMZ = 0,

6Zy = 0 (6.37)
0Xg(p) = — o Ao

Z\ 2 19272F7”

and the renormalized self-energy A-projection becomes

. B 27,2
SHe) = q4{—2xz<u)+#%f °(q6/“)+14iﬂ2]}. (6.38)
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The insertion of the vector self-energy in the VFF would give the perturbative
contribution:

2
AF; = q =
MZ — ¢ — 2}
F"}(u)g’"v(u) q22 S+ 2q2 ; E;&‘(q2)2 Lo (_17) ,
F My (1) —q My —q” My —q Nc(6 30)

with the value of X{}(¢?) given in Eq. (6.38).

6.2 VH — 7w vertex

Now I am going to start the calculation of more complicated Green functions.
But first I will make some remarks on the computation procedure that is adopted
in this work. The EFT provides us an effective lagrangian in terms of a set of bare
fields and couplings. When performing loops the Green functions of the bare fields
become in general infinite:

(T{...¢'P) ()P (9)¢B) (2)...}) ~ Ao (6.40)

However, through a proper field redefinition ¢(B) = (14+6Z4) > ¢", the Green function
of a number n of renormalized fields ¢" becomes now finite:

(T{...¢"(x)¢" (v)¢" (2)--}) =

(6.41)
Z," T B (@) P ()P (2)...}) ~ finite.

At this point one may describe the amplitudes in terms of the renormalized
fields ¢". Those can be decomposed in finite renormalized 1PI sub-diagrams con-
nected by renormalized propagators, as it is shown in Fig. (6.5). These renormalized
propagators are the free propagator plus corrections due to the interactions.

The Green function to renormalize in this section is the three point function
Vam:

(T{p ()" mf (y) 7 (2)}) =
(6.42)
= /d4u d*v d*w AL (z,u)"P7 AT (y,v) AT (z,w) iT (u, v, w)"

which in the momentum space is represented by iI'(p1,p2)*. We will drop the
symmetric part of iI'(p1, p2)*¥ which gives a zero contribution and will just keep its
antisymmetric part.
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Figure 6.5: General decomposition of the Green functions for renormalized fields.

The one loop diagrams for the 1PT amputated Green function of the renormalized
fields Vj,, and 7" contain the divergent terms

iTlo%P (py po)V = finite +

v o n
+ A(9)hea” (p1 — p2) %f 5 {1927r2

and the finite part

TO%P(py,pa) = (div. < M) +

M (MEY(ME N ME ]
J— n R _— —_—
1672 2 7 64r2 28872
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Figure 6.6: Vam vertex at NLO in 1/N¢.
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In the renormalized Green function the latter divergences are killed by the re-
definitions of the parameters in the lagrangian. The wave function renormalizations
0Zy and 6Z, were fixed before by the two point Green functions. However one
has still the freedom to renormalize the coupling G%,B). The piece in the lagrangian
which contributes to the Vrrm Green function is:

o)

v . \/i v
£2v[V(%),(I>(B)] = .. +1 VF2 <V(%)8u(I)(B)6U<I>(B)> =

Vs =@ +82y) TV (B)
¢(B):(1+5Z,,)%<1>T .G \/5
et G 00,0 +

(B) (6.45)
vi [Yozy +02,] Qo2 v ag,07) =

(B) _ ar v .GT
Gy, G:V +46G i GFK;/§< ‘/;/u/a'uérau(b'f ) +

+i [6Gy + Gy (§02v +07,)] %( VI 9,870,3").
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Nonetheless the Green function contains again divergences which cannot be re-
moved just by the renormalization of the LO lagrangian. The O(p*) divergence in
Eq. (6.43) requires new pieces with one vector field and four derivatives. The terms
allowed by the symmetry that contribute to this Green function at NLO in 1/N¢
are: (V-GG),

Lag = 1 Xa ({VE Vi V¥ [uy, ual ) + i X6 (VY [hap; BT) (6.46)

where this Green function depends only on the combination X¢g = X¢g, — %XGI.

All these counterterms remove the divergences in Eq. (6.43) through the infinite
contribution

. . 426X 2 v
iT (p1, po) = [%GZK +562v 5% + 62, 5% - %] Tq%(p1 — p2)P .

2

F AR A
(6.47)
with the renormalizations
2 4C2 A
§XT — \/iGV ﬂ [2GV >d 2:| 00
¢ 7 2 | + Ja 153672
(6.48)

The summation of all the contributions up to NLO becomes finite:

2
itorm) = At = o {60 [1- 20| - avaxgun e
(6.49)
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Figure 6.7: Perturbative contribution to the VFF.

with the subleading contribution

M2 [2G% [ M?E 3] M? M? [48 ( M? )]
V] 1% v(_My S TS 2 (_2s 4
T 1672 08 2 [FQ ( p 5) T T 16,2 08 2| p + +
+ M\Q/ |:1_32G%/] _3M§ﬁ+ q2 [Q_ﬁ 4_6,21] .
6472 F? 64n> F? '~ 288> F? F

(6.50)
The perturbative contribution to the VFF up to NLO from this kind of topology
would be:

AF(@R) Fy(mGy(p) |, _ AT ()] 4V2Fy XG(w) . s
F? 72 7 My () — g
(6.51)
This contribution is shown in Fig. (6.7)
LO evaluation: FV = 2GV = 2\/§Cd = F\/ﬁ
The renormalization becomes
0XG(p) = 0,
(6.52)
F ong [ 3My M3
Gvm) = 5T |52 T TonlF?) M
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with the subleading contribution

MS  5M
AP(qZ) = - {CO(qzaOJO’ M‘Q/) [_?i - —ZK - qZM‘Q/:| +
6 4
+Co(g?,0,0, M2) [ MS - %] +
4 2 4 2 2
st (g -0 )+ () + )+
le My My 5 3 M§1 M3 Mg 1
T l6x7 %8 R Tt gee [T )T
ME  3M3
3272 64’

(6.53)

6.3 v¥(z) — V*? Green function

I will study now the remaining Green function with a vector in an external leg,
the one connecting the external vector field v#(z) with renormalized vector V,* (y).

We will compute again the amputated Green function i®"(z, u)h,:

(T{v"(x) V¥ (y) /d4u i®" (7, u)h, A T (u,y)P7P (6.54)

We will use its representation in the momentum space, i®"(g)%,:

(6.55)

4
i®" (z, u) = / dq e ta(@— u)z(I)r( )pa

pe (27r)4

This amputated Green function has the same ambiguity as the p self-energy.

Since it is defined through the amputation of the outgoing vector propagators,

the combinations symmetric on the second Lorentz indices {po} do not contribute.
Therefore here only the antisymmetric part is shown.

This Green function has been calculated for the neutral I=1 current f uytu —

%d’y“d producing a p® meson. The rest of currents are just SU(3) chiral rotations.
The contribution from the one loop diagrams is:

. - 52Gy s ¢"¢"¢> | Bold?,0,0
(e = ivaptf Lo [ B0 -k o0
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Figure 6.8: v*(z) — V,*# Green function at NLO in 1/N¢.

The RxT lagrangian contains a set of counterterms that remove the divergences
in the one loop contribution. One comes from the vector wave-function renormal-
ization §Zy, which is fixed by the self-energy renormalization. Other comes from

the renormalization of the coupling F‘(,B) = Fy{, + 6Fy:
v B v
Lov[Vig) = . = V2R 0,0,V =

1
VEY = (14+8Zy)2VEY

= ~VEF (0, 0,Vp) — 502y VAR 0,9,V ) = (657)

F®) = F} +6Fy

— V2 (0,0, V") — V2 (8Fy + 502y Fy ) (v 0"V, ),

Once more these counterterms are not enough to kill all the divergences from
the one loop diagrams. Again there arises O(p*) infinities which require terms
with one vector field and four derivatives, which must be subleading in our 1/N¢
counting. The operators allowed by the chiral symmetry and contributing to this
Green function are:

Lar = Xp (Vi VY + X5y (Vi {VF, Vo £37), (6.58)

where our Green function depends just on the combination Xr = Xp, + XFp,.
All these counterterms yield an infinite contribution

o : 1 "
i®L" (q) = —iV2 (5Fv+ 507y Fy — 2V20XF (p) qz) A2qegh . (6.59)

which makes the whole Green function finite through the redefinitions

_ _ny \/iGV /\oo

0Fy = 0.
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Figure 6.9: Perturbative contribution to the VFF.

Notice that Fy is not renormalized so FY, = Fy.
Summing up everything together the renormalized Green function is given by

i BT (g)HPe = _'\/E po a 1B Fr 1— AQ(QQ) _ 2\/§XT 2
i®"(g) 2 Ags(9) %9 v (1) 7 P(n)a
(6.61)
with oy
2Gv ny | Bo(g%) 1
AD(?) = —g? =V L 30 : 6.62
(a") T F 2 { 6 144 (6.62)

LO evaluation: Fy = 2Gy = 2v2¢; = F/2

The renormalization becomes

A
Xr(w) = o 55%F
1927°F (6.63)
0Fy = 0,
producing the finite renormalized Green function in Eq. (6.59), with
Bo(¢) , 1
Ad(?) = — 2 L {20 . 6.64
(@) = -3 6 ' 14dn? (6:64)
6.4 1PI Green function for v*(z) — 7w
This three-point Green function is defined by:
(T{v"(z) m (y) 7 (2)}) =
(6.65)

= /d4v d*w AT (y,v) AT (z,w) V2FX(z,v,w),

which in the momentum space is represented by v/2FX(g?) (p}' — p4). This momen-
tum dependence arises when putting the outgoing pions on their mass-shell.
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Figure 6.10: v#(z) —» #"n" Green function at NLO in 1/N¢.

In Fig. (6.10) one may see the diagrams that contribute to this Green function at
NLO. The one loop contribution to the renormalized Green function is quite complex
and it has been divided in several parts. The first loop in the figure contains vertices
from just the pNGB lagrangian Ly, ; the second graph carries vectors and scalars;
in the third and fourth ones there can be any kind of resonance (vector, scalar,
axial-vector and pseudo-scalar); and in the fifth and sixth loop in the figure we may
have vector and scalar resonances. The last plotted contribution is the one coming
from the counterterms.

The one loop contribution to FX(¢?) from the diagrams with vertices just from
Lo, has a finite piece:

2
qg°n 1.
Fr @) = ——f{—Bo(qZ/uZ)nL

75 15 (6.66)

14472 } '

The renormalized contribution from the loops with vectors is:

ne 2G2 . M2
Felg®) = 7f F—4V {—3A0(M12/) + 327‘:2} +
ng 1 [3. o M
o5 )24 _
e {2 oMv) =G |
2 4
ny 1 A (2 g2 2 2 g q
— — < B Mz, M. —2M: — —
+2 Fz{ o(q”, My, V)[ % 6+6M‘2,]
1 q2 7M2 q2 q4
A 2 - _ 1% o +
FAMY) l2 3M‘2,] 64n” ' 48r° 2887 My
ny 20%/ 5 2 2 MS 5M$ 2 r2
+5-—1 {Co(d,0,0,My) [——5 — —q My
2 F 2
q2 M2
+ Boy(4?,0,0) l——QV 2MZ ol T Ag(M2) | = +2
q
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My ¢ }+

C64n? 28872
ny 2G%/ A2 g2 2 M‘f} Mé
+5 ) ol My, My, 0) 2 t

. ML 2MZ 547 . M2 2
Bt g 3) |- - B0 4 S ooy M4

q q

M‘% q2

v _ 2 6.67
19272 28872 (6.67)

The scalar loops produce:

ne 42 [ - M?2
@) = Ao 5] .

nf 1 A 2
+5 {Ao(m3)} +

ny 1 A2 a2 g2 2M§ q2

-1~ !B M2 M2 [ -—=2 + L
+ 2 F2{ O(Q7 S S)[ 3 + 6

. 1 M2 q2

4] -8

+40(Ms) | =3 oan? T 1aan? (T

ng dc [ 4 MS M}
+7f _Z {CO(QQaO,Oa Mg) l_TS - TS]

. M4 2 M2
+ Bo(q*,0,0) [——5 L 4 Ao(M) l—f]

q 12 q

M5 a ]

64w 28872

2 6 4

nydcg 2 272 g2 Mg Mg

R M “M2. M -5 _ =5
+ 2 F4 {CO(q ) S 570) [ q2 9

, M MZ ¢ R M2 1
Bola?. M2. M2) | =28 4 S _ 1 A(M2) | 225 - =
+ Bo(q”, M5, Mg) [ = + 3 19 + Ao(M3) 2 3

M ¢
_ : 6.68
19272 28872 (6.68)
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and from the axial-vector loops,

n 7 M3
PP = Y b {0 - Mal

F 6472
n 4 6.69
oL {Bo( , M3, M3) [—2M3; &+ GMA] (6.69)
N 1 2 7M 2 4
+ Ao(M3) [7 B 3%431] e 48 2 288732M31 ’

and finally from the pseudo-scalar resonance loops,

n A
FH@) = o 2 {Ao(MB)} +

2 2
nf 1 JpH .2 ar2 2y |_2Mp | ¢~ 6.70
A M
+ Ao(M) [_%] a 247]:2 + 141#} '

The divergences from the just-pNGB, vector, scalar, axial-vector and pseudo-
scalar resonance loops are:

2
FX(@)loo?r = finite + 4 L {— g })\oo +

2 F? 1 967°
2 2 2 2 4

T3P \e B2 Y 48 2 F? 9672 Mz | 7

ny 4c? M2 2 4c2
+ o T { o e+ s (T 9 Ak (6.71)

2 4

nr 1 { qg q })\
MR C T 7 S
o {2

2 F?| 96r%) "

These infinities are partially cancelled out by the ones in the counterterms coming
form the LO lagrangian Lo, :

[,QX[(I)(B)] = ... + i(vH (8,@(3)@(3) — Q(B)auq)(B))) =

1
®p)=(1+67:)2 @,

i(v* (0,2, Pr — 0,0,9,)) + 0Z7i( V" (0,Pr Py — 9,0,Pr)) .

(6.72)
The contribution from this counterterm was fixed before by the pion self-energy
renormalization. It cancels the constant terms in the VFF and ensures the proper
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normalization at zero momentum transfer. However, again there are divergences
with higher order derivatives. In order to renormalize them one needs chiral invariant
terms of that order. However, although the structures are the same as in xPT the
couplings are now different. The pieces relevant for this process are:

Z4X = 76 <f+ [y up] ) — Z12 (VFu,V'u, ), (6.73)

Loy = iCs1 (VP By u]) + iCs3 (Vufi [hup,uf]) . (6.74)

The relevant combination for the on-shell pion VFF will be 7y, = 4F2(E53 — C51)-
All these counterterms provide:

2G3 ny M Mz 1
AFd = ~Tp 3 g (e T3 ey
4ck ny M3 M2 1
2% °F Ao +In—8 — =
+F2 2 1672F2 00"‘11“2 2

~ 9 - 4 = 2 -~ 4
_ g’ | Gva(wat  BWE | et 6o
F F F F

where the first line comes from §Z,. The physical contribution in .7-";5 is given by the
finite parts after removing the Ao terms, 60g(x) and 67y (p). All the divergences
from the one loops calculation in Eq. (6.71) are cancelled by these divergent terms
through the renormalizations:

~ ~ ~ ~ 2G2 42 ne A
=/ : 22V | Zhd \ Tf oo
ZG EG(/J) + 526 (U) ’ ‘%6 (U) {3 F2 + F2 } ) 967T2 )
_ _ N FPhong [ 1 1
Tva = Tyo(p) +0Tvalp) 5 Tve(p) = WW? 5 {M2 + MA} . (6.77)

These chiral couplings of the high energy theory must be subleading in the 1 /N¢
counting in order to Lg/F? — 0 and 7y2/F* — 0 as No — oo. Therefore one has:

Eﬁ = O(l)a

rve = O(Nc). (679

The total contribution to the VFF form this topology is:

FX = Ff, + Fy + Fs + Fx + Fp + Fi (6.79)
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/
AN

Figure 6.11: Perturbative contribution to the VFF up to 1/N¢.

LO evaluation: Fy = 2Gy = 2v/2¢q = FV/2

There is a finite contribution which comes from the loops with only the vertices
from ChPT lagrangian Lo,

2 n N
P ) = Lo { 8o/t + i (6.80)

and the finite contribution to the VFF from the vector loops,

n A M3
R = Y L sk + )+

2 4
n 1 A
I {Bote2 M2 0a2) |22 - 5 + 5]

2F 602
AL ™ g q
FAo(My) [7 - 3M5] T 64n? T a8a? 2887r2M%’,} *
n A MS  5My
+7f % {CO(q270701 M{Q/) [_?‘L - —ZK — q2M‘2/:|

R M4 2 . M2
+ By(¢?,0,0) {—q—QV —2M2 — %2] + Ao(ME) [q—QV + 2]

My ¢ }+

647> 2887
n A MS M
+_2£ FIQ' {CO(QQaM‘%aM?/aO) [?ﬁ + J2£:|
; My 2MP 2 1 M
+ Bolq?, M2, M2) [—?K - 20 L 5]+ Ao [?z +3]

2
+£L_q—2 .
19272 28872
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and from the scalar

I M3
FY?) = L AgME)+ =55 +
5(q%) 5 72 o(M3) 3272

neg 1 -
+7f 72 {AO(Mg)} +

ng 1 ) o o090 109 2M: ¢

e R M2 M2 | — _

. 1 M2 ¢

Ao (M? ——] e el s
+Ao(Ms) | —3 2472 | 14472

ny 1 ) 2 MS M§
+5 72 {C'o(q ,0,0, M5) l—q—z -

M4 q2 M2

+Bo(q*,0,0) [——25 - ﬁ] Ao(My) [q—f
M3 e N

647> 28872

ny 1 M§ Mg
+2 F2 {CO(q MSaMSaO)[q 9

. ML M2 2 M?
+ Bo(q?, M2, M3) [ S +=2 - q_] + Aog(M3) [ 5

q 3 12 q
M3 7
19272 2887r2}

and from the axial loops,

F? 6 " 6M3
i [1_ 7fo 7 q
+A(M3) |3 3MZ| "~ Gan T 4g? 2887T2M3,}

and finally from the pseudo-scalar resonance loops,

FH@) = o 2 {A)} +

M3 i }
Ay i

125

(6.82)

g

(6.83)

(6.84)

(6.85)
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The finite contribution form the counterterms is:

2 2 2 2
x _ _n My My 11 np Mg Ms 1
AFy = 5 T6.2F2 {3 In 2 + 2} + 2 167252 +1In 22
G(wd® | 2f1(w)e
e (6.86)

with the renormalizations

bs = O(p) + 04 : o Slg(p) = L , 6.87

6 = Lg(p) +0ls(pn) 6() 2 18,7 (6.87)

- N - F?)\on 1 1

Tva = Tyo(p) + 07y (p) ; dryvae(p) = 967;2)0 7f {Mz + el } (6.88)
1% A

6.5 Effective couplings

In Chapter 4 we could see that not all the terms of the NLO lagrangian where
really independent. Some of them could be transformed into others already existing
by the use of the EOM from the LO lagrangian. Only some combinations of the
couplings were really physical.

In addition, the EOM may be not fully applied to each term X7, but to a fraction
nr of it. Thus one may select the operator in which to put the physical information
and which others to remove:

ngf = (1-n2)Xz,

X = (1) Xp,
X = (1-ne) Xa,

ngf = Zg + 277zXszGV — 2\/577FXFGV — 4\/§ﬁngFv, (6 89)
= v, '

Fl = Py + 22X, M2Fy — 2v/2np Xp M2,
Gl = Gy + WX MEGy — 4V/2neM2Xg,
M = MZ 4 ony X ML
We saw that the O(p*) couplings for the vector can be converted into the LO
O(p?) operators and a contribution to the O(p*) xPT operator by choosing 7z =
nr =na = 1:

ngf — 0’

X;ff — O,

Xéff — O,

ngf = EG + 2XzFyGy — 2\/§XFGV — 4\/§X(;Fv, (6 90)
R = Fre, '
Fl = Fy + 2X;M2ZFy — 2/2Xp M2,

G = Gy + 2X;M2Gy — 4/2M2Xg

2
M = M2 42X, M.
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This choice makes the observable depend just on the couplings M‘e,f r F‘e,f ! and Gf,ff
of the LO lagrangian —which have been shifted at NLO to an effective value— and
two effective couplings ng I and rye of the xPT operators of the NLO lagrangian.
This is the choice that shows the information of the coupling constants more clearly
and the one employed in the next sections.

Nevertheless, up to the NLO all the other choices are completely equivalent.
Thus, one could prefer removing the couplings 676, Xr and Xg, leaving just the
operators bilinear in the vector fields corresponding to Xz (The coupling 7y is not
affected by the EOM). This would be obtained through the values

nF = ng = 1, Nz [_zﬁ +2V2G v Xr +4\/§FVXG] )

(6.91)

= 2X,Fy Gy

producing the effective couplings

L
X7 = sx bvoy |l +2X2FvGy — 2V2Gy Xp — V2R Xe| Xz,

X}‘;ff — 0’
ngf — 0’
G = o,
ﬁj};f = Tya,
eff 7 M 5
FT = By + [l +2V26Gy X + 4V2Fy Xo| G — 2V2Xp M,

N 2
¢l = av + [—Eﬁ +2V2Gy Xr +4\/§FVXG] %‘i — 4/2M} X

- 4
M2 — M2 4 [—es 1+ 226Gy X +4\/§FVXG] F]V”C‘gv .

(6.92)
Thus, it is possible to convert all the new NLO couplings (except 72, which has a
different origin —it is introduced to renormalized the O(p®) divergence— but will be
studied later) into just one parameter. In this alternative choice the NLO informa-
tions are encoded into the coupling of operators bilinear in the vector fields. One
can calculate the exact contribution of this kind of operators to all orders, since they
would be part of the tree-level vector propagator. Thus, this choice might be more
convenient for studies on the resonances peak based on this perturbative calculation

since it allows to resum at all orders the contributions from the NLO couplings.

6.6 Renormalized VFF

Putting the results for each 1PI topologies up to NLO into the VFF expression
from Eq. (6.2) one finds the result:

F(¢?) = Fld®) +
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T A(I)(q2) T 2 q2
vt |1 ST v e
y {Grv(u) ll - AF(QQ)] - 4\/5X6(u)q2} _
F? F? F?

— ‘7:X(q2) 4+ F\C(U)G%«/(N) q2

- F? My(p)? -
L FvGy [ 3P(¢%) A2  AT(D)
M‘Q/ _ q2 F2 M‘Q/ o q2 F2 F2

+

(6.93)

2V2XL()Gy ,  4V2Fy XG(n) 2} < 1 )
- 2 7~ 2 q + 0\l 47 ) -
F F Né

The perturbative expression expanded up to NLO in Eq. (6.93) is quite clarifying.
There one finds that before using the equations of motion, the NLO couplings 44
(from F, ), Xz (from $¢}), Xp and X (given explicitly) yield similar dependences
in g2 when summed up and only some combinations of them (which one realizes that
are just the effective couplings from Chapter 4) can be fixed by comparison with the
experiment.

The perturbative expression of the VFF and the result with the Dyson summa-
tion (first two lines) are completely equivalent at the perturbative level. They give
similar descriptions away from the vector pole. However, near the mass-shell of the
p it is more convenient the resummed expression which is regular. Nevertheless one
must remember that this expression only resums part of the absorptive contribu-
tions to the pole, the re-scattering through intermediate vector mesons. These are
the most important ones just on the p peak, providing for the mass-less pion limit
and ny = 2 the on-shell width:

Im{z“é(QQ)Hﬁ:Mz, = MVPV(q2)|q2:M‘2,a (6.94)
with A
q

Tv(¢®) = WO(QQ), (6.95)

in complete agreement with the width obtained in several former works [27, 26, 29,
105] when the vector is on its mass-shell,

MVqQ(I;O’r

T'y(q®) =

Nevertheless, the VFF in Eq. (6.93) does not resum the re-scatterings through local
vertices of Goldstones and thus there are variations of order ~ O(¢> — M%) when
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Figure 6.12: Comparison of the one loop VFF including a multiplet of resonances and the
ALEPH [65] and NA7 [66] data.

moving away from the peak: The simple Dyson-Schwinger resummation does not
fully provide the p(770) off-shell width.

In addition one must remember that although the massless pion limit is suitable,
the influence of the pion mass is not completely negligible, being the on-shell widths
ror=shell(m, = 0) ~ 177 MeV and T3 5" (m, = mph¥*) ~ 144 (taking My ~ 770
MeV), this is, a 23 % modification in the width! However, this is just the width
at LO in 1/N¢. The value of the parameter My of the lagrangian may vary from
My ~ 770 MeV at LO in 1/N¢ to My (u) ~ 850 MeV taking a NLO result [105],
i.e., a 10 % variation. This uncertainty would be the error due to the truncation of
the 1/N¢ expansion at LO.

Thus, the Dyson-resummed VFF in the massless limit is just a formal analysis
and an estimate of the VFF. In Fig. (6.12) T have plotted the Dyson expression taking
for the coupling of the LO lagrangian the values obtained in a former work [105],
F ()G (w) ) F? = 1.178, 26 (1)) F? = 0.966 and M/ (1) = 845.4 MeV for
u = 770 MeV. The rest of resonance parameters only appears at NLO so one can
employ it value at LO in 1/N¢, ¢q = F/2, M3 = 2M? and the estimate M3 ~ 2M32.
About the RxT chiral couplings ng () and ?f,j;f (1) nothing is known by now but
that their contributions must be suppressed by 1/N¢. Therefore, I have taken
F“a};f (#) = 0 for that y. The RxT coupling ng f (1) will be estimated in Section
6.9 from the measured low energy coupling E%-‘PT, obtaining the value ng ! (1) =~
—3.5-1073 for u = 770 MeV. What we have here , shown in Fig. (6.12), is just an
estimate of the VFF, a check that ensures that the NLO loops do not produce huge
variations when they are added to the VFF at LO in 1/Ng.
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6.7 Scale dependence of the couplings

In this section I am going to analyse how the different couplings vary with the
renormalization scale. I will show first the couplings that have been renormalized
in the 1PI analysis. However, the observable is not really dependent on all these
constants but only on a precise combination of them. Thus, they can be reduced to
effective couplings of the yPT terms, ng ! and ﬁ”,’;f , and of the L.O vector lagrangian,
M‘e,f 7 F‘e,f I and Gf,ff . In the following and so on I will use the effective combina-
tions from Eq. (4.55) in Chapter 4. These are really the physical parameters. We
will see that their modifications with the scale are really suppressed and that the
perturbative 1/N¢ expansion converges thus properly.

In addition the underlying QCD dynamics appears here in an explicit way. In
the large N¢ analysis of QCD [5] one finds that the closed loops have a formal sup-
pression in 1/N¢. On the other hand, they also have an enhancement proportional
to ny, since all the ny flavours can be equally produced within closed loop in QCD.
From the calculations in U(2) and U(3) one finds that this factor appears explicitly
in the renormalizations and in the radiative corrections which are shown below.

6.7.1 /g scale dependence

The scale dependence of the chiral coupling Zg(u) is provided by the value that
the counterterm 04g (1) takes to reabsorb the corresponding ultraviolet divergence:

§Tg() = ™4 Do) (3+ﬁ - ﬁ) : (6.97)

2 9672 F? F?

where one has the ultraviolet divergence Ay () = 2(’£—;4 +yp —lndr — 1= +
vg —Indmw — 1 + In(p?). At this order one can substitute the LO values for the
resonance couplings, Fyy = 2Gy = 2v/2¢cq = V/2F:

=~ nr Aoo(1t)
Y = — .
o) = S (6.98)
and therefore the variation with the scale is

5 _ N _ ne 1 4c: 263 2
le(p1) — Lo(p2) = 0le(p2) — 0le(p1) = 7f 962 <3+ F—g - F—zv) In (%) ;

which for the LO values of the resonance couplings is

=~ 2 2 2
5 > Y6 1) ny 1 K2 -3 _ Ny 15
/ -/ = In|l=%]| =2+ In|—= )] ~2-100° x —In| 5|,
6(/1'1) 6(”2) 3972 (N%) 2 4872 (ﬂ%) 9 (;ﬁ)
(

6.100)
whence one observes that the running for this coupling in RxT —ruled by 7s = %L %f
does not coincide with that at low energies for yPT, where one has 'yngT = —"Tf%
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The effective combination for this coupling, once the NLO couplings Xz g are
removed, gives the renormalization:

S0 () = 6ls(n) + 2Py GyoXz(p) — 2V2Gy6Xp(p) — 4V2Fy6Xa(p) =

ny Aoo() {( 4cg QG%/) 2GY, ( FVGV>
= -2 1-—-
2 e TR TP ) TR P )t
L BvGy (1 _ Gy _ 2
F? F2 F*)[°
(6.101)
which for the LO values gives

Geffoy _ Nf Aso(p)
olg'’ (n) = igWQ : (6.102)

that is, in this case both the initial and the effective couplings have the same running,
given before in Eq. (6.100)

The coupling fg is assumed to be of NLO in 1 /N¢ and therefore suppressed. Its
variation with the scale is also of NLO and thus the coupling up to NLO is expected
to be of similar size as the numerical value of the coupling at LO. In addition, one
also expects the RyT coupling /g —order O(N2)- to be suppressed with respect to
the xPT coupling E%‘PT —order O(N¢)-. We will see in a later analysis of these

couplings that this suppression is indeed observed phenomenologically.
6.7.2 My scale dependence
The renormalization of the vector self-energy yields
M (1) — MiP(ns) = 6MZ (o) — SMP (1) = 0, (6.103)

since IMZ = 0.
However, when removing Xz r ¢ one gets the effective counterterm

2 ny ML 2G2
OMy I (u) = MY () + 2MPX 7 (i) = — o 5o T3 dolw),  (6:104)
and for the LO values of the resonance couplings yields
SMy“! (1) ng My
- Ao (1) 6.105
—Q—MV 2 9672F2 (1) ( )

which produces the relative variation with the scale

My () = My (ua) — my MY I - ny . (15
2 - Vo (22) ~ 1 x Mm (22),
M2 2 967°F 2 2 =\ 2
(6.106)

taking for the the vector mass the LO value My = 770 MeV. One can see that the
corrections are really tiny and that the loops produce just subleading modifications.
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6.7.3 Fy scale dependence

As it happened before with the vector mass, the calculation shows that this
parameter is not renormalized:

Fy (p1) — Fy(p2) = 0Fy (p2) — 6Fv(p1) =0, (6.107)

since dFy = 0.
The effective counterterm for this coupling is

5F;ff(u) = O0Fy(u) + 2Fy M26Xz(p) — 2V2MESXp(p) =

(6.108)
—%LF _MX%_(&K_l))\ (1)
= \% 96222 \ Fy oco\M) 5
which for the LO values Fyy = 2Gy yields
SFIT =0, (6.109)
this is,
Feff _ Feff
v () =~ B () _ (6.110)

Fy

Therefore, neither the effective combination varies with the scale and the LO cou-
pling do not suffer radiative corrections.

6.7.4 Gy scale dependence

The variation of the renormalized coupling G, with the scale is non-zero in this
case:

Gy (p1) — Gy (ue) = 0Gy(u2) — 0Gy (1) =

3ME 2G% 42 M2 ' n 2
-G v (2 V_1>__d S } f1<&>
v {327r2F2 F? F216n2F%) 2 "\ 2)
(6.111)
which for the LO values Fyy = 2Gy = 2v/2¢q = /2F yields the relative variation,

Gy (p1) — Gy(pe) _ { 3M{ _4_Cé_j\452_} " L (u_%) ~
Gv 32m’F?  F216nF2 ) 2 T\l

(6.112)

2
~ (66% — 74%) 5 In (“—g) ,
K1
where the last result has been obtained employing the values My = 770 MeV and
Mg = 1 GeV. One realizes that in this case the good convergence of the 1/N¢
radiative corrections is not so trivial. The separate contributions from vectors and
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scalars are huge and only through a cancellation between them one recovers again
a tiny variation with the scale of order 8%.

For the effective combination of this coupling will occur exactly the same. Only
the interplay between vector and scalars loops makes the radiative corrections small.
The counterterm for the effective coupling is:

0GH () = 0Gv(n) + 2Gy MEOX () — 4VZME6X () =

2 2 2 2 2
— Gy { My, (332GV 16— 4_%) _ ﬂ_ML} S ho(),

1927% F* F*? F?) F*167°F”°
(6.113)
which for the LO values of the couplings yields,
667 () My _M§ |y
— - b 6.114
v {127r2F2 167r2F2} 2 AoolH) (6.114)
generating the relative variation with the scale,
G ) - G (a) _ { My Mg } " n (lﬁ) o
Gy 120%2F%  167°F? ui
(6.115)

2
~ (59% — 74%) o In (%%) ,
1

with the same values for the masses as before.

As it happened for the initial coupling, the variations with the scale remain small
—of the order of the 15%— due to big cancellations between the vector and scalar
loops.

6.8 Low energy limit: ¢> = 0

Now one would like to check how the RxT result connects with the VFF computed
in the low energy theory, xPT, which is known up to two loops. Our result up
to NLO in 1/N¢ will be expanded in powers of ¢?. This will produce powers of
q?/M?% and ¢*/(4wF)?. At the considered order one can take for the physical masses
of the scalar, axial-vector and pseudo-scalar resonances their LO values in 1/Ng¢,
M5? = M2, M3? = M% and ML% = M2, which are scale independent. For the
vector mass however we will have to employ its NLO expression M7, (u) considered
at a given reference scale p.
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The expansion of the RxT result yields:

- eff eff
Fat) = 1= G {wr - THE
Vv

9Fv Gy (22G%/ _1 24_03%3)
F? F? TeE M +

o () st ()
_ In( 224 In( 2P
3272 . u? + 967 " 2 +
ng 5¢ _ng g 1 (_q2> O ¢
T2 agse?F? T 2 96n?F T\ uE) T AL
(6.116)
This expressions can be easily compared with that from xPT [17]:
T 2 2 2
XPT(,2) _ 6(1) g ng_o _ g <_‘I_)
FEE) =1 F7 T 3 988x7F% 2 96n°F7 2) Tt
i (gt _ng_ 5¢° 20 — 0o 120
Pl T s BB
Yt v £) o)
+ 0(q¢%),
(6.117)

where £5(p) and r{(u) are the low energy couplings from yPT.

It is possible therefore to fix complete the value of the low energy coupling £ (u)
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in terms of the renormalized RxT parameters:

P w6 ()
M (u)?

) = 6 (w)

ng [ 1 [9FyGy (22G2V 1ok M2>
7 {5767r2 { F? * *

2 2
12y 2‘;—‘3&] +

967 L ) F? F? F
L1 ln(J\_Jé) [1_44&_65@@31\_@]
967 u? F? F? F* M:

(6.118)
The coincidence of the logarithm ¢? In(—g?) shows that the one-loop calculation in
RxT recovers fully the one-loop result in xPT. Therefore, the running of the yPT
coupling is exactly recovered. Likewise, the saturation does not occur just for a
particular renormalization scale. The vector mass and couplings, and the rest of
RxT parameters, run exactly in the correct way to recover the yPT coupling at any
scale p.

Through this relations one can recover the RxT coupling f¢ from the one in
XPT. Thus, taking £5(u) = —13.8- 1073 at u = 770 MeV and the same values for
the resonance masses and couplings as in Fig. (6.12) one gets the RxT coupling
ng / (¢) = —3.5-1073 at that same scale. In addition, one can make these couplings
run since their precise renormalizations are well known in both theories. The result of
this comparison is shown in Fig. (6.13). The largest uncertainty is given by the lack
of knowledge of the scalar resonance mass, which varies in the range Mg = 1.0 — 1.4
GeV. In spite of this one can see that the RxT coupling is much more suppressed than
the one from xPT. This is observed phenomenologically independently of the value
of the renormalization scale, which has been varied in a wide range y = 0.5 — 1.2
GeV. In addition the variations with the scale of ng / () are of the same order as
its size. Thus, the phenomenology provides the chiral couplings with the expected
sizes from the naive 1/N¢ analysis: The yPT coupling £5(u) is “large” and of order
O(N{), with “small” scale variations O(N2); the RxT coupling ng T (u) is “small”
and of order O(N2), with “small” variations the same order O(NQ).

It is also possible to give an estimate of the main contributions to the O(p®)



136 Chapter 6. Perturbative calculation of the VFF

T T T T T T T T T T T
0.015¢- Ms = 1.4 GeV |
C -—- Ms=12GeV|]
C <o+ Ms=1.0GeV | 7
0'01:_ — Standard ChP]
0.005(— -
S of T .
= BT .
oo T -
-0.01F -
_0015__ 1 I 1 1 1 I 1 1 1 I 1 1 1 __
600 800 1000 1200
H (MeV)

Figure 6.13: Comparison of the RxT and xPT couplings Kef 7(u) and ().
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where, up to the considered order, we employed the LO in 1/N¢ relation

4 4 2 2
q 2, _ _ q 2Cd N 3GV + Fva) 12
967r2F"*( b =Ly + L) 9672 F2 <M§ MZ ’ (6.120)

and likewise recovering the coefficient in front of the ¢* In (—¢?) term and the exact
running of 7{,,(¢) in xPT up to the considered order in 1/N¢. The missing NNLO
contributions from two-loop diagrams are NNLO in 1/N¢ and are expected to be
small.

Resonance couplings at LO in 1/N¢: Fy = 2Gy = 2v/2¢4 = V2F

One may substitute the LO values of the resonance couplings in the term which
are already NLO in 1/N¢g. Thus, the relations between the low and high energy
couplings become quite simplified:

o FHwed ()  n M2
o — o7 _ Ly T WGy T \B f{ 11 S
6(1) 6 (1) M‘e/ff(u)z + 5 28872 + 7 +

L () ~ e ()~ (3) + g (3F)
1 _ 1 __1 1
t o2 n( 2 16m2MZ "\ ) T 32 T 9622 "\ ’

Y T Y T
(6.121)
and the O(p®%) xPT coupling becomes:
PR (1) G ()
ro(p) = = v + Firo(p) +
M ()
F? M?2 1 1 M?2 M? 1 M?
e 2{(6 i"’ 7~ 2>ln—§9_i21—;/——21n—§4
167 17 3M?2 51
- > = 5 — —2 + 5+ 5 ¢ + O(NQ). (6.122)
60M2  10M% ML ' 60M2Z ' 10M2

6.9 High energy limit: ¢> — co

Now we are going to compare our one-loop calculation with the result expected in
perturbative QCD [50]. Assuming that order by order the 1/N¢ expansion follows
the asymptotic behaviour of the full form factor at g> — oo, one would expect that
our perturbative calculation up to NLO vanishes as the total momentum goes to
infinity. Here one must expand the perturbative result. It is not legal to perform
Dyson resummations because through the all order summation one converts the
perturbative series (14+a+O(a?)) into the denominator (1—a)~!. They are identical
up to NLO but they may have completely different asymptotic behaviour. If one
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had a ~ ¢2, then in the resummed case the asymptotic behaviour of the amplitude
would be ruled by the infinity of subleading orders (~ a2, ~ a3..

.) resummed to
build up the denominator. Thus, the 1/N¢ expansion would not have any sense.

The behaviour at high energy of the VFF up to NLO in 1/N¢ is:
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that for the LO values Fyy = 2Gy = 2v/2¢4 = v/2F becomes
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(6.124)

Observing this result one may understand some of the theoretical arguments

developed when constructing the Resonance Chiral Theory in Chapter 4. Before

going further one must remember that the amplitude is not just the form factor but

also the Lorentz momentum structure (p,+ — p,— )" and the auxiliary vector field

field v(z)*, scaling each one as a power of the momentum ~ p. Therefore, a constant

term in the VFF comes from an O(p?) lagrangian, an order @(g?) term corresponds
to an O(p*) operator in the lagrangian and so on.

Thus, it was demostrated that the tree-level contributions to the amplitude are

~ p?, which for the VFF means a AF(q?) ~ const. contribution. The analysis of the
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superficial degree of divergence tells us that the one loop amplitudes are ~ p*/F2,
which means AF(¢?) ~ ¢?/F? for the VFF.

What is the origin then for the AF(¢?) ~ ¢*/M2ZF? term in Eq. (6.124)7 This
contribution comes from just a type of diagram: The loop of two vector (and axial-
vector) propagators that can be seen in the fourth graph of Fig. (6.10) (diagrams V7
and A2 in Appendix C). In it one finds that the non-physical modes of one of the
massive vector propagators ({2-projection in the antisymmetric formalism) give a
non-zero contribution. There appears then one more power of the momenta ~ k*k
in the numerator, compensated by an extra power M‘Q/, 4 in the denominator. The
way these extra degrees of freedom disappear in the high energy limit is not yet clear
but it must be so if one wants to match with pQCD, a theory of massless particles.

The analytic terms in the VFF as AF(¢?) ~ const. and as AF(¢?) ~ ¢*/F?
were the already expected contributions from tree-level and one loop amplitudes.
By a second let us ignore the existence of the logarithmic terms In (—¢?/u?) and
In (—¢%/M3%). Thus, by imposing the VFF to behave as AF(q?) ~ 1/¢* one obtains
constraints up to NLO in 1/N¢ for the couplings:

L _ng _F? 1 1
Wt Y o (st ar)

9672 Py
ny My [ 67 M

If there would not be any other non-analytic structure this would be a great result,
since it would be possible to kill the growing of the amplitude at large momenta.
Therefore the NLO contributions would be really suppressed not only in the formal
counting but also numerically in the high energy analysis. Moreover, the QCD short
distance constraints would fix again the value of the coupling constants leaving the
vector mass as the only free parameter.

However, the expressions in Eq. (6.125) do not have the same running in the left
and in the right-hand-side. This is because there are also logarithms In (—Z—z) with
the same power behaviour as the couplings. Thus, it is not possible to remove the
q*, ¢ and ¢° terms from the VFF: The logarithms In(—g?) diverge at high momen-
tum and cannot be killed by local counterterms, which are analytical. These logs
come from absorptive two-particle cuts, which is the only possible type of absorptive
cut at one loop. The imaginary parts of these non-analytic pieces are essentially the
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tree level form-factors to a 91 intermediate state of two mesons, times the tree-level
scattering amplitude 19 — 77 in the corresponding channel I = J = 1. Thus, the
one-loop logarithms become fixed by the asymptotic behaviour of the two-particle
vector form-factors and the 1) — 7w scattering amplitudes.

Although the way to work with final resonance states is not fully clear, it is rea-
sonable to think that the two-meson vector form factors must also vanish at infinite
momentum transfer [50]. This behaviour is obeyed by the pion VFF and the good
asymptotic behaviour of the imaginary part of the two-point correlators seems to
require the same kind of cancellation for the infinity of remaining intermediate cuts,
as each one provides a positive contribution. In addition, due to unitarity require-
ments, the scattering amplitudes must remain finite at high energies. Therefore,
the tree-level scatterings -LO in 1/N¢c— must go to a constant value if one demands
them to behave as the full observable. Hence, the fulfillment of the proper behaviours
for the tree-level form-factors and scatterings would automatically ensure the good
behaviour of the non-analytic terms at one-loop.

The problem here is that although the tree-level pion VFF behaves properly,
this is not true for the rest of channels. The two-resonance production is given
just by the kinetic term through the chiral connection T'#. This produces constant
form-factors which do not vanish at high energies. The solution of this problem
looks quite straight forward: The analysis of these form-factors and the inclusion

of new vector-resonance-resonance vertices in the lagrangian to recover the familiar
2

monopole structure WZQT

The situation with the scattering amplitudes is a bit more complicated since
they are ill-behaved even for the familiar 7@ — ww partial wave for this channel,
I = J = 1. The sum of the contributions from the local O(p?) xPT term and the
s-channel exchange of a vector resonance gives a constant behaviour at s — oo.
However, the exchange of mesons in the ¢-channel spoils completely the amplitude
at high momentum. It spoils even our control over the needed spectrum of the
EFT. It is very easy to control the particles produced in the s-channel, since they
must have the proper quantum numbers; moreover, one may assume that the main
contributions come from the first multiplets of the spectrum and neglect higher
ones. However, in the ¢t-channel one can insert all the possible quantum numbers
without any kind of restriction. For instance, our RxT lagrangian implies that the
contribution from the ¢-exchange of a vector is equal to that from the ¢-exchange of
a scalar, and both of the same size at s — oo as the s-channel diagram.

6.10 Summary

The one-loop analysis of the VFF has shown a series of interesting features. As
expected, loop diagrams with massive resonance states in the internal lines generate
ultraviolet divergences, which require additional higher-dimensional counterterms in
the RxT lagrangian. Since these counterterms give rise to tree-level contributions
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which grow too fast at large momenta, their corresponding couplings should be zero
at leading order in the large—N¢ expansion. Thus, one can establish a well defined
counting in powers of 1/N¢ to organize the calculation.

The formal renormalization is completely straightforward at one loop. One can
easily determine the y dependence of all relevant renormalized couplings. Moreover,
the final result is only sensitive to some combinations of the chiral couplings. In
fact, using the lowest-order equations of motion, one can eliminate most of the
higher-order couplings. Their effects get then reabsorbed into redefinitions of the
lowest-order parameters.

Expanding the result in powers of ¢? /M?E, one recovers the usual yPT expression
at low momenta. This relates the low-energy chiral couplings /¢ and 7y, with their
corresponding RxT counterparts f¢ and Tyo. The rigorous control of the renor-
malization scale dependences has allowed us to investigate the successful resonance
saturation approximation at the next-to-leading order in 1/N¢ at any scale p.

At high energies, we have identified a problematic behaviour which originates in
the two-resonance cuts: they generate an unphysical increase of the VFF at large
values of momentum transfer. This is not surprising, since there are additional
contributions generated by interaction terms with several resonances, which have
not been included in the minimal RyT lagrangian. These new chiral structures
should be taken into account to achieve a physical description of the VFF above
the two-resonance thresholds. The short-distance QCD constraints can be used to
determine their corresponding couplings as it has been analysed in Ref. [106].

This calculation represents a first step towards a systematic procedure to evaluate
next-to-leading order contributions in the 1/N¢ counting. However, more work in
this direction is definitely necessary and already in progress.
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Scalar sector

In the last chapter, the creation of a J = I = 1 pion pair from a vector quark
current was studied. In the next pages I treat the production of this 77 state but
with J = I = 0 quantum numbers.

On the contrary to the vector case, the Standard Model lagrangian does not
contain terms with scalar quark currents qq. At first, there are not experimental
processes with this kind of interaction’.

Nevertheless, although there are no direct vertices, some more involved matrix
elements accept decompositions in terms of smaller pieces, for instance, in terms
of products of scalar quark currents. The theoretical control of the final state in-
teractions (FSI) in this channel - = J = 0- is quite important since they have
been shown to be larger than expected. Moreover, the scalar form factor (SFF) is
closely related with several other observables through unitarity. In the elastic limit
the I = J = 0 partial wave scattering phase is the same as the complex phase of
the SFF. It is also relevant in electroweak physics since this channel is between the
most important ones among the possible final states (for instance the neutral kaon
decay into 77 [61]). A better knowledge of the SFF could improve the analysis of
this kind of experiments.

Thus, there are no direct experimental data providing the amplitude of the SFF.
Nonetheless, through the Watson theorem (unitarity and analyticity) the SFF phase
can be known. It coincides —within the elastic region— with the phase of the 7n-
scattering amplitude in the I = J = 0 channel. The SFF modulus can be recon-
structed from this phase-shift through the Omnés solution (analyticity). The study
can be taken further, including the exact influence from K K—channel through the
extended Omnes-Muskhelishvili solution [56, 57].

! Actually, these vertices do exist: The interaction between the Higgs and all the fermions. Till
now no process of this kind has been clearly detected. Moreover, these processes would be at
energies far beyond the chiral theory range. However, before LEP ruled out a light Higgs of a few
GeV, several scalar form factor analyses were performed in order to describe its possible hadronic
decays [77, 78].
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7.1 SFF in yPT

In order to obtain the scalar quark current g;q; we will employ the external fields
introduced in the QCD lagrangian in Eq. (3.15). One has then to functionally derive
the generating functional W [s]2¢P = W[s]EFT as it was done for the VFF:

6SQCD )

(-@@a(e)) = (g TR = _58($)ij.,,W[s]an, (7.1)

which should be equal to the equivalent matrix in the EFT picture,

0SEFT 0

C@@)ag(e)) = (g G = PR

W s EFT (7.2)

where Sgcp and S.y5 are respectively the QCD and the EFT actions. The external
fields s(z)" were introduced in the xPT construction, in Eq. (3.15).

In this work only two scalar currents are studied: An octet scalar current
V3 UNT = (au + dd — 25s), and a singlet scalar current UU = (uu + dd + 3s).
These are the J = I = 0 currents studied by Gasser and Leutwyler in their work
on two-pNGB form factors [40]. When the outgoing pseudo-scalars are set on their
mass shell the form-factors can be described by a single scalar function of the total
momentum square g:

(P(p) P ()|t + dd — 255(0) = "7 Fpp(a?) 73
(P(p) P (po)au+dd+3s)0) = 6PPFO(g2)

with ¢ = p1 + p» and PP’ stands for a pair of Goldstones which in S U(3) may be
rr=ntn 1070 KK = KK, K°K" and 7878-
The value of F, é@(qQ) at ¢?> = 0 can be factorized out and the SFF dynamics is

provided by the functions f(s) and f(s):

Fih(s) = FOO)1+ f(s)pr]

FOUs) = FOO0 + f(s)pp + F(s)rr] )

The function f(s) points out the difference between the octet and the singlet SFF
and vanishes in the large-N¢ and SU(3) limits.

The normalization F(0) does not really carry information about the dynamics of
the SFF, since it depends on the pseudo-scalar mass and it is given by the Feynman-
Hellman theorem [89]. As a result of this, the expectation value for a mass eigenstate
of the derivative of the hamiltonian is equal to the the derivative of the expectation
value of the hamiltonian. In the SFF case one has:

om%
am,-

= (P|q:a:|P) (7.5)
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Being |P ) any pseudo-scalar state on its mass-shell. This means that for the octet
and singlet components the normalizations are:

. o 9 9

F80) = (Pluu+dd—2ss|P) = (am + e~ 2am >m§3 . (7.6)
_ o 8 9

FO0) = (Plau+dd+355|P) = (8m gt )m%, e

7.2 Pion SFF in yPT

At the lowest order in the chiral counting —~O(p?)- both form-factors coincide and
are merely a constant:

FE(? = FO(¢) = 2B, . (7.8)

In the SU(3) case, at the NLO -O(p*)-, the matrix elements for these currents
become a bit more complex [40]:

2

J6)an = g3 (28 = m2)Jur ( ) = 1o Txw(s) = g Tm(s)
+h {Lr(“) 2567 (41n_ -l +3>} ’
2
£ T T 12 1 7
F)en = grnTir(s) + g2 Im(s) + 3 {LZ(“) 2567 (mﬁ_‘ﬁ{ + 1)}

(7.9)
The value of the SFF at ¢> = 0 was factorized out. ~
In the SU(2) case there is only one current with I = 0, (4u + dd), and the SFF
takes a simpler form:

_ 1 — 2\ T _ —
Fs = FOu |14 gha(2s = m2)n(s) + 15 - 1)
_ o 2
(7.10)
— 2
with £4 = 167245 () — In “# and the normalization at s = 0,
F(0)rr = 2By [1— L?T(Z I (7.11)
™ — 0 167T2F2 3 2 - -

These results may be related with the SU(3) one in the m,, my < ms limit through
the relations £} (p) = 4L} (p) +4LE (1) — #(ln (m%/u?)+1) [9] [Appendix D], with
ma = Boms. In addition it is possible to compute the massless limit, getting

F(@)ar = F(O0)rn [1+ t (ggq + 167(5;1?2 {1 —In (—%Z) H . (7112)
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When going to the next order in the chiral expansion —~O(p%)- the expression
becomes more and more complicated and contains new low energy constants. The
result for SU(2) is [17]:

F@)er = FO)rr {1+ (%) (32— 1)J(@) + (6 — H- %))
(7.13)

2

+(3)" (Ps@) + Usta))}

where z = ¢2/m?2 and the O(p®) contributions are in the terms Pg(z) + Ug(z), and
in the normalization at ¢> = 0. The polynomial part is:

Ps(z) = z? l — k1 — Lk — Ska

1( 1 _ 32 19y g 85 1817
+N<1728 gl —gbh— i+ H)+1296N2+7"53

7.14
+:1:[36—1k1 + ks — ka+ & (g + 1000 + 005 — 205 + 1L H) o
—20 L4 2(0)2 — A 41,
an the O(p%) dispersive contribution is
Us(z) = J(z)|36 (11z% — 40z + 44) + 345 (Tz? — 20z + 28)
+505+ £, (22 + 32— 1) + L H (—4322 + 535 — 112) (7.15)

+N <29 2 61m+%)] +%K1(m)+K2(m) (%ng— 3T + )
+K3(x) ( 55—%) ;

with the same definitions as those given for the VFF calculation in xPT at O(p%).
xPT yields a suitable description at low energies but stops being reliable for
v/8 2,600 MeV. Actually the convergence in the scalar channel is much worse and
the range of validity of xPT is even smaller.
In order to study the region beyond the range of validity of xPT one has to
consider a different counting and to handle some new possible degrees of freedom,
as scalar resonances.

7.3 Pion SFF in RxT: Limit N¢g — o0

There are still many open questions and controversies about the scalar channel.
Although a complete analysis of the scalar sector Loy + Lg in the RxT lagrangian
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has not yet been performed —as it was done for the vector sector—, former analyses
have shown that it provides fair results and that one fulfills the QCD short distance
constraints for the SFF at LO in 1/N¢ [22]. The necessity of extra terms for other
matrix elements has not yet been studied.

The starting point will be again the RxT lagrangian at LO in 1/N¢ which was
developed in Chapter 4.

The high energy behaviour of the pion SFF is the same as the VFF; it vanishes
at ¢ — oo, obeying an unsubtracted dispersion relation [50]. As it was done before
for the vector sector analysis we will not handle the chiral counting any longer and
the 1/N¢ counting will be the considered one.

At LO in 1/N¢ the relevant diagrams are the tree-level ones. These diagrams
are the same as those in Fig. (5.2), but with a scalar resonance (octet or singlet)
instead of the p(770):

2 o 2
F) =P = 2 |1+ deplatt¥on —cdml] g

One may factor out the normalization at ¢ = 0:

) 4eqgem 1
M 2
./T(q2)7r7r = F(0)rr MQ_LQ‘ 1+ ¢? SCF (—vy , (7.17)

with

(7.18)

o 2
F(0)xr = 2Bo (1 . Bem(em — ca) m“) :

F2 M2
where the singlet and octet couplings coincide, this is, ¢; = ¢4/ V3, Em = Cm / V3 and
Mg = Mg, in the notation of Ref. [19]. As it was expected, the octet and singlet

form factors are equal in the large N¢ limit.
When requiring that these expressions fulfill the QCD short distance constraints

2
F(¢?) 125° 0, a relation between the couplings arises in the limit No — oo

4demeqd
72

1 - =0, (7.19)
completely analogous to the relation 1 — FyyGy /F? = 0 in the VFF case.

Thus, in the large N¢o limit the SFF takes the familiar monopolar expression
from vector meson dominance:

M3

F(@)rr = F0)rr —5—— (7.20)
T T Mé _ q2
At this point one must consider one more contribution that has not been in-

cluded till now, the scalar tadpole. A deeper inspection of the RxT lagrangian
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shows that the chiral symmetry allows a linear term in the scalar field and it is
proportional to the external fields in xy. When evaluating x, one can see that this
tadpole is proportional to the quark masses. It becomes relevant in the analysis of
the strangeness-changing SFF to K7 and Kng [22]. The short distance behaviour
gets modified and a new relation appears at LO in 1/Ng:

4cdcm -1

4 = Cm iy 4 = cm = F/2 ~46.2 MeV . (7.21)

This theoretical prediction agrees well with the experimental result ¢y = ¢, ~ 45.4
MeV [76], obtained from a fit to Km data under the restriction ¢4 = ¢;. That
work studied the channel with (I = 1, J = 0), getting for the corresponding scalar
resonance K(1430) the mass My; = 1.4 GeV. This resonance is the lightest one
with that quantum numbers and it is part of a scalar nonet with masses of that
order. Nonetheless, in the last years there have been some works about the possible
existence of a very broad and light resonance with those quantum numbers, the
resonance k. This point is still not clear at all and it is as controversial as it happens
with the existence of the ¢ resonance.

In general the scalar tadpole influence is small at energies around the mass of the
resonances since its contribution is proportional to the squared pNGB mass divided
the squared scalar resonance mass. Nevertheless, in a next section I will study how
it can provide sizable effects and how it explains the dependence of the pion decay
constant on the quark masses observed in the Lattice simulations [101]. In that
analysis one will also see that when expanding in powers of the pNGB mass this
tadpole provides the O(p*) modification to the pNGB mass.

When the energy of the processes decreases one expects to recover xPT. From
the former calculation at LO in 1/N¢ given in Eq. (7.16) (and particularized for
given couplings in Eq. (7.20)) one recovers the LO in 1/N¢ result in xPT, which is
provided by the tree-level processes. Thus, the heavy resonance exchange is going
to yield the bulk of the xPT low energy couplings when expanding in powers of the
momenta:

dcacm ¢ ¢'m}
.7:(q2)7r7r = F(0)rn {1 + — + 0| —,—~& , (7.22)
F? M3 ML M
which compared with the LO in 1/N¢ expression for xPT,
®) (2 _ 26 ALsg® (q‘* qui)}
F@) = 0 {1+ e o (L Gre) )
(7.23)
AL5 + 12L4)¢* 4 Pm?
F?) = F0) {1+ (4Ls 99 oL, L0 4,
F? FY Mg
provides for the low energy couplings the LO in 1/N¢ values
F2
Ly = 2m _ = Ly =0, (7.24)

MZ  aMm?E’
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where the QCD short distance constraints have been employed in the third term,
i.e., ¢g = ¢y, = F/2. When taking the pion decay constant F' ~ F; = 92.4 MeV and
the mass Mg = 1 GeV one gets the theoretical predictions

1 1
— i -3 - — -
Ls =21-103 +0 (Nc> , Li=0+0 (N(;) : (7.25)

Notice that at LO in 1/N¢ the observables are given by tree level processes and
there is no renormalization scale. The running on u would be a next-to-leading order
effect and would provide subleading corrections to the L; couplings, naively of the
order ~ NLC X L;.

One can compare this prediction of RxT with the experimental results from
xPT. In Appendix D it is possible to find a summary of the experimental values of
the xPT couplings. The values of Ly and Ls are obtained from the pion and kaon
decay constants:

2 2 2 4
F.— F {1_2/1’7T_MK+ 4m7fL§(u)+ (8mK+4mW)Lz(m +O<%§)} :

F? F*?
_ 3 3 3 4mi ;r (8mi +4m3) .,
Fx = F 1= qpr—gpk = gpns + gz L5 (n) + """ Li(n) +
o ()}
4 ’
(7.26)
2 2
with up = 172—:2 In %. This provides the experimental values [6]:

LE(u) = (1.440.5)-1073, Li(p) = (-0.3+0.5)-1073,  (7.27)

for y = 770 MeV, and showing a great agreement with the theoretical predictions
from RxT. The largest uncertainty comes from the scalar mass. Although the spec-
trum of the first multiplet of scalars is not clear yet, there are many hints pointing
out that it must have a mass around the order Mg ~ 1 GeV [32, 22, 104]. How-
ever, a slight larger mass of Mg = 1.2 GeV, would decrease the prediction for L to
Ls = 1.5-103. In addition one must also have into account the subleading in 1/N¢
scale corrections. Since the numerical value of Ls is relatively small compared to
other yPT couplings, as the vector channel coupling Lg ~ 7 - 1073 of the VFF, the
radiative corrections seem to be larger in this case.

Thus, the RxT expression at LO in 1/N¢, from Eq. (7.20), seems to give the
proper description at low energies matching with the one prescribed by xPT. How-
ever, it is phenomenologically well known that the final state interactions are very
important in the scalar channel [35, 62]. The radiative corrections are now much
bigger than in the vector case. Therefore the bare scalar propagator suffers larger
corrections and there appears a resonance structure with a broad width. Hence, one
must perform a Dyson-Schwinger summation similar to the one made in the VFF.
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7.4 Effective vertices resummation: Scalar resonance
width

In order to obtain the shift on the pole of the scalar resonance due to the re-
scattering, we will follow the same procedure as in the VFF analysis near the reso-
nance peak.

At LO in 1/N¢ the SFF has a real pole at ¢ = Mg The pions are produced at
tree-level either by direct production from a Ly, vertex or through an intermediate
resonance. The next step is to compute the diagrams resulting from adding a 1PI
block containing as many loops as needed for a given order in the self-energy. At LO
this would be a 1PI block with just one-loop diagrams. This will provide the shift
of the resonance pole at that order. This 1PI block is closed again into an effective
scattering vertex as the one in Fig. (5.5). This effective vertex contains not only the
re-scattering through an intermediate resonance but also through a local scattering
vertex form Ly,. For the scalar I = 0 case one must consider as well that there are
two resonances, the octet and the singlet one, to construct the effective scattering
vertex.

After that one would add one more 1PI block and an effective scattering vertex.
Repeating the process for any number of 1PI block insertions one would obtain a
geometrical series that can be resummed and which finally is going to modify the
resonance propagator.

The I = 0 case has a peculiarity that was not present in the I = 1 analysis done
for the vectors. Since the U(3) anomaly is not only broken at the NLO in 1/N¢
but explicitly through the quark masses, there is going to be a mixing between the
octet and the singlet channels. Suppose that for instance the octet SFF is analysed.
At tree level just the octet resonance can be generated. However when computing
the NLO correction one has 1PI block insertions. Thus, the octet resonance can
generate a pair of pNGB that joins again to produce a singlet resonance. In the next
calculation we will see that this flip is proportional to the explicit U(3)y symmetry
breaking parameter A, = (m% — m2). In the limit of Nc — oo and A, — 0,
this interference disappears.

In the m, = my isospin limit the effective current vertices show the momentum
structure

SO = FPP) + B (@) {pp, — ¢?/2 +m? ), (7.28)

where m, is the outgoing pseudo-scalar mass, p, and p, the pNGB momenta and
Fép) (¢?) is the on-shell tree-level SFF. The superscript (P) stands here for the
type of pNGB produced. Similarly to the vector sector, here the second term, with
B(()P)(q2) vanishes when both outgoing pseudo-scalars become on-shell due to the
inverse propagator structure p,p, — % +m? = —3[p> —m?] - i[p? — m2]. The
three available channels of two pNGB with I = 0 —7nw, KK, ngng— may be put
together in that ordering within the three-vector S , Fo and By.
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Thus, the RxT lagrangian yields the values:

V3 0
2
F®) 2\[LJ — 9p {1 q } -1 2B 8A x/3 0
e 0 +M§_q2 _1 + M Ol
(7.29)
7(8) 2 Vs
By’ (¢®)" = 2B -1 1,
0 ( ) 0M82_q2 ]
for the octet current, with A, = (m% — m2), and
F (@) = 230{1+—2—gq } 2 |,
Ml —q 1
(7.30)
(1) vs
By’ (¢*)"! = 2By 2 |,
D) 7| 2

for the singlet. In addition, the on-shell and off-shell components may be put to-
gether in the vector Sy = go ) The superscript I,J will be attached to the
0

form-factor functions when the final states have definite isospin. In this case the
isospin basis for the states has been preferred to the usual charge basis since the
interference between the octet and the singlet state appears in a clearer and more
crystal way. Thus, for U(3) there are three I = J = 0 states [97]:

V3
— 1
8" = Bl — JEKR) — i) = | 1]
Ve o
V3
— 1
0= R+ KR + ) = 2 |,
Vel 1
V3
6

7

ﬁ‘._‘
[\]
jen

0(0) 3 0(0) 6 —>0(0) 9 0(0)
27 = 4/ - ———|KK + = =
127) 120 ) m' ) V120 Inn ) ]

(7.31)
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with the |P(p1) P(p2) )% isospin states related to the charge basis states through

>0(0)

|7 = \/—{\7# )+ T rt) + |7r07r0)} ,
KK = %{|K070> + |K°K%) + |[KYK~) + |K—K+>}, (7.32)
)" = |nm)

where in the right-hand-side terms the first and second particles have momentum
p1 and po respectively. One may easily transform the form-factor in the U(3) basis,
F(g?)57, into that in the charge basis, F(g?):

1
F(@)wn N F(a)w
Fvw [ =0 yol|| 7k | )
f(qz)nsns 0 0 1 F(q2)TIIé{Is

One can demonstrate by induction that when a successive number of N two-
pseudo-scalar loops and effective scattering vertices are connected, the momentum
structure in the effective current vertex Sy(g?) still remains:

Sn(@®) = Fn(@®) + Bn(@®) {pp, —¢*/2+m2}. (7.34)

However the ;ecurrence from N to N+1 couples the on-shell and the off-shell parts,
such that Y\, = ¥, MUFY + 5, MEBY and also that BY, | = ¥, MEFY +

> M” B(J ) , which can be written in a matrix notation as:
M4 Mp

Sny1=MSy = Sw, (7.35)
Mc Mp

where M4, M B, Mg, Mp are 3 X 3 matrices, all of them proportional to Flg and
therefore O(7= ) They are given by

M = 167 - , (7.36)
LO LO 2
T.° T, A %A

where one finds the 3 x 3 diagonal matrices A diag(A(m?r), A(m%), A(m2)) and
By =diag(By(¢®, m3,m2), Bo(q®, m¥,m%), Bo(q?, m;,my)), composed by the one-
and two- propagator Feynman integrals given in Appendlx A. The 3 x 3 sub-matrices

and TB o.p are defined from the off-shell expression for the I = 0 scattering
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amplitude at LO in 1/N¢. In this resummation only the scattering through local
Lo, vertices and scalar resonances in the s-channel will be considered. The scattering
amplitude shows then the momentum structure

P

LO LO 2 LO 2
T = 1 4+ 1! [p1p2—%—mi]+TC [pip'z—%—m'Q] +
(7.37)
LO 2 2
+T, [p1p2 - % - mi] : [p’lp’Q - % - m’i] :

with py, po the incoming momenta and pf, p!, the outgoing momenta. The terms with
Tgf)c, p only contribute off-shell, and depend on the realization of the chiral group.
But later on we will see that at the order considered here they do not influence the
final result when the out-going particles are on-shell.

The value for the on-shell amplitude T can be found in Appendix F. Moreover
the only relevant piece in the recurrence matrix M is going to be the submatrix

My =T -By - T, A . (7.38)
This recurrence implies that the SFF at a given number of loops is given by
50, = MED = . - mvHED (7.39

Here and in the following the type-of-current label —octet or singlet— will be omitted.
In order to regularize the real pole of the propagator at LO in 1/N¢ we must
perform the Dyson-Schwinger summation to all numbers of loops:

S=3% Sv=>Y MVS =@1-M)15,. (7.40)
N=0 N=0

Using the formula for inverse 2n x 2n matrices which can be found in Appendix
E, the resummed on-shell SFF F is then expressed as

F=[1-Ms—Mp(l—Mp)*Mc] ' [Fo + Mp(1 — Mp)By, (7.41)

with the on-shell tree-level SFF F; and the off-shell tree-level contributions 5y,
introduced before in Egs. (7.29) and (7.30). Notice that either Mp and Mp are
purely real and only M 4 contains absorptive contributions. The scattering vertices
in Eq. (7.38) are given just at LO in 1/N¢, because just the LO contributions to
the imaginary parts were sought.

The NLO terms in the former Eq. (7.41) are of the same order than the NLO
contributions in 1/N¢ of M 4 and Fy:

2
NC

My ~ O (NLC) > Mp(l—=Mp)Mc ~ O (L) ; )

Fo ~ O(1) > Mp(1— Mp)By ~ O (NLC) ;
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Therefore, keeping these subleading terms is inconsistent and the Dyson-Schwinger
summation becomes, up to the NLO order,

F(@®) = [1 = Ma(@)]) " Fold®) - (7.43)

About this point someone could argue that one should keep each independent SFF
FP) up to the considered order. The inverse matrix is going to produce for each one

the factor m, which contains a denominator with terms O(1) and O (NLC)’
and also other subleading terms O (NL%) and so on. Why not then cutting this
denominator at O (NLC) and dropping off the subleading terms? The reason why
this denominator cannot be modified at this level of the calculation is that exact
unitarity forbids that kind of manipulations. When one studies a concrete element
of the T-matrix the perturbative expansion cannot be cut independently in each
matrix element because there are subtle relations among them. What one is allowed
to do, is what has been done in Eq. (7.43): The matrix M 4 has a whole series of
higher order corrections and one is interested in just its value up to a given order in
1/N¢, then it is right to cut the whole matrix M4 at that order before computing
each individual matrix element through the inverse matrix (1 — M 4)~!. Otherwise
unitarity breaks down and one gets such wrong results as a negative imaginary part
for the w7 scattering.

The bare poles of the octet and singlet resonance propagators in Fy become
regularised trough the inverse matrix (1 — M4)~! in Eq. (7.43), as it happened for
the VFF. However as there are two scalar resonances we cannot perform a clear
separation of each resonance width. Since there is not a perfect U(3) symmetry, the
singlet state may flip to octet and viceversa.

When calculating the correlator of two scalar currents and the partial wave
scattering amplitude one sees that they get the same final state interaction through
the (1 — M)~! matrix, mixing the on-shell and off-shell intermediate states, and
providing the same poles to all the processes. This re-scattering process only depends
on the intermediate scattering vertices and on the intermediate two-particle loop.
As one evaluates the processes with their final pseudo-scalars on-shell it may be
demostrated that, up to the considered order, the relevant pole information from
(1 — M)~! is within the sub-matrix (1 — M ,)~!. The absorptive contributions
come just from M 4, and they only depend on the on-shell scattering vertices, which
therefore do not depend on the realisation of the chiral group. Here we obtain
the one loop absorptive contribution, that is, the LO in 1/N¢ contribution to the
imaginary part of the propagator. Nevertheless, the real part is incomplete and
ultraviolet divergent. The determination of these infinite pieces will be through a
matching with xPT as it was done for the VFF [27, 28, 105].
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7.5 Calculation in ny = 2

For simplicity the calculation has been done at first with the contributions from
pion loops since kaon and 7 loops will be quite suppressed at energies below the K K
threshold production, s < 4m?2- ~ (991 MeV)?2.

7.5.1 Ewvaluation for m, =0

In order to get a better understanding of the computation the SFF is calculated
first in the massless limit. Later on, the massive case will be analysed.

First we will compute the normalization at ¢> = 0 of the SFF for the SU(2)
current (uu + dd):

: 0 0 9 :
F(0)|mg=0 = rr}igo (8mu +3—md> My, = %2120{230 + O(mg)} = 2By . (7.44)

The effective current vertex is given by:

2 2
2y — 9B, 114 4cdm ¢ } _ {1 degem g }
~¢.0(q ) 0 { + F2 Mg o q2 F(O) + F2 M2 . q2 ’
(7.45)

4eqc 2 Sy 4cgqc 2
Bo(q?) = 2By =dgm =2 — Fo(0) =dgm 2
Connecting this effective current vertex with an effective scattering vertex 720

with 77~ and 7%7° loops one may compute iteratively the pion SFF for any number
of loops, since we obtain the recurrence relation

4¢2 4 By(¢?:0,0
oot = ) |6 ) (58]

(7.46)

42 2 By(¢?;0,0)
B 2y - F 2[(2+3d q )(0q7,>]
N+1(g%) ~(q°) 32 Mg_qQ 2

In Eq. (7.46) one has the I = 0 scalar resonance with (@u + dd) quark content in
the effective scattering vertex.

As result of this recurrence there arise a geometrical series on the on-shell SFF
that can be resummed:
2

. 14 2T
F() = Y Fald®) = F(0) —— LM . (47)
N0 - [1 e ] Bo(g?0,0)
F 4 F* Mg —q
which can be ordered in a more familiar way as:
Ha) M+ [ L (7.48)

F(O0) ~ [MZ+ Alls(¢?)] — ¢ —iMsTs(¢?)
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where the real and imaginary parts from loop contribution in By(g?;0,0) have been
separated. The ultraviolet divergent real part is:

27T 42 7
Als) =~ [M3+a (334 1) | Re{Bol@s0.0} . (149

whereas the imaginary part remains finite and takes the value

2 T 4 2 ]
MSTs(?) = Ly M3+ a7 ($3 - 1) | 1m {Bo(a?0,0)} -

(7.50)
2 2
- _49q 2 2 (34cg _ 2
167w F> [M5+q (ZFT 1)] o)

When calculating the two-current correlator one finds the same denominator,
this is, the same poles in the complex s-plane. More exactly, it generates the same
finite width T's(¢?).

In order to compare this expression with the experiment it can only be done with
the SFF phase-shift, which in the elastic region is equal to the T/=/=0 scattering
phase-shift due to the Watson theorem [60], and this has been experimentally mea-
sured in several works [35, 62]. The function Allg(¢?) can be fixed by a comparison
with the low energy result from yPT in the massless limit which can be found in
Eq. (7.12). The expansion in ¢? of the resummed expression gives:

F(g®) = FO) |1+ dcaem ¢ + iBO(qQ;o,O) +0 (q4) : (7.51)
F? M2 F?
Here one can again employ the knowledge that one has of the chiral couplings at LO
in 1/N¢; they become saturated by the heavy resonance exchange and the running
with the scale comes at NLO in 1/N¢:
_ Acqem

G(n) =l + Ala) = S5 4 Ay, (7.52)
S

with the subleading term A/4(p) being of order O(N2), so the xPT SFF becomes:

2 2 2
2 _ 1+ Acacm ¢ qi{l_l (_q_) 1602 A }]
f(q )7r7r -7:(0)7r7r [ + F2 Mg + 167T2F2 n /LQ + 167 84(/1,)
(7.53)

Thus the matching between the resummed expression and xyPT provides the diver-

gent Feynman integral with a finite value:

1 2
Bo(¢%0,0) — B = 62 {1 —In (—%) + 16#2A€4(u)} . (7.54)

Therefore, one has for the phase-shift the finite theoretical value:

MsTs(q%) }
MZ+ AT (¢%) —¢* |

8% = arctan{ (7.55)
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where now By(g?;0,0) has been replaced by Bj within Allg(¢?) and hence getting
ATls(g?).

Taking this expression I have performed a fit to the experimental data (Ochs—
energy independent sample— [35]). Although the result is scale independent the value
of Aly(p) depends on the scale . For the fit T took the usual reference scale y = 770
MeV and I performed it for energies below the KK threshold, i.e. including the bins
of the sample with /g < /Seng = 970 MeV. I obtained Mg = (870 & 14) MeV,
2cy/F = 0.67+0.04 and Aly(p) = (—4.1£0.5)-1073, with x?/dof= 10.0/16. Notice
that the value for Afy(u) is not as small as in the vector case; in this case one would
have also naively expected a contribution much more suppressed in comparison with
the value of the coupling at LO in 1/N¢, this is, |Als(u)| < |€4|Nc_m0 = CaCm[ME ~
9.1073, where I have taken Mg ~ 1 GeV.

Likewise, the value of the parameters obtained from the fit vary a bit if one
changes the final point of the considered range. Actually, it is the size of the errors
what changes, since the low energy region is fitted better. The value of x?/dof
remains essentially unchanged. Thus, the final point s.,q has been varied in the
range 870 — 970 MeV. Considering this systematic error the values of the parameters
become now Mg = (870 + 14%,,) MeV, 2¢4/F = 0.67 + 0.047085 and Aly(u) =
(=4.1+0.579%)- 1073, for u = 770 MeV. The comparison of the experimental data
and the resummed result in Eq. (7.55), taking the former central values of the fit
for the parameters, can be seen in Fig. (7.1).

From this result it is possible to recover the value of the renormalized xPT
coupling at the reference scale y = 770 MeV:

_Aeqenm

Cp) = Lol + Alp) = T Aly(p) ~ 3.5-1073, (7.56)
S

where I took the central values from the fit for Mg, ¢4 and Aly(p), and the LO
in 1/N¢ value ¢,, = F/2, with F ~ 92.4 MeV. This can be compared with the
phenomenological determinations in xPT [8], which give the scale invariant constant
{4 = 4.440.3 (Appendix D), and therefore the renormalized coupling at the reference
p, £(u) = (6.1 +£1.9) - 1073, A further analysis of the errors in Eq. (7.56) would
show that both result are completely compatible within errors. However, it could be
hard to estimate the uncertainties coming from assuming the massless pion limit.

When approaching to s = 1 GeV? this description fails and the other channels
have to be considered. In addition, after §) = 90° the experimental phase-shift shows
up a large variation in a very narrow range, changing form 6 = 112° in /s = 950
MeV to 6 = 226° in /s = 1100 MeV. This cannot be explained just with a U(2)
scalar multiplet, where there is only one iso-scalar resonance. It is necessary to con-
sider the whole U(3) multiplet and include also the iso-scalar resonance containing
strangeness.

Nevertheless, it seems clear from this analysis that the lightest scalar gg meson
has a mass Mg ~ 870 MeV, this is, heavier than p(770), in agreement with former
studies in QCD [91, 92].
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Figure 7.1: Comparison of the phase-shift §] coming from the resummed Eq. (7.55) with
Ochs’ experimental data—energy independent sample— [35].

At this point it is important to remark a detail about the asymptotic behaviour
at high energies. Both the resummed form-factor and the two-current correlator have
a good behaviour at short distances. However, every independent diagram with a
N number of loops do not accomplish such behaviour since every loop increases
the power behaviour by a factor %(Mg — iqZ) @200 ¢> (where the LO value
4c2 = F? has been taken), as it can be observed from the recurrence in Eq. (7.46).
Thus, one finds again the same problem that one found for the one loop VFF where
the scattering amplitude grew as ~ ¢ due to the t-channel scattering. Here we
have found that for I = J = 0 the problem arises even when considering only the s-
channel scattering. This remarks, once again, the great necessity of further analysis
of the scattering amplitudes within an EFT with resonances.

7.5.2 Massive pion case

For completeness I will show here also the theoretical result for the massive pion
case. This situation is a bit more complicated since now one finds a mixing between
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the on-shell and the off-shell amplitudes when computing the SFF at N + 1 loops
from the SFF at N loops:

Sy = M Sy, (7.57)

Fnyr ) _ ( Ma Msp Fn (7.58)
By +1 Mc Mp By ’
where this time M4 g ¢ p are just complex functions, not matrices.

However, as we saw before in the n;y = 3 derivation the SFF really only depends
on the element M 4:

that is short for

M = <q2 C 1234 g ) By(q*mz, mz)
m

2 ZFME _ q2 F2

(7.59)
_ (2 L34 ¢ ) A(m3)
3 2 F2 M2 2 F2 -
Thus, the resummed SFF will be:
Folg®)

F(@?) = ————— 7.60
( ) 1 _MA(QZ) ( )

where Fy(q?) was given before in Eq. (7.16). In it easy to check that in the chiral
limit m2 = 0 one recovers again the result from the former section. Again, through
a matching with xPT it would be possible to provide the ultraviolet divergences
with a finite value.

7.6 Pion and kaon decay constants: Influence of the
scalar resonances.

The study in this section is focused on the computation of how the variation of
the quark masses affects the pion and kaon decay constants, F; and F. Lattice cal-
culations have provided information about QCD results for unphysical values of the
u/d light quarks [101]. The simulations are forced sometimes to work with masses
of nearly the size of the physical strange quark mass or higher. Thus, xPT extrapo-
lations break down and generate large unphysical chiral logarithms, yielding a large
bending in the extrapolation [101, 102, 103, 33]. Nonetheless, more than purely
numerical values, this work aims to provide a possible way to analyse the Lattice
simulations at large quark masses, explaining why the usual linear extrapolations
work so well and which are the underlying physical foundations.

Through the inclusion of the first resonance multiplets, with masses Mpr ~ 1
GeV, one expects to reproduce the physics for the Goldstones up to that range
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of momenta and masses. Moreover, at LO in 1/N¢ only the scalar resonances
contribute to F; and F. Since the first multiplet of pseudo-scalar resonances stays
at much higher masses, it will not be considered in the calculation and its mixing
with the pNGB will be neglected.

7.6.1 Scalar tadpole and field redefinition

Analysing the LO lagrangian one observes the presence of a linear term in the
scalar fields, i.e. a scalar tadpole. It is given by the term of Log with the coupling
¢m, which provides the vertex for the scalar resonance production from a scalar
quark current.

Chiral symmetry requires the quark masses to enter in the effective lagrangian
only through the tensor x = 2By {s(z) + ip(x)}, which appears in the chiral co-
variant combinations y+ = ufyu! £ uxfu. In order to recover physical QCD, the
external fields are evaluated at the end of the calculation as xy = 2ByM, being
M =diag(m,, mg, ms) the diagonal matrix with the light quark masses.

The pieces of the lagrangian containing the scalar fields are

LE™(S) + Los = 3(0"S0uS) — F ME(S?) + 4Boem { SM ) +
(7.61)
+0(5%292, 59?%).

Therefore, the scalar field has a non-zero vacuum expectation value (v.e.v.). In order
to define the quantum field theory around the minimum one needs to perform the

shift: 1B
MS

M, (7.62)
where the shifted scalar nonet fields S has a zero v.e.v. Nonetheless this shift makes
S not to be chiral covariant any longer. For the present work this detail is not
relevant although other alternative shifts (like S = S + ¢, x4 ) would restore the
explicit covariance. The important detail is that the shift is not equal for all the
scalars but proportional to the quark masses and different for each resonance.

The part of the lagrangian containing the vectors, axial-vectors and pseudo-scalar
resonances, Lr[V, A, P], remains unchanged under the shift but the remaining O(p?)
chiral term Lo, and the scalar pieces E?in + Log become

Kin Kin' ! ! SBgcfn 2
ES + EQS + EQX == Eg ‘|‘ E2S ‘|‘ EQX - Mg, <M ), (763)

yielding a constant term proportional to ( M?), a kinetic term structure for S,

in! 1 ~ 4By ~  4Byc 1 -
Kin’ _ = m 0Cm 0Cm 4 282
c% S (v <S+ : M) v, <S+ : M)) S (M3S?), (764
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an interaction lagrangian without tadpoles,
Lo = ca{Suuu') + cm (S (x4 —4BoM)) (7.65)
and a modified O(p?) xPT term,

R
Lo = (O [ + X)), (7.66)

provided by the matrix definitions

can 4 4BgM 4c, 4B M
) = (1 ReagmABM) (1 S aBM)
(7.67)
-1 _ 4cqcpm 4BoM
C¢ = <1+F—2m_]&§_>

In order to convert the pNGB kinetic term to the canonical form, one needs to
1
perform a re-scaling C, on the pNGB fields u = exp (,@ /ﬁF) = exp (z'q; Plean) /ﬁF) .
At LO in 1/N¢ the resonance couplings are fixed by the QCD short distance

constraints [21, 22]: ¢4 = ¢, = F/2. Hence, from Eqgs. (7.66) and (7.67) one gets
for the pion and kaon fields the re-scalings and LO masses

m2 = 2By, my = Bo(m+my),
2m2 -1 [ 2m>2 ]_1
o= |1 T = |1 K
C [ + Mg] ’ Ck + M2
(7.68)

7.6.2 F, and Fi at Leading Order

Since the scalar tadpole has been removed, at LO there is only one diagram
contributing to the pion decay constant: the tree-level production of the pNGB
from the axial current,

N

(0l dyursulPT(p)) = iV2FCp?py, (7.69)

and therefore the pion and kaon decay constants are

1 1
2777/2 2 2m2 2
F, = F|1+—=Z ) Fx = F [1+2K) . 7.70
( M§> « ( M§> (770

When m?% < M2 the decay constants may be expanded in powers of m%, recovering
the tree-level xPT result Fp = F [1 + %ﬁim% + O(m}%)], with Ly = F?/4M32 (19,
21] (the SU(3) breaking coupling L, is zero at No — o0). This explains why the
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Figure 7.2: A) Lattice results for F; and Fx and xPT extrapolations taken from MILC
collaboration [101]. B) RxT extrapolations for the values from the fit, ' = 93.7 MeV,
Mg = 1020 MeV and the splitting S, = —0.02. The kaon mass varies as m% = m"** % +
(m2 — mEhvs-2) /2 due to its light quark content. They are shown together with the data
for m7%%, = ms /2.3 (squares), mesy = Ms /4.5 (triangles) and the linear extrapolation to the

sea — ,,val
value m;%% = my9, (error bars).

linear extrapolations work so well. Only near the zero quark mass the LO result in
1/N¢ gains sizable non-analytic contributions from the one-loop logarithms (NLO
in1/Ne): Fr = F [1+2558m2 - me o2 4],

The results for F; and Fix from the Lattice simulations (MILC Collabora-
tion [101]) are shown in the first plot of Fig. (7.2.A). The simulation handles two
kinds of quark masses: The sea-quark masses of the fermions within closed loops;
and the valence-quark masses of those which are not from the sea. In this simulation
the strange quark valence-mass m?® and the strange quark sea-mass m:°® take the

S
val — ms€e and equal to 114% x mP™* being mEI"¥s the physi-

cal mass of the strange quark. The u/d quark valence-masses mZ% (isospin limit is

same value mg; = m

assumed) are varied continuously between nearly zero and the physical mass of the
strange quark. Finally, the simulation is performed for two values of the sea-masses

sea — sea —

of the quarks u/d: m;5g = ms/2.3 and my’g = ms/4.5

The modifications due to the sea quark mass are much smaller than those from
the valence masses, as it is expected in the large-N¢ limit, since the closed quark
loops would be suppressed by 1/N¢. Thus, in this work I have generated the matrix
elements for equal values of the sea and valence masses, i.e. for m;% = mZ‘}ld,
through a simple linear extrapolation from the points of the Lattice simulation

shown in Fig. (1.B).
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The theoretical expressions derived from RxT for F;; and Fk in Egs. (7.70) were
fitted to these extrapolated points. The error in my input data in the fit was a 1 %
error, a typical discretization error, but it did not account the uncertainties in the

mffﬁi extrapolation to the value mz% The variation of the decay constant when

changing m; % could be considered as an estimate of this uncertainty. In addition,
the errors due to NLO contributions have not been considered. The fit yields the
values F = 94.1 £ 0.9 MeV and Mg = 1049 + 25 MeV, with x?/dof= 11.0/13.
This yields for the physical pion and kaon decay constants F; = 95.8 + 0.9 MeV
and Fx = 113 £ 1.4 MeV, in acceptable agreement with the experimental values
F.+ =924+0.07+0.3 MeV and Fg+ = 113.0 £ 1.0 £ 0.3 MeV [82]. One may also
estimate the xPT coupling at LO in 1/N¢, Ly = F?/4M% = (2.01 £ 0.10) - 103,
Nevertheless, here the chiral logarithms have not been included. In xPT they
produce an important non-analytic effect and a large bending in the F}; curve, since

its slope becomes large at small pion mass due to :1171; 7~ In % The effect of the
logs on Fi is much more reduced since the value of the kaon mass does not become
small when m,/; — 0. That is the reason for the better agreement of the Fg
result. Eventually the NLO calculation in 1/N¢o (one loop) would introduce this
extra non-analytic curvature and the usual one loop result for F; in xPT would be
recovered.

The mass splitting between the masses of the two I = 0 scalar resonances can
also be studied since they do not contribute equally to F; and Fx. The resonance
multiplet has been considered at first as degenerate in mass. Nonetheless the res-
onance masses can gain contributions due to the quark masses. In the large-N¢
limit, Chiral invariance requires that, at order O(m,), the mass splitting enters only
through a chiral invariant term [104]:

AL, = ep{x+5%), (7.71)

being e, an O(N2) dimensionless constant, independent of the quark masses.
The shift now in the scalar field to re-absorb the tadpole is slightly different:

_ -1
S = § + 4By M [M? — 85, BoM| . (7.72)

The mass eigenvalues for the I = 0 scalars are not M2 anymore but the two values

Ms, = Mg —Seanomu/d, for the state (%ﬂu + %Jd), and Mg, = Mg —8ey Boym,

for ss. Nonetheless, the physical scalar states will separate away from this ideal

mixing and these masses will gain also contributions due to NLO effects in 1/N¢.
At LO in 1/N¢ the pNGB masses still remain as given in Eq. (7.68). However

the re-scaling factors for pions and kaons change accordingly:

2 -1 2 -1
Cy = ll + Lz] ’ Cyx = [1 + M—KZ] , (7.73)

M2 — dem?2 M3 — 4e5m3

which therefore modify the pion and kaon decay constants.
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The pion and kaon decay constants depend now on the splitting parameter e;gn.

However the fit to the former data is not sensitive to this coupling, yielding: F' =
93.7+1.5 MeV, Mg = 1020+ 80 MeV and e, = —0.02 £0.05, with similar y?/dof=
10.9/12. It provides an estimate of the scalar masses at large N¢: one gets the
values Mg, = 1020 4+ 80 MeV and Mg, = 1040 4+ 90 MeV, highly correlated, and
their splitting, equal to MSS — Msn = 20 + 40 MeV. In addition, large OZI-rule
violations could occur at NLO of the same size as the quark mass corrections. In
the worst case, one would expect them to be of the order of 1/N¢ ~ 33% times the
value of the scalar mass at LO in 1/Ng.

The RxT extrapolation is shown in the second graph of Fig. (7.2.B). Since this
effective field theory describes the equal valence and sea mass case, the theoretical
result is compared with an emulation of the Lattice data for mff/’fj = Z%, obtained
by linear extrapolation as it was explained before.

7.6.3 Conclusions on the pion and kaon decay constants

RxT has been shown to be an interesting tool to analyse the Lattice data, which
usually are generated for non-physical values of the light quark masses. The present
work hints that the mesonic resonances may play an important role in the large
quark mass extrapolations. This work explores the pion and kaon decay constants,
providing successful results. The importance and aim of the present work is not just
the decay constant determinations but an alternative idea of how to interpret the
Lattice simulations for large unphysical values of the masses, providing a clear ex-
planation of why the usual linear extrapolations yield such a good result. Likewise,
this provides solid theoretical foundations for the thechniques based on the underly-
ing QCD. Thus, the 1/N¢ expansion might be a suitable framework to describe the
heavy quark matrix elements (fp, Bp...) at large values of the u/d quark masses,
where a similar linear behaviour has also been observed.

The fact that at low energies Rx'T recovers xPT ensures that we are introducing
the proper low mass behaviour [19, 23, 106]. Former works [102, 103, 33] noticed
the necessity of a separation scale A where the YPT loops become irrelevant. The
resonance masses provide a “natural” scale where the chiral extrapolations fail and
where the dynamics of the observable changes drastically.

The fits to the simulations were done for an emulation of the Lattice data, ob-
tained by extrapolating mze/‘é to the value mz%, that varied in a wide and continuous
range between zero and the strange quark mass. For a more proper analysis one
would need a simulation with equal sea and valence masses. However, the main de-
pendence comes from the valence-quarks and hence the sea-quark effects are small,
since the closed quark loops are suppressed by 1/N¢. Therefore, the present cal-
culation can be considered an adequate estimate of the hadronic parameters. A
further improvement would also be the reduction of the systematic errors that occur
in the simulation. For the Lattice data [101] one obtains the values F' = 94.1 £ 0.9
MeV and Mg = 1049 £+ 25 MeV, and the xPT coupling estimate at LO in 1/N¢,
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Figure 7.3: Diagrams contributing to the scalar condensate.

L5 = (2.0140.10)-10~3. The scalar mass splitting shows however large uncertainties.

7.7 Quark condensates in RxT

In the former section we saw that the presence of a scalar tadpole produced an
important effect in the order parameters F; and Fx. In this section I am going
to show that one can also provide a prediction for the quark condensates at LO in
1/Ne¢.

In this case it is even not necessary to perform the field redefinition to remove the
tadpole, since one has just two diagrams: The point-like condensate and the diagram
creating a scalar . In the F). case one had to consider an infinity of diagrams since
the pion propagator implied the insertion of an arbitrary number of scalar tadpoles.
The two diagrams are shown in Fig. (7.3), and provide the value:

dcim 4B°mq} . (7.74)

(gq) = By F”? {1 + =
F? M

If now one uses the results derived in the former section for the pNGB masses at
LO in 1/N¢ and the LO values of the scalar couplings, ¢,, = F/2, then one finds:

_ 2
(au) = (dd) = By F? {1 n —me} ,
MS

(7.75)
4mi — 2m2 } .

<§S>: B0F2 {1+ MS
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Chapter 8

Long distance chiral corrections
in B meson amplitudes

We discuss in this chapter the chiral corrections to fp and Bp with particular
emphasis on determining the portion of the correction that arises from long distance
physics (this Chapter is essentially based on the publication from Ref. [33]). For very
small pion and kaon masses all of the usual corrections are truly long distance, while
for larger masses the long distance portion decreases. These chiral corrections have
been used to extrapolate lattice calculations towards the physical region of lighter
masses. We show in particular that the chiral extrapolation is better behaved if only
the long distance portion of the correction is used.

Lattice calculations of B meson properties are presently done with parameters
such that the light quark masses are larger than their physical values. In order
to make predictions that are relevant for phenomenology, these calculations are
extrapolated down to lower quark masses. One of the extrapolation methods uses
some results from Chiral Perturbation Theory, and this appears to produce rather
large effects due to the chiral corrections. A recent summary of the field [34] noted
that this chiral extrapolation is the largest uncertainty (17%) at present in the
calculation of the B meson decay constant fp.

As it was explained in Chapter 3, Chiral perturbation theory is an effective
field theory involving pions, kaons and 1 mesons. These mesons are the lightest
excitations in QCD and the effective field theory is designed to describe the effects
of long range propagation of these light degrees of freedom. Even in loop diagrams
there are long distance effects which are described well by the effective field theory.
However, chiral perturbation theory is not a good model of physics at short distances
and is not valid for large meson masses. If we consider mesons of variable mass, as the
masses become heavier, less and less of the loop corrections are truly long distance.

The chiral corrections are sometimes used in ways that hide the separation of
long distance and short distance physics. Consider for example the chiral correction
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to the B meson decay constant in dimensional regularization [109, 110, 111]

1+36%2\ 3 ,. m2
=fol|l— —mzln— + ..
8= fo [ (167TZF7?> g tm w? +

; (8.1)

where g is the heavy meson coupling to pions. The ellipses denote the kaon and eta
contributions as well as analytic terms in the masses that carry unknown coeflicients
which must be fit. We see that the corrections vanish for massless mesons and grow
continuously with large meson masses'. This is the opposite of the behavior that
one might expect, which would be to have larger chiral corrections when the pions
are nearly massless. For very large masses of the “pions”, physically we expect that
the loop effects must decouple from the observables. The expression of Eq. 1 does
not illustrate this decoupling. The key point is that as the mesons become heavier,
most of the correction given in Eq. (8.1) comes from short distance physics, which
is not a reliable part of the effective field theory. We will show this in more detail
below. This behavior is not a problem in principle. The free coefficients in the chiral
lagrangian allow one to compensate for the unwanted behavior and correctly match
the short distance physics of QCD. However the reliance on Eq. (8.1) at large masses
can have a deleterious effect on phenomenology in some applications.

The way that present lattice extrapolations of Fp are performed apply the chi-
ral predictions outside their region of validity. An example is given in Fig. (8.1),
describing the results of the JLQCD collaboration [102].

In order to address the issue of the chiral exptrapolation, the lattice data was fit
with the function of Eq. (8.1) at large mass and the form is used to extrapolate the
results to small values of the mass. The fact that there appears to be a large effect
at m = 0 does not imply that the chiral correction is large here. Indeed, inspection
of Eq. (8.1) shows that the chiral log correction vanishes at zero mass, so the chiral
logarithm is not large at the physical masses. Rather, the big effect seen comes
from using Eq. (8.1) at large masses. Since the chiral logs grow at large mass, and
appear in this formula with a fixed coefficient, normalizing the function at large
mass produces a sizeable difference when compared to smaller masses. Since chiral
perturbation theory is not applicable at such large masses, this shift is not a valid
consequence of chiral perturbation theory.

We will explore the long-distance/short-distance structure of the chiral correc-
tions [113], and show that the undesirable effects described above come from short
distance physics that chiral perturbation theory is not able to describe. The ap-
plication of Eq. (8.1) at large masses then amounts to a bad model of the short
distance physics. We will give formulas for the one loop corrections of Eq. (8.1)
which removes the unwanted short-distance component. At small quark masses, our

!Note that we keep the B meson mass unchanged, so that when we refer to large and small
meson masses, we are always referring to the masses of the chiral particles - pions, kaons and etas
- that occur in the loop diagrams.
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Figure 8.1: Lattice data points for fp and fp, and fitted curves with quadratic fit
(upper solid curve) and with chiral logs for g = 0.27 and g = 0.59 (dashed)

method is just a different regularization of the theory, and reproduces the usual
chiral corrections. When applied at large quark masses, our formulas must also
be considered as a model. However, it is a relatively innocuous model in that it
makes no assumptions about short distance physics and it produces a small correc-
tion since the loop effect decouples at large mass. When used to extrapolate the
lattice results to the physical masses, our results lead to more reasonable estimates
of the chiral corrections. Our methods are similar to some work on long distance
regularization in baryon chiral perturbation theory [113] and on chiral extrapola-
tions in other processes [114]. In particular, the JLQCD group has explored the
use of the Adelaide-MIT approach [114] in the extrapolation of the pion decay con-
stant [102]. Our work describes the rationale and benefits of a modified approach
for the heavy-light system.
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8.1 A study of the chiral corrections to fp

The chiral corrections were initially calculated by Grinstein et al [109] (see also [110,
112, 111]). The methods are standard and we will not reproduce the details. However
we note that, although there are various Feynman diagrams in the calculation, in
the end the loop calculations involve only one loop integral,

d?4 1
A (mQ) - / i (2m)% (K2 —m? +de) (8.2)

The chiral expansion involves unknown parameters for the reduced decay con-
stant at zero mass (fy) and for the slopes (a1, @) parameterizing linear dependence
in the masses. The results are [109, 110, 111]

[Bug= \/%_B fo|l+ a1m2 + az(2m% + m2)
L (S )+ At + A ()] o9
and
fm. = jr fo| 1+ cn(2m3 — m2) + ap(2m, +m2)

n 1:1%92 (2A (m2) +%A (mg) )] , (8.4)

where g is the coupling of heavy mesons to pions? and Fy is the pseudo-goldstone
meson decay constant in the chiral limit3. Of course, the integral still needs to be
regularized. In dimensional regularization, one absorbs the 1/(d — 4) divergences
into the slopes and finds the residual integral

1
AT (mQ) = 162 l— m? —m?1n 7}—22] , (8.5)

where p is the arbitrary mass parameter that enters in dimensional regularization.
The physical results do not depend on y as it can be absorbed into a shift in the
unknown slope coefficients.

8.2 Cut-off regularization and lattice extrapolation

Let us explore the loop integral and study the long-distance part. In order to do
this, we use a cut-off defined in the rest frame of the B meson in order to remove

In our numerical work, we will use g = 0.59.
3We use the normalization such that F, = 0.0924 GeV.
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the short-distance component. Specifically, we use a dipole cutoff yielding

d*k 1
A (m2, A2) = A% / . 8.6
(m ) i (2m)* (k2 — m2? + i) (k2 — A2 + ie)? (8.6)

In related contexts, other forms of cut-offs have been studied [113, 114] - qualitatively
similar results are found with other forms, although the parameter A will have
different meanings in each case. We employ a finite value for the cut-off of order the
size of the B meson. The integral may be calculated and has the form

4 2 2
A (m?,4%) = 1:;2 [mQ 1_ zt (m;i A2)2 In %1 : (8.7)

More illuminatingly, this result is shown in Fig. (8.2). In this figure we compare the
dimensionally regularized result to the long-distance portion, defined by Eq. (8.7).

0O 0.2 0.4 06 08 1
m[GeV]

Figure 8.2: Integrals —A (m?2, A?) with A = 500 MeV and —A%" (m?) with u = 500
MeV (dashed)

The long distance component is seen to have several reassuring features in the
cut-off regularization. It is largest when the meson is massless, as one would expect.
It is small when the mass is big and exhibits decoupling, vanishing as the mass goes
to infinity. It smoothly interpolates between these limits. When comparing it to
the dimensionally regularized result, one sees a shift in the intercept at zero mass -



172 Chapter 8. Long distance chiral corrections in B meson amplitudes

this is not surprising because the regularization corresponds to removing the value
when m = 0. One also notices that, aside from this shift, both forms have the
same logarithmic behavior near m = 0. The small curvature noted at the smallest
mass values is the nonlinear behavior due to the chiral log factor m? Inm?. Without
this term the result would be able to be Taylor expanded about m = 0, with the
first term being a linear slope in m? - the nonlinear behavior is the result of the
logarithm.

We also see that the chiral log by itself grows large quickly and has a large
curvature at large masses in dimensional regularization. This effect is not mirrored
in the long-distance component, so that it is clear that this behavior comes from
the short-distance portion of the integral. This is not surprising. In dimensional
regularization, there is no scale within the integration aside from the particle’s mass,
so that the the whole integral scales with k& ~ m. These short distance effects are
the ones which are not reliable calculated by the effective field theory.

These results suggest that we should consider an extrapolation that only includes
the long distance loop effects. The short distance effects are provided by the lattice
simulation*. The truly long distance effects are supplied by chiral perturbation
theory. We will use the long distance parts of the loops in performing the matching
of the two regions. In our approach this matching is described by the parameter A
specifying the separation of long and short distances. The residual dependence on
this parameter, within some range, is a reflection of the present uncertainty in the

matching procedure.

8.3 Long distance regularization of the chiral calcula-
tion

At small quark masses, the cut-off treatment of the integral can be promoted to a
regularization of chiral perturbation theory. This has been studied in the context
of baryon chiral perturbation theory in Ref. [113], where it was called long distance
regularization. The use of a cut-off is clearly more painful calculationally than the
usual dimensional regularization, but when the masses are small it reproduces the
usual one-loop chiral expansion for matrix elements such as we are studying.

In order to regularize the calculation using the cut-off, the divergent pieces are
separated in the Feynman integral. The result is

1
A (m,A) = 6.2 l— A? +m? In %;] + ATen(m?2 A?%), (8.8)

“The “smooth matching” procedure of Ref. [111] is another attempt to apply the chiral results
only in their region of validity.
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where A™®®(m?2, A?) is finite in the limit A — co. This residual integral has the form

AT (2, A7) = A% (m?) 4 1 [ m* | mi(m® —2A%) m’

+ In—1|. (89
1672 | m? — A* (m? — A?)? A? (8.9)
We see that there are potentially divergent contributions proportional to A% and
In A2. However, these have exactly the right structure to be absorbed into the chiral
parameters. In particular, the renormalization is

rren _F 8 7 1+3g% 2
fO _f0_§f0647r2F;A
ren _ 5 1+3¢> A2
Qg = tgj 647r2%¢% Ini>
ren  _ 11 14342 A2
™ =t g g 77 In 5. (8.10)

After renormalization, we can express the chiral amplitudes in terms of these pa-
rameters plus the logarithmic contribution in the residual integral AT (m?2, A?),
providing the renormalized observables

1+ o™ m2 + age"(Zm%( + m?r)

FBua = T 5

]- + 3 2 ren ren ]. ren
+ 4—F$9— (% Aren (m2, A2) 4 AT (md, A%) + & A" (m2, A2)>](8.11)

and

1+ af*™(2m% — m2) + o™ (2m¥ + m2)

1+ 3¢ 2
+ 4F£9 (2 Aren (m3, A?) + 3 Aren (m2, A?) )] (8.12)
Since at small mass, the residual integral AT®® (m? A?) tends to A9T (m?), the
usual chiral expansion is recovered at m? << A%. At small mass, the cut-off is just
another way to regularize the calculation.

8.4 The chiral extrapolation of fp

If we are going to use any meson loop calculation at larger masses in order to match
to the lattice, then all treatments are model dependent. We have argued above that
the use of chiral logs at these scales amounts to a bad model because it builds in
very large and spurious short distance effects. Our calculation above removes the
short distance effects in the one loop diagrams. This is then a reasonable formalism
to apply to the lattice calculation. The lattice calculation supplies the correct short
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distance physics, described there through terms analytic in m? (linear behavior,
quadratic...). In addition, at smaller masses, our formulas naturally include the
chiral logarithms in the regions where they should be valid. This motivates us
to use the long-distance loop calculation in the chiral extrapolation for B meson
properties.

Let us first fit our expression to a caricature of the lattice data by matching the
data at two points. Such a linear extrapolation is appropriate for one loop since we
have only the constants and linear counterterms in the one loop expression. This fit
is demonstrated in Fig. (8.3), for various values of A. We see that the extrapolation
is smoother and that there is no large curvature induced at large mass.

0. 55}
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Figure 8.3: fp/mp as a function of m? fitted to the Lattice data points for A =
400,600,1000 MeV and for the result from dimensional regularization, A — oo
(dashed)

There is a residual dependence of the extrapolated value on the parameter A.
This is shown in Fig. (8.4). In the range A = 400 MeV — 1000 MeV, this amounts
to a 5% uncertainty in the extrapolated value. The formula used in previous extrap-
olations corresponds to A — oo. It is clear that the loop contributions that arise
beyond the scale of A = 1000 MeV are of too short distance to be physically relevant
for the effective field theory - there is no reliable chiral physics beyond this scale.

This extrapolation can be systematically improved. Most favorably would be
the situation in which the lattice data can be calculated at smaller mass squared -
eventually no extrapolation would be needed. Even if the improved data goes only
part of the distance to the physical masses, it would remove some of the model de-
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Figure 8.4: fp at the physical pion mass as a function of A

pendence of the result. The extrapolation needed would be smaller and the residual
A dependence would be smaller. Another way that improvement possibly may be
made is with increased precision even at larger masses. As shown by Eq. (8.9) above,
the extrapolations for different A values differ only at order m*/A2. If one includes
an extra O(m?) in the one loop chiral calculation, fitting to a quadratic expression,
then the extrapolations will be in closer agreement at this chiral order. Note how-
ever that the low mass region is still being extrapolated by a one-loop chiral formula
- this procedure is not equivalent to a two-loop result in chiral perturbation theory.

As the lattice data reaches higher precision, it may be that the range of A for
which a good fit is obtained may shrink. While we are treating A as a regularization
parameter, it is meant as a rough parameterization of a physical effect - the transition
from long-distance to short-distance in the loop calculation. Therefore when using a
fit to a given order in the chiral expansion, the lattice data may only be describable
with A within some range near the scale of this physical effect. Indeed, already the
present data is a poor fit for A — oco. Of course if one allows arbitrary orders in the
chiral expansion, with free parameters at each order, it is always possible to correct
the loop effect for any incorrect short distance behavior by adjusting the parameters.
However, when using the one loop integral with precise data it may not be possible
to obtain good fits for large values of A without introducing several new parameters
at higher orders in the masses. In contrast, simpler fits with fewer parameters may
be obtained with A within some optimal range.

Our procedure might be criticized as being a model, due to the choice of a sep-
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aration function and a separation scale. However, at large masses, the dimensional
regularization result is really more of a model as it introduces large and unphysi-
cal short distance physics. Our procedure is the “anti-model” because it removes
most of that physics. The residual dependence on A comes from the ambiguity con-
cerning how much of the short distance physics to remove. The value of A from the
lattice results, introduced through the dipole cut-off, parametrizes the short distance
physics. However, this dependence can itself be adjusted by using the coefficients of
the chiral lagrangian. Despite the decoupling of the loop at large mass, we retain
all of the correct chiral behavior in the limit of small quark mass.

8.5 Application to Bp

All of the preceding formalism can also be applied to the chiral extrapolation of
the Bp parameter for B — B mixing. We have reproduced the calculations of Ref.
[109, 110] using throughout the method of long distance regularization. As above,
only the integral A" is needed in the final answer. The chiral formulas after
renormalization of the parameters are

B, = B 4t 5 )
+ 1— 392 Aren (mQ A2) + 1 Aren (m2 A2) (8 13)
AFj ™ 3 n ’ '
B, =By |1 =) 4 457 )
1—3g°
+ 3F£Q Aren (m%,A2)‘| , (814)

in the same notation as before. Here the new chiral constants By, 31, 82 describe the
intercept and slope of the chiral expansion. At small masses the usual dimensional
regularization results of Ref. [109, 110] are recovered in the limit of small m/A, as
is seen using Eq. (8.9).

The chiral corrections for Bp are proportional to 1 — 3¢2, while in the case of fg
the corrections contain the factor 1 4+ 3¢g2?. This modification makes an important
change in the result. For the coupling g = 0.59 that is favored by recent measure-
ments [115] and supported by recent lattice calculations and theoretical predictions
[115], the factor 1 —3g? almost vanishes. In this case, the one loop chiral corrections
are tiny whether one employs the standard scheme or our long-distance regulariza-
tion methods. (See also [116] for a discussion of this effect). For this reason, we do
not display the numerical effect of the chiral extrapolation of Bg. Use of a signif-
icantly smaller value of the coupling ¢ would lead to measurable effect in the Bpg
extrapolation.
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8.6 Conclusions

We have presented a method for the extrapolation of lattice data to smaller quark
masses. This includes the chiral logarithm in the region where it is valid. It has the
advantage that it removes the large and unphysical short distance effects that caused
problems in previous methods. There is still some residual model dependence that
is visible in the variation of the results on A. However the extrapolations are better
behaved than previous ones. The residual uncertainty in a linear extrapolation (i.e.
with a slope proportional to m? and no chiral logarithm) for fg is about 5% when
the cut-off is constrained to the range 400 MeV-1000 MeV. For Bp the uncertainty
in the chiral extrapolation is negligible for g = 0.59. We would recommend that our
method only be applied for values in this range.

The chiral corrections have the effect of producing a slight decrease in the ex-
trapolated values of fp and Bp when compared to an extrapolation which does not
include chiral effects. This is the effect of the non-analytic behavior of the chiral
logarithm at long distance. Our estimates suggest that the decrease due to the chiral
log puts the chirally corrected result at 0.945 + 0.025 of the uncorrected extrapola-
tion for fg. We hope that our method will be applied in future extrapolations of
lattice data.
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Chapter 9

Discusion y conclusiones

Para concluir esta tesis doctoral voy a resumir brevemente el trabajo realizado.
Asi mismo plantearé las conclusiones finales una vez han sido mostradas todas las
partes del trabajo. Comentaré primero el planteamiento de la accidn efectiva. Luego
mostraré los resultados para el factor de forma vectorial en la regiéon entorno al pico
de la p(770), para a renglén seguido comentar el resultado perturbativo cuando uno
se aleja de polo de la resonancia. Por tdltimo terminaré las conclusiones comentando
los resultados obtenidos en los otros dos estudios realizados en esta tesis, el sector de
resonancias escalares y el estudio de la constante de desintegracién de los mesones
B.

9.1 Un lagrangiano efectivo para QCD en la region de
las resonancias

Al comienzo del trabajo partimos de la accién de QCD. Al estar trabajando
a energias £ < 2 GeV se podia prescindir de los sabores de quarks pesados -
charm/bottom/top y el estudio se realiz6 sobre QCD con tres sabores ligeros -
up/down/strange. Aun con esta simplificacién la teoria en términos de quarks
y gluones se vuelve altamente no-perturbativa a bajas energias. Para estudiarla se
necesitan entonces una serie de herramientas alternativas. En esta tesis nos hemos
centrado en la construccién de una teoria efectiva para describir las interacciones
entre mesones —el octete de pseudo-escalares ligeros y el primer multiplete de reso-
nancias vectoriales, axiales, escalares y pseudo-escalares—. Se ha intentado extender
el rango de validez de anteriores teorias efectivas asi como calcular el tamano de las
correcciones cuanticas que vienen de los loops.

En este escenario se observa que las masas de los quarks se pueden despreciar en
principio e introducirse posteriormente como un parametro perturbativo. Esto da
lugar a que aparezca una nueva simetria en QCD, la simetria quiral. Sin embargo
esta simetria se rompe espontdneamente generando una serie de bosones de Nambu-
Goldstone.
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A partir de las simetrias es posible construir una teoria efectiva, yPT, para
describir las interacciones entre los Goldstones. Desafortunadamente esta teoria deja
de tener validez al acercarnos a energias del orden de la masa del primer multiplete
de resonancias.

Como herramienta alternativa al contaje de momentos que se suele emplear en
otras teorias como xPT se empleé una expansién en 1/N¢, siendo N¢ el numero
de colores en QCD. El campo estd siendo ampliamente trabajado a primer orden
en la expansién en 1/N¢. Sin embargo se echan en falta trabajos que traten de
comprobar la consistencia de la teoria al nivel de loops [105, 59]. A través del
andlisis del factor de forma vectorial hasta segundo orden en 1/N¢ se observaron
una serie de patologias que destrozan la conexién del resultado efectivo con el de
QCD perturbativo a altas energias. Estos problemas son:

e Factores de forma con resonancias en los estados finales: El la-
grangiano minimo que introdujeron Ecker et al. [19] se ha mostrado muy eficaz
para describir factores de forma a orden arbol con Goldstones en los estados
finales. Sin embargo para los casos con dos resonancias en los estados finales
este lagrangiano produce factores de forma constantes. Si bien experimental-
mente puede no estar claro como definir las resonancias, lo que si es esperable
es que el comportamiento de sus factores de forma no sea constante y que a
altas energias tiendan a cero.

Este problema parece tener una salida bastante obvia, que es el estudio tedrico
de estos factores de forma al orden dominante en 1/N¢ y la introduccién de

nuevos términos con operadores de tres resonancias, que permitan recobrar la
2

M .
—’js, como se ha mostrado recientemente en

conocida estructura monopolar 15
R

Ref. [106].

e Comportamiento de las amplitudes de dispersién: Mediante estudios
de analiticidad y unitariedad es bien conocido que las amplitudes de dispersién
de dos particulas 7 (s,t) deben crecer méis despacio que ~ s? a altas energias.
De este modo uno asegura que cada onda parcial de momento angular J per-
manece acotada. En el caso de RxT uno encuentra que a altas energias las
ondas parciales de las amplitudes de dispersién de dos Goldstones yendo a
dos Goldstones crecen como T” ~ s. El problema no tiene una solucién triv-
ial ya que, por ejemplo en el canal I = J = 1, si bien la amplitud en el
canal-s obedece un buen comportamiento a altas energias, éste se estropea al
considerar también el intercambio de resonancias en el canal-t ya que las con-
tribuciones dadas por el intercambio de vectores y escalares van como ~ s a
altas energias. De hecho parece bastante complicado poder llegar a solucionar
el problema sin considerar de alguna manera el efecto de la pila infinita de res-
onancias y posibles espines. Lo que es més, para las amplitudes de dispersién
de dos resonancias a dos Goldstones el lagrangiano contiene sélo un término
local que va como ~ s, Lg,, y cuyas constantes ya estdn fijadas.
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Asi que, por lo tanto, este problema requiere un estudio més complejo que el
de los factores de forma. Aqui no es suficiente el estudiar las amplitudes de
dispersién a orden arbol y el considerar un nimero de nuevos operadores, sino
que se debe desarrollar una manera de describir el intercambio de mesones en
el canal-t de manera que, de modo efectivo, se recupere el comportamiento
correcto a altas energias incluso cuando se considera la interaccién a primer
orden en 1/N¢.

e Modos no-fisicos de los estados vectoriales: A altas energias uno encuen-
tra que QCD acepta una descripcién perturbativa en términos de particulas
de masa cero (en el limite en que despreciamos las masas de los quarks). Por
lo tanto de algtin modo los grados de libertad extra de los estados vectoriales
no puede estar presentes a cortas distancias. Sin embargo, nuestra teoria de
resonancias contiene campos masivos de spin 1. Al contrario de lo que sucede
en el Modelo Estandar la masa de los vectores no ha sido introducida en nue-
stro lagrangiano a traves de un mecanismo de Higgs, sino mediante un término
explicito de masa sin apelar a ninguna simetria extra. En los calculos a un
loop se puede observar de manera explicita la propagacién de los modos no-
fisicos de los mesones vectoriales (proyeccién 2 en el formalismo antisimétrico
y longitudinales en el de Proca). Asi sucede que al considerar loops donde
tenemos vectores (y axial-vectores) como estados intermedios la amplitud cre-
cen como una potencia mas alta del momento que los loops con escalares (y
pseudo-escalares), estropeando el comportamiento a altas energias y dando un
factor de forma que no se ajusta al que predice QCD a cortas distancias.

Este problema parece tener también una solucién mas compleja que el simple-
mente considerar operadores con mayor nimero de resonancias y de términos
locales de xPT. Las masas de todas las resonancias del espectro de QCD, asi
como cualquier otra escala de la interaccion fuerte, vienen dadas por la escala
caracteristica de ruptura de la simetria quiral A,, de tal modo que el régimen
no perturbativo de QCD genera una escala de modo dindmico y que no se
encontraba presente inicialmente en la descripcién perturbativa de QCD. De
este modo se ve como el tema es tremendamente més complicado e interrela-
cionado de lo que parece; los grados longitudinales de los mesones de spin
J > 1 surgen entonces por mecanismo que estdn todavia por resolver, como
son la ruptura espontinea de la simetria quiral y mas concretamente el régimen
no pertubativo de QCD.

Al estudiar el factor de forma vectorial hasta segundo orden en 1/N¢ uno en-
cuentra que no se puede aplicar el comportamiento asintético como se hizo con
los factores de forma a piones a primer orden en 1/N¢. El cilculo del grado su-
perficial de divergencia desarrollado en el capitulo 4 nos hace esperar a priori un
comportamiento del factor de forma a un loop como F(g¢?) ~ ¢? a altas energias.
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Realmente el comportamiento que nos da el célculo es incluso peor y se comporta
como F(g?) ~ ¢*, debido a los contribucién de la proyeccién 2 de los propagadores
vectoriales en el loop con dos propagadores vectoriales (contribuciones V7' y A2 en el
Apéndice C). La parte analitica, en la que ha habido que introducir contratérminos
subdominantes en 1/N¢ para renormalizar, no plantea un grave problema ya que los
acoplamientos de las resonancias hasta segundo orden en 1/N¢ se podrian ajustar
para que s6lo sobrevivieran los términos que van como AF(g?) ~ 1/¢?, como se hace
habitualmente en los cédlculos a orden arbol.

El auténtico problema lo plantean los términos no analiticos, los logaritmos
In(—s), que dependen sélo de los acoplamientos a primer orden en 1/N¢ y que
fueron ya fijados. Por lo tanto no es posible realizar el mismo juego de ajuste de
acoplamiento que se utiliza para hacer que los términos analiticos se comporten bien
a altas energias.

Resumiendo:

Los problemas anteriormente mencionados producen precisamente ese excesivo
crecimiento del factor de forma vectorial a piones a un loop. Estos diagramas sélo
pueden tener corte absortivo de estados de dos particulas, de modo que nuestros
diagramas quedan descompuestos en tres partes: primeramente tenemos una pro-
duccién de dos mesones a orden arbol que , salvo para la produccién del estado 7,
se comporta como ~ s” en lugar de como ~ 1/s; segundo, al final estas particulas son
dispersadas nuevamente a orden arbol dando un estado final 77, de modo que esta
amplitud de dispersién se comporta como ~ s en lugar de como ~ s’; por ltimo,
en un tipo de diagrama concreto referido antes —el diagrama V7 del Apéndice C
para vectores y el A2 para axial-vectores— se tiene una contribucién no nula de la
parte en €2 de uno de los dos propagadores vectoriales (y axial-vectoriales) interme-
dios, de modo que a altas energias va como A(k)*P7 ~ z/M‘Q, 4 en lugar de como
A(k)*P7 ~ i/k?. Asi entiende uno con claridad el origen de las tres potencias extra
de ¢? que daba el cilculo en comparacién con el resultado obtenido a primer orden
en 1/N¢.

La importancia de este andlisis es que semejantes problemas pueden aparecer al
estudiar otros observables més complejos: correladores a un loop [59], funciones de
Green de cuatro puntos [117], otros factores de forma a 6rdenes superiores [118]...
A través del andlisis del ejemplo concreto del factor de forma vectorial ha sido
posible encontrar las pautas que permiten saber de antemano cual va a ser el orden
de divergencia que vamos a obtener en nuestro observable, asi como los posibles
ordenes extra que pueden surgir por los propagadores de vectores masivos.

Sin embargo es importante resenar que la Teoria Quiral de Resonancias que se
ha desarrollado hasta segundo orden en 1/N¢ reproduce de modo exacto el predicho
por xPT una vez que se va a energias mucho més bajas que la masa de la p(770).
Se observa que se recupera totalmente el resultado de xyPT a un loop, dando la
relacién que existe entre las constantes de bajas energias del lagrangiano quiral y
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las constantes de altas energias del lagrangiano de resonancias. Es mads, se da la
expresién no a primer orden en 1/N¢g como se venia haciendo hasta ahora, sino
hasta segundo orden y para una escala de renormalizacién cualquiera. Se demuestra
de este modo que la pregunta que se planteaba hasta ahora sobre a que escala se
produce la saturacién por resonancias no tiene en realidad mucho sentido; a cambio
lo que se tiene son unos acoplamientos de la teoria de resonancias con un valor
concreto para un yu dado y que “corren” de tal manera que a bajas energias las
constantes quirales “corran” también y en el modo predicho por xPT.

Es mads, el estudio de las renormalizaciones nos permite observar que el tamano
de las correcciones radiativas en los acoplamientos de RxT son realmente subdomi-
nantes en comparacién con el valor de los acoplamientos a primer orden 1/N¢.

9.2 Determinacién de algunas propiedades de los mesones

En esta tesis se realizaron ademas algunas determinaciones de los pardmetros del
lagrangiano quiral y del de resonancias. A través de los andlisis fenomenolégicos de
factores de forma para energias entorno a la masa de las resonancias se pudieron
obtener alguna determinanciones de los acoplamientos y masas de los mesones. En
los casos con mayor incertidumbre, como en el escalar, se dieron unas buenas esti-
maciones.

9.2.1 Sector vectorial

Mediante una técnica de vértices efectivos desarrollada en la Ref. [26] se realizaron
resumaciones de Dyson con la adaptaciéon que requiere el contaje perturbativo en
1/N¢. De ese modo, para el vector se obtuvo la masa y anchura polo de valor

MEoe = (764.1 +2.7 740 MeV Ly = (1482 £ 1.975() MeV,  (9.1)

en completo acuerdo con otras determinaciones [82]. El otro modo en que habitual-
mente se suelen dar estos pardmetros es la masa y anchura Breit-Wigner, definidos a
partir de la fase compleja de la amplitud de dispersién, y que en nuestro caso valian

M, = (776.0 + 1.6 t33) MeV, T, = (1562+1.6702)MeV. (9.2)

BW

De igual modo se obtuvieron determinaciones de las constantes de acoplamiento
p(770) a fotén, Fy, y p(770) a dos piones, Gy,

|Fy/F| = 1.696 + 0.008 *5:910 |Gy /F| = 0.695 4 0.004 13011 (9.3)

v Fyvy Gy > 0. Este resultado estd en completo acuerdo con lo predicho teéricamente a
través de andlisis de cortas distancias, desvidndose menos de un 20 % de la prediccion
a primer orden en 1/Ng¢.

De igual modo, la determinacién de los pardametros del lagrangiano a través de un
andlisis parcial hasta segundo orden (sélo se resuman los diagramas més relevantes),
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permite dar una determinacién de la constante Lg(p) de xPT a cualquier escala
14, ya que su running es recuperado totalmente salvo correcciones subdominantes
en 1/N¢. El andlisis de los datos nos muestra que en efecto esas correcciones son
despreciables y que a efectos préacticos el running se recupera perfectamente. En
concreto para g = 770 MeV se tiene

Li(mo) = (7.04+0.0575:1%) . 1073, (9.4)

9.2.2 Sector escalar

Para el caso del escalar se obtuvieron determinaciones de la masa del primer
multiplete de resonancias escalares por dos métodos y aproximaciones diferentes. En
un primer lugar se realizé una resumacion de Dyson, enlazando con yPT, similar
a la que se habia hecho anteriormente con el VFF. Aunque teéricamente se mostrd
la estructura formal de la amplitud para el caso de canales acoplados (77, KK y
nsns), a efectos practicos se realizé el andlisis por debajo del umbral KK en la
teoria de dos sabores (u/d) y en el limite de masa del pion cero. Se hizo un ajuste
a los datos experimentales del desfasaje complejo de la amplitud de dispersion en la
region eldstica [35]. De ahi salieron las determinaciones de la masa (el pardmetro del
lagrangiano, no la masa polo o Breit-Wigner) y del acoplamiento escalar-pion-pion:

2
Mg = (870 + 147 %) MeV, % = 0.67 +0.047017 . (9.5)

Este resultado proporciona la siguiente estimacién de la constante de xPT,

4
) = bl + Ala) = =58 + Aby(u) = 35-107°,  (9.6)
c— Mg

para u = 770 MeV y tomando ¢, = F/2, con F ~ 92.4 MeV.

El estudio de otros observables, las constantes de desintegracién del pion y del
kadn, nos permite extraer alguna informacion sobre el sector escalar. Para ello, tomé
los resultados de las simulaciones en el reticulo de los correspondientes elementos
de matriz hadrénicos. Estas simulaciones se realizan para distintos valores de las
masas up y down, con lo que uno puede obtener informacién sobre la dependencia
de estos parametros con la masa de los quarks ligeros.

De este modo, al orden dominante en 1/N¢ uno puede fijar la masa del multiplete
U(3) més ligero de resonancias escalares:

Mg = 1049 + 25 MeV . (9.7)

Se puede incluso estimar la ruptura de la degeneracién de masas entre los dos
escalares con I = 0 debido a las diferentes masas de los quarks up/down y strange,
pero se comprueba que hay una alta incertidumbre en la determinacién. Asi mismo,
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uno debe tener presente que al siguiente orden en 1/N¢ pueden aparecer variaciones
en la masa del escalar del mismo tamano que la contribucién por masas de quarks.

Lo que queda por tanto bastante claro tanto de los andlisis en n; = 2 (resumacién
de Dyson de piones sin masa) y en ny = 3 (Fr y Fgk en el limite No — c0) es que
el valor de la masa del primer multiplete de resonancias escalares qg tiene Mg ~ 1
GeV, encontrandose por tanto por encima del primer multiplete de vectores, el de
la p(770).

9.3 Sector de quarks pesados

Por 1ltimo, se realizé un andlisis de los pardmetros de los mesones B, la constante
de desintegracion fp y la de mezcla Bp, obtenidos a través de simulaciones en el
reticulo para valores no fisicos de las masas de los quarks up y down. Para altos
valores de estas masas se observaba el mismo tipo de comportamiento lineal que en
F, y Fk. Sibien un estudio basado en N¢ grande, como en el caso escalar, ain
permanece pendiente, uno puede realizar una serie de Ansatzé previos para analizar
con mas claridad el comportamiento y la dependencia de estos parametros en las
masas de los quarks.

De este modo, se introdujo un cut—of f suave Ay, con estructura dipolar. Se vio
que el cambio de régimen logaritmico a lineal ocurria para A.,; = (400 — 1000) MeV,
reproduciéndose asi los resultados obetenidos en el reticulo. La falta de conocimiento
en el valor del parametro A.,; producia una incertidumbre en fp y rebajaba su valor
con respecto a las extrapolaciones lineales anteriores en un 0.945 + 0.025.

Para finalizar, el andlisis de la constante de mezcla Bp muestra que en ese caso la
influencia de los loops es menor ya que hay cancelaciones accidentales entre loops de-
bido al valor del acoplamiento g,pp+ ~ 0.59. Por tanto, las extrapolaciones lineales
producen pricticamente el mismo resultado que las que consideran las contribuciones
a un loop.

9.4 Coda

La resolucién de QCD parece ain un problema con dificil solucién. Sin embargo
a través del empleo de técnicas de teorias efectivas y de métodos como la expansion
en 1/N¢ se obtienen resultados que parecen estar en la direccién correcta.

En este trabajo nos hemos centrado principalmente en el estudio de las resonan-
cias de quarks ligeros obteniendo por un lado unos buenos resultados fenomenolégicos,
y por otro toda una serie de nuevos e interesantes interrogantes. Se comprobd que a
bajas energias se proporciona una decripcién correcta y al nivel tedrico se recupera
xPT de modo exacto hasta el orden en 1/N¢ estudiado, no sélo a orden 4rbol sino a
uno y dos loops. Por otro lado, atin parece que estemos lejos de poder recuperar el
comportamiento correcto al ir a altas energias pues hay un sinntimero de problemas
aun por trabajar y estudiar.
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Como tema accesorio se hizo también un acercamiento al campo de simulaciones
en el reticulo un campo en claro auge y que promete dar todavia una gran cantidad de
resultados interesantes. A través del estudio realizado en el capitulo 8 hice un primer
acercamiento al estudio de las interacciones entre mesones ligeros, con componentes
up/down/strange, y mesones pesados, con componentes charm o bottom. Se vio
asi cémo las propiedades de un sector afectan a las del otro y que en un necesitan
ser trabajados conjuntamente.
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Appendix A

Feynman integrals

A.1 Scalar integrals

In the calculation of the one loop diagrams there appeared three kinds of Feynman
integrals,

dk? 1
Ao(M? :/ ,
o(M%) z'(27r)d k% +ie — M?

dk® 1
i(2m)? (K? +ie — M?) ((q — k)? +ie — MP)

Bo(g?s M2, M7) = |

CO(QQ; MtfaManMg) =

/ dk® 1

i2m)* ((pr — k)* +ie — M) ((p2 + k)* +ie — My) (K* +ic — M7)’
(A1)

with ¢ = p; + po, the squared external momenta p? = p2 = 0 and the divergence

d—4

2 2
a +95 —Indr — 1= —"— 4+ vy —Indr — 1+ Inp?, (A.2)

Ao = 57 d—4

being vy ~ 0.5772 the Euler constant.
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These integrals for some especific values of the masses are:

2 2
Ag(M?) = %7 {—,\oo —1nf‘—u@} :

2
Bo(¢?; M?, M?) = —7161% {—)\oo—l-l—ln%Q——UMln(ig%t%)} )
Bo(¢%0,M?) =

M? M? §

{
Bo(¢%0,0) = —L {—Aoo+1 —In (—q—z)} ,

167 7
2 2 1 . q2 .
Cﬂ(q ;anaM )7: _W {L12 (]—_i_W) _L12(1)} ’
2. Af2 2 _ 1 2(opy — 1
Co(q*; M=, M*,0),= 167242 In (JM ¥ 1)
(A.3)
with oy = /1 — 4M?2 /g2
The three-propagator integral with two different masses is [47]:
2,2
2 M2 M2 m2) = 1 {—f’( qgm )
Colg®, M?, M*,m*?) 7167r2q2 12 7(M2 —m?)? +
272
~. M
+Li ( q ) +
2 (M2_m2)(M2_m2_q2)
(A.4)
2 2
~. 1+ ~, 1—
+Lig (‘ M2q_ m2 QUM) — Liy <M2 —3n2 s ZUM) +
iy (L= om) ¢ 1+ om
2 M?_mQ 2 2 MQ_mQ_qQ 2 ’
where a new function has been defined:
~ 1
with the usual dilogarithm definition
1 Yd
Lis(y) :—/d—xln(l—xy) :—/ —wln(l—a:). (A.6)
0z 0T
There are some properties of the dilogs that may be useful:
-1 S|
Liy (m ) = Liy(z) — % +3 I’z +Inzn(l - z) (A7)
T

Im{Lis(y +ie)} = =ln(y)f(y—1), (A.8)
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being 6(x) the usual step function.
In the calculation we are going to separate the infinite part with Ay and the
finite part:

~ 2 2 2
Ao(M?) = Ag(m2)+ DM\ - M, M
o(M?) o( )+167r 00 167 HF

> 2
Bo(g?; M2, M?) = Bo(q2;M2,M2)+ﬁg)\oo = ﬁ? 1-n M

~ 2
By(¢*/u?) = By(4?;0,0) + ﬁﬁ\oo = ﬁz {1 —In (—%)} .

For the Feynman integral with two massive propagators sometimes we will use
the function substracted at zero momentum:

1 M? _
BO(QQ;MQaMQ) = 2 _Aoo -1 —111—2 + JMM(q2)a (AlO)
167 w
with the substracted function
— _ 1 1
Tun(@®) = Bolas M?) = - {2—outn (201 (A.11)
167 oy — 1
which vanishes at ¢? = 0. Likewise, one defines
2 2 1 M? /.2 2
Byo(q*0, M?) = 6.2 —Aoo —In—5 5 + J(¢% 0, M7), (A.12)
™ U

with the subtracted function

J(¢%0,M?) = 16;2 {1 - (1 - f—j) In <1 - A‘Z—Z) } : (A.13)

In addition one finds:

d— 1
— J(s;0, M? = . A.14
2570 oo = 32 (A.14)
In general one has the subtracted two-propagator Feynman integral,
J(q*; M7, My) = Bo(a® Mg, My) — Bo(0; Mg, M), (A.15)

with the value
T2 M2, M2) = L {2+ [M,f—M,? MM M
5 Ma M) = 39,2 2 M= M2 " M2
N2 ME M) (16 4+ AP (P M, M) — (Mg — M)
- 2 n 2 _ 217202 02 M2VZ — (M2 — M2)2 ’
q lq (¢5, p)]° — (M, 5)

with A(z,y,2) = 22 + 9% + 2% — 22y — 222 — 2yz .
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A.2 Tensorial integrals

The loop function Bg) used in the text is defined through

= By ¢’¢" + By ¢"¢", (A7)

/ dk* kiR
i(2m)¢ (k? —m) [(q — k) —mp)]

P 1 62
B§2) = 7 [|1— 2P _
1927 q q op—1
(A.18)

The real part of this Feynman integral is divergent, but its imaginary part is
finite and takes the value

m? 8m% b op+1
)\oo+1n<,u—§ + 2P_§—|-o'§31n( P ) ’

3

ag
m{B;} = ~Toar 0@ —4m}). (A.19)
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Tensor structures in the
antisymmetric formalism

We are going to use the definitions p; o for the momenta of the outgoing Goldstones,
and ¢ = p; + p2 the momentum of the s—channel vector resonance. One finds the
scalar product g(p; — p2) = 0 when the external particles are on the mass-shell
(p? = p3 = mp).

In the antisymmetric formalism the vector propagator is given by a four index
tensor. The kinetic term of the vector field,

cfim = LMV, oV + TMIVL VA, (B.1)
which provides the classical equations of motion,
MRV — 8"V + My VI =0, (B.2)
implying
0, (* + M)V = 0. (B.3)
The corresponding free propagator in momentum space has the form
(VIYVPO Yy = APHPO(g) = _2_221' ABP7 (q) + ﬁ? QU (q) =
My, —q My
, (B.4)
- 2 {I/w,po _ 9 /w,pa}
= q )
My — ¢’ wz )
with the antisymmetric tensors
1
A,uu,pa(Q) = ﬁ [g,upQVQJ - ngqMQU - (P A U)] )
— 1 2
Quu,pa(q) = - ﬁ [gupQUQU — 9ov9u90 — 9 Gup9ve — (p < ‘7)] ) (B.5)
1

I/.w,pa = B (g/.tpgucr - guagup) s
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This propagator can easily be related to the usual gauge boson propagator in
the SM (the W propagator for instance):

M) = g PO ¢ g ) =
| L (B.6)
= 7M§VZ— q2 {QW - 7&3% _)qq2P£w(Q)} )

with PR (q) = g" — ¢#¢”/q* and P! (q) = q"q”/q* the usual Lorentz projectors.
In the limit £ — oo for the gauge parameter it yields the usual Proca propagator:

MY@ = gt @ + g PN =
' ) (B.7)
= m {QW - Ag,—gvpfu(Q)} .
The former antisymmetric tensors obey the following properties:
N-A=4-0=0 , A-A=4 , Q-Q=0Q , A+Q=1TI,
" Qv po (@) = ¢ Quvpo (@) = ¢ Qupo(9) = 47 Quvpo(q) = 0. B8

In general, for any antisymmetric tensor H,, .5 the operator Z.q s acts like the
identity, i.e.
H-I=7T-H=H. (B.9)

One may then define the antisymmetric inverses G, satisfying
Hyuyap G = Gy HP = I (B.10)

Through these tensors it is possible to rewrite the kinetic term:

LE™ = Sprpo § Vi [0°A@)97 + M) Vi =

(B.11)

= Eu<u, p<o %VNV [82“4(8)“””00 + MIQ/] VP(T’

and the equations of motion in Eq. (B.2) can be re-expressed as
[32 A(O)HP7 4 M‘%I’“”p”] Ve = 0. (B.12)
The inverse propagator in momentum space is:
AN Q™ = =5 (MY —q%) A7 (q) — § My Qi (q) =

(B.13)

. 212
- %q2 AP () — _KZA;I THY,P0
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Other useful relations are

¢ Appo(@) = —4A Q2 A N (Qappo — 4 MY A Hg)upot+
+My Ty por »
g"(p1 —po2)” ( _woag o\ IR a0 g
— 9 p>v) Zop5 9% (p1 — p2) Aps(@) a*(p1 — p2)7,
(¢°g" — q°g"*) = —2q¢"1f = —2q¢"A%(q),

(9" — ¢"q°) = 2q, A" (q) go -
(B.14)
Finally it is interesting to consider de matrix element for an outgoing vector of
momentum p and polarization €, :

14 14 Z v v
OV V(pe)) = el = 37 (0l —p"ely ) (B.15)

Thus, the summation over the physical vector polarizations 6?1‘:1 2,3) for a massive
vector (e-p = 0) yields:

2p2
Do eyt = -2 A (B.16)
i:11273 1%

a, B
where the usual result 3,1 95 eg) eﬁ)* = <—gaﬂ + ]}M—%> has been employed.
1%
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Appendix C

Diagrams in the NLO
calculations of the VFF

C.1 Detailed diagrammatic calculation

In this appendix I will show the contribution from every single diagram to the VFF
up to one loop. In many of them one will find a vector resonance at tree-level in the
s-channel. Due to the quantum numbers of the current there cannot be any other
intermediate meson. However we will have many different combinations of particles
running within the loops. They will be specified for every diagram, both for two
and three light quark flavours. In this appendix I provide the particles that run in
every loop for the three-flavour case. For ny = 2 one must remove the particles with
strangeness and keep just the I = 0 states with 4u and dd content.

All the parameters in the next results have been defined in Chapter 4. Likewise,
I remind that this calculation has been carried out in the chiral limit and up to NLO
in 1/N¢.

C.1.1 Tree-level Form Factor
The tree-level contributions (TL1,TL2) from the LO lagrangian:

< AF M) =1,
< (C.1)
aFpUg) =BGy 0

F> Mi —¢*
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In addition one also has the contribution at tree-level with one vertex from the
NLO lagrangian:

@D< AFPH) = —H54* + D2 g,
FvG 6
s < A}—ZL(CIZ) = —2Xz ‘;72‘/ (M‘%q_ q2)2a
) (C.2)
4W2Fy X
22X 4
aj=< AF{H(g?) = \ngF v g

C.1.2 Loops with vertices just from L,

The unique diagram which has contributions from only Lo, vertices is (x1):

2
@< AF¥(¢?) = %%{%Bo(q%o,()) + 1417#} . (C.3)

Within the loops one may find 777~, KTK~ and KK,

C.1.3 Contribution from diagrams with only pNGB and vectors
The diagrams with a loop of two pNGB propagators are (V1,V2,V3):

ne FivG 2G2 2
OIOJ A]:‘3V (q2) _ 2f V 2\/ 2[/ ( 2q q2)2 q2 éBO(QZ,O’O) i 1 5 ,
(0.4)

and within the loops there may be 77—, KK~ and K'K°.
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There are also diagrams with a loop of a pNGB and a resonance propagator
attached to just one of the external legs. For every case there is always the symmetric
diagram which connects the loop to the other external leg. Here the summation of
both is shown (V4,V5):

The particles in the loop of the 7~ leg may be 7~ p°, 7%, K~ K*? and K°K* .
For the 7" leg one may have the conjugate particles.

The next contribution comes from the resonance tadpole (V6):

n M3
@< AFL@) = Y o {Janarp) - M) (C.6)

Within the loop there may be pT(p~), p°, K*+(K*~) and K*O(f*o).

There is a diagram with a two resonance propagator loop (V7):

©<Af7 %) = o 7o {Bole, Mp, M3) | -2M3 — 5 +
2 2 2 4
tAMy) [? - 3M?/] ~6an? Vs 2887r2M%’,} '
(C.7)

Tn the loop one finds p*p~, K*+K*~ and K*K"°.

Finally the last possible type of loops is that with three propagators
—the triangles—. There can be a Goldstone-Goldstone-resonance loop coming ei-
ther directly from an external current or through an intermediate vector resonance
(V8,V9):
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ny 2G2 ME  5ME
AFY () = 71‘4 {Cﬂ(q270707 M) [—7‘1 — 5 - QQM?/] +
2 My 2 2\ [ My
+ Bo(g*,0,0) [—q—zv —2My — 1‘2] + Ao(My) [q_Zv + 2]
My &
64r? 28872 [’
ny 2G% F,.G 2
AFY (%) = _2£ F4V ‘}2VM‘2/q_ 7 x
6
X CO(qzaoa OaM‘Z/) _M—QV - 5MV 2M2
4 2 2
+Bola?,0,0) |- M — 2017 | + a0 |2 +2]
) 2 ) q2 }q q
64r2 28872 [ -

(C.8)

In the loop one finds the combinations 7+7 p°, K~ K+t K*? and KKK+,
There is also another available triangle, formed by resonance-resonance-Goldstone
(V10):

ng 2G2 M8 M
AFN(?) = ?lz {CO(q2>M‘2/7M‘2/70) [?K + —2‘1]
ML 2M2 2 M2
+ Bo(q?, M3, M) [~ - 2 ST aoarg) [ M 4
M2 2
+ V2 - q 2 )
1927 2887
(C.9)

Our LO lagrangian does not contain three resonance vertices so the analogous di-
agram with an intermediate vector resonance is not present. The combinations of
particles in the loop are pTp~ 7%, K* T K*~K° and K* KK+,

C.1.4 Contributions including scalars

I will denote the scalar resonances (and also afterwards with the axial-vector and
pseudo-scalar resonances) with the same name as the vectors, in order to expose
clearly what component of the U(3) multiplet we are talking about. For instance,
the S = 1,1 = 1/2 scalar will be denote as Sg~+.
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There are also diagrams with a Goldstone and a scalar resonance loop in one of
the external legs (S1):

4¢2 M2
% AFS(?) = 5 ch {Ao(Mg) + 3—2;}2} : (C.10)

For this diagram one may find in the loop of the 7~ leg the combinations 7S ,-,
MSp—s T Swg, T Swys K~ Sk+0 and K0S, .
The next contribution is that from the tadpole (S2):

@< AFS() = U Ly (a2} (€11

Within the loop there may be S,+(S,-), Syo, Sg+(Sk+-) and Sge-0(Sz+o0).
One finds also diagrams with one loop of two resonance propagators (S3)

. oMz | &
AF(P) = % o {Butat 3,03 [ 255 + (€12
11 Mg ’ |
+Ao(M3) [-3] - DYy

In the loop one finds S,+S,-, Sg++Sk+- and SK*oS?*o.
Finally we have the triangles. There can be a Goldstone-Goldstone-resonance
loop coming from both a local current or from a current through a vector resonance

(S4,85):

nr 4c? MS  MmE
AFP () = - f&i {CO(QZ,O,U,Mg) [—?& -
M4 2 M2
+Bo(a?0,0) [ 25 - §5 + a00a3) |2 ]
M2 q2
C64n? 2887r2} ’
nr FoG 2 4 M8 ME
AFS(q%) = _21 ‘}QVM‘Q/q_ quf‘ {CO(q270707 M) [—;25 - =7
M4 q2 9 M2
+B0(q a070) [_?i - ﬁ:| + AO(MV) |:;2£:|
_ME }
64m> 2887

(C.13)

In the loop one finds the combinations 777~ Sy, 77~ S,,, K~ KT Sk+0 and KOKOSK* +.
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Finally, there is also the triangle resonance-resonance-Goldstone (S6):

ny 4c> M8 wl
AF(@) = o 5t {Co(qQ,Mé,Mg,O) [q_g _ Ms
M4 _ZM'2 2 M2
+ Bofe?, M3, M3) | -5 + 25 - ] + ory [ B -
2 2
_{_%Z __9q } )
1927 28872

(C.14)

The possible combinations of particles within the loop are S,+S,-ns, S,+S,- 711,
SK*+SK*_K0 and SK*OSF*OK:E

C.1.5 Contribution from axial-vector loops

In this case there are only two contributions. One comes from tadpoles (A1l):

n M2
@< AFMG) = o 1 {%Ao(M,%) - 64;‘2} : (C.15)

Within the loop there may be A,+(A,-), Ay, Ags+(Ag+-) and Ago(Azro).

There are also diagrams with loops of two resonance propagators (A2):

n 2 4
AFNG) = o {Bote. 0 0 [0 - 5 + 51
2 2 2
oyl ¢ | My, ¢ ¢
+Ao(M3) [2 3M§] 64r’ | 1877 2887r2M3,} '

(C.16)
In the loop one finds A,+A,-, Ag+«+Ag-- and AK*oA?*o.

C.1.6 Pseudo-scalar resonance loops

Also for the pseudo-scalar there are only two contributions, one coming from
tadpoles (P1):

n
AFP (@) = o 5 Ao(MB). (C.17)

Within the loop there may be P+ (P,-), Py, P+ (Pg+-) and Pyo(Pro).



C.2. Limit ¢* < A} 203

And, to end with, the loop with two resonance propagators (P2):
n 2MZ |
AP = 5 o { ot g, 0ap) [ 22 4 4]

C.18
+ Ag(M3) [-}] Mp ¢ } (19

© 24x% ' 14472

where one finds P+ P,-, Pg«+Pg-- and PicoPrvo.

C.2 Limit ¢* < A?

In this section we will study the low energy limit of each independent diagram
in order to recover the one-loop xPT result.
First of all I show the high energy behaviour of every Feynman integral involved
in this calculation:

2,0 M2 M2
A(M?) = W{—)\oo—ln—Q}a

7
(C.19)
2 q°—0 1 q2
Bo(q%0,0) =" i Al — )
(C.20)
2 1 M2 q2
Bo(¢®; M2, M?) *=° Ao —1—In—F| + +
o(q”s M7, M) 1672 2T 96n M
4 6
q q
g60n2ar® 9 <W> ’
(C.21)
2 1 q2
Co(g%0,0,M?) =° ——Im(-L;)-1| +
(g ) 160202 |\ M2
2 2
q q
4 2 6
q q q
T Taan? 2 [3 o (‘M) - 1] © (ﬁ) :
2 1 q2
Colg® M?, M?,0) T2° — -
(g™ ) 167202 19202 M*
4 6
q q
- +0(=]. C.23
14407* M°® <M8> (G.23)

For simplicity I have expanded the renormalized diagrams and the ultraviolet
divergences are hidden just within the renormalised couplings ¢" (). To recover the
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infinities explicitly one just have to perform the replacement ¢’ (1) = () — dc(pu),
where dc(p) contains the divergence Ao (14).

AFTL(?) = 1 (C.24)
A]—"TL(qz) — FVqu_2 + O i (C 25)
7 = M?, M‘4/ . .
AFTL(2) — bs 5, Fve 4 C9
F37(q7) ——Pq +FCI, (C.26)

TL; 2 ¢°
4 M‘(j
¢
\%
TL, 2 q*
AFs (") = O (—) . (C.29)
6 Mé
2 1 1
AFX () = ﬁq—{—B 2 —} C.30
fl(Q) 2 F2 6 O(Q>050)+144ﬂ_2 ( )
(C.31)
Vo2 q*
1 Mé
Vi 92 q*
2 M‘%
4
1%
arl) = 2L ga0n) + 24 (G:35)
4 \d) = Ty T VI gor2 [ '
A]_—V( 2) _ ﬁFVGV —§A (M2)_|_M_‘2/ q_2 +0 q_4 (C.36)
M) T Ty T 270V G4 [ M2 ML) '
Vi, 2y ﬂi § 2 _M_‘Q/
2 2 2 2
vy _ ) My v q m M
AF @) = 5 {647r2F2 l1+61n el T R
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4
q
+0—=—]. (C.38)
<M$>
2G2 q2 M2 q4
AFY () = M=V 25+ 6In | —X o(=L_). (039
s (4) > 7 tneati? |0\ 2 )| T Y\ (C-39)
4
AFY (@) = o(q—> (C.40)
FPMZ
2G2 qQ M2 q
AFTL(P) = -2V A7+ 301 | 2L o=L ) (ca1
0(4) 2 72 1rmntpe |02 )|+ O gz ) (G4
4c? M?
AFS () = 2 p0m2 S 42
Fi(q) 5 i | A(MS) + 5 (C42)
neg 1
AFY (@) = 5 2m {AM)} (C.43)
M?2 M3 n 2 M3
AFS(?) = M _ Y5 (s P9 o2
‘7:3 (q) 2 167T2F2 n HZ 2 967T2F2 +1In ,U2 +
q4
o) C.44
+o () -
462 q2 M2 q4
AFS() = M T e (ZS) —11| + of =L C.45
i(q) 2 F? 152 FE |\ 2 T O\mpz) (O
4
AFS (@) = +0(=2— ). (C.46)
F?M3
4C2 q2 M2 q4
AFS(@) = MZd_ T ey [Z5) 47| + o =T, C.47
o (7) 2 F? 11520°F2 |\ 12 F2M2 (C.47)
Ar 2y _ ﬁi § 2y Mf&
Afl (Q) - 2 F2 {QAO(MA) 647‘(’2 ’ (0'48)
M2 M2 n q2 MQ
AFMP) = M _TA |1 46| A nt 143In | 2A
2 (07) 2 942 F? +6In 2 + 2 062 F2 +3ln 2 +
q2
+ 0 (C.49)
<F2M§>
AFP(@?) = ™M1 a00m2) (C.50)
1 \¢q 0 P/ -
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M? M? ng ¢ M?
AFP(2) = M P P\ _ Tf 141 p
FZ (q) 9 167T2F2 n HZ 2 967T2F2 +1In /112 +
q4
O —=—1. C.51
* <F2M12:,> (G5

C.3 Limit ¢* > A2

In this section I will study the high energy behaviour of each independent diagram
and I will observe how some cancellations between different diagrams occur.

First of all here I show the high energy behaviour of every Feynman integral
involved in this calculation:

2 2
o @Pooo M M
Bo(¢%;0,0) ¢ =% Ll e+ 1-mn s (C.53)
o\q Y, - 1671'2 o] /1,2 ’ -
2 M? 2
Bo(q%: M2, M?) T2%° B¢ oln [ —L_) 42 54
0(q ) ’ ) 0(q a07 0) + 1671'2(]2 n M2 + +(C 9 )

2500 1 2 1 2
Co(g%0,0, M%) "= T [ In (%) {—iln (q—2>+ (C.55)
™

2. 272 172 ¢ =00 1 2 ¢
Co(q*; M*,M*=,0) "~ = In“ | —— (C.56)

The contribution from each diagram is:

AF M) = 1, (C.57)
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(C.58)

(C.59)

(C.60)
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(C.62)

(C.63)
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(C.67)
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1 & [2 e
AFYV (2 = M 2 _ _9
F7 (@) 2 9672 | MZF? |3 o u?

M
+ O <_q2}‘?/2> , (C.70)

ng 2G3 1 2
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q q 27
—611’1 <_M—‘Q/> In <M—‘2/> +71'2 - 7 +
M,
o <q2F2>} ’ .
v 9 ng 2Gy FyGy 1 [ ¢ [5 1 q
A = 9 e we\ Pl 2] T
2 2 2
Vv 2 [ 4 q
2 2
q q 27
voin (5t ) (5f) -+ 5 +
MZ[5 1 ¢ My,
il A o T 2 72
F lﬁ 2 ( 2)| To\ere)) (©72)
262, 1 (¢ ] 5 ¢ 13
AFY (2 = ™M 22V N ) T . -
10(q”) 2 F? 9622 | F2 | 2 n 12 + 6
2 2 M4
+—¥l91n<—q2>+1 0<2V2 , (C.73)
v qF
ng Ac? M?2
arvay = e {aom s g ) (1)
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ne 1
AFS (@) = o 2m {AM)} (C.75)
ne 1 ¢ ¢ 5
AFS(g?) = 7f96w2{ﬁ[_ln<_F +3+
2 2 M4
+F—§[61n<—%>—1 +0< 21;2)}, (C.76)
2 2 2
S2) - A 1 Ja | 5 1, [ ¢
Afﬁl (q) - 2 F2 967T2 {F2 6 + 2 n u2
3 M3 M3
-3 I (C.77)
2F qg°’F
2 2 2 2
s2y - Gy 1 Jg (5 1, ([ @ %P]
AF3(q7) = 2 F2 Flosl VF2l6 20 P + 72 |2 +
2 2 4
Myls 1, [ @ + 0 J2V152 ’ (C.78)
F?2 |6 2 L ¢’F
2 2 2
S2) - MAca 1 Ja | 5 1, ( ¢
M T3 s K
S| —3In|-—— o . C.79
T lQ n( Z) "o \er (7
ng 1 [3 M3
AFMG) = Tfﬁ{iAO(Mf‘)—M;‘?}, (C.80)
4 2
Aoy _ np 1 ¢ (2 _ (L) 4 C.81
(C.82)
3¢° ( q2)
+= |1+ -5 || + (C.83)
F2 u2
(C.84)

; 2 M3\ 51
+% [12ln (—q—2> ~ 3 <—54> - 7] } + (C.85)
2 2

(C.86)

+ o (M—f‘> . (C.87)

ny 1
AFL(G) = 5 o Ao(ME), (C:88)
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It is good to make now some remarks about these results.

The combination of the diagrams x1, V1, V2 and V3 produces a cancellation up
to order ~ M}, /q?> F? when using the LO values Fyy = 2Gy = F+/2. In this diagrams
the intermediate state is ww and both the pion form factor and the nn — 7w
scattering amplitude in the s-channel behave adequately at high energies. Thus, the
asymptotic behaviour of the summed one-loop diagrams is the proper one, ~ 1/¢%.

The resonance tadpoles are constant and proportional to squared mass of the
resonances (V6,52,A1,P1). The same happens with the topologies with the loop over
one of the external legs (V4,S1). The analogous vector loop with an intermediate
vector resonance (V5) is just ¢?/(MZ — ¢?) times a constant factor proportional to
M‘Q/ Therefore, all these contributions do not have absorptive cuts and are analytic
so they can be cancel by choosing appropriate values of the RxT couplings.

The summation of the NGB-NGB-resonance triangles with and without an in-
termediate vector ( V8 plus V9 for vector loops, and S4 plus S5 for the scalar loops)
cancel up to order ~ M2 /F?. In this case one has again a 77 intermediate state.
The good behaviour of the pion form factor at tree-level provides the former can-
cellation that reduces the asymptotic behaviour from ~ ¢%. However, the 7m — 77
scattering through exchange of resonances in the ¢-channel shows the bad behaviour
~ ¢?/F? instead of being bound, so summed one-loop diagrams behaves as ~ const
instead of the desirable ~ 1/¢? behaviour.

The case of the other kind of triangles, the resonance-resonance-NGB loop, is
worse. One finds only 1PI triangles (V10,56) and the lagrangian from Ecker et al. [19]
does not provide the analogous diagram with an intermediate vector resonance that
could cancel the order ~ ¢?/F? terms, showing therefore this behaviour at high
energies. One should study and implement the right short distance limits to the form
factor to resonances and the scattering amplitudes RR — 7w, adding the required
pieces to the lagrangian. Thus, similar situations are found for the diagrams S3 and
P2.

Finally, the diagrams V7 and A2 produce a cut of two vectors and two axial-
vectors. They receive non-zero contributions from the projection-{2 of the propaga-
tor.

C.4 ()—contribution in the diagrams V7 and A2

In these two diagrams there was a one loop structure with two spin-1 propagators.
In the rest of diagrams where we had before a spin-1 particle always the Q—projection
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k? A(K) k* A(K)
a) b)

Figure C.1: Contributions to the diagrams V7 and A2 from: a) Just the A—projections
of the spin-1 propagators; b) contributions coming from the Q-projection of one of them.
There are no contributions from the Q-projections of both propagators.

of the vector (or axial-vector) propagator vanished due to the form of the vertices.
For simplicity, I will consider now on just the vector-vector diagram V7.

However, in this case, one finds that the  projection in one of the two vector
propagators survive. Thus, it is possible to split the result of the diagram in two
pieces, that coming from just the physical A-projection of the propagators, and that
“contaminated” with contributions from the {2-projection of one of the propagators.
We realised during the thesis that the important part of the VFF when analysing
the short distance behaviour is the absorptive contribution of the diagrams. Thus,
only the logarithms are analysed in this section.

The contribution to V7 from just the .A-projection is (diagram a in Fig. (C.1)),

2. 2 2
Af;/(qQ)absar—A — %i B()(q ,Mv,Mv)

2 4
{—2M‘2/ - & +q—] +

F? 6M2
(C.90)
g Bo(a*0, M) [_ v My ¢ ¢ ]
2 F? 62 6 T 6 6MZ|°
and the Q-projection (diagram b in Fig. (C.1)),
V.2 absor—Q o ﬂ Bo(q2;0, M‘Q/) Mé B M‘Q/ _ i q4

The summation of both contributions gives again the absorptive logarithm in AFY (¢?).

The first thing to notice is that each individual contribution contains an un-
physical cut of a mass My particle and a massless state, in addition to the physical
cut in By(q% MZ, MZ). This is because when splitting the vector propagator in
Alq) = M22—iq2A(q) + Aff—%Q(q), the part in A(g) contains two poles, ¢> = MZ and

\4
q> = 0 (within the A(g) definition in Eq. (B.5)).
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However, the second pole, in ¢> = 0, is fictitious. It is generated due to the
special way of splitting the propagator. Once both parts are summed up the fake
pole disappears, and just the ¢? = M‘Q, state remains.

This annoying situation only occurs in one of the two propagators. Due to
the form of the vertices the other propagator is always contracted with suitable
momentum structures, in such a way that its Q-projection vanishes and also the ¢
pole in A(q).

As result of this, in order to recover the physical result with only a two-massive-
particle absorptive cut one must sum up both contributions. This means that the
extra spin—1 state found in the (-projection is essential to recover the physical
result.

However, whereas at energies of the mass of the resonances and below including
the Q-projection is crucial, at high ¢ the Q-projection spoils the short distance
behaviour with an order ¢* term: The expression in Eq. (C.90) becomes,

absor—A 2500 M 2 2
F¥ (@) "= A ek [1+1n (—ﬁ;)] +

=)

ny M2 25 o My ¢ 1
+7 67T2F2 {11)\00—7—ln7+12]n —? +0 q—2 ,
9

and the expression in Eq. (C.91) turns out to be,

V¢ 9\absor—Q q2;>oo ﬂ q4 |:_A 1—=1 (_i)]
F7(q%) 2 96m2MZF? oo T n 2 +
n; g [Aoo_lnimn (_i ]+ (C.93)
2 96n2F> 2 w

2 2

ny My _3 My 1

+ 2 967‘(‘2F2 |:>‘OO 2+]1'1 lu2 +O q2 .
The form factor scales then as ~ ¢* at high energies due to the contributions from the
Q-projection of the propagator. These extra degrees of freedom should be removed
somehow from the calculation in order to recover the F ~ ¢ behaviour expected
from the naive superficial degree of divergence analysis.

Summarising

¢ Low and intermediate energies: Both A— and (2-components of the prop-
agator contribute to the amplitude in such a way that unphysical cuts are
canceled out.

e High energies: The A projection, corresponding to the degrees of freedom
of our spin—1 meson, gives a well behaved form-factor. However, the addition
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of the Q2-component spoils the form-factor, increasing the behaviour at large
momenta by one extra power of ¢2.
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Appendix D

Couplings of the effective
lagrangian

D.1  xPT couplings of L4, in SU(2)r® SU(2)L
The xPT lagrangian at O(p*) —given in the U(¢) formalism— is [8]:

Ly, = £(DFUTD,U)? + £o(D,UTD,U)(DFUTDYU)
+3(x'U)? + £4(D*x'D,U)
+25(UTF* F,,U) + £g(D*UTF,, D'U) (D.1)
+0(XTU)? + haxtx + haFu F* + haX'x

There are also a pair of terms allowed by the symmetry but they can be removed
through the employment of the EOM of the O(p?) xPT lagrangian.

This set of coupling removes the ultraviolet divergences of the processes up to
O(p*) through the renormalizations:

Vi
b = WAOO(M) + 45 (1), (D.2)
being ¢; and ¢} (u) the bare and renormalized couplings respectively. The constants
i have been put together into Table (D.1) [8].
It is possible to express the renormalized couplings £} (1) in terms of the scale
invariant conbinations /;:

= 3272 m2
l = G(p) — Im— . (D.3)
Vi H

When integrating out the p(770) the O(p*) couplings gain contributions [8], that
can be found In Table (D.1) (in Ref. [8] one finds the notation Fy — F,, Gy —
G,, F — Fy).
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1 4 Yi Zf

1 “1710 | 173 | -5 ~ 68

2 61405 2/3 | 57 ~34

3 2.9 +24 | —1/2 0

4 414403 2 0
130209 | -1/6 | 25 =136

6| 16.0 + 0.5+ 0.7 | ~1/3 | O ~ 136

Table D.1:  Value of the constants £;, v; and £. The experimental values of ¢; and £,
have been taken from Ref [79], ¢35 comes from Ref [8], and €4, f5, £ have been obtained
in the recent study of Ref. [17]. For the constants ¢; from the p(770) saturation the value
M, =770 MeV was consider, together with the N¢ — oo relations Fyy = 2Gy = FV2.

When working at O(p%) [17, 16] one defines the combinations k; of couplings 4;:

2 2
m 1 ms

1 1 - m2 1 m2
ki = (455‘%‘—1679 1“,75> 6 P2 T 6 (2%“1“,75> Tom? M2
(D.4)

D.2 xPT couplings in SU(3)g ® SU(3)L

At O(p?) the xPT lagrangian is identical to the two flavour case. However, the
O(p*) lagrangian for ny = 3 contains a few more terms [9] and it was given before
in Eq. (3.26) in the U(¢) formalism (Eq. (3.38) if expressed through u(¢)).

This constants remove the ultraviolet divergences at O(p*) through the renor-
malizations:

SR I, L D.5
v o + Li(p) i = 55 oo + Hi (1), (D.5)
where T'H = —% and T = 2, and the constants T'; can be found in Table (D.2).

Notice that the couplings L3 and L7 are not renormalized at this chiral order and,
consequently, are scale independent.
Through the renormalization in Eq. (D.5), the running of the renormalized cou-
plings is given by the I';:
dL; Ty
Bap T T 162

(D.6)
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Table D.2: Phenomenological values of the O(p*) renormalized couplings for u = 770
MeV [6]. The last column shows the source.

i | Ty | LI(p) x 103 | Source

1 3% 04403 | Key, 7w = 770

2 | = 14403 | Key, 7w — 7

3 |0 —3.5*x11 | Key, 7w = 770

4 % —0.3 £ 0.5 | Regla de Zweig

5 |3 1.44+0.5 | Fg/F;,

6 | &4 | —0.2+0.3 | Zweig Rule

7 10 —0.4+£0.2 | Gell-Mann—Okubo, L5, Lg
8 %% 0.9+0.3 | mgo —mg+, Ls, (ms — M)/ (mg — my)
9 |3 6.9+0.7 | (r*)7

10| —3 | =554+07 | 7 evy

Finally, it is possible to recover xPT for ny = 2 by performing the limit m, >

My /¢, Providing the next relation of SU(2) and SU(3) couplings [9]:

4
&
4
£y
45
b
&
hi
hy
hs

= 4L} +2L3 — 5vk

ALG — Svk

—8LYy — ALY + 16L% + 8L% — tcvy
8Ly + 4Lt — vk

= L71n0 + %VK )

= 2L+ tvk
2

= 8Ll£+4Lg1—4Lg—1|r2H§—%yK :
—1L10 — 5Hfl— L
= 4Lg+2H§—§VK— 3VW+W

[

2 2 2
_ 1 m - 1 m m
where vp = W(ln 'u—; + 1) and MHn = 3902 Jz‘ In ﬂ‘

D.3 Resonance couplings and masses

(D.7)

In Chapter 4 the RxT lagrangian was introduced, including vector, axial-vector,
scalar and pseudo-scalar resonances. This lagrangian in Egs. (4.7) and (4.8) provides
the interaction between the resonances of resonances and the Goldstones. Although
this work has introduced the resonances as degenerated U(ns) multiplets, former
works separated explicitely the singlet component R; [19]. For vectors and axial-
vectors there is no difference but for the lagrangian for the scalar and pseudo-scalar

resonances:

Lxin(R=S8,P) = L5(VFRV,R- MR + } {0#Ro,R— M} R?}, (D)
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and

Los = cg{(Suyut) + e (Sxy) + 4 81 (uput) + & S1(x+),

Lop idy, (PX—) + idm Py (x_) - (D.9)

In the large N¢ limit U(1) 4 anomaly disappears and one has Mg, = Mg, ¢g = V3cq,

Em = V3¢ and dy, = V/3dy,. The singlet fields could be then put together with the
. . _ 1

rest of fields in the matrix RU(S) = RSU(g) + Ry %I.

The vector couplings Fyy and Gy for the p(770) can be obtained from I'(p® —
ete™) = (6.94+0.3) KeV and T'(p — wr) = (153+2) MeV [19], respectively, yielding

Fy ~ 154 MeV |, (D.10)
Gy =~ 69MeV |, (D.11)

taking the mass M, = 770 MeV. In addition, through the QCD short distance
constraints one may also give a prediction for these couplings at LO in 1/N¢ [23]:

Fy =Fv2 ~132MeV , (D.12)
Gy =F/vV2 ~66MeV . (D.13)

The knowledge in the scalar sector is poorer. Recently, a analysis of the K7
scattering provided [76]:

ca = (30£10) MeV (D.14)
¢m = (43+14) MeV | (D.15)

where ¢4 and ¢, were left free. In addition, the fit gave the mass for the K vector
(I = %, J=0) Mpg; = 1.4 GeV. Moreover, imposing the constraint ¢4 = ¢, to the
fit one obtains [76]

cqg = ¢ ~ 45.4 MeV | (D.16)

in reasonable agreement with the theoretical prediction provided by the QCD short-
distance constraints [76, 21]:

cd:Cm_

~ 46.2 MeV . (D.17)

o |

The experimental determination of the scalar singlet parameters ¢4, ¢, and Mg,
is rather complicated, due to the actual controversy on the asignement of the 07"
states to the observed experimental spectrum. It is not clarified yet the degree of
mixing between the singlet and octet channels [104]. However, through large N¢
arguments, one expects them to form a degenerate U(3) multiplet (Zweig Rule).
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D.4 Contributions from the resonances to £4, at LO in
1/N¢

From the integration of the resonances, much heavier that the Goldstones
(Mg, mg, my; < MEg), one obtains their contribution to the xPT couplings at low
energies [19]. The first contribution comes at O(p?), so L, is not influenced by the
presence of resonances.

The saturation hypothesis states that at LO in 1/N¢ the O(p*) xPT coupling
constants are given just from the integration of the resonances. Since the saturation
is at LO in 1/N¢, i.e. at tree-level, one does not have a scale where this occurs. The
modifications due to the running are subleading in 1/N¢ and one expects them to
be small, and to essentially reproduce the experimental values L] (), for p = 770
MeV, in Table (D.2). In the vector case the saturation fulfill reasonably well the
experimental L; for any value of y = (0.5 — 1) GeV. However, in the scalar channel
one has important logarithm contributions, for instance for the coupling Ls.

At LO in 1/N¢ one has the resonance lagrangian in Eq. (D.9) yields the contri-
butions

LG 4 &
= 2 2 2
8SMZ  6M2  2M32
L - &
4M2
I. — _3G%/ 3
3 — 9 9
AMY  2M?Z
L, — CdCm | CdCm
YT TsME T M3
1
CdCm
Ly = (D.18)
M2
2 ~2
C C
L = ——m_4 _"m
‘ 6MZ ' 2M2,
dp  dy,
L; = S T aas2 0
6M3  2M3
m _ dm
Ls = oz "oz -
S P
L, = FyGy
oMz
FZ F?
LIO = - V2 + A2 )
AMZ  AMZ
H - F,  F% ,

C8MZ  8M3
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2
Cm d
H. = — 4 _m
O OME M3
_ In the large N¢ limit, when the multiplets become degenerated and ¢; = ¢; /V/3,
d; = d; /\/g, one observes that Ly = Lg = L; = 0, receiving just contributions
subleading in 1/N¢. Thus, one can beheld in Table (D.2) that they are in fact
experimentally suppressed.
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Matrix relations

E.1 SU(N) algebra

One can find the main properties of the SU(N) algebras in many reviews. Here
I show the most interesting ones that have being used in this work and that have
been extracted from Ref. [1].

SU(N) is the group of N x N unitary matrices, UU' = UTU = 1, with det U = 1.
The generators of the SU(N) algebra, T® (a = 1,2,...,N? — 1), are hermitian,
traceless matrices satisfying the commutation relations

[T°,T% = if*ere, (E.1)

the structure constants f*° being real and totally antisymmetric.

The fundamental representation 7% = A\%/2 is N-dimensional. For N = 2, \* are
the usual Pauli matrices, while for N = 3, they correspond to the eight Gell-Mann
matrices:

010 0 —i 0 1 0 0
M= 100 |,X2 =]4i 0 0],X=l0 -10 |,
0 0 0 0 0 0 0 0
001 00 —i 000
M=1000],)N = 00 0 |, XX=[001],
100 i 0 0 010
00 0 L (100
M=100 —i |,2 = —=]01 0 |. (E.2)
0 i 0 V3l 0 —2
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They satisfy the anticommutation relation
a b 4 ab abc yc
{A,A}:—(S Iy + 2d°e xe, (E.3)
N
where Iy denotes the N-dimensional unit matrix and the constants d*¢ are totally

symmetric in the three indices.
For SU(3), the only non-zero (up to permutations) f%¢ and d®¢ constants are

L 103 c1a7 _ p156 _ p2a6 _ p257 _ p3a5 _ _g3e67 _ 1 opass 1 oers 1
T e e e e e v Tty VA
d146 — d157 — _d247 — d256 — d344 — d355 — _d366 — _d377 — 1 (E 4)
2’ '
JUI8 _ 228 _ 338 _ _9qM8 _ 9558 _ 9 688 _ o788 _ _ 1888 _ i
V3
The adjoint representation of the SU(N) group is given by the (N2 —1)x(N2—1)
matrices (T%)p. = —if%¢. The relations
1
ayb) _ ——
’I‘r()\)\)_élTp(Sab, Tr =73,
NZ-1
(A*AY) 5 = 4CF bag , Cp = N (E.5)
Te(T4TH) = f*f* = Cadwy,  Ca=N,

define the SU(N) invariants T, Cr and C4. Other useful properties are:

2
(Aas (X%)y5 = 200057 — 1-0adys Tr (XTAPAG) = 2(d% + i f%)
N 4
arpbrpcy _ - 1Y pabe, abb: . abe ebc: o .
Te(TATATA) =i o [ Zb:d 0; d*d (N N) Sae; (E.6)
fabefcde T facefdbe + fadefbce — 0; fabedcde T faceddbe + fadedbce —0.

E.2 3 x 3 matrices
For 3 matrices A, B, C, the Cayley-Hamilton theorem states:

ABC + ACB + BAC + BCA + CAB + CBA
—AB(C)— AC(B) — BC{A) — CA(B) — CB(A)
—A(BC) — B(AC) — C{AB) — (ABC) — (ACB)
+A(BY(C) +B(A)C)+C({A)(B) (E.7)
+{ANBC) +(B)(AC) +(C)(AB) - (A} B)(C) =0,

(AB'AB') = ~2(AA'BB') + 1(AA)(BBt) + (AB')?
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For 3 x 3 hermitian matrices one has:

B?2A+ BAB+ AB? = (A)B?+{A,B}(B)
+((AB) - (A)(B)) B+ (AB*)T (E.8)
3 (A= (4)T) ((B*) - (B)?) - (B)(AB)T.

For traceles 3 x 3 matrices A; we have:

(A1A2A3AL) + (A1A3A2A4) + (A1 ALA3Ar) +
+ <A1A2A4A3) + <A1A3A4A2) + <A1A4A2A3) (Eg)

—(A1A)(A3Ay) — (A1A3)(AgAy) — (A1A4)(A243) = 0.

E.3 2n x 2n Matrices

In order to calculate the re-scattering we had to invert matrices. Sometimes, as
it happened in the vector case with the tree level scattering amplitude, we had to
handle matrices with zero determinant and therefore at first, non invertible. This
problem is solved just adding to the matrix an infinitesimal matrix € with provides
a non zero determinant. We just can work this way during the calculations and take
the limit € — 0 at the end.

This algebraic operation for 2 x 2 matrices is given by

(a b U T d —b
M_<c d) - M _det(M)M_ad—bc<—c a )’ (E-10)

where det(...) denotes the determinant of the matrix and M* = {M*}T is defined
as the transposed adjoint matrix.

In a more general way, the inverse of a 2n X 2n matrix M = ( é g ) is

vl ( (A-BD'C)! —~(A-BD'C)'BD! ) B
~\ —(D-c4'B)"lcA™! (D—CA™'B)! -
(E.11)
3 ( C~'D(AC™'D - B)~! —A-'B(D - CA~'B)~! )
"\ —ACc'D-B)! (D—CA™'B)! ’

where A, B, C, D are any general n X n matrices.

E.4 Properties of the dimension 1 projectors

The matrix for the scattering amplitude at LO in 1/N¢ in the I = J = 1 channel
could be given in terms of a dimension one projector times a factor. Thus, it would
be interesting to have a look on some of the properties of the projectors.
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Consider a matrix H = A ﬁ,\ﬁ;, with |@y| = 1 and being therefore A =tr(T') the
unique non-zero eigenvalue.

It obeys

H? = Ty(H) H, (E.12)
det(l1—H) = 1-—tr(H), (E.13)

1 1
1-H)™ = —— —— (H — tr(H)). E.14
(1~ H) w1 ) (E.14)
Notice that if H is proportional to a dimension one projector and A, B are arbitrary
matrices, then H = AHB is as well proportional to a dimension one projector
with its non-zero eigenvalue equal to \' = tr(H') corresponding to its normalized

eigenvector @y (that is not necessarily equal to @), and obeys

H -H = NH . (@fA7'@)B, (E.15)
det(l—H') = 1-X, (E.16)
1 1
_gh-1 _— Y
(1- H) v T ooy H X)) (E.17)

Therefore, when we multiply the former inverse matrix (1 — H)~! by the eigen-
vector iy, or by a matrix H - B on the right, with B any matrix, one finds

1-H) i, = 3 T (E.18)

(1-H)!'.-(H-B) = —— (H-B). (E.19)
(E.20)

So therefore the effect of the inverse matrix in these cases is completely equivalent
to just multiplying by a number,

1

1-H)' ~ —. E.21

(1-m)* ~ (E.21)

All this can be applied to the scattering amplitudes. In the isospin limit, the

matrix [Z_ITLI(?J =1 2_1] , is proportional to a dimension-one projector, be-
s—channel

ing [TLIEJ :1] the 7w and KK I = J = 1 partial wave scattering amplitude.

s—channel

The subspcript s — channel denots that only the local scattering and the exchange
of a vector in the s-channel have been considered. The exchanges in the #-channel
have been left appart. In the study carried on before in Chapter 5 I applied the
properties of H', taking the matrices H = [Z*I TI=7=1 2*1] ,A=17 and

s—channel

B = (—1927Bg3). The matrix H' = H - B was just the recurrence matrix M from
N loops to N + 1 and the vector @', was simply the tree-level VFF Fy.
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E.5 Physical eigenstate decomposition

A general hermitian n X n matrix H can always be expanded in terms of its
eigenstate spectral decomposition. This is the sum over the dimension one projectors
H = Y | \P;. These projectors have the form P; = ﬁzﬁ;r with the unitary vector
i; marking the P; projecting direction corresponding to the eigenvalue \;.

With this decomposition we have the inverse matrix relations

1

1-H)y'=1+)Y Y NP, (E.22)

i 7

_ 1

(1-H)'H =) T AP, (E.23)

i {2

14 T
(1-H) g = T (E.24)
J

However in the physical problem this hermitian matrix was also multiplied by a
matrix of Feynman integrals B =diag(B(1), B(g),---) which became proportional to
the identity in the U(3) limit. Then the former relations get modified when we have
(1 — HB)~!. If H is only considered at the leading order we have

(1-HB)™' ~ J[@-xPB)™, (E.25)
(1—-HB) 'H =~ ; [gju -~ \PB)7! mxjpj (E.26)
(1-HB) i ~ Ll;[j(l —\PB)7! mﬁj . (E.27)

These relations turn exact in the U(3) limit when B becomes proportional to the
identity or when H is proportional to a given dimension one projector.

The tree-level scattering amplitude coming from the exchange of an intermediate
bare propagator in the s-channel is in general given by the structure 7 = Vj -

M%qQ - V;i. The factors Vy; depend on the channel for the initial (i) and final (f)

state. Therefore we can express it in the matrix way 7 = M%qzva, with the
real vector (17) k = Vi. When we work with a scattering with angular momentum
J, usually this scattering is projected in the J partial wave:

T — 79" =2/ 7%, (E.28)

with C' a constant provided by the partial wave normalisation.
So both 7 and T are hermitian matrices proportional to dimension one projec-

. _ T~ = 1= Vo J _ T~ ~ RIS YA 4
tors: T = A u ul, with 4, = ik and 77 = X\ d,ul, with 4, = Bk
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E.5.1 Only One resonance Tree-level Scattering

If we only handle tree-level scatterings through a unique resonance exchange
in the s-channel, then the observables are described by the re-scattering matrix
[1 + T7(L+ A)]7!, so applying the former reasoning,

1

J -1 _ 1 _ J
1+ T/ (L+A)]"! =1 R LT A) T/ (L + A). (E.29)

Thus the re-summed scattering yields
= T/,

J —1mnd
1+ THL+ AT = 1+ te(T/(L + A))

(E.30)

The form factor is provided by an initial vertex consisting in an intermediate
bare propagator in the s-channel, i.e. Fy = HQ’B_—ng = HQ’B_—qﬂVWT. Then, the
re-summed form factor is

- " 1 -
F =N+ 277+ F = Fo. E.31
[ ( )21 Fo 1+ te(T7(L+A)) ~° (E-31)

The assumption that there are only tree-level interactions through a bare prop-
agator is right when you are close to the resonance, i.e. ¢?> ~ M?. The Dyson-
Schwinger summation handles the bare real pole in the right way, regularising the
tree-level pole in the tree-level T or in Fy with the tree-level pole in tr(T” (L + A)).

E.5.2 Resonance 4+ Background

When we are close to a resonance the rest of interactions (local, other reso-
nances...) act like a background. The total tree-level scattering 7' = T" +T"
is then composed by the term T" with the real pole s = MI%, and the background
TBg, which is regular at energies s ~ M3%:

1+ T(L+A)] L=
(E.32)
= [0+ T"@+ A x 1+ TN LA+ A)- 1+ T (L + )7
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Partial wave amplitudes

The partial wave projection consists in the decomposition of the scattering amplitude
in terms of Legrende Polynomials of the scattering angle:

O(s,t) = io: 327%(2J + 1) P?(cosh) O7(s) , (F.1)
J=0

with the first two polynomia being P’(z) = 1 and P!(z) = z.

F.1 Scattering with I=J=1

The I = J = 1 scattering allows the final and inital states 77 and KK. The
corresponding partial wave scattering amplitudes at LO in 1/N¢ can be put together
into the matrix

2 2 2 1 ——=
g 2G q
pl=i=1 _ v . _ 4 l1+ v __ }@ Y (F.2)
ro 967 2 Mi-¢) | -+ & ’

v—4qa \/5 2]

where ¥ =diag(o,,0k), being op = /1 — 4m%/¢?, and only the s-channel scatter-
ing is considered. In this result the initial and final states are given in the charge
basis.

One can observe that, up to the kinematic ¥ factors (proportional to the identity
in the equal mass limit), the scattering amplitude is proportional to the projector

1 —\Lf
2
1(1) 2
1:)|8) = 3 3 (F3)
_1 1
V2 2
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where one has the 77 and KK states in the isospin and angular momentum basis.

The T-scattering operator acting over an incoming octet 1(1~ ) state produces
only an outgoing octet 1(1~ ) state. This is the reason for the particular form of
the matrix of the partial wave scattering amplitude. Likewise, it is easy to check

@ .
)

that the VFF for pions and kaons at tree level is essentially the vector |8 , l.e.

the vector quark current generates just an octet state.

F.2 Scattering with I =J =0

For SU(3) one can find in this channel the states 7w, KK and ngng. Their partial
wave scattering amplitudes are given by the symmetric matrix

-] P Bl

2 2 2
—J= 1 3q 3¢° _ 2mik
T = 2 [_4_] [_4_ _3_] +
mZ oA ]
J__|__KE_
) 9
1 1 1 2Ak
_ _ 1_|_ 1o
T 43 4\/5( 3¢° )
(F.5)
14 1 1 (1 2AKW)
T 7 M 12 o\t 3¢ +
1 20N\
K
E(1+ 3q2ﬂ)
1 1 1
2 V3 23
4
1 q 2 1
T M? — ¢ 3 3 ’
1
ces 6’

where Ag, = (m% — m2) and the values of the scalar couplings at LO in 1/Ng,
¢4 = ¢m = F/2, have been considered. This result is given for the final and initial
states in the charge basis and only the s-channel scattering has been considered.



Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]
8]

“ Aspects of quantum chromodynamics”, A. Pich, Proc. 1999 ICTP Summer
School in Particle Physics (Trieste, Italy, 21 June- 9 July 1999), eds. G. Sen-
janovi¢ and A. Yu. Smirnov, The ICTP Series in Theoretical Physics — Vol. 16
(World Scientific, Singapore, 2000) 53-102; hep-ph/0001118.

“QCD and Resonance Physics: Applications”,

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov; Nucl. Phys. B 147 (1979) 448.
“QCD and Resonance Physics: Sum Rules”,

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov; Nucl. Phys. B 147 (1979) 385.
“Condensates in Quantum Chromodynamics”, B.L. Toffe, Phys. Atom. Nucl.
66 (2003) 30-43.

“Light Quark Masses in QCD from Local Duality”,

C.A. Dominguez, E. de Rafael; Ann. Phys. 174 (1987) 372.
“Four-Quark Operators and Non-Leptonic Weak Transitions”,
A. Pich. E. de Rafael; Nucl. Phys. B 358 (1991) 311.

“ Chiral-Symmetry Breakdown in Large-N Chromodynamics”,
S. Coleman, E. Witten; Phys. Rev. Lett. 45,2 (1980) 100.

“A Planar Diagram Theory for Strong Interactions”, G. 't Hooft, Nucl. Phys.
B 72 (1974) 461.

“A Two-Dimensional Model for Mesons”, G. 't Hooft, Nucl. Phys. B 75 (1974)
461.

“Baryons in the 1/N¢ Expansion”, E. Witten, Nucl. Phys. B 160 (1979) 57.

“Effective Field Theory”, A. Pich, Proc. Les Houches Summer School of The-
oretical Physics —Probing the Standard Model of Particle Interactions— (Les
Houches, France, 28 July — 5 September 1997), eds. R. Gupta et al. (Elsevier
Science B.V., Amsterdam, 1999), Vol. II, 949-1050, hep-ph/9806303.

“Phenomenological Lagrangians”, S. Weinberg, Physica 96A (1979) 327.

“ Chiral Perturbation Theory to One Loop”, J. Gasser and H. Leutwyler, Annals
Phys. 158 (1984) 142,



230

[9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

bibliography

“ Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark”,
J. Gasserand H. Leutwyler, Nucl. Phys. B 250 (1985) 465.

Effective Lagrangian for Standard Model,
A. Dobado, A. Gémez-Nicola, A.L. Maroto, J.R. Peldez; Springer-Verlag Berlin
Heidelberg (1997).

“Heavy Quarks and Longlived Hadrons”, T. Appelquist, H.D. Politzer; Phys.
Rev. D 12 (1975) 1404.

“On the foundations of Chiral Perturbation Theory” , H. Leutwyler (Bern U.),
Annals Phys. 235 (1994) 165-203.

Dynamics of the Standard Model,
J.F. Donoghue, E. Golowich, B.R. Holstein; Cambridge University Press.

“Chiral Perturbation Theory”, G. Ecker, Prog. Part. Nucl. Phys. 35 (1995) 1.
“Chiral Perturbation Theory”, A. Pich, Rep. Prog. Phys. 58 (1995) 563.

“The Mesonic Chiral Lagrangian of Order p%”,
J. Bijnens, G. Colangelo, G. Ecker; JHEP 9902 (1999) 020.

“The Vector and Scalar Form Factors of the Pion to Two Loops”,
J. Bijnens, G. Colangelo, P. Talavera; JHEP 9805 (1998) 014.

“7 Decays and Chiral Perturbation Theory”,
G. Colangelo, M. Finkemeier, R. Urech; Phys. Rev. D 54,7 (1996) 4403.

“The Role of Resonances in Chiral Perturbation Theory”
G. Ecker, J. Gasser, A. Pich, E. de Rafael; Nucl. Phys. B 321 (1989) 311.

“Large N¢ in Chiral Perturbation Theory” , R. Kaiser and H. Leutwyler, Fur.
Phys. J. C 17 (2000) 623-649;

“Pseudoscalar decay constants at large No” , R. Kaiser and H. Leutwyler, pro-
ceedings of Workshop on Methods of Nonperturbative Quantum Field Theory,
Adelaide, Australia, 2-13 Feb 1998, hep-ph/9806336

“Colourless Mesons in a Polychromatic World” , A. Pich, Proc. Workshop on
The Phenomenology of Large-N¢ QCD (Tempe, Arizona, 9-11 January 2002),
ed. R. Lebed (World Scientific, Singapore 2002); ArXiv:hep-ph/0205030.

“Strangeness Changing Scalar Form Factors”, M. Jamin, J.A. Oller and A.
Pich, Nucl. Phys. B 622 (2002) 279.

“Chiral Lagrangians for Massive Spin-1 Fields”
G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael; Phys. Lett. B 223 3,4
(1989) 425.



bibliography 231

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

An Introduction to Quantum Field theory,
M.E. Peskin, D.V. Schroeder; Colleege Press, University of Beijing.

The quantum theory of fields: Volume I, foundations, S. Weinberg, Cambridge
University Press, 1995.

“ Hadronic Off-Shell Width of Meson Resonances”
D. Gémez Dumm, A. Pich, J. Portoles; Phys. Rev. D 62 (2000) 054014-1.

“ Effective Field Theory Description of the Pion Form Factor”,
F. Guerrero, A. Pich; Phys. Lett. B 412 (1997) 382.

“Pion and Kaon Vector Form-Factors”, J.A. Oller, E. Oset and J.E. Palomar,
Phys. Rev. D 63 (2001) 114009.

“Finite-Width Corrections to the Vector-Meson-Dominance Prediction for p —
ete™”, G.J. Gounaris and J.J. Sakurai, Phys. Rev. Lett. 21 (1968) 244.

“Chiral Perturbation Theory and Final State Theorem”, T.N. Truong, Phys.
Rev. Lett. 61 (1988) 2526.

“Unitarized Chiral Perturbation Theory for Elastic Pion-Pion Scattering”, A.
Dobado, M.J. Herrero and Tran N. Truong, Phys. Lett. B 235 (1990) 134.
“The Inverse Amplitude Method and Chiral Perturbation Theory to Two
Loops”, T. Hannah, Phys. Rev. D 55 (1997) 5613.

“Meson Meson Scattering within One Loop Chiral Perturbation Theory and
its Unitarization”, A. Gémez Nicola and J.R. Peldez, Phys. Rev. D 65 (2002)
054009.

“The Inverse Amplitude Method in w7 Scattering in Chiral Perturbation The-
ory to Two Loops”, J. Nieves, M. Pavén Valderrama and E. Ruiz Arriola, Phys.
Rev. D 65 (2002) 036002.

“Bethe-Salpeter Approach for Unitarized Chiral Perturbation Theory”, J.
Nieves and E. Ruiz Arriola, Nucl. Phys. A 679 (2000) 57.

”N/D Description of Two Meson Amplitudes and Chiral Symmetry”,
J.A. Oller, E. Oset; Phys. Rev. D 60 (1999) 074023.

“Long Distance Chiral Corrections in B-Meson Amplitudes” , J.J. Sanz-Cillero,
J.F. Donoghue and Andreas Ross, Phys. Lett. B 579 (2004) 86-98.

“Phenomenology from Lattice QCD” , L. Lellouch, Nucl. Phys. Proc. Suppl.
117 (2003) 127-144.

“Die Bestimmung von wr-Streuphasen auf del Grundlage einer Amplitudeanal-
yse der Reaktion 7~p — 7~ 7t n bei 17 GeV/c Primdrimpuls”,
W. Ochs; Ph.D. Thesis (U.Munich, 1973).



232

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

bibliography

“Restrictions on Symmetry Breaking in Vector - Like Gauge Theories”,
C. Vafa and E. Witten, Nucl. Phys. B 234 (1984) 173.

“Theoretical Chiral Dynamics”, H. Leutwyler, talk given at the 3rd Workshop
on Chiral Dynamics —Chiral Dynamics 200: Theory and Experiment, Newport
News, Virginia 17-22 Jul 2000; hep-ph/0011140.

“The Standard Model of Electroweak Interactions”, A. Pich, lectures given
at CERN Academic Training, Geneva, Switzerland 15-26 Nov 1993; hep-
ph/9412274.

“Flavor Dynamics”, A. Pich, talk given at 23rd International Meeting on Fun-
damental Physics: The Top Quark, Heavy Flavour Physics and Symmetry
Breaking, Comillas, Spain 22-26 May 1995; hep-ph/9601202.

“ Low-Energy Expansion of Meson Form Factors”,
J. Gasser, H. Leutwyler; Nucl. Phys. B 250 (1985) 517.

“Spectrum of QCD and chiral lagrangian of the strong and weak interactions” ,
J.F. Donoghue, C. Ramirez and G. Valencia, Phys. Rev. D 39,7 (1989) 1947-
1955.

“Low energy hadron physics from effective chiral lagrangians with vector
mesons” , U.G. Meissner, Phys. Rep. 161 (1988) 213.

M. Bando, T. Kugo and K. Yamawaki, Phys. Rep. 164 (1988) 217.

“Hidden Local Symmetry at loop” , M. Harada and K. Yamawaki, Phys. Rep.
381 (2003) 1-233.

“Hidden Local Symmetry at one loop” , M. Harada and K. Yamawaki, Phys.
Lett. B 297 (1992) 151-158.

“The hadronic cross-section in the resonance energy region” , J. Portoles and
P.D. Ruiz-Femenia, talk given at Workshop on Hadronic Cross-Section at Low-
Energy (SIGHADO3), Pisa, Italy, 8-10 Oct 2003. published in Nucl. Phys. Proc.
Suppl. 131 (2004) 170-175.

“One Loop Corrections for eTe annihilation into u*p~ in the Weinberg
Model”,
G. Passarino, M. Veltman; Nucl. Phys. B 160 (1979) 151.

“Extensién de ChPT a Energias Superiores”,
F. Guerrero; Ph.D. Thesis (U. Valencia, 1998).

“Renormalitzacié de RxT: Factor de Forma Vectorial del pi6” , I. Rosell, trabajo
de investigacidn de tercer ciclo (U. Valencia 2004)

S. Weinberg, Phys.Rev. Lett. 18 (1967) 507.



bibliography 233

[49]

[51]

[52]

[53]

[56]

M.A. Shiftman, A.I. Vainstein and V.I. Zahkarov, Nucl. Phys. B 147 (1979)
385, 448.

M. Jamin and M. Miinz, Z. Phys. C 66 (1995) 633.

M. Golterman and S. Peris, Phys. Rev. D 61 (2000) 034018.

M. Knecht and E. de Rafael, Phys. Lett. B 424 (1998) 335.

M. Knecht, S. Peris and E. de Rafael, Phys. Lett. B 443 (1998) 255.

M. Goltermanet al., JHEP 024 (2002).

S. Peris, hep-ph/0204181.

“Exclusive processes and the exclusive-inclusive connection in Quantum Chro-
modynamics” , S.J. Brodsky and G.P. Lepage, presented at Workshop on Cur-
rent Topics in High Energy Physics, Cal Tech., Pasadena, Calif., Feb 13-17,
1979.

“Exclusive processes in perturbative Quantum Chromodynamics”, G.P. Lep-
age and S.J. Brodsky, Phys. Rev. D 22,9 (1980) 2157.

“ Asymptotic behaviour of composite particle form-factors and the renormal-
ization group” , A. Duncan and A. H. Mueller, Phys. Rev. D 21 (1980) 1636.
“ Asymptotics of pion electromagnetic form-factor in scale invariant quark
model” , A.V. Efremov and A.V. Radyushkin (Moscow State U.), Teor.Mat. Fiz.
30 (1977) 168-182.

“ Asymptotic limits and structure of the pion form-factor” , J.F. Donoghue and
Euy Soo Na, Phys. Rev. D 56 (1997) 7073-7076.

“Spectral Function Sum Rules in Quantum Chromodynamics”
E. Floratos, S. Narison and E. de Rafael; Nucl. Phys. B 155 (1979) 115.

“Semileptonic Decays of Pseudoscalar Particles (M — M’ + [ + v;) and Short-
distance Behaviour of Quantum Chromodynamics”
C. Bourrely, B. Machet and E. de Rafael; Nucl. Phys. B 189 (1981) 157.

“ Asymptotic behaviour and subtractions in the Mandlestam representation” ,
Marcel Froissart, Phys. Rev. 123 (1961) 1053-1057.

“Matching long and short distance in large No QCD” , S. Peris, M. Perrottet
and E. de Rafael, JHEP 9805 (1998) 011.

“tests of large N¢ QCD from hadronic tau decay” , S. Peris, B. Phily and E.
de Rafael, Phys. Rev. Lett. 86 (2001) 14-17.

“ Analytic approaches to kaon physics” , E. de Rafael, Nucl. Phys. Proc.Suppl.
119 (2003) 71-83.

“On the Solution of Certain Singular Integral Equations of Quantum Field
Theory”,
R. Omnes; Nuovo Cimento 8 (1958) 316.



234

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

bibliography

“Singular Integral Equations”, N. I. Muskhelishvili, (Noordhoof, Gronigen,
1953).

“Introduction to Chiral Perturbation Theory” , S. Scherer, to be edited by J.W.
Negele and E. Vogt. In Negele, J.W. (ed.) et al.: Advances in Nuclear Physics,
vol. 27 277-538; ArXive hep-ph/0210398

“ An example of resonance saturation at one loop” , O. Cata and S. Peris, Phys.
Rev. D 65 (2002) 056014.

“Some General Relations Between the Photoproduction and Scattering of w
Mesons”,
K. M. Watson; Phys. Rev. 95 (1954) 228.

“Final State Interactions in Kaon Decays”
E. Pallante, A. Pich; Nucl. Phys. B 592 (2001) 294.

“mn Partial Wave Analysis from Reactions 77 P — 7#t7~A*t and 7P —
KTK-ATt at 7.1 GeV/c”,

S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatte, J.
H. Friedman, T. A. Lasinski, G. R. Lynch, M. S. Rabin, F. T. Solmitz; Phys.
Rev. D 7 (1973) 1279.

“Vector Form Factor of the Pion from Unitarity and Analyticity: A model-
Independent Approach”, A. Pich and J. Portolés, Phys. Rev. D 63 (2001)
093005.

“Hadronic Contributions to the g — 2 of the Muon”, J.A. Casas, C. Lépez and
F.J. Yndurain, Phys. Rev. D 32 (1985) 736.

“Precision Determination of the Pion Form Factor and Calculation of the Muon
g — 27, J.F. De Trocé6niz and F.J. Yndurain, Phys. Rev. D 65 (2002) 093001.

“Measurement of the Spectral Functions of the Vector Current Hadronic Tau
Decays”, ALEPH Collaboration (R. Barate et al.), Z. Phys. C 76 (1997) 15.

“A Measurement of the Space-like Pion Electromagnetic Form Factor”, NA7
Collaboration (S.R. Amendolia et al.), Nucl. Phys. B 277 (1986) 168.

“Measurement of ete™ — w7~ Cross Section with CMD-2 around p Meson”,
CMD-2 Collaboration (R.R. Akhmetshin et al.), Phys. Lett. B 527 (2002) 161;
“Reanalysis of hadronic cross-section measurements at CMD-2" ;, CMD-2 Col-
laboration (R.R. Akhmetshin et al.), Phys. Lett. B 578 (2004) 285-289.

“Hadronic Structure in the Decay 7~ — 7 7’v.”, CLEO Collaboration (S.
Anderson et al.), Phys. Rev. D 61 (2000) 112002.



bibliography 235

[69]

[70]

[79]

[80]

[81]

“Measurement of the Strong Coupling Constant «(s) and the Vector and Axial
Vector Spectral Functions in Hadronic Tau Decays”, OPAL Collaboration (K.
Ackerstaff et al.), Fur. Phys. J. C 7 (1999) 571.

“MINUIT a System for Function Minimization and Analysis of the Parameter
Errors and Correlations”, F. James and M. Roos, Comput. Phys. Commun. 10
(1975) 343.

“mm Scattering”, G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B 603
(2001) 125.

“ Effective Theory calculation of resonant high-energy scattering” , M. Beneke,
A.P. Chapovsky, A. Signer and G. Zanderighi, Nucl. Phys. B 686 (2004) 205-
247.

“Study of the Resumation of Chiral Logarithms in the Exponentiated Expres-
sion for the Pion Form-Factor”,
F. Guerrero; Phys. Rev. D 57 (1998) 4136. hep-ph/9801305.

“Tau Decay Determination of the strange Quark Mass”, A. Pich, J. Prades,
Nucl. Phys. Proc. Suppl 86 (2000) 236-241.

“Strange Quark Mass from the Invariant Mass Distribution of Cabibbo-
Suppressed Tau Decays”,

S. Chen, M. Davier, E. Gamiz, A. Hocker, A. Pich and J. Prades, Fur. Phys.
J. C 22 (2001) 31-38.

“S-Wave K7 Scattering in Chiral Perturbation Theory with Resonances”,
M. Jamin, J. A. Oller, A. Pich; Nucl. Phys. B 587 (2000) 331-362.

“The Decay of a Light Higgs Boson”, J.F. Donoghue, J. Gasser and H.
Leutwyler, Nucl. Phys. B 343 (1990) 341.

“Light Higgs Particle in Decays of K and 1 Mesons”, H. Leutwyler and M.A.
Shifman, Nucl. Phys. B 343 (1990) 369;

“The decay n — w°H° in two Higgs doublet models with a light scalar” , J.
Prades and A. Pich, Phys. Lett. B 245 (1990) 117;

“Bounds on a light scalar in two Higgs doublet models” , A. Pich, J. Prades
and P. Yepes, Nucl. Phys. B 388 (1992) 31.

“K(14) Decays Beyond One Loop”, J. Bijnens, G. Colangelo, J. Gasser; Nucl.
Phys. B 427 (1994) 427. hep-ph/9403390.

“Short Distance Current Correlators: Comparing Lattice Simulations to the
Instanton Liquid”, T. DeGrand. Phys. Rev. D 64 (2001) 094508.

“Charm Quark Mass from QCD Sum Rules for the Charmonium System”,
M. Eidemuller, M. Jamin; Phys. Lett. B 498 (2001) 203. hep-ph/0010334.



236

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

bibliography

"Review of Particle Physics”, Particle Data Group; The European Physical
Journal C 15,1-4 (2000).

“Structure of Phenomenological Lagrangians. 27,
C.G. Callan, Jr., S. Coleman, J. Wess, B. Zumino; Phys. Rev. 177 (1969) 2247.

“Structure of Phenomenological Lagrangians. 17,
S. Coleman, J. Wess, B. Zumino. Phys. Rev. 177 (1969) 2239.

“ Chiral Perturbation Theory and Final State Theorem?”,
T.N. Truong; Phys. Rev. Lett. 61 (1988) 2526.

“The Inverse Amplitude Method and Chiral Perturbation Theory to Two
Loops”,
T. Hannah, Phys. Rev. D 55 (1997) 5613.

“On Analytic Properties of Vertex Parts in Quantum Field Theory”,
L.D. Landau; Nucl. Phys. 13 (1959) 181.

“Electromagnetic Form-Factor in the Timelike Region”,

L.M. Barkov, A.G. Chilingarov, S.I. Eidelman, B.I. Khazin, M.Yu. Lelchuk,
V.S. Okhapkin, E.V. Pakhtusova, S.I. Redin, N.M. Ryskulov, Yu.M. Shatunov,
A1 Shekhtman, B.A. Shvarts, V.A. Sidorov, A.N. Skrinsky, V.P. Smakhtin,
E.P. Solodov; Nucl. Phys. B 256 (1985) 365.

R.P. Feynman, Phys. Rev. 56 (1939 340;
H. Hellman, Einfihrung in die Quantenchemie, Deuticke Verlag (Leipzig, 1937);
S.T. Epstein, Amer. J. Phys. 22 (1954) 613.

“ Determination of the Elements V,s and V,4 of the Kobayashi-Maskawa Ma-
trix”,

H. Leutwyler, M. Roos; Z. Phys. C 25 (1984) 91.

“Ground States gg Mass Spectrum in QCD”, H.J. Munczek, A.M. Nemirovsky;
Phys. Rev. D 28 (1983) 181.

“Numerical Estimates of Hadronic Masses in a Pure SU(3) Gauge Theory”,
H. Hamber, G. Parisi; Phys. Rev. Lett. 47, 25 (1981) 1792.

“Precise Relations between the Spectra of Vector and Axial Vector Mesons”,
S. Weinberg; Phys. Rev. Lett.18 (1967) 507.

“Study of the Three Prong Tau Decays and Determination of A1 Parameters”,
DELCO Collaboration (W. Ruckstuhl et al.); Phys. Rev. Lett.56 (1986) 2132.

“Evidence for the Electromagnetic Production of the A1”,
M. Zielingki, D. Berg, C. Chandlee, S. Cihangir, T. Ferbel, J. Huston, T. Jensen,



bibliography 237

F. Lobkowicz, T. Ohshima, P. Slattery, P. Thompson, B. Collick, S. Heppel-
mann, M. Marshak, E. Peterson, K. Ruddick, A. Jonckheere, C.A. Nelson, Jr.;
Phys. Rev. Lett.52 (1984) 1195.

[96] “Absorption and Dispersion od Pions at Finite Temperature”,
A. Schenk; Nucl. Phys. B 363 (1991) 97.

[97] “The Octet Model and its Clebsch-Gordan Coefficients” , J.J. De Swart, Review
of Modern Physics 35, 4 (1963) 916.

[98] “Hadronic Contributions to the g — 2 of the Muon”, J.A. Casas, C. Lépez and
F.J. Yndurain, Phys. Rev. D 32 (1985) 736.
“Precision Determination of the Pion Form Factor and Calculation of the Muon
g — 27, J.F. De Trocé6niz and F.J. Yndurain, Phys. Rev. D 65 (2002) 093001.

[99] “The mr Interaction”, J.L. Peterson, Yellow Report CERN 77-04 (1977).

[100] “Pion and Kaon Electromagnetic Form Factors”, J. Bijnens and P. Talavera,
J. High Energy Phys. 03 (2002) 046.

[101] “Lattice QCD meets experiment in hadron physics”, C. Davies and P. Lepage,
talk given at Hadron 03:10th International Conference on Hadron Spectroscopy,
Aschaffenburg, Germany 31 Aug - 6 Sep 2003; ArXiv:hep-ph/0311041;

“High Precision Lattice QCD Confronts Experiment” , HPQCD Collaboration,
UKQCD Collaboration, MILC Collaboration and Fermilab Lattice Collabora-
tion (C.T.H. Davies et al.), Phys. Rev. Lett. 92 (2004) 022001.

[102] “Chiral Extrapolation of light-light and heavy-light decay constants in un-
quenched QCD” ;| S. Hashimoto et al. [JLQCD Collaboration], Nucl. Phys. Proc.
Suppl. 119 (2003) 332-334;

[103] “Chiral Extrapolation of Lattice Moments of Proton Quark Distributions” ,
W. Detmold et al., Phys. Rev. Lett. 87 (2001) 172001.

[104] “Meson Resonances, Large N¢ and Chiral Symmetry”, V. Cirigliano, G.
Ecker, H. Neufeld and A. Pich, JHEP 0306:012 (2003).

[105] “Rho meson properties in the chiral theory framework” , J.J. Sanz-Cillero and
A. Pich, Eur. Phys. J. C 27 (2003) 587-599.

[106] “Quantum Loops in the Resonance Chiral Theory: The Vector Form Factor” ,
I. Rosell, A. Pich and J.J. Sanz-Cillero, hep-ph/0407240 (submitted to JHEP).

[107] “Pion and Kaon decay constants: Lattice vs. Resonance Chiral Theory” , J.J.
Sanz-Cillero; hep-ph/0408080 .



238 bibliography

[108] “Heavy quark physics and lattice QCD”, N. Yamada, Nucl. Phys. Proc. Suppl.
119 (2003) 93-104;
“Lattice results relevant to the CKM matrix determination”, D. Becirevic, talk
given at 31st International Conference on High Energy Physics (ICHEP 2002),
Amsterdam, The Netherlands, 24 -31 Jul 2002, published in Amsterdam 2002,
ICHEP, 493-498; arXiv:hep-ph/0211340.

[109] “Chiral perturbation theory for fp(s) / fp and Bg(s) / Bg”, B. Grinstein,
E. Jenkins, A. V. Manohar, M. J. Savage and M. B. Wise, Nucl. Phys. B 380,
369 (1992).

[110] “Quenched Chiral Perturbation Theory for Heavy-light Mesons”, S. R. Sharpe
and Y. Zhang, Phys. Rev. D 53, 5125 (1996).

[111] “B — piand B — K transitions in standard and quenched chiral perturbation
theory”, D. Becirevic, S. Prelovsek and J. Zupan, Phys. Rev. D 67, 054010
(2003).

[112] “Chiral corrections and lattice QCD results for fp,/fp, and Amp,/Amp,”,
D. Becirevic, S. Fajfer, S. Prelovsek and J. Zupan, Phys. Lett. B 563 (2003)
150-156.

[113] “Improving the convergence of SU(3) baryon chiral perturbation theory”,
J. F. Donoghue and B. R. Holstein; ArXiv:hep-ph/9803312;
“SU(3) baryon chiral perturbation theory and long distance regularization”,
J. F. Donoghue, B. R. Holstein and B. Borasoy, Phys. Rev. D 59, 036002
(1999).

[114] “Nucleon magnetic moments beyond the perturbative chiral regime”,
D. B. Leinweber, D. H. Lu and A. W. Thomas, Phys. Rev. D 60, 034014 (1999);
“Incorporating chiral symmetry in extrapolations of octet baryon magnetic mo-
ments”, E. J. Hackett-Jones, D. B. Leinweber and A. W. Thomas, Phys. Lett.
B 489, 143 (2000);

“Systematic correction of the chiral properties of quenched QCD”, R. D. Young,
D. B. Leinweber, A. W. Thomas and S. V. Wright; ArXiv:hep-lat/0111041.

[115] “First measurement of Gamma(D*+)”, S. Ahmed et al. [CLEO Collaboration],
Phys. Rev. Lett. 87, 251801 (2001);
“First lattice QCD estimate of the g(D* D pi) coupling”, A. Abada D. Becirevic,
P. Boucaud, G. Herdoiza, J.P. Leroy, A. Le Yaouanc, O. Pene, J. Rodriguez-
Quintero, Phys. Rev. D 66, 074504 (2002);
“g-hat coupling (g(B* B pi), g(D* D pi)): A quark model with Dirac equation”,
D. Becirevic and A. L. Yaouanc, JHEP 9903, 021 (1999);
“D* D pi form factor revisited”, F. S. Navarra, M. Nielsen and M. E. Bracco,
Phys. Rev. D 65, 037502 (2002).



bibliography 239

[116] “BO - anti-BO mixing in quenched lattice QCD”, S. Aoki et al. [JLQCD Col-
laboration|, Phys. Rev. D 67, 014506 (2003);
“B meson B-parameters and the decay constant in two-flavor dynamical QCD?”,
N. Yamada et al. [JLQCD Collaboration|, Nucl. Phys. Proc. Suppl. 106, 397
(2002).

[117] “Four-point correlator constraints on electromagnetic chiral parameters and
resonance effective lagrangians”, B. Ananthanarayan and B. Moussallam,
JHEP 0406 (2004) 047.

[118] “7 — mmmy, decays in the Resonance Effective Theory” , D. Gomez Dumm,
A. Pich and J. Portoles, Phys. Rev. D 69 (2004) 073002;
“7 — mrmv,: Theory versus experiment” , D. Gomez Dumm, A. Pich and J.
Portoles, Talk given at 10th International QCD Conference (QCD 03), Mont-
pellier, France, 2-9 Jul 2003, hep-ph/0312211.



