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Physics Letters B 741 (2015) 117-123, arXiv:1410.6217 [hep-ph]

3. A class of invisible axion models with FCNCs at tree level,
Alejandro Celis, Javier Fuentes-Mart́ın, Hugo Serôdio,
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Preface

“Begin at the beginning,” the King said gravely,
“and go on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

Particle physics is currently living an age of exploration that started with the
observation at LHC of the Higgs boson, providing the Standard Model of strong and
electroweak interactions the final eluding piece that completes it. While this theory
is extremely successful, it is commonly accepted that it is not the final one since
it cannot answer all the theoretical questions and experimental observations. It is
thus expected that New Physics that extends the Standard Model will appear soon,
though this might well be only a hope. This thesis compiles some of the adventures
in the Quest for New Physics. It is organized in three parts: Part I introduces the
main subjects of the thesis and sets the notation and frameworks that are used later.
This part contains topics that are of common knowledge in the literature and it is
intended as a broad introduction. On the contrary, Part II is specifically devoted
to compile the scientific research that was done during the Ph.D and therefore it is
more technical than the previous part. Part III contains a comprehensive summary
of the thesis in Spanish.

Part I is organized as follows. In Chapter 1 we introduce the Standard Model, its
main features, and several theoretical and experimental issues that this framework
cannot explain. The rest of this part is dedicated to the analysis of various extensions
of the Standard Model. In particular, in Chapter 2 we introduce the two-Higgs-
doublet model, a minimal extension where an additional Higgs doublet is added to
the scalar sector of the theory. In this chapter, special emphasis is placed in the
two-Higgs-doublet model flavor problem and its solutions. Chapter 3 presents the
Strong CP problem in some detail, together with a discussion on the Peccei–Quinn
solution and its associated phenomenology. In Chapter 4 we introduce the concept
of Effective Field Theories and show how to construct them from a given ultraviolet
model using functional techniques. We also introduce examples of Effective Field
Theories within the Standard Model framework that stand for a complementary
approach in the search for New Physics. Finally, in Chapter 5 we present the recent
experimental anomalies in B-physics data and discuss their main implications.

While Part I follows a more linear discussion, with each chapter based on the
previous ones, Part II is structured in three, essentially unrelated, chapters. Chap-
ter 6 extends to the one-loop order the functional methods for the construction of
Effective Field Theories introduced in Chapter 4. In Chapter 7 we present three



xiv Chapter 0. Preface

models aimed to provide an explanation to the B-physics anomalies. These are
based in various extensions of the Standard Model gauge sector, each predicting
different characteristic experimental signatures. Chapter 8 introduces two invisible
axion models that include additional features which are not present in the original
implementations.

Part III contains a single chapter that summarizes in Spanish the major goals,
procedures and results of the present thesis.
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Part I

The Standard Model and

some of its extensions





CHAPTER

1 A brief story of the Standard Model

It sounds plausible enough tonight, but wait un-
til tomorrow. Wait for the common sense of the
morning.

— H.G. Wells, The time machine

The SM [1–4] is the theory that compiles our current knowledge of the strong and
EW interactions. In this theory the concept of symmetry plays a central role. Its
fundamental degrees of freedom are fields that correspond to representations of the
Lorentz symmetry, i.e. the spin-zero Higgs, spin-one-half quarks and leptons, and the
spin-one gauge bosons; and the Lagrangian that characterizes the interactions among
these fields is invariant under the local symmetry group SU(3)c × SU(2)L × U(1)Y.
The use of these symmetry principles provides an elegant and simple framework
that is able to describe with great accuracy most of the known experimental data
in particle physics, making the SM one of the greatest successes of Modern Physics.
In this chapter we will briefly present this theory and describe its main features (see
Ref. [5] for a more detailed review on the SM). Also, at the end, we will present
some open questions of this theory that serve as motivation for going beyond this
framework, setting the ground for the next chapters.

1.1 The SM Lagrangian and its particle content

The SM is a quantum field theory based on the principles of locality, causality and
renormalizability, invariant under the Lorentz symmetry and the GSM ≡ SU(3)c ×
SU(2)L × U(1)Y gauge group. In this framework, the interactions are mediated
by bosons such as the Higgs or the gauge bosons. Contrary to the Higgs, the
gauge fields are completely defined in terms of the gauge symmetry. We have eight
massless gluons, Gα

µ, for the strong interactions, associated to the SU(3)c gauge
group; while the gauge bosons associated to the SU(2)L × U(1)Y symmetry are
the massless photon, Aµ, that mediates the electromagnetic interactions, and three
massive bosons, the W±

µ and the Zµ, mediators of the weak interactions. Since in
the SM both the mediators of electromagnetism and those of the weak force are
generated by the SU(2)L×U(1)Y gauge group, this symmetry is commonly denoted
as the EW symmetry and these forces are said to be unified. The observed matter
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Type Particle SU(3)c SU(2)L U(1)Y

Quarks

qL 3 2 1/6

uR 3 2 2/3

dR 3 2 −1/3

Leptons
`L 1 2 −1/2

eR 1 1 −1

Higgs φ 1 2 1/2

Table 1.1: The SM matter content (plus the Higgs) and their gauge transformations.

content, the fermions, are given in terms of fields of definite chirality

qL =

(
uL
dL

)
, uR , dR ,

`L =

(
νL
eL

)
, eR .

(1.1)

The fermions appear in five different representations of the SM gauge group, these
are shown in Table 1.1 together with the one of the Higgs. Quarks and leptons
are found in three copies, which are commonly denoted as families or flavors. As
we will see later, in the SM the different families have the same gauge interactions,
situation that is called gauge universality, and only differ in their Yukawa couplings,
see Section 1.1.3 for more details. The different flavors of quarks and leptons are
denoted as

u ≡

uc
t

 , d ≡

db
s

 , e ≡

eµ
τ

 , ν ≡

νeνµ
ντ

 . (1.2)

The SM Lagrangian, that describes the interactions among all these particles, can
be generically parametrized as

LSM = Lg+f + LH + LY , (1.3)

where Lg+f includes the SM gauge and fermion kinetic terms and interactions, LH
contains the Higgs kinetic term and potential, and LY describes the interactions
between the Higgs and the fermions. We proceed to describe each of these terms in
the following sections.

1.1.1 The fermion and gauge sectors

The free Lagrangian for the SM fermions (ψ = q0
L, `

0
L, u

0
R, d

0
R, e

0
R)1

Lf = ψ i/∂ ψ , (1.4)

1Here the 0 superscript in the fermion fields denotes that they are not in the mass-diagonal
eigenbasis. This will be clear in Section 1.1.3 where we introduce the Yukawa interactions.
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is invariant under the global SU(3)c × SU(2)L × U(1)Y, but not under local trans-
formations of this symmetry. We can promote the symmetry of the Lagrangian to
a local one by replacing the derivative in Eq. (1.4) by a covariant derivative. This
covariant derivative is completely fixed by the symmetry transformation, and re-
quires the introduction of a spin-one field for each of the generators of the group:
the gauge fields Gα

µ (α = 1, . . . , 8), W a
µ (a = 1, 2, 3) and Bµ,

Dµψ ≡
(
∂µ − igcGα

µT
αPq − ig W a

µT
aPL − ig′BµYψ

)
ψ. (1.5)

Here, Tα = λα/2 and T a = τa/2 are the SU(3)c and SU(2)L generators, with λα

and τa the Gell-Mann and the Pauli matrices respectively. The chiral projectors are
defined as PL,R = 1/2(1 ∓ γ5), and Pq = Pu + Pd where Pf (f = u, d, e) projects
the fermion multiplet ψ into the corresponding fermion. The values of the hyper-
charge, Yψ, are given in the fifth column of Table 1.1. The introduction of this new
derivative generates an interaction among gauge fields and fermions whose strength
is controlled by the gauge couplings: gc, g and g′. As anticipated, since all the SM
families have the same gauge symmetry transformations, the interactions among
the SM fermions and gauge bosons are flavor universal. If one also includes a ki-
netic term for the gauge bosons, so they can propagate, we arrive to the following
gauge-invariant Lagrangian

Lg+f =− 1

4
Gα
µνG

µν α − 1

4
W a
µνW

µν a − 1

4
BµνB

µν + ψ i /D ψ + LGF + Lghost . (1.6)

In this expression, the field-strength tensors are fixed by gauge invariance and read

Gα
µν = ∂µG

α
ν − ∂νGα

µ + gfαβγG
β
µG

γ
ν ,

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ.

(1.7)

Due to the non-abelian nature of the SU(3)c and the SU(2)L symmetries, the kinetic
terms for the corresponding gauge fields also generate self interactions. These terms
play a crucial role in the explanation of several key features of the strong interactions,
such as confinement and asymptotic freedom [6–8]. Apart from the aforementioned
terms, one should also include two additional pieces to the Lagrangian. Vector fields
contain more degrees of freedom than the gauge fields. In order to get rid of the
extra degrees of freedom without losing explicit Lorentz covariance, it is usual to
include a gauge fixing term in the Lagrangian, LGF. Moreover, one should also
include the ghost Lagrangian, Lghost, for consistency of the theory [9].

It can be shown that the Lagrangian constructed under the principles of gauge
symmetry is renormalizable [10]. However, gauge invariance does not allow for a
mass term for the gauge bosons and SM fermions, in contradiction with the exper-
imental observations. The direct introduction of the mass terms would explicitly
break the symmetry rendering the theory non-renormalizable. Therefore, we need
a mechanism that is able to give masses to the gauge bosons and fermions while
preserving the renormalizability of the theory. We introduce this mechanism in the
next section.



6 Chapter 1. A brief story of the Standard Model

1.1.2 The scalar sector

As already stated, the Lagrangian introduced in Eq. (1.6) is unable to account for
the observed gauge boson masses. There is however an elegant solution to this
problem that receives the name of Brout–Englert–Higgs mechanism [11, 12]. The
idea consists in constructing a theory with a fully symmetric Lagrangian, but whose
vacuum is not invariant under the symmetry. This can be achieved in a rather
minimal way by introducing a complex scalar SU(2)L doublet, the Higgs doublet.
The most general renormalizable Lagrangian for the Higgs doublet can be written
as

LH = (Dµφ)†Dµφ− V (φ) , V (φ) = m2
φ

(
φ†φ
)

+
λ

2

(
φ†φ
)2
, (1.8)

where, as in the fermion sector, the covariant derivative has been introduced to
render the Lagrangian locally invariant under GSM transformations and is defined as

Dµ φ ≡
(
∂µ −

1

2
igτaW a

µ −
1

2
ig′Bµ

)
φ . (1.9)

The vacuum state of the theory can be obtained by minimizing scalar potential

∂V

∂φ

∣∣∣∣
φ=〈φ〉

= 0 , (1.10)

where |〈φ〉| ≡ |〈0|φ |0〉| ≡ v/
√

2 is the vev of the Higgs field. For m2
φ > 0 the

condition in Eq (1.10) gives just one extremum at v = 0. However, for m2
φ < 0 the

potential has two extrema

v = 0 , v =

√
−2m2

φ

λ
. (1.11)

If one imposes the condition λ > 0, so that the potential is bounded from below, it is
straightforward to see that those correspond, respectively, to a local maximum and
a global minimum of the scalar potential, see Figure 1.1. As we can see from this
figure, there is an infinite set of degenerate vacua in this case. However, choosing
one of those vacua triggers a SSB of the SM gauge symmetry

G SSB−→ SU(3)c × U(1)em , (1.12)

where we identified the unbroken U(1) with the symmetry associated to the electro-
magnetic force, U(1)em, for phenomenological reasons. The Golstone theorem [13]
states that the spontaneous breaking of a symmetry leads to the appearance of a set
of massless bosons, one for each of the broken generators. These are the so-called
Golstone bosons. Interestingly, when the broken symmetry is a gauge symmetry,
the Golstone bosons get “eaten” by the gauge fields and become the longitudinal
components of these fields, providing a mass for these gauge bosons. This can be
easily seen if we parametrize the Higgs doublet in the following way

φ = ei
ϕaτa

2v

(
0

1√
2

(v + h)

)
, (1.13)
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Figure 1.1: Higgs potential for m2
φ > 0 (left) and m2

φ < 0 (right). In the second
case, there are flat directions of degenerate vacua associated to the would-be Golstone
bosons, ϕa; the Higgs, h, corresponds to an excitation in the radial direction.

where the Golstone bosons, ϕa, related to excitations along the minima of the scalar
potential are isolated in the exponential factor. The so-called Higgs boson, h, is on
the other hand associated to the radial excitation of the Higgs doublet. We can use
the local SU(2)L gauge invariance to rotate away the Goldstones, which effectively
consists in setting ϕa = 0 in Eq. (1.13). This rotation corresponds to the choice of
a specific gauge that receives the name of unitary gauge. In this gauge, the kinetic
term for the Higgs doublet can be rewritten as (here tan θW = g′/g)

(Dµφ)†Dµφ =
1

2
∂µh ∂

µh+ (v + h)2

(
g2

4
W †
µW

µ +
g2

8 cos2 θW
Zµ Z

µ

)
, (1.14)

where one can see that the physical gauge bosons, defined as a linear combination
of the ones introduced in Eq. (1.5), receive a mass proportional to the vev of the
Higgs

MW =
1

2
gv , MZ =

1

2 cos θW
gv , (1.15)

while the photon, given by a different combination of the EW gauge fields, remains
massless. This is what one would expect from symmetry arguments given that the
U(1)em remains unbroken. The expression in Eq. (1.14) also has other important
implications:

• We can see that the masses of the W± and the Z are not independent but
instead they follow the tree-level relation

ρ ≡ M2
W

M2
Z cos2 θW

= 1 . (1.16)

The value of the ρ parameter has been experimentally tested to a great accu-
racy and is found in good agreement with the SM prediction, which is slightly
different from one due to radiative corrections.

• While the Goldstone bosons are “eaten” by the gauge fields in order to provide
them a mass, the introduction of the Higgs doublet implies the appearance
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of a new scalar, the Higgs boson. This elusive particle that was predicted
in the 1960’s was finally found at CERN by the ATLAS [14] and CMS [15]
collaborations in 2012, providing a confirmation to the Brout–Englert–Higgs
mechanism.

• The tree-level couplings of the Higgs boson to theW± and the Z are completely
fixed and are proportional to the square of the gauge boson masses. This also
implies that the Higgs has no tree-level coupling to photons, which is however
generated at one loop. Current experimental measurements of these couplings
at the LHC are compatible with the SM prediction [16].

Finally, by introducing the expression in Eq. (1.13) into the scalar potential in
Eq. (1.8),

V (h) =
1

2
M2

h h
2 +

M2
h

2v
h3 +

M2
h

8v2
h4 − M2

hv
2

8
, (1.17)

we see that the Higgs boson acquires a mass proportional to its vev: Mh =
√
λ v, as

well as cubic and quartic self-interactions that are proportional to its mass. Given
that the mass of the Higgs boson is a well-known parameter, MH = 125.09 ±
0.21 (stat.) ± 0.11 (syst.) GeV [17], this implies that the Higgs self-couplings are
completely fixed in the SM. Testing this key prediction of the SM is very challeng-
ing and there is currently no significant experimental bound on such couplings.

1.1.3 The Yukawa interactions

The gauge symmetry not only forbids a mass term for the gauge bosons but also for
the SM fermions. This is a consequence of having fermions with different symmetry
transformations for each chirality. However, the same mechanism used to give masses
to the W± and Z gauge bosons can also be used to provide masses to the fermions.
Since we introduced a Higgs doublet, we can now write the following gauge-invariant
Yukawa Lagrangian

−LY = ψ
(
φ̃ yu PuPR + φ yd PdPR + φ ye PePR

)
ψ + h.c. , (1.18)

where the charge conjugated field φ̃ = iτ 2φ∗ is also a SU(2)L doublet of opposite
hypercharge, and the Yukawa couplings, yu,d,e, are general 3 × 3 matrices in flavor
space. After SSB, using the unitary gauge we can simply rewrite this Lagrangian
into

−LY =

(
1 +

h

v

)(
u0
LMu u

0
R + d0

LMd d
0
R + e0

LMe e
0
R + h.c.

)
, (1.19)

which contains the sought-after mass terms for the fermions. Here the mass matrices

Mu =
v√
2
yu , Md =

v√
2
yd , Me =

v√
2
ye , (1.20)
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are not diagonal in general but they can be diagonalized by means of a bi-unitary
transformation of the fermion fields

u0
L,R = UuL,R uL,R , d0

L,R = UdL,R dL,R , e0
L,R = UeL,R eL,R , (1.21)

chosen appropriately so that

U †uLMuUuR = Du = diag (mu, mc, mt) ,

U †dLMdUdR = Dd = diag (md, ms, mb) ,

U †eLMeUeR = De = diag (me, mµ, mτ ) ,

(1.22)

yielding the following form for the Yukawa Lagrangian in the fermion mass-diagonal
eigenbasis

−LY =

(
1 +

h

v

)(
uLDu uR + dLDd dR + eLDe eR + h.c.

)
. (1.23)

From this equation we see that the SM predicts that the Higgs boson couples flavor-
diagonally to the physical fermions with a coupling proportional to their masses.
This is another important prediction of the SM that can only be tested at the LHC
for the heaviest fermions, with an accuracy of O(10%). So far, all the experimental
measurements are compatible with the SM expectations [16].

1.2 Flavor dynamics of the SM

The fact that we had to perform a rotation in flavor space to get the fermions in
their mass-diagonal eigenbasis, has important implications in the SM phenomenol-
ogy. The weak interactions of the W± with fermions, which are obtained from the
covariant derivative defined in Eq. (1.5), are given by

LCC =
g√
2

[
W †
µ

(
u0
Lγ

µd0
L + ν0

Lγ
µe0
L

)
+ h.c.

]
. (1.24)

Therefore, when rotating to the fermion mass basis,

LCC =
g√
2

[
W †
µ (uLγ

µ V dL + νLγ
µeL) + h.c.

]
, (1.25)

we find that the charged weak current is not diagonal because of the misalignment
between the up- and down-quark rotations, which is parametrized in terms of the
so-called CKM matrix, V = U †uLUdL,

V =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.26)

This unitary matrix, whose elements have to be determined experimentally, intro-
duces a source of CP-violation. The measured values of the CKM matrix elements
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λ A ρ η

CKMfitter 0.22506± 0.00050 0.811± 0.026 0.124+0.019
−0.018 0.356± 0.011

UTfit 0.22496± 0.00048 0.823± 0.013 0.141± 0.019 0.349± 0.012

Table 1.2: Fitted values of the Wolfenstein parameters from the global fits of the
CKMfitter Group [19, 20] and the UTfit Collaboration [21, 22]. Here the barred
parameters are defined in terms of the original ones as (ρ, η) = (1− λ2/2) (ρ, η).

have a very hierarchical structure. This is nicely illustrated in the Wolfenstein
parametrization [18]

V =


1− λ2

2
λ Aλ3 (ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1

+O
(
λ4
)
, (1.27)

where the CKM is written as an expansion in the small parameter λ ' 0.23. The
current experimental values of the Wolfenstein parameters from the global fits to
flavor observables by the CKMfitter Group [19,20] and the UTfit Collaboration [21,
22] are given in Table 1.2. Flavor-changing transitions in the charged currents
therefore appear suppressed by the off-diagonal elements of the CKM matrix, which
is the only source of flavor violation in the SM.

It is important to stress that no flavor violations appear at tree-level in the
neutral currents. Since these relate fermions of the same type, the transforma-
tions in Eq. (1.21) cancel due to unitarity. The SM therefore predicts no tree-level
FCNC. Note however that these are generated in the SM at one-loop and are ex-
actly related to the CKM matrix. Also notice that the unbroken U(1)em yields a
further suppression of the photon-mediated FCNCs, which appear proportional to
the fermion masses.

Finally note that in Eq. (1.25) there is no equivalent matrix for the lepton sector.
This is a consequence of having assumed that neutrinos are massless, which allows us
to perform a neutrino flavor redefinition to compensate the rotation in the charged
lepton sector. However, if neutrino masses are included, this redefinition is no longer
possible and an analogous unitary matrix appears in the lepton sector. This is the
so-called PMNS matrix. As with the CKM matrix, the value of the PMNS matrix
elements have to be determined experimentally. However contrary to the CKM, this
matrix shows a rather anarchic structure, with most of its entries being of similar
size.

1.3 Accidental symmetries of the SM

An interesting property of the SM is that it presents several accidental symme-
tries. These are symmetries that are not imposed in the construction of the theory
but appear accidentally from the restrictions enforced by the gauge symmetry, the
particle content, and the imposition of renormalizability; though nothing forbids
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non-renormalizable symmetry-breaking terms. These symmetries are very interest-
ing because they have important phenomenological implications, and because they
might be hinting at hidden dynamics where they are not an accident but rather a
fundamental symmetry of a larger theory. The SM Lagrangian has the following
accidental global symmetries at the classical level

U(1)B × U(1)e × U(1)µ × U(1)τ , (1.28)

corresponding to the total baryon number, B, and each of the lepton-family numbers,
Le, Lµ and Lτ , which contain the total lepton number, L, as a diagonal subgroup.
The presence of these accidental symmetries forbids processes such as µ→ eγ and is
the reason behind the stability of the proton. These symmetries are anomalous and
get explicitly broken by non-perturbative quantum effects. Though this symmetry
breaking effects are negligible at low temperatures, they may play an important
role in the explanation of the matter-antimatter asymmetry (see discussion below),
or when one aims for the construction of an extended gauge sector. Of the four
abelian symmetries only the subgroup corresponding to one of the combinations of
lepton-family numbers U(1)α−β (α, β = e, µ, τ , with α 6= β) remains anomaly free in
the SM [23–25]. Interestingly, if one includes three right-handed neutrinos, singlet
under the SM gauge group, to account for neutrino masses, the global accidental
anomaly-free symmetry of the theory is extended to [26]

U(1)B−L × U(1)e−µ × U(1)µ−τ . (1.29)

These accidental symmetries will get either partially or totally broken once we in-
clude the information from the neutrino sector. For instance, we know from the
measured values of the PMNS matrix that the U(1)e−µ×U(1)µ−τ is broken. On the
other hand, the U(1)B−L could be preserved if neutrinos have Dirac masses.

Apart from these symmetries of the SM Lagrangian, there are other interest-
ing accidental symmetries that are not realized in the full Lagrangian but only in
some parts of it. One of those symmetries is the custodial symmetry. The Higgs
Lagrangian, V (φ), is invariant not only under the gauge SU(2)L × U(1)Y but also
under a global SO(4) ≡ SU(2)L×SU(2)R transformation. This can be easily seen by
writing the Higgs doublet in terms of a four-dimensional vector of real scalar fields,
~φ = (φ1, φ2, φ3, φ4), and noting that one has for the terms in the potential(

φ†φ
)

= ~φ · ~φ , (1.30)

which is invariant under four-dimensional rotations. After SSB, the symmetry
SU(2)L×SU(2)R gets spontaneously broken down to the diagonal subgroup SU(2)V.
This symmetry is the reason for the tree-level relation among the gauge bosons
masses given in Eq. (1.16). However, as anticipated, the custodial symmetry is not
a true accidental symmetry of the full Lagrangian and gets explicitly broken by the
gauging of the U(1)Y symmetry and the deviations from the relation yu = yd. As
a result, one obtains small departures from ρ = 1 at higher orders in perturbation
theory. Since these are small sources of symmetry breaking, the custodial symmetry
remains as a good approximate symmetry and extensions of the SM that do not
include this approximate symmetry typically receive very strong bounds from the
experimental measurements of the ρ parameter.
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Figure 1.2: Illustration of the observed patterns of SM fermion masses and mixings.
Lighter color in the matrix elements indicates entries that are more suppressed as
compared with the darker ones.

Another important approximate symmetry of the SM is the flavor symmetry. In
the absence of Yukawa couplings, the SM has a large accidental global symmetry [27–
29]

GF ≡ SU(3)q × SU(3)d × SU(3)u × SU(3)` × SU(3)e

× U(1)Y × U(1)B × U(1)e × U(1)µ × U(1)τ × U(1)u × U(1)d ,
(1.31)

The flavor symmetry may be of great importance in the understanding of the precise
structure of the Yukawa couplings, which in the SM are just free parameters, and
might provide some insight about a possible underlying flavor dynamics. This pos-
sibility has been analyzed in many works, see for instance the ones in Refs. [27–33].

1.4 What lies beyond the SM

The SM provides our best understanding of the physics at the high-energy scale and
reproduces current data with an amazing agreement. However, there are several
hints for an extended framework both from the theoretical and the experimental
side. From the theory point of view, the SM present several unsatisfactory issues:

• The strong CP problem: As we will see in Chapter 3, the inclusion of
non-perturbative effects in the gauge sector of the SM gives rise to the ap-
pearance of a new term in the Lagrangian that violates CP. However, there
is no experimental evidence for such source of CP violation. Since the SM
lacks a mechanism to forbid this term, one should introduce a large tunning
of parameters to account for experimental observation.
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• The flavor puzzle: There is no explanation in the SM why there are three
families. Moreover, as can be seen in Figure 1.2, the SM fermion masses
and mixings follow a rather particular structure, characterized by having very
hierarchical CKM matrix elements and quark and charged-lepton masses. This
is in contrast with the rather anarchic pattern of the neutrino masses and
PMNS matrix elements. The lack of an explanation, within the SM, for these
features of the flavor sector constitutes the so-called SM flavor puzzle.

• The hierarchy problem: Contrary to fermions and gauge bosons, the mass
of the Higgs boson, being a scalar particle, is very sensitive to possible NP
extensions of the SM. In the presence of such NP, the Higgs mass would receive
radiative corrections proportional to the new energy scale, and one would have
to introduce a tunning in order to keep its value at the EW scale.

• Grand Unification: In quantum field theory, the couplings vary with the
energy at which they are measured. An interesting feature of the SM is that
if we evolve the gauge couplings of each of its three gauge groups, one can
see that they become approximately equal at a very high energy. This might
be indicating that, just as it happens with the weak and the electromagnetic
forces, the SM forces unify, therefore hinting at an underlying NP sector around
the unification scale. Beyond SM theories based on this idea of force unification
receive the name of Grand Unified Theories.

• Gravity: The SM does not include any effect concerning gravity. Therefore
the SM must be extended in order to provide for a description of quantum
gravity. These effects can be added to the SM by using effective field theory
techniques as long as one is restricted to energies below the Planck mass.
However, beyond that scale one should rely on a full theory of quantum gravity.

On the other hand, in spite of the enormous phenomenological success of the SM,
there are experimental observations that cannot be accounted for in this theory, and
that hint at the presence of physics beyond the SM:

• Neutrino masses and mixings: Neutrinos are massless particles in the SM.
However, neutrino oscillation experiments have shown that neutrinos do have
masses. Though the SM can be easily extended to account for neutrino masses,
there are different mechanisms available to accommodate them. Moreover,
related to this question, it is unclear whether neutrinos are Majorana or Dirac
particles. What is the extension of the SM chosen by nature to explain neutrino
masses remains as one of the open questions in Particle Physics.

• The flavor anomalies: The LHCb, Belle and Babar experimental collabora-
tions have reported a set of tantalizing anomalies involving several observables
in the decays of the B meson (see Chapter 5 for a detailed discussion). Though
these measurements are still not significant enough to claim the discovery of
NP, they seem to show a rather coherent pattern of deviations. Taken at face
value, these experimental anomalies imply a large violation of lepton-flavor
universality that cannot be accounted for in the SM.
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• Matter-antimatter asymmetry: The SM predicts that matter and anti-
matter should be created in the early universe in almost the same amount.
However, the observed universe is mostly made of matter. To explain this
asymmetry the SM needs to be extended.

• Dark Matter and dark energy: According to cosmological observations,
the SM only accounts for 5% of the energy in the universe. Of the remaining
energy, 26% should correspond to new colorless matter that does not interact
electromagnetically, the so-called DM. The rest (69%) should consist on dark
energy, whose nature is still under debate.

In this thesis we will try to tackle some of these problems. In particular in
Chapter 2 we will discuss possible extensions of the scalar sector of the SM, which
may be of interest for the explanation of the matter-antimatter asymmetry or for
DM. The aim of Chapter 3 is to introduce the Strong CP problem and present
a mechanism able to solve it while later, in Chapter 8, we will present explicit
models that extend the minimal framework to include additional features. In the
lack of a clear indication of the particular underlying theory that might extend the
SM, it is very useful to make use of effective descriptions that parametrize this
possible new dynamics in a model-independent way. We introduce these techniques
in Chapter 4, and in Chapter 6 we extend those techniques to the one-loop order.
Finally, in Chapter 5 we present the flavor anomalies in more detail, while Chapter 7
is dedicated to the study of possible explanations of the anomalies from an extended
gauge sector.
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CHAPTER

2 The Two-Higgs-doublet model

“Would you tell me, please, which way I ought
to go from here?” “That depends a good deal
on where you want to get to,” said the Cat. “I
don’t much care where -” said Alice. “Then it
doesn’t matter which way you go,” said the Cat.
“- so long as I get SOMEWHERE,” Alice added
as an explanation. “Oh, you’re sure to do that,”
said the Cat, “if you only walk long enough.”

— Lewis Carroll, Alice in Wonderland

The recent discovery by the ATLAS [1] and CMS [2] collaborations of a Higgs
particle with a mass around 125 GeV represents one of the greatest achievements
of Physics in the last decades and constitutes an indisputable success of the SM. So
far, all the measurements of this particle properties are consistent with it being the
Higgs boson of the SM.1 However, as we saw in the previous chapter, the scalar sector
remains as one of the least understood parts of the SM. It is therefore quite likely that
some NP might manifest in this sector. Indeed, there are several theoretical reasons
to extend the scalar content of the SM: for instance Supersymmetric models [3],
several DM models [4, 5], theories of spontaneous CP-violation [6–8], models of
electroweak baryogenesis to explain the baryon asymmetry of the Universe [9–11],
as well as most solutions to the Strong CP problem [12, 13]; they all require an
enlarged scalar sector.

Extensions of the scalar content of the SM generically receive a very strong
constraint from the measurements of the ρ parameter, defined in Eq. (1.16), whose
experimental value is very close to the SM prediction to a good accuracy [14]. Among
the possible extensions, the ones with extra Higgs doublets and/or singlets are par-
ticularly interesting because they do not modify the ρ parameter at tree level [15],
therefore allowing these extra fields to appear at much lower energies yielding a more
appealing phenomenology. Other extensions with large SU(2)L multiplets, scalars
with small or null vev, and models with a custodial SU(2) global symmetry, could
also evade this bound but they tend to be rather complex [16]. Contrary to the

1The latest results on measurements of the Higgs properties can by found at:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults (ATLAS)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG (CMS)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG
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scalar singlets, models with extra Higgs doublets have the additional feature that
they may have Yukawa couplings to fermions, introducing some interesting effects
that are absent in the singlet case and that, perhaps, could help us elucidate some-
thing about the flavor structure of the SM. The 2HDM provides one of the most
economical of such extensions, offering a simple, yet comprehensive and rich, frame-
work [17–19]. This class of models was proposed by T. D. Lee in 1973 [6] in order
to achieve spontaneous CP violation. However it was not until the 1990s that its
exploration intensified. Nowadays they are widely studied both from the theoretical
and the experimental side given that it can lead to a very rich phenomenology that
is being and will be proved at LHC; see for instance Refs. [20–22].

2.1 The 2HDM Lagrangian

The scalar sector of the 2HDM contains two complex SU(2)L doublets of hypercharge
Y = 1/2 that we generically parameterize as

φj =

(
ϕ+
j

ϕ0
j

)
, j = 1, 2 . (2.1)

The corresponding charge-conjugated fields φ̃j = iτ 2φj, with τ 2 the Pauli matrix,
are also SU(2) doublets but with hypercharge Y = −1/2. The 2HDM Lagrangian
takes the following generic form

L2HDM = LSM
g+f + LH + LY . (2.2)

Here LSM
g+f denotes the SM Lagrangian for gauge bosons and fermions that was

introduced in Chapter 1, see Eq. (1.6), LH = LKin − V contains the scalar kinetic
terms and potential, and LY describe the Yukawa interactions among fermions and
scalars. The most general kinetic term one can build is given by

LKin = (Dµφ1)†Dµφ1 + (Dµφ2)†Dµφ2 +
[
κ (Dµφ1)†Dµφ2 + h.c.

]
, (2.3)

with the covariant derivative being the same as in Eq. (1.9). Without loss of gen-
erality, we can take κ = 0 since a Langrangian with κ 6= 0 can be reduced to the
former type by means of a non-unitary transformation of the fields [23]. Once the
kinetic term is reduced to its canonical form one is still able to perform a global
U(2) transformation of the scalar fields. This transformation, commonly denoted as
weak-basis transformation, allows us to rotate along different weak bases. Though
the physical observables should be independent on the choice of basis, as we will see
later there are certain bases which result more useful in particular cases.

The different implementations of 2HDMs are determined by the choice of the
Higgs potential and Yukawa couplings. The most general renormalizable scalar
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potential for a 2HDM contains 14 parameters

V (φ1, φ2) = m2
1

(
φ†1φ1

)
+m2

2

(
φ†2φ2

)
+
[
m2

12

(
φ†1φ2

)
+ h.c.

]
+
λ1

2

(
φ†1φ1

)2

+
λ2

2

(
φ†2φ2

)2

+ λ3

(
φ†1φ1

)(
φ†2φ2

)
+ λ4

(
φ†1φ2

)(
φ†2φ1

)
+

{
λ5

2

(
φ†1φ2

)2

+ λ6

(
φ†1φ1

)(
φ†1φ2

)
+ λ7

(
φ†2φ2

)(
φ†1φ2

)
+ h.c.

}
,

(2.4)

where the hermiticity of the potential requires all parameters to be real except for
m12, λ5, λ6 and λ7. The presence of new complex parameters leads to the appearance
of possible sources of CP violation other than the phase of the CKM matrix. The
potential parameters in Eq. (2.4) depend on the choice of weak basis. However,
the physical quantities are independent of such choice. For this reason, it is in
many cases convenient to find invariants constructed as combinations of parameters
that are independent of the weak-basis transformations [23, 24]. These invariants
are particularly useful in the determination of CP violating sources. One can show
that the freedom in the choice of weak basis allows one to remove three of the
14 parameters.2 Still, the large number of free parameters in the scalar potential
considerably complicates its analytical treatment. Several symmetries are typically
imposed in the scalar sector that reduces the number of free parameters in the scalar
potential. For instance the following discrete symmetry

Z2 : φ1 → φ1 , φ2 → −φ2 , (2.5)

forbids the terms λ6, λ7 and m12. This condition is too strict since it excludes the
possibility of having CP violation other than from the CKM mixing matrix. One
can relax this constraint by assuming that the symmetry is softly broken by the
presence of m12, which can be either real or complex.3 In this case it is possible to
have explicit and spontaneous CP violation. A more restrictive scenario is obtained
when one imposes a U(1) symmetry in the scalar sector, this is done for example
in the Peccei-Quinn model that we will present in Section 3.2. The U(1) symmetry
additionally forbids the term λ5 in the potential. In this case, one typically expects
the appearance of a Goldstone boson after spontaneous symmetry breaking. How-
ever, one can give a mass to this boson by introducing the U(1)-soft-breaking term
m12 in the scalar potential. In Refs. [25, 26] it was shown that there are six types
of family and CP symmetries that can be imposed without producing accidental
symmetries.

Electroweak symmetry breaking takes place if the global minimum of the poten-
tial appears at non-zero vev for the Higgs fields. The conditions for the extrema of

2The counting goes as follows: as already mentioned the basis reparametrization consist on a
U(2) transformation of the scalar fields. This can be decomposed as U(2) = SU(2)× U(1), where
the U(1) corresponds to a global hypercharge transformation that has no effect on the potential
parameters. As a result one has the freedom to remove three parameters from the three degrees
of freedom contained in a SU(2) rotation.

3A symmetry is defined as softly-broken when all the terms that explicitly break the symmetry
are of dimension lower than four. This way the symmetry is approximately restored at scales much
larger than those of the symmetry breaking terms.
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the potential are

∂V

∂φ1

∣∣∣∣
φ1,2=〈φ1,2〉

= 0 ,
∂V

∂φ2

∣∣∣∣
φ1,2=〈φ1,2〉

= 0 . (2.6)

The potential in Eq. (2.4) can have CP-conserving, CP-violating and charge-violating
minima. We will assume that the potential parameters are such that the scalar dou-
blets acquire a vev along the charge conserving direction.4 In general both doublets
can acquire a vev, i.e.

〈0|φj|0〉 =
1√
2

(
0

vj e
iαj

)
, j = 1, 2 . (2.7)

Here v1 > 0 and v2 > 0, v ≡
√
v2

1 + v2
2 =

(√
2GF

)−1/2
, generate the quark and gauge

boson masses. By an appropriate rephasing of the scalar fields we can set α1 = 0 and
α2 ≡ α without loss of generality. Therefore, after spontaneous symmetry breaking
the Higgs doublets can be parameterized as

φj = eiαj
(

ϕ+
j

1√
2

(vj + ρj + iηj)

)
, j = 1, 2 , (2.8)

with ρj and ηj being real scalar fields, and ϕ+
j a complex scalar field. The 2HDM

model contains eight real scalar degrees of freedom. After spontaneous symmetry
breaking these are the three would-be Goldstone bosons that become the longitudi-
nal components of the W and the Z, G± and G0, a charged Higgs, H±, and three
neutral scalars, which in the CP-conserving limit correspond to two CP-even and
one CP-odd fields. This can be more easily seen in the so-called Higgs basis, where
the Goldstone bosons associated with the longitudinal components of the W and
the Z, are singled out and only one Higgs doublet acquires a non-vanishing vev

Φ1 =

(
G+

1√
2

(v +H0 + iG0)

)
, Φ2 =

(
H+

1√
2

(R + iI)

)
. (2.9)

To relate the Higgs basis with the one in Eq. (2.8), we perform the following weak-
basis transformation (

Φ1

Φ2

)
=

(
cos β sin β
− sin β cos β

)(
φ1

e−iαφ2

)
, (2.10)

where we have defined tan β ≡ v2/v1. Note however that in many cases all weak
bases are physically equivalent and therefore the angle β is unphysical. The situa-
tion is different when one of the weak basis is special because of the presence of a
symmetry.

Finally, as a result of having an additional Higgs doublet the Yukawa Lagrangian
is extended to the following form

−LY = Q0
L [∆1 φ̃1 + ∆2 φ̃2]u0

R +Q0
L [Γ1 φ1 + Γ2 φ2] d0

R + `0
L [Σ1 φ1 + Σ2 φ2] e0

R + h.c. ,
(2.11)

4It can be shown that if there is a local minimum that is neutral, any possible charge-breaking
extrema of the potential would correspond to a saddle point [27,28].
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where Φ̃j = iτ 2Φ∗j . Expanding the Yukawa Lagrangian in the Higgs basis one obtains

−LY ⊃
1

v

{
u0
L

[
vMu +MuH

0 +N0
uR− iN0

uI
]
u0
R

+ d0
L

[
vMd +MdH

0 +N0
dR + iN0

d I
]
d0
R

+ e0
L

[
vMe +MeH

0 +N0
eR + iN0

e I
]
e0
R

+
√

2H+
(
u0
LN

0
d d

0
R − u0

RN
0†
u d0

L + ν0
LN

0
e e

0
R

)
+ h.c.

}
.

(2.12)

The matrices Mf and N0
f (f = u, d, e) encode the flavor structure of the 2HDM,

these are given by

Mu =
1√
2

(
v1∆1 + v2e

−iα∆2

)
, Md =

1√
2

(
v1Γ1 + v2e

iαΓ2

)
,

Me =
1√
2

(
v1Σ1 + v2e

iαΣ2

)
,

(2.13)

and

N0
u =

1√
2

(
v2∆1 − v1e

−iα∆2

)
=
v2

v1

Mu −
v2√

2

(
v2

v1

+
v1

v2

)
e−iα∆2 ,

N0
d =

1√
2

(
v2Γ1 − v1e

iαΓ2

)
=
v2

v1

Md −
v2√

2

(
v2

v1

+
v1

v2

)
eiαΓ2 ,

N0
e =

1√
2

(
v2Σ1 − v1e

iαΣ2

)
=
v2

v1

Me −
v2√

2

(
v2

v1

+
v1

v2

)
eiαΣ2 .

(2.14)

The mass matrices Mf determine the Yukawa couplings of the scalar field H0 while
the matrices N0

f determine the Yukawa couplings of the scalar R, the pseudoscalar
I, and the charged scalar H+. The mass matrices can be diagonalized through the
bi-unitary transformations in Eq. (1.21). As it happens in the SM with the Higgs,
these transformations guarantee diagonal quark couplings for H0 but, in general,

Nu = U †uLN
0
uUuR 6= diag , Nd = U †dLN

0
dUdR 6= diag ,

Ne = U †eLN
0
eUeR 6= diag ,

(2.15)

so that R and I have flavor violating couplings at tree-level. As we will see in the
next section, this interesting feature has important phenomenological implications
for this class of models. Note that the fields {H0, R, I} are not mass eigenstates in
general, the physical neutral scalar bosons will correspond to a linear combination
of these fields. The physical states can be obtained by performing an orthogonal
transformation that diagonalizes the mass matrix of the neutral scalars, which is
fixed by the scalar potential. If the potential is CP-conserving, then only H0 and R
mix, and I is a physical eigenstate. In this case the physical fields, {h,H}, in terms
of {H0, R} read (

h
H

)
=

(
cos (α− β) sin (α− β)
− sin (α− β) cos (α− β)

)(
H0

R

)
, (2.16)
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where, by convention, h is identified with the lightest field and the value of α depends
on the potential parameters. In the basis of Eq. (2.8) this relation reads(

h
H

)
=

(
cosα sinα
− sinα cosα

)(
ρ1

ρ2

)
. (2.17)

The 2HDM receives interesting bounds from both theoretical considerations and
experimental limits. For instance certain theoretical restrictions have to be imposed
to the scalar potential to guarantee vacuum stability [27,29–31] as well as perturba-
tivity and perturbative unitarity [32,33]. Moreover, this class of models should sat-
isfy the constraints from precision measurements of the oblique parameters [34–36]
and from direct searches at colliders [21]. One of the most severe constraints that
the 2HDM has to face comes from the Yukawa sector of the theory and has to do
with the presence of tree-level sources of dangerous FCNC. For instance, assuming
couplings of the same size as the b-quark Yukawa, one can set a bound on the mass
of the neutral scalars from their contribution to K−K mixing which is of the order
of 10 TeV [37,38]. This leads to the so-called 2HDM flavor problem that we discuss
in the next section.

2.2 Solutions to the 2HDM flavor problem

As we saw in the previous section, the introduction of more than one scalar doublet
in the SM gives rise to unwanted FCNC interactions, which have to be suppressed
in order to avoid conflict with experimental data. A possible way out is to assume
that an underlying symmetry is forbidding the dangerous FCNCs, leaving open the
possibility of additional scalar fields at the electroweak scale. The most common
solution to this problem is the NFC condition. This scenario is nothing more than
the requirement of simultaneous diagonalization of Mf and N0

f , or equivalently, the
simultaneous diagonalization of the Yukawa matrices in each sector. In the two
Higgs doublet model the NFC condition can be implemented in two ways:

• Through a discrete or continuous symmetry which restricts the number of
Yukawas in each sector to one [39,40].

• Using the Yukawa alignment condition, where the Yukawa matrices in the
same sector have the same flavor structure up to an overall factor [41]. This
can be seen as an effective theory of a larger model with the first condition
imposed at the UV level [42]. It can also be seen as a first order expansion in
a minimal flavor violating scenario [43–45].

There exists, however, a different scenario where NFC is only imposed in one sector
and FCNCs present in the other sector are under control, this is known as the
Branco–Grimus–Lavoura model [46]. Finally, it could also happen that there is no
symmetry protecting the FCNCs but the model is in a decoupling regime where
either the extra scalar fields are heavy or their couplings to the SM particles appear
sufficiently suppressed, making them harmless.
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Model uR dR eR
Type I − − −
Type II − + +

Lepton-specific − − +

Flipped − + −

Table 2.1: Different implementa-
tions of the Z2 charge to right-
handed fermions in the NFC hy-
pothesis.

2.2.1 Natural flavor conservation and Yukawa alignment

As mentioned earlier, one solution to the 2HDM flavor problem consist on forbidding
the presence of tree-level FCNCs. Glashow and Weinberg [39], and independently
Paschos [40], showed that a necessary and sufficient condition for the absence FCNCs
is that all fermions with the same charges couple exclusively to one Higgs doublet.
Then from Eqs. (2.13) and (2.14) it is clear than Mf and N0

f (f = u, d, e) are pro-
portional and therefore they get simultaneously diagonalized by the transformation
of Eq. (1.21). This requirement can be achieved by the imposition of a global Z2

discrete symmetry where the left-handed quarks and one of scalar doublets are even
and the other doublet is odd, i.e.

Z2 : φ1 → φ1 , φ2 → −φ2 ,

QL → QL , `L → `L ,
(2.18)

while the symmetry transformation for the right-handed quarks can be implemented
in different ways, see Table 2.1, yielding four different implementations of the NFC
condition:

• Type I: In this implementation, initially introduced in Ref. [47], all the
fermions couple to φ2 only. An interesting limit of this scenario, denoted
as fermiophobic limit, is obtained when α = π/2 (see Eq. (2.17)) where the
lightest neutral scalar does not couple to fermions at tree-level [48–50]. An-
other interesting scenario is the so-called Inert Doublet Model where the Z2 is
exactly realized in the scalar potential and the vev of φ1 is set to zero [5,51]. In
this case, the Z2 symmetry remains unbroken even after SSB and the SM-like
Higgs does not mix with the extra scalars. In this scenario the lightest of the
extra neutral scalars can play the role of DM [4,5].

• Type II: Here all down-type fermions couple to φ1 and up-type fermions
couple to φ2. This model was initially discussed in Refs. [47, 52], and it is by
far the most studied scenario in the literature, since its structure is the same
present in supersymmetric models. However, some of the constraints present
in the scalar sector of the MSSM are relaxed in this implementation, offering
a richer phenomenology.

• Lepton-specific: This model, where quarks couple only to φ1 and leptons to
φ2, was first discussed in Refs. [53, 54]. This implementation share the same
structure in the quark sector as the type I model, and therefore many of its
bounds also apply to the lepton-specific scenario. This scenario has recently
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Model ςu ςd ςe
Type I cot β cot β cot β

Type II cot β − tan β − tan β

Lepton-specific cot β cot β − tan β

Flipped cot β − tan β cot β

Inert 0 0 0

Table 2.2: Values of the alignment parameters, ςu,d,e, that reduce the A2HDM to the
different NFC scenarios.

received some attention as a possible explanation to several lepton-related
anomalies, such the g − 2 or the cosmic positron excess [55].

• Flipped: In this case the up-quark and the leptons are coupled to φ1 while
the down-quark receives its mass from φ2 [56]. This model has received little
attention in the literature.

A generalization of the NFC hypothesis is provided by the so-called A2HDM [41].
In this class of models one allows the fermions to couple to both doublets but assumes
that the Yukawa couplings of φ1 and φ2 are proportional in each sector, i.e.

Mu = ς∗uN
0
u , Md = ςdN

0
d , Me = ςeN

0
e . (2.19)

Here the flavor-universal quantities ςu,d,e are free complex parameters of the model
that are commonly denoted as alignment parameters. With this condition, the
diagonalization of the mass matrices in Eq. (2.13) automatically diagonalizes scalar-
fermion interactions in Eq. (2.14). This way the Yukawa alignment condition leads
to the absence of tree-level FCNCs at the time that introduces new sources of CP
violation in the Yukawa sector through the phases of ςu,d,e. Another interesting
feature of the A2HDM is that it contains each of the four NFC scenarios based on
Z2 symmetries discussed above. These are obtained from the A2HDM by choosing
specific values for the alignment parameters, see Table 2.2. Therefore the A2HDM
offers a general framework for the phenomenological analysis of NFC 2HDMs, such
as the one performed in Ref. [20]. However, contrary to the NFC models based
on Z2 symmetries, more general Yukawa alignment conditions are not imposed by
any symmetry and therefore the proportionality of the Yukawas is only stable under
RGE for the cases in Table 2.2 [57, 58]. In any other case, the proportionality
of the matrices in Eq. (2.19) gets broken at one loop, situation that was studied
in Refs. [57, 59–61], where it was shown that the FCNCs associated to this effect
appear sufficiently suppressed to avoid the stringent experimental bounds. Several
UV completions to the A2HDM have been proposed in the literature [62–65]. In
Section 8.1 we will present a particular model implementation that leads to Yukawa
alignment at low energies and provides a solution to the Strong CP problem.

2.2.2 The Branco-Grimus-Lavoura model

There is an special solution to the 2HDM flavor problem where tree-level FCNCs
are allowed in one sector but they are exactly related to off-diagonal CKM matrix
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elements, and therefore sufficiently controlled. This is the so-called BGL model [46].5

Such unique feature is achieved by the imposition of a horizontal abelian symmetry
such as

S : qL3 → ei θqL3, uR3 → ei 2θuR3 , φ2 → ei θφ2 . (2.20)

This can be a discrete symmetry as long as θ 6= 0, π, so it does not become trivial
or a Z2 symmetry. However as we will comment later, even the discrete symmetry
implementation leads to an accidental U(1) symmetry in the full Lagrangian. The
imposition of the BGL symmetry gives rise to a special class of Yukawa textures

ΓBGL
1 =

× × ×
× × ×
0 0 0

 , ΓBGL
2 =

0 0 0
0 0 0
× × ×

 ,

∆BGL
1 =

× × 0
× × 0
0 0 0

 , ∆BGL
2 =

0 0 0
0 0 0
0 0 ×

 .

(2.21)

The above implementation is usually known as the top-BGL, since it singles out the
top quark. This Yukawa structure has the special property that the flavor matrices
responsible for the FCNCs take the form

(
NBGL
d

)
ij

=
v2

v1

(Dd)ij −
(
v2

v1

+
v1

v2

)
(V †)i3(V )3j(Dd)jj ,

NBGL
u =

v2

v1

diag(mu,mc, 0)− v1

v2

diag(0, 0,mt) ,

(2.22)

with V = U †uLUdL the CKM quark mixing matrix. As we can see, this simple
implementation introduces no FCNC effects in the up-quark sector while, in the
down-quark sector, one has tree-level FCNCs, parameterized by NBGL

d , which are
suppressed by:

• The down-type quark masses.

• The off-diagonal CKM matrix elements.

This symmetry suppression of the FCNCs allows this class of models to avoid the
strong experimental constraints even when the new scalars remain light. Indeed, a
full phenomenological analysis of the model was performed in Refs. [67–70] where it
was shown that scalars with masses of O (100 GeV) remain viable for the top-BGL
implementation. Other implementations of the BGL symmetry, resulting on up-
down or flavor permutations of the Yukawa textures in Eq. (2.21), are also possible.
It was also shown in Refs. [71, 72] that this implementation is unique, up to the
aforementioned permutations, in models with abelian symmetries. Moreover, and
contrary to what happened with the Yukawa alignment solution, since the Yukawa

5In this section we focus in the BGL implementation for the quark sector. Possible extensions
of this solution to the lepton sector have been discussed in Ref. [66].
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structure is imposed through a symmetry, this solution is stable under radiative
corrections.

Although the BGL model presents several unique features, it still suffers from a
few problems. The first problem is present in the scalar potential of the model. While
the abelian flavor symmetry used to get the desired textures can be implemented
through a discrete group, the scalar sector will exhibit an accidental global U(1)
symmetry leading to a Goldstone boson after spontaneous symmetry breaking [46].
Alternatives to eliminate the accidental global symmetry have been discussed in
Ref. [46]; adding soft breaking terms to the scalar potential or extending the scalar
sector with gauge singlet fields could protect the model against the phenomenologi-
cally dangerous Goldstone modes. On the other hand, the strong CP problem is not
addressed in this scenario. While there are no large contributions to electric dipole
moments in the BGL model [73], this is based on the assumption of a vanishing or
very small θ term [74].

In Chapter 8 we will see that these apparent problems of the BGL model can
be solved in an unified way if the required Yukawa textures are imposed by a global
U(1) chiral symmetry that acts as a Peccei-Quinn symmetry, offering a solution to
the Strong CP problem and leading to the appearance a flavored axion. Another
interesting approach which will be discussed in Chapter 7 consists on promoting
the accidental U(1) symmetry to a local one, giving rise to a new flavored gauge
boson and bringing some advantages we will discuss in the subsequent chapters. For
these solutions it is interesting to analyze which is the most general U(1) symmetry
compatible with the BGL Yukawa textures.

The U(1)BGL symmetry

As previously stated, the BGL symmetry introduced in Eq. (2.20) leads to an ac-
cidental U(1) symmetry in the scalar sector. It is interesting to determine which
are the most general U(1)BGL charge conditions that can impose the BGL Yukawa
textures. This can be done by finding the abelian generators under which the fields
must transform, i.e.

q0
L → SL q0

L , d0
R → SdR d0

R , u0
R → SuR u0

R , (2.23)

with

SL =diag(eiXuL θ, eiXcL θ, eiXtL θ) , SdR = diag(eiXdR θ, eiXsR θ, eiXbR θ) ,

SuR =diag(eiXuR θ, eiXcR θ, eiXtR θ) ,
(2.24)

and

Φ→ SΦ Φ , (2.25)

where

SΦ = diag(eiXΦ1 θ, eiXΦ2 θ) . (2.26)
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These field transformations will induce the following constraints6

S†L Γk SdR (SΦ)kk = Γk ,

S†L ∆k SuR (S∗Φ)kk = ∆k ,
(2.27)

with k = 1, 2. The Yukawa texture patterns are dictated by the way the fermion
fields transform, the Higgs field transformation will only select one of the allowed
textures [44,71–73]. The best way to find these fermion transformations is to study
the Hermitian combinations ΓkΓ

†
k and Γ†kΓk (and similarly for ∆k). The symmetry

constraints on these combinations give

S†L
{

ΓkΓ
†
k ,∆k∆

†
k

}
SL =

{
ΓkΓ

†
k ,∆k∆

†
k

}
,

S(d,u)†
R

{
Γ†kΓk ,∆

†
k∆k

}
S(d,u)
R =

{
Γ†kΓk ,∆

†
k∆k

}
.

(2.28)

The above equations are nothing more than the commutation of a diagonal ma-
trix SL,R with a Hermitian matrix. In order for these matrices to commute SL,R
must share the same eigenvectors as the Hermitian combination, or have degenerate
eigenvalues for the non-shared eigenvectors. We then get three scenarios:

i) The matrix SL,R has only one phase. The Hermitian combination has no
restriction;

ii) The matrix SL,R has two different phases. The Hermitian combination must
be block diagonal, with the 2 × 2 block in the same sector as the degeneracy
in SL,R;

iii) The matrix SL,R has three different phases. The Hermitian combination must
be diagonal.

From Eq. (2.21) we see that the ∆j Yukawa textures are block diagonal in the

up-charm sector. The hermitian combinations ∆k∆
†
k and ∆†k∆k will also share the

same form. This in turn implies that the symmetry generators for the left- and
right-handed fields must belong to case ii), i.e. the abelian generators have only two
different phases

SL = diag
(
1, 1, eiXtL θ

)
, SuR = diag

(
eiXuR θ, eiXuR θ, eiXtR θ

)
, (2.29)

where we set one of the charges to zero using a global phase transformation. Notice
that the charges should satisfy the conditions

Condition A: XtL 6= 0 and XuR 6= XtR , (2.30)

in order to stay in the scenario ii). When the left-handed quark doublet and the
right-handed up-type quark transform under this symmetry, the phases appearing
in the Yukawa term are

Θu = θ

 XuR XuR XtR

XuR XuR XtR

XuR −XtL XuR −XtL XtR −XtL

 , (2.31)

6In the following we drop the BGL superscript in the Yukawa matrices for notational conve-
nience.
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with the additional condition

Condition B: XtL 6= −(XuR −XtR) . (2.32)

We denote the matrix Θu as the up-quark phase transformation matrix. The gen-
erators in Eq. (2.29), together with the conditions A and B are the complete and
minimal set of required conditions in order to have available the BGL textures for
the up sector. In order to pick the desired textures we now have to attribute the
correct charges to the Higgs fields. Remembering that in the up-quark sector we
have the Φ̃i field coupling, we choose for the scalar fields

Sup
Φ = diag

(
eiXuR θ, ei(XtR−XtL) θ

)
. (2.33)

This choice makes Φ̃j associated with the ∆j of Eq. (2.21). We can now build the
phase transformation matrix for the down-quark sector. The left-handed transforma-
tion is the same, since it is shared by the two sectors. Concerning the right-handed
generator of Γj (see Eq. (2.21)), it belongs to the case i) and, therefore, has the form

SdR = eiXdRθ 1 . (2.34)

The down-quark phase transformation matrix is then given by

Θd = θ

 XdR XdR XdR

XdR XdR XdR

XdR −XtL XdR −XtL XdR −XtL

 . (2.35)

Eqs. (2.29) and (2.34) together with the first part of condition A are the minimal
set of required conditions necessary to obtain the BGL textures in the down sector.
In order to pick the desired textures we would need the scalar transformation

Sdown
Φ = diag

(
e−iXdR θ, ei(XtL−XdR) θ

)
. (2.36)

To make the BGL textures in the up and down sectors compatible without
introducing additional textures that spoil the nice features of the BGL-type models
we need to impose some extra charge conditions, we call them texture matching
conditions. They guarantee that the only non-BGL textures present in the Yukawa
sector are the null textures,

XdR 6= −XtR, XtL 6= XuR +XdR, XtL 6= XtR +XdR, XtL 6=
1

2
(XuR +XdR) .

(2.37)
Finally, we have to require an additional texture matching condition indicating how
the up and down sectors match. In the original BGL formulation it is crucial that
the Higgs doublet coupling to the ΓBGL

1 and ∆BGL
1 textures is the same, the other

possible implementation would violate one of the texture matching conditions in
Eq. (2.37). This automatically leads to XdR = −XuR. As a result the most general
BGL symmetry consistent with the Yukawa structure in Eq. (2.21) is characterized
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by the following set of charges

XΦ =
1

2
diag (XuR −XdR, XtR −XdR) ,

X q
L =

1

2
[diag (XuR, XuR, XtR) +XdR 1] ,

X u
R = diag (XuR, XuR, XtR) ,

X d
R = XdR 1 ,

(2.38)

where XuR, XtR and XdR remain as free charges with the texture matching condition
XuR 6= XtR. The charge conditions for the other BGL implementations are obtained
from these of Eq. (2.38) by simply applying the appropriate up-down and/or flavor
permutations to the charges.

2.2.3 Decoupling scenarios

In the absence of a flavor symmetry that forbids or protects the dangerous FCNCs,
the 2HDM should enter in a decoupling scenario where the effects of the extra scalar
fields are small. This can be achieved in two ways:

• The decoupling limit [75, 76]: where one of the Higgs doublets becomes
much heavier than the electroweak scale and decouples from the other. In the
decoupling limit the dangerous tree-level FCNCs are naturally suppressed by
the heavy mass scale. This limit can be made explicit by taking the most
general scalar potential in the weak basis where m12 is zero,7 i.e.

V (φH , φL) = m2
H

(
φ†HφH

)
+m2

L

(
φ†LφL

)
+
λ1

2

(
φ†HφH

)2

+
λ2

2

(
φ†LφL

)2

+ λ3

(
φ†HφH

)(
φ†LφL

)
+ λ4

(
φ†HφL

)(
φ†LφH

)
+

{
λ5

2

(
φ†HφL

)2

+
[
λ6

(
φ†HφH

)
+ λ7

(
φ†LφL

)](
φ†HφL

)
+ h.c.

}
, (2.39)

and imposing that mL ∼ v << mH . In this limit, φL becomes the SM Higgs
doublet up to corrections of O (v2/m2

H) while the extra scalars become quasi-
degenerate and have a heavy mass of O(mH), given that they mostly corre-
spond to the fields in the φH multiplet. The low-energy implications of this
limit are more conveniently described using EFTs, that we will introduce in
Chapter 4. The tree-level EFT for this framework was obtained in Ref. [77];
its extension to one-loop order is currently under investigation.

• The alignment limit [76]: This is not to be confused with the Yukawa align-
ment scenario presented in Section 2.2.1. It is defined as the limit where the
mass mixing between H0 and the rest of the neutral scalars goes to zero. In the
CP-conserving case this corresponds to the limit α− β → π/2, see Eq. (2.16).

7Note that, in general, this basis does not coincide with the Higgs basis introduced in Eq. (2.9).
The exact coincidence between these two bases for a general potential happens in the limit where
the heavy mass goes to infinity.
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The same condition appears naturally in the decoupling limit. However, con-
trary to the decoupling limit, the extra scalars need not to be heavy in the
alignment limit. There is another possibility that cannot be realized in the
decoupling limit in which the heavier CP-even Higgs boson, R, is SM-like.
This situation is sometimes denoted as reverse alignment and is realized in the
CP-conserving case when α−β → 0, π. A recent phenomenological analysis of
the alignment limit in the CP-conserving case can be found in Refs. [20,78,79]

The decoupling scenarios would be of particular interest if no deviations from the SM
prediction are found in the properties of the Higgs-like particle discovered at LHC.
Given their different phenomenological implications these two limiting cases could
in principle be distinguished. The most straightforward way would be to discover
additional scalar states whose masses lie around the electroweak scale, but one may
also be able to distinguish between the two by searching for small deviations in the
SM-like Higgs couplings.
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[72] H. Serôdio, Phys. Rev. D 88 (2013) no.5, 056015 [arXiv:1307.4773 [hep-ph]].

[73] F. J. Botella, G. C. Branco and M. N. Rebelo, Phys. Lett. B 722 (2013) 76
[arXiv:1210.8163 [hep-ph]].

[74] H. Y. Cheng, Phys. Rept. 158 (1988) 1.

[75] H. E. Haber and Y. Nir, Nucl. Phys. B 335 (1990) 363.

[76] J. F. Gunion and H. E. Haber, Phys. Rev. D 67 (2003) 075019 [hep-
ph/0207010].

[77] J. de Blas, M. Chala, M. Perez-Victoria and J. Santiago, JHEP 1504 (2015)
078 [arXiv:1412.8480 [hep-ph]].

[78] N. Craig, J. Galloway and S. Thomas, arXiv:1305.2424 [hep-ph].

[79] M. Carena, I. Low, N. R. Shah and C. E. M. Wagner, JHEP 1404 (2014) 015
[arXiv:1310.2248 [hep-ph]].



CHAPTER

3 The Strong CP problem and the
invisible axion

“What makes the desert beautiful,” said the lit-
tle prince, “is that somewhere it hides a well...”

— Antoine de Saint-Exupéry, The Little Prince

The SM of particle physics stands out as a great success story. The Higgs boson
discovery and the lack of significant deviations from direct searches at LHC, or in
EW precision tests at LEP, reinforces its role as the theory of EW and strong inter-
actions. However, in spite of its phenomenological success, the SM presents several
unanswered questions which might be a hint of physics beyond this framework. One
of such open questions is the so-called Strong CP problem [1–3].

3.1 The U(1)A and the strong CP problems

The Strong CP problem is tightly related to an old problem of QCD termed as
the U(1)A problem. Given that the light quark masses are significantly smaller
than the scale at which QCD becomes non-perturbative, i.e. mu,d,s � ΛQCD, it
is reasonable to apply the massless limit for these quarks. In this limit, the QCD
Lagrangian presents an approximate global chiral symmetry: U(3)L × U(3)R ≡
SU(3)V×SU(3)A×U(1)B×U(1)A, where V (A) stands for vector (axial-vector) and
U(1)B denotes the symmetry associated to baryon number. It is well established
that the chiral symmetry gets spontaneously broken by the formation of quark con-
densates: 〈ūu〉 = 〈d̄d〉 = 〈s̄s〉 6= 0, leading to an unbroken SU(3)V × U(1)B. This
breaking of the chiral symmetry should give rise to a spectrum of nine pseudo-
Goldstone bosons, one for every broken generator [4–6]. However, experimental
measurements showed that one of those bosons, the η′, has a significantly higher
mass than the rest of the bosons associated to the spontaneous symmetry break-
ing. This suggests that the U(1)A symmetry should be broken or not realized in
nature and led to an apparent contradiction between theory and experiment that
was termed as the U(1)A problem [7]. The solution to this issue came from the real-
ization by t’Hooft that the QCD vacuum is non-trivial and non-perturbative QCD
effects explicitly break the axial-vector symmetry [8].

Indeed, a possible solution to the U(1)A problem seems to be given by the fact
that the axial-vector current

Jµ5 = q̄γ5γ
µq , (3.1)
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suffers from chiral anomalies [9–11]. As a result, its divergence gives

∂µJ
µ
5 =

∑
q=u,d,s

2imq q̄γ5q +
3g2

s

32π2
Gα
µνG̃

µν α , (3.2)

where gs is the strong coupling constant and Gα
µν and G̃α

µν ≡ 1
2
εµνρσG

ρσ α are the
QCD field-strength and its dual tensors, respectively. Therefore this divergence is
non-zero even in the massless limit. This implies that, even though the QCD action
in the massless limit is invariant under U(1)A at the classical level, an axial-vector
transformation,

q → eiαγ5/2q , (3.3)

would modify the action in the following way

δS = α

∫
d4x ∂µJ

µ
5 = α

3g2
s

32π2

∫
d4xGα

µνG̃
µν α , (3.4)

introducing an explicit breaking of the axial-vector symmetry and potentially solving
the U(1)A puzzle. Nonetheless, using the Bardeen identity [12] the anomaly term
can be written as a total derivative

Gα
µνG̃

µν α = ∂µK
µ , (3.5)

with Kµ = εµνρσAαν
(
Gα
ρσ −

gs
3
fαβγA

β
ρA

γ
σ

)
the Chern-Simons current. In a topolog-

ically trivial theory this term would yield a null contribution and therefore the
axial-vector charge would be conserved in the massless limit even in the presence of
the anomalous term. Interestingly, there are special configurations, termed as in-
stanton solutions, where the gauge field, Aαµ, does not vanish at infinity but instead
it goes to a pure gauge, i.e. a gauge transformation of the null-field configuration.
These solutions explicitly break the U(1)A symmetry through the anomaly term and
therefore provide a natural explanation for the η′ mass [8].

However, the topological properties of QCD possess other implications. The
instanton configurations appear as the result of the non-trivial vacuum structure of
QCD, characterized by the presence of an infinite number of vacua with minimal
classical energy, usually called n-vacua and denoted by |n〉. Tunneling transitions
between different n-vacua correspond to the instanton solutions, see Figure 3.1, that
are characterized by its topological charge

n =
g2
s

32π2

∫
d4xGα

µνG̃
µν α , (3.6)

where n ∈ N is denoted as the winding number and labels the transition between
vacua given by the instantons. There are gauge transformation that cannot be
generated infinitesimally, often called large gauge transformations, which carry a
winding number. Under those transformations, the n-vacua transform as

Tn′|n〉 = |n+ n′〉 . (3.7)
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-2 -1 0 1 2
n

V(n)

Figure 3.1: Illustration of the non-
trivial nature of the QCD vacuum. The
arrow represents an instanton transition
between different n-vacua.

Large gauge transformations commute with the Hamiltonian and therefore they
should map the vacuum to itself up to a phase. This invariance requires the definition
of the correct vacuum of QCD, the θ-vacuum, defined by

|θ〉 =
∞∑

n=−∞

e−inθ|n〉 , (3.8)

which presents the correct behavior under large gauge transformations

Tn′ |θ〉 =
∞∑

n=−∞

e−inθ Tn′ |n〉 = ein
′θ|θ〉 . (3.9)

In a complete theory one should use the non-perturbative physical vacuum, the θ-
vacuum, instead of the naive perturbative vacuum, |0〉. This modification can be
mimicked by an “effective term” in the QCD Lagrangian

+〈θ|θ〉− =
∞∑

n=−∞

einθ
∞∑

m=−∞
+〈n+m|m〉−

=
1

Z

∞∑
n=−∞

∫
D [A, n] eiS[A] einθ ,

(3.10)

where S [A] is the QCD action and Z a normalization factor. Using Eq. (3.6) we get

+〈θ|θ〉− =
1

Z

∞∑
n=−∞

∫
D [A, n] e

i
∫
d4x

(
LQCD[A] + θ

g2s
32π2G

α
µνG̃

µν α

)
, (3.11)

and therefore we have obtained that, when considering the topological properties of
QCD, a new term appears in the Lagrangian

LstrongCP ≡ θ
g2
s

32π2
Gα
µνG̃

µν α . (3.12)

If along with QCD the EW sector is introduced, one should also take into account
that quark masses are complex in general. Therefore to get the Lagrangian in the
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physical basis, a chiral U(1)A transformation should be performed. As a result, the
QCD vacuum angle in Eq. (3.12) is substituted in the full theory by θ̄ defined as

θ̄ = θ + Arg (DetM) , (3.13)

with M being the quark mass matrix. For θ̄ 6= 0, Eq. (3.12) introduces a violation
of P and T but not C and consequently a violation of CP, and therefore it would
induce a neutron dipole moment. However, the present bound on the neutron dipole
moment, |dn| < 2.9 × 10−26 e cm [13], sets a stringent bound on this angle

∣∣θ̄∣∣ .
10−11 [14]. The reason why this parameter, coming from the strong and the EW
sectors, is so small is unknown and gives rise to the Strong CP problem.

3.2 The Peccei-Quinn solution and the axion

A simple solution to the Strong CP problem consists on the introduction of a chiral
symmetry that rotates the θ̄ angle away and makes it unphysical.1 This solution,
commonly referred as the PQ mechanism [19], consists on the introduction of a global
chiral U(1)PQ symmetry with mixed anomalies with QCD, that gets spontaneously
broken. This way the PQ mechanism effectively replaces the CP-violating phase
by a CP-odd field, the so-called axion, which corresponds to the pseudo-Goldstone
boson resulting from the spontaneous breaking of the PQ symmetry [20, 21]. As a
result the axion, a, presents a shift transformation under this symmetry

a→ a+ cfa , (3.14)

with fa being the axion decay constant, and c an arbitrary complex number. Since
making the SM invariant under the PQ symmetry implies an extension of the SM
Lagrangian that includes axion interactions,

Leff
axion = LSM +

(
θ̄ + Cag

a

fa

)
g2
s

32π2
Gα
µνG̃

µν α +
1

2
∂µa ∂

µa+ Laγγ + Laψ̄ψ , (3.15)

then by a shift in a one can eliminate θ̄. Here the terms Laγγ and Laψ̄ψ are, re-
spectively, the axion interaction to photons and to matter, and the quantity Cag is
determined by the chiral color anomaly of the current associated with the U(1)PQ

transformation [10],

Cag ≡
∑

i=colored

(XψiR −XψiL) , (3.16)

where XψiL(R)
denotes the PQ charge of the corresponding fermions. In a more

formal way, the color anomaly term in the above Lagrangian induces a potential for
the axion field that is periodic in the effective vacuum angle [19]

Vaxion ' −Λ4
QCD cos

(
θ̄ + Cag

a

fa

)
, (3.17)

1Indeed, the Strong CP problem would find a trivial solution if the bare mass of one of the
quarks, say the up-quark mass, was zero [15, 16]. Nevertheless current algebra computations and
lattice QCD results show that this possibility is excluded [17,18].
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and whose minimum appears at 〈a〉 = −θ̄fa/Cag, therefore providing a dynamical
solution to the Strong CP problem.

The PQ symmetry yields an elegant solution to the Strong CP problem. Never-
theless, it appears unnatural to introduce a symmetry that is exact at the classical
level but intrinsically broken by QCD anomalies. Indeed, PQ invariance is not even
an approximate symmetry since instanton effects cannot be treated as a small per-
turbation. This issue can be resolved by considering the modified PQ symmetry,
U(1)′PQ, defined as an anomaly-free combination of the PQ and the axial-vector
currents [22]. Actually, strictly speaking the axion is the pseudo-Goldstone boson
associated to the spontaneous symmetry breaking of U(1)′PQ and not U(1)PQ. Con-
trary to the PQ symmetry, the modified PQ symmetry is an exact symmetry in the
massless quark limit and therefore it can be considered as an approximate symmetry
of Nature, explicitly broken by the small masses of the light quarks. These small
masses give both the pion and the axion a mass. Given that U(1)′PQ is spontaneously
broken by the quark condensate, 〈q̄q〉, and explicitly broken by the quark masses,
the axion mass squared is given by

m2
a ∼

mq〈q̄q〉
f 2
a

, (3.18)

while from current algebra one can obtain the following relation for the pion mass [23]2

m2
πf

2
π = −〈mu ūu+md d̄d〉 , (3.19)

where mπ ' 135 MeV and fπ ' 92 MeV are the pion mass and decay constant,
respectively. Therefore, we have the following relation between the two masses

ma ∼
mπfπ
fa

. (3.20)

Indeed, using current algebra methods one can obtain the following expression for
the axion mass [20],3

ma =
mπfπ|Cag|

fa

[
mumdms

(mu +md) (mumd +mums +mdms)

]1/2

=
mπfπ|Cag|

fa

[
z

(1 + z) (1 + z + w)

]1/2

,

(3.21)

which agrees with our previous expectations based on the modified PQ symmetry
considerations. Here, the parameters z and w denote the quark mass ratios z =
mu/md ' 0.56 and w = mu/ms ' 0.029. Note that while in the language of the
modified PQ current both the axion and the pion acquire a mass through the same
mechanism, the axion would become a true Goldstone if any of the light quark
masses is taken to zero while the pion would only become massless when both mu

and md are set to zero, as expected from symmetry considerations. It is however

2See also Section 19.4 of Ref. [24] for more details.
3The next-to-leading order correction to the axion mass has been computed recently in Ref. [25].
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misleading to think that the axion mass has nothing to do with instanton effects.
Indeed, if instanton effects are neglected then the PQ symmetry becomes exact,
while the axial-vector symmetry is explicitly broken by the quark masses. In this
case, the axion corresponds to the Goldstone of U(1)PQ, which acquires a mass only
when instanton effects play a role.

Given that the axion is the pseudo-Goldstone boson associated to U(1)′PQ, the
axion-matter interactions, described by Laψ̄ψ, are given by

Laψ̄ψ =
∂µa

fa
jµPQ′ − ∂

µa∂µa , (3.22)

where the modified PQ current reads

jµPQ′ = jµPQ −
1

2

Cag
1 + z + w

(
ūγµγ5u+ z d̄γµγ5d+ w s̄γµγ5s

)
, (3.23)

which, by construction, is anomaly free. In the case where all fermions have family-
universal charges, the PQ current is flavor-conserving and takes the following generic
form in the mass-diagonal basis

jµPQ = fa∂µa+
1

2

∑
i

gψi ψ̄iγµγ5ψi , (3.24)

with gψi ≡ XψiR−XψiL . A more general case, where axion charges are non-universal
will be discussed Chapter 8. From Eq. (3.22) it follows that quark- and lepton-axion
interactions are given by

Laψ̄ψ =
1

2

∂µa

fa

[
ge eγ

µγ5 e+ gu uγ
µγ5 u+ gd dγ

µγ5 d+ gs sγ
µγ5 s

−η Cag
(
uγµγ5u+ zdγµγ5d+ wsγµγ5s

)]
+ . . . ,

(3.25)

with η = (1 + z+w)−1 and where the ellipsis stands for interactions with neutrinos,
and heavy quarks, leptons and scalars. Below the chiral symmetry breaking scale,
i.e. ΛQCD ' 1 GeV, it is more convenient to describe the axion interactions with
quarks in terms of mesons and baryons. Once the effect of the light-quark masses
is considered, the axion mixes with the η and the π0,4

aphys ' a+ ξπ π
0 + ξη η . (3.26)

Using standard techniques, one can obtain from Eq. (3.25) the following mixing
angles [27]

ξπ ' −
1

2

fπ
fa

[
Cag

1− z
1 + z + w

− gu + gd

]
,

ξη ' −
1

2
√

3

fπ
fa

[
Cag

1 + z − 2w

1 + z + w
− gu + gd

]
.

(3.27)

4The effect of the η′ was considered in Ref. [26], where it was shown to give negligible corrections
to the axion low-energy dynamics.
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On the other hand, the axion-nucleon interactions can be parametrized by

LaN =
1

2

∂µa

fa
N(g0 + g3σ3)γµγ5N , (3.28)

with σ3 the Pauli matrix in isospin space and N = (p, n)T the nucleon doublet. The
isoscalar and isovector couplings are given in Refs. [28,29]. The couplings to protons
and neutrons are given in terms of those by

gp ≡ g0 + g3 =(gu − 2η Cag)∆u+ (gd − 2ηz Cag)∆d+ (gs − 2ηwCag)∆s ,

gn ≡ g0 − g3 =(gu − 2η Cag)∆d+ (gd − 2ηz Cag)∆u+ (gs − 2ηwCag)∆s ,
(3.29)

with ∆u = 0.841± 0.020, ∆d = −0.426± 0.020 and ∆s = −0.085± 0.015 [30].
Apart from its interactions to matter, the axion is also characterized by its

coupling to photons,

Laγγ = Ceff
aγ Cag

a

fa

α

8π
FµνF̃

µν . (3.30)

Here α = e2/4π ' 1/137, Fµν is the electromagnetic field-strength tensor and F̃µν
its dual tensor. The effective factor Ceff

aγ takes the form [28]:

Ceff
aγ =

Caγ
Cag
− 2

3

4 + z + w

1 + z + w
, (3.31)

where the second term is a model-independent quantity that comes from the mixing
of the axion with the π0 and the η while Caγ is a model-dependent quantity asso-
ciated to the electromagnetic anomaly with the PQ current. This is determined in
terms of the fermion charges by

Caγ = 2
∑

i=charged

(XψiR −XψiL)Q2
i . (3.32)

3.2.1 The original axion model

The implementation of the PQ mechanism requires the extension of the matter
content of the SM. In its original formulation, the scalar sector is enlarged to a
2HDM to make the SM invariant under a new chiral transformation, and the PQ
charges are chosen so that they enforce NFC [31]. This way the severe experimental
constraints from FCNCs [32] are avoided (see Section 2.2.1). Using the same notation
as in Chapter 2, the scalar potential of the model is the same as in Eq. (2.4) with
m12 = λ5 = λ6 = λ7 = 0, and the Yukawa interactions are given by

LY = qL Γuφ̃1 uR + qL Γdφ2 dR + `L Γeφi eR , (3.33)

where i = 1, 2 correspond, respectively, to the type II and flipped scenarios in
Section 2.2.1.5 In this model the scalars and fermions carry the following PQ charges

qLp → eiXq θqLp, `Lp → eiX` θ`Lp,

5If the scalar field that couples to leptons is neither φ1 nor φ2 there is a Goldstone, denoted as
the arion [33–35], which does not receive mass from instanton effects. We will not consider this
possibility here.
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uRp → eiXu θuRp, eRp → eiXe θeRp, (3.34)

dRp → eiXd θdRp, φi → eiXi θφi,

where p = 1, 2, 3 is a flavor index. Note that the above choice for the PQ charges
is not unique. Indeed the Lagrangian will remain invariant if we redefine the PQ
charges by performing a vectorial transformation in the quark and lepton sectors,
which allows us to set Xq = X` = 0 without loss of generality. The invariance of the
Yukawa Lagrangian in Eq. (3.33) implies the following charge constraints

Xu = X1, Xd = −X2, Xe = −Xi , (3.35)

with i = 1, 2. In this model, the anomalous U(1)PQ and the U(1)Y symmetries are
spontaneously broken by the vacuum expectation values (vev) of the doublets. This
will lead to two Goldstone bosons: the one that becomes the longitudinal component
of the Z, G0, and the axion, a,

G0 =
1

v
(v1 η1 + v2 η2) , a =

1

fa
(X1v1 η1 +X2v2 η2) , (3.36)

where vi is the vev of the corresponding doublet with v ≡ (v2
1 +v2

2)1/2 = (
√

2GF )−1/2,
and ηi are the neutral components of the imaginary part of the Higgs doublets (see
Eq. (2.8)). The axion decay constant reads

fa =
√
X2

1v
2
1 +X2

2v
2
2 . (3.37)

Requiring that the PQ symmetry do not overlap with U(1)Y, impose the condition

X1v
2
1 +X2v

2
2 = 0 , (3.38)

which fixes the charges of the scalar doublets6

X1 =
v2

v1

, X2 = −v1

v2

, (3.39)

as well as the axion decay constant, fa = v. This choice of charges also fixes the
color anomaly coefficient

Cag = Nf

(
v1

v2

+
v2

v1

)
, (3.40)

where Nf = 3 is the number of fermion families, and therefore the axion mass for
the original PQ model reads (see Eq. (3.21))

ma '
(
v1

v2

+
v2

v1

)
× 75 keV . (3.41)

6Note that this choice for the charges is not unique, since a global rescaling of the scalar charges
would not spoil the orthogonality condition in Eq. (3.38). However, this rescaling would also change
the axion decay constant (see Eq. (3.37)) such that all the physical quantities are independent of
the absolute magnitude of the PQ charges.
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As we can see, the original axion is characterized by having a sizable mass and
presents large couplings to matter. As a result and in spite of elegantly solving the
Strong CP problem, this formulation was soon ruled out by experimental data. For
example, using the axion-pion and axion-eta mixing angles from Eq. (3.27) one can
estimate the K+ → π+a branching ratio to be [27]

Br
(
K+ → π+a

)
' 2× 10−6

(
v1

v2

+
v2

v1

)
, (3.42)

which is well above the current experimental limit set by the E787 Collaboration:
Br (K+ → π+a) ≤ 4.5× 10−11 at 90% CL [36].

3.3 Invisible axion models

Even though the original axion is ruled out, the PQ solution still constitutes an
appealing idea for the solution of the Strong CP problem. Indeed, the presence of
the tight experimental constraints from axion searches is simply the result of having
related two a priori independent scales: the PQ and the EW symmetry breaking
scales. In fact, one can easily evade all the experimental bounds by assuming that
these two scales are very far apart, which can be achieved by the introduction of a
scalar singlet acquiring a vev that breaks the PQ symmetry at a scale much higher
than the EW scale. As a result, these models present a very large axion decay
constant, i.e. fa � v, and therefore, the mass and the couplings of the axion are
heavily suppressed. Models of this type are generically denoted as invisible axion
models and, apart from evading current bounds from axion searches, they possesses
several interesting features. For instance, the invisible axion is a promising candidate
for cold dark matter [37]. Additionally, the type I seesaw mechanism [38] can be
naturally implemented in these models allowing for the possibility to explain the
smallness of the active neutrino masses and providing a dynamical origin to the
heavy seesaw scale [39].

3.3.1 Benchmark invisible axion models

There are two benchmark invisible axion models: the KSVZ [40,41] and the DFSZ [42,
43] models. In the KSVZ model the SM fields carry no PQ charge and one adds to
the SM particle content a heavy color triplet vector-like quark and a complex scalar
gauge singlet. On the other hand, in the DFSZ model one introduces an additional
Higgs doublet and a complex scalar gauge singlet and fixes the PQ symmetry by
enforcing NFC, just like in the original PQ model. Both benchmark models are
characterized by having flavor-universal interactions. In Chapter 8 we will discuss
other invisible axion implementations with non-trivial flavor structures.

The KSVZ model

The first invisible axion model was proposed by Kim [40] and independently by
Shifman, Vainshtein and Zakharov [41]. In this model it is assumed that the SM
particles are singlets under the PQ symmetry. To implement the PQ mechanism,
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this model introduces a heavy fermion, Q, which is vector-like under the SM gauge
group and a scalar SM singlet, S. Additionally, a discrete symmetry is enforced to
forbid a bare-mass term for the heavy fermion mQQ

R : QL → −QL , QR → QR , S → −S , (3.43)

while all the SM model fields remain invariant under this symmetry. Then, the most
general Lagrangian one can write for the new fields compatible with the discrete
symmetry

L = y S QLQR + y S∗QRQL + V (φ, S) , (3.44)

is invariant under a U(1)A transformation

S → e−iθS , Q→ eiθγ5/2Q , (3.45)

which can be used as a PQ symmetry provided Q is charged under SU(3)c. It
is then assumed that the scalar singlet acquires a very large vev 〈S〉 = vPQ � v
spontaneously breaking the accidental U(1)A symmetry and giving rise to an invisible
axion. The same expressions given in Section 3.2 for the axion mass and couplings
also apply to the KSVZ axion but in this case fa ' vPQ. The resulting axion mass
for this model is then given by

ma =
fπmπ

vPQ

[
z

(1 + z) (1 + z + w)

]1/2

' 6 meV×
(

109 GeV

vPQ

)
, (3.46)

and is therefore small for vPQ � v. Here we have taken into consideration that, in
the KSVZ model, Cag = 1.

The couplings of the axion to matter and to photons are also suppressed by a
factor of 1/fa ' 1/vPQ. The most stringent bound on the KSVZ axion comes from
its coupling to photons; assuming that Q is a color triplet of electric charge Xem

Q , the
KSVZ invisible axion has the following effective coupling to photons (see Eq. (3.31))

Ceff
aγ = 6Xem

Q −
2

3

4 + z + w

1 + z + w
. (3.47)

On the other hand, the presence of the R symmetry in Eq. (3.43) forbids axion
couplings to the SM fermions at tree-level. However, the vev of S spontaneously
breaks the R symmetry and therefore they will appear at higher order (see Ref. [28]
for more details). Even though the tree-level couplings of the KSVZ axion to quarks
are protected by the R symmetry, the axion still has substantial coupling to nucleons
due to the contribution from the anomaly (see Eq. (3.29)).

The DFSZ model

This axion model was originally proposed by Zhitnitsky [42]. However, this work
was overlooked in the literature and was later independently proposed by Dine, Fis-
chler and Srednicki [43]. The model is identical to the one presented in Section 3.2.1,
except for the fact that it is supplemented with an additional scalar field S, singlet
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under the SM group but charged under the PQ symmetry, that develops an arbi-
trarily large vev. This way the breaking of the PQ symmetry is decoupled from the
EW scale and can occur at much higher energies. The Yukawa Lagrangian of the
model is the same as in Eq. (3.33) and the PQ charges of the model follow the same
structure as in Eq. (3.34) with the singlet field transforming as

S → eiθXSS , (3.48)

and where the same charge conditions as in Eq. (3.35) are enforced. Additionally,
in order to avoid the presence of dangerous Goldstone bosons, the scalar charges
should satisfy one of the following restrictions

X1 −X2 = ±XS , or X1 −X2 = ±2XS . (3.49)

In what follows we will take the same condition as in the original implementation, i.e.
X1−X2 = 2XS, and assume XS = 1. The most general scalar potential compatible
with this symmetry reads

V (φ1, φ2, S) = m2
1

(
φ†1φ1

)
+m2

2

(
φ†2φ2

)
+
λ1

2

(
φ†1φ1

)2

+
λ2

2

(
φ†2φ2

)2

+ λ3

(
φ†1φ1

)(
φ†2φ2

)
+ λ4

(
φ†1φ2

)(
φ†2φ1

)
+ms |S|2

+
λS
2
|S|4 + δ1

(
φ†1φ1

)
|S|2 + δ2

(
φ†2φ2

)
|S|2

+
[
δ3

(
φ†1φ2

)
S2 + δ3

(
φ†2φ1

)
S∗ 2
]
,

(3.50)

where, without loss of generality, the parameter δ3 is chosen to be real by an appro-
priate rephasing of S. It is assumed that the parameters in the scalar potential are
such that the scalar fields acquire a vev in the following directions

〈φi〉 =
vi√

2
, 〈S〉 =

vPQ√
2
, (3.51)

with vPQ � v. As with the original PQ model, we have two Golstone bosons: one
associated to the axion, ã, and the other related to the longitudinal component of
the Z boson, G0,

G0 =
1

v
(v1 η1 + v2 η2) , ã =

1

fa
(X1v1 η1 +X2 v2 η2 + vPQ ηs) , (3.52)

where ηs corresponds to the imaginary part of S and where we took XS = 1. It is
convenient to define the physical axion such that it does not overlap with G0

a = ã− v

fa
X G0 , (3.53)

where the coefficient X is given by

X =
v2

1

v2
X1 +

v2
2

v2
X2 . (3.54)
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This shift in the axion field implies the following redefinition of the scalar PQ charges

X ′i = Xi −X . (3.55)

Given the large hierarchy among the vevs, the DFSZ axion is mostly given by the
imaginary part of the complex singlet, ηs, and fa ' vPQ. As it happened in the
KSVZ model, the large vev of the scalar singlet also yields a very small mass for the
axion,

ma =
fπmπ|Cag|

vPQ

[
z

(1 + z) (1 + z + w)

]1/2

' 6 meV×
(

109 GeV

vPQ/|Cag|

)
, (3.56)

where the color anomaly coefficient in the DFSZ model takes the value

Cag =
∑

i=colored

XψiR −XψiL = 2Nf = 6 . (3.57)

As it happened with the KSVZ axion, the couplings of the DFSZ axion to matter
and to photons are suppressed by 1/fa ' 1/vPQ and hence they are sufficiently small
to evade the experimental bounds. In this model the effective coupling to photons
is completely fixed and reads (see Eqs. (3.31) and (3.32))

Ceff
aγ =

8

3
− 2

3

4 + z + w

1 + z + w
, (3.58)

while the couplings to nucleons and to electrons can be directly read from Eqs. (3.25)
and (3.29), respectively, by using the appropriate values for the charges given by
Eq. (3.55).

3.3.2 Axion domain walls

During the evolution of the Universe the PQ symmetry gets broken in different ways.
In the early Universe the PQ symmetry is spontaneously broken by the expectation
value of the S field. At this stage the potential has the mexican-hat shape, the
angular part of the field becomes a Goldstone boson and the Lagrangian remains
global phase invariant. As the Universe cools down non-perturbative instanton
effects at the QCD scale take place and the PQ symmetry gets explicitly broken by
the QCD gluon anomaly [SU(3)C ]2×U(1)PQ [20,21]. However QCD instantons only
break the symmetry down to a discrete ZN subgroup. This can be easily seen from
Eq. (3.12) and the fact that the θ term is invariant under the shift θ̄ → θ̄+2πk. While
before the QCD scale the shift a→ a+α vPQ was allowed for any α, the presence of
the axion coupling to gluons restricts the phase to the values αk = 2πk/|Cag| (with
k = 0, 1, . . . , |Cag| − 1), which just reflects the original θ periodicity. Therefore,
the order N of the discrete group is given by the color instantons effects to be
N = |Cag|. As pointed out by Sikivie [44], these models will have NDW degenerate
disconnected vacua. This in turn leads to an unwanted domain wall structure in the
early universe [44–46].

In general, the domain wall number, NDW, coincides with the order of the discrete
group, i.e. NDW = N = |Cag|. Nonetheless, in some cases only a subgroup of ZN
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acts non-trivially on the vacuum. To examine the vacuum structure one should
analyze the gauge invariant order parameters of the theory. In this way the domain
wall number will coincide with the dimension of the higher order subgroup of ZN
which acts non-trivially on at least one of the order parameters. For the models we
will discuss in this thesis, it suffices to notice that for the singlet condensate

〈S〉k → exp

[
2πk

N/XS

]
〈S〉0 , (3.59)

as we set XS = 1 the vacuum periodicity is N , i.e. all elements of the residual ZN
act non-trivially on the vacuum. As a result, we have NDW = |Cag| for the class of
models that will be studied here.7

Many axion models suffer from the domain wall problem. In particular, the
DFSZ invisible axion model has a domain wall number NDW = 2Nf or NDW = Nf

depending on the scalar potential implementation, with Nf the number of quark
families. On the other hand, in implementations where NDW = 1, such as the KSVZ
invisible axion model, the resulting domain wall structure is harmless [47].

Even for NDW 6= 1, some solutions to the domain wall problem can be found in
the literature. It is possible to avoid the domain wall problem by assuming that
inflation has occurred after the PQ symmetry breaking. In this case, one can derive
limits on the inflationary scale based on the observation of isocurvature fluctuations
in the cosmic microwave background [48]. Also, there have been several attempts
to introduce an explicit breaking of the PQ symmetry that also breaks the ZN
discrete group in such a way that the PQ solution to the Strong CP problem is pro-
tected [44,49]. This explicit breaking could come from gravity, giving rise to Planck
scale suppressed operators [50,51]. However, it was argued that this solution would
give rise to long lived domain walls which introduce cosmological problems [52]. Ad-
ditionally, gravity violations of the PQ symmetry should be controlled in order not
to spoil the PQ solution [53–59]. This issue will be considered in the next section.

3.3.3 Protecting the axion from gravity

Until now we have discussed axion models where an ad hoc PQ symmetry is imposed.
However, the presence of semi-classical gravitational effects can potentially violate
global symmetries [50, 51], spoiling the strong CP solution [53–59]. As we saw in
Section 3.2, in the absence of gravity, the axion potential coming from the instanton
contributions can be written as [19]

Vaxion ' −Λ4
QCD cos

aphys

vPQ

, (3.60)

which has a minimum at 〈aphys〉 = θ̄ = 0 and where the estimated axion mass is
ma ' Λ2

QCD/vPQ. On the other hand, when including gravitational effects, the axion

7Considering higher dimensional order parameters such as
〈

Φ†iΦj

〉
or 〈qLαqRα〉 would not

change the periodicity of the full vacuum, since in our choice of normalization the residual discrete
group always acts non trivially in 〈S〉.
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potential will change. For example in our invisible axion model, we should expect
higher dimensional PQ violating terms of the type

1

Mn−2
Pl

Φ†iΦjS
n ,

1

Mn−4
Pl

Sn , · · · (3.61)

with the Planck scale denoted by MPl. Let us consider, for simplicity, the second
term in the above equation. By introducing this term in the Lagrangian the axion
potential gets modified and takes the form [57]

Ṽaxion ' −ΛQCD cos
aphys

vPQ

−
c vnPQ

Mn−4
Pl

cos

[
aphys

vPQ

+ δ

]
. (3.62)

The parameter c is just a coupling constant and δ a CP violating phase. The problem
with this new axion potential is that the minimum is no longer at 〈aphys〉 = 0, but
rather at

θ̄ =
〈aphys〉
vPQ

' c sin δ
vnPQ

Mn−4
Pl Λ4

QCD

, (3.63)

which in general will be far from zero. The axion mass will also be affected by these
gravitational effects, taking the form

m2
a '

Λ4
QCD

v2
PQ

+ c
vn−2

PQ

Mn−4
Pl

. (3.64)

Therefore, in this simple scenario we see that gravitational effects will in general
spoil the strong CP solution coming from the PQ symmetry.

Over the years several solutions to this problem have emerged, which allow us
to preserve the PQ solution of the strong CP problem. GUT motivated models [56,
57], extra dimensional [60] ones and even models having neutrinos playing a big
role in gravity protection [61] can be found in the literature. However, many of
these solutions need a significant extension of the original PQ model. One of such
solutions is the use of gauge discrete symmetries to protect the PQ solution against
gravity [62]. This solution has the interesting feature that the low energy spectrum
of the theory does not need to be extended. Gauge discrete symmetries, which arise
through the spontaneous symmetry breaking of a gauge symmetry, are not broken
by gravity and can provide natural suppression to the harmful gravitational effects.
The idea proposed is to have a large discrete abelian symmetry ZP forbidding, up
to a given order, these unwanted terms [63, 64]. For example, if the symmetry
only allows terms of the form Sm/Mm−4

Pl for m ≥ 13, we will just get irrelevant
contributions to the axion mass and its vev [65]. In Section 8.2.4 we will treat this
solution in more detail for specific model implementations.

3.3.4 Experimental searches on the invisible axion

Given its small couplings to matter and radiation, the search for invisible axions is a
complicated task.8 One of the most promising approaches in the search for this type

8In this section we will focus on some of the most constraining axion limits, for a more exhaustive
discussion on axion searches we refer the reader to the PDG review on this topic [66].
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of axion comes from its coupling to photons. As we saw in Section 3.2, the axion
couples to photons through the dimension 5 operator in Eq. (3.30). For practical
convenience, it is useful to define the axion-photon coupling constant as

gaγ =
α

2πvPQ

CagC
eff
aγ . (3.65)

In various extensions of the SM, weakly coupled light pseudoscalar particles emerge
naturally. However, the axion possesses (due to QCD effects) an inherent correlation
between the photon coupling and its mass

(ma/1 eV) ' 0.5 ξ g10 , (3.66)

where g10 = |gaγ| × 1010 GeV and ξ = 1/|Ceff
aγ |. The dimensionless coefficient ξ is in

many axion models of order 1. In the DFSZ (type II and flipped) and KSVZ models
ξ takes the approximate values 1.4 (0.8) and 0.5, respectively.9

Axion emission through its coupling to photons introduces a non-standard mech-
anism for stellar energy losses that could affect the stellar evolution. A strong bound
to this process can be derived from globular-cluster stars [67]. These are homoge-
neous gravitationally bound systems of stars formed around the same time, allowing
for detailed tests of stellar-evolution theory. The actual experimental bound gives
g10

<∼ 1 for axion masses up to 30 keV. Recently, the analysis of the evolution of mas-
sive stars lead to the bound g10

<∼ 0.8, based on the fact that Cepheid variable stars
exist [68]. An even more stringent bound from an updated analysis of 39 Galactic
Globular Clusters has been reported [69], setting the limit g10

<∼ 0.66 at 95% CL.
Instead of using stellar energy losses to constrain the axion, one can also di-

rectly search for axion fluxes coming from the Sun (helioscopes) or from galactic
halos (haloscopes). Several helioscope and haloscopes experiments are currently in-
volved in probing the gaγ coupling. The most powerful axion helioscope experiment
is the CAST, which searches for solar axions via axion-photon conversion using a
dipole magnet directed towards the sun. The CAST experiment achieved the limit
g10

<∼ 0.88 for ma
<∼ 0.02 eV, while slightly weaker bounds were obtained for heav-

ier axions [70]. Still the astrophysical bounds represent a slight improvement over
the CAST results. It is expected that the next generation of axion helioscope ex-
periments, such as the IAXO [71], will provide better bounds on the axion-photon
couplings in the future. Microwave cavity haloscopes, including the ADMX, exclude
a window for the axion around a few µeV [72–74]. These experiments search for cold
dark matter axions in the local galactic dark matter halo.

On the other hand, the axion also receive interesting bounds from its coupling to
electrons. Here, we define the axion-electron coupling constant as haee = |ge|me/vPQ,
with ge given in Eq. (3.25). The axion-electron coupling is bounded from astro-
physical sources. In globular clusters, energy losses in red-giant stars due to ax-
ion emission would delay helium-ignition and make the red-giant branch extend to
brighter stars. This places the following upper bound on the axion-electron coupling,
haee <∼ 3× 10−13 [75]. A more restrictive bound comes from white-dwarf cooling due

9For the KSVZ model we have taken the benchmark of Xem
Q = 0, with Xem

Q denoting the electric
charge of the exotic color triplet Q.
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to axion losses [67,76],

haee < 1.3× 10−13 ⇒ vPQ > |ge| × (4× 109 GeV) . (3.67)

The bounds that can be extracted on the PQ symmetry breaking scale, or alterna-
tively, on the axion mass, are very model dependent for this observable. The value
of ge not only depends on the particular charge assignments of the model considered
but also on the vevs of the scalar fields. In some regions of the parameter space it
is even possible to obtain ge ' 0 so that white-dwarf cooling arguments would not
place a strong bound on the axion mass, this is the case for instance for the tree-level
value of ge in the KSVZ model.10 Taking the benchmark point |ge|/Cag = 10−1 for
example, implies the upper bound ma

<∼ 15 meV. This bound together with the ones
from CAST, IAXO and ADMX are shown in Figure 3.2.
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Figure 3.2: Constraints on the DFSZ type II (flipped) and KSVZ invisible axions where

searches axion-photon conversion and astrophysical considerations are considered. Also

shown are the constraints from white-dwarfs cooling for the benchmark point |ge|/Cag =

10−1. Figure adapted from Ref. [77]

Finally, axion-nucleon interactions are constrained by the requirement that the
neutrino signal of the supernova SN 1987A is not excessively shortened by axion
losses [67, 78]. This constraint is typically of the same size as the one coming from
white-dwarf cooling arguments. However, the SN 1987A limit involves many uncer-
tainties which are not easy to quantify [67]. The axion couplings to matter can also
be tested in terrestrial laboratories, with promising prospects of probing unexplored
regions of the axion parameter space. Dark matter axions can cause transitions be-
tween atomic states that differ in energy by an amount equal to the axion mass. By

10For a very small axion-electron coupling one should also include the one loop contributions [28].
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tuning the atomic states energy using the Zeeman effect it is possible in principle to
detect axion dark matter candidates in the 10−4 eV mass range [79]. The axion can
also be tested in dedicated laboratory experiments looking for oscillating nucleon
EDMs [80–82], and, oscillating parity- and time reversal-violating effects in atoms
and molecules [81, 82]. The proposed CASPEr for example, could cover the entire
range of axion dark matter masses ma . µeV by looking for oscillating EDMs in a
nuclear magnetic resonance solid-state experiment [83].
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CHAPTER

4 Effective Field Theories

“We demand rigidly defined areas of doubt and
uncertainty!”

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

When one aims for the description of a particular phenomenon, it is useful to
isolate those degrees of freedom that give the most relevant effects, allowing us to
obtain a simplified framework without the need to understand everything. This
is the philosophy behind EFTs [1–4], which essentially consists in considering that
the dynamics of the systems at low energies cannot depend on the details at high
energies. Notice that whenever we are talking about low or high energies, we are
setting a scale and, at the same time, establishing a range of validity for the effec-
tive theory. As long as we remain within its range of applicability, i.e. at energies
below the high-energy scale, the EFT gives a complete and unitary description of
the physical phenomena [5]. This way, low-energy physics can be described by an
effective Lagrangian which only contains the degrees of freedom that are relevant
at the low-energy scale, while additional degrees of freedom, that are more impor-
tant at higher energies, are removed from the effective description and their effects
are encoded as an expansion weighted by inverse powers of the high-energy scale.
Eliminating these degrees of freedom produces a great simplification in our physical
description, which can be systematically improved by adding higher-order terms in
the effective expansion.

An interesting feature of EFTs is that one does not need to know what is the
fundamental theory behind the effective one. When this happens, EFTs could be a
useful tool not only to describe the low-energy dynamics but also to extract useful
information about any possible more fundamental theory. The standard procedure
in the construction of an EFT when the high-energy theory is unknown is first
to determine the relevant degrees of freedom of the theory, the symmetries of the
system, and the power counting for the effective expansion (related to the range
of validity of the theory). Once we know that, the most general local Lagrangian
containing these fields and respecting these symmetries is constructed order by order
in this expansion. It is expected that possible heavy NP that decouples at low
energies manifests as a specific pattern on the low-energy couplings of the expansion,
i.e. the WCs of the EFT. We can analyze the marks of the underlying high-energy
theory upon comparison with the low-energy scale phenomenology, and in this way
obtain information on the NP dynamics. This is the approach one typically uses
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when obtaining constraints on NP scenarios from the SMEFT or from the WET,
both of which will be introduced in Section 4.2. While this approach is completely
independent of the NP model, it is interesting to compare the results obtained in the
EFT with those one would expect from a given UV model. For this, it is important
to have general techniques that allow us to connect, in a simple manner, an arbitrary
UV model to its corresponding effective description.

There are two equivalent approaches for the construction of EFTs from a more
fundamental theory. The most employed one amounts to matching in the full theory
and in the EFT the diagrammatic computation of given Green functions with light-
particle external legs. This is done at energies below the high-energy scale, where
the EFT description of the dynamics remains valid. Another approach, which is
of more interest for this thesis, consists in performing the functional integration
of the heavy states without being concerned with specific Green Functions, and
later extract the local contributions that are relevant for the description of the low-
energy dynamics of the light fields. Functional integration techniques have obvious
advantages over the matching procedure as, for instance, one does not need to handle
Feynman diagrams nor symmetry factors, and one obtains directly the whole set of
EFT operators together with their matching conditions, i.e. no prior knowledge
about the specifics of the EFT operator structure, symmetries, etc., is required. In
the next section we will show how this method can be applied at tree level while
we leave the discussion about the extension of this technique to one-loop order to
Chapter 6.

4.1 Effective Field Theories from the path inte-

gral

The physical information of a given field theory is contained in its Green functions.
The Feynman path integral [6–10] provides a useful tool to handle this informa-
tion since it provides a closed expression for the generating functional of the Green
functions, which is given by the partition function

Z [JL, JH ] = N
∫
DηLDηH exp

{
i

∫
ddx (L [ηL, ηH ] + JL ηL + JH ηH)

}
, (4.1)

in terms of the Lagrangian of the theory L [ηL, ηH ]. Here we have explicitly separated
the fields of the theory, η = (ηH , ηL), into those that we consider heavy, ηH , and the
ones we treat as light fields, that we denote as ηL. On the other hand JL (JH) denote
external sources for the light (heavy) fields, DηL,H is the path integral measure for
the corresponding fields and N is a normalization factor. In what follows, we set to
zero the external current for the heavy fields since, for the calculation of the EFT,
the Green functions that we need are those with only light-particles in the external
legs.

Our aim is to remove the heavy fields from the theory in favor of an effective
description in terms of only light fields, for which we need to “integrate out” the
heavy fields from the path integral. Before we do that, it is convenient to use the
BFM [11–18]. This method consists in separating the fields into a background field
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configuration, η̂L,H , which satisfies the classical EOMs,

δL
δηL

[η̂L, η̂H ] + JL = 0 ,
δL
δηH

[η̂L, η̂H ] = 0 , (4.2)

with the variational derivative acting on the Lagrangian, and quantum fluctuations,
i.e. we write

ηL → η̂L + ηL , ηH → η̂H + ηH . (4.3)

Diagrammatically, the background configuration corresponds to tree lines in Feyn-
man graphs while lines inside loops arise from the quantum fields; this means that
terms higher than quadratic in the quantum fields yield vertices that can only ap-
pear in diagrams at higher loop orders. This separation is particularly useful for
several reasons: on the one hand, it allows for the quantization of the fields in a way
that preserves explicit gauge invariance of the background fields, even after having
included the gauge-fixing and ghost terms; on the other hand, it allows us to rewrite
the Lagrangian plus source terms as an expansion in the number of quantum fields

L [η] + JL ηL = L[η̂] + JL η̂L + L(η2)[η̂, η] +O
(
η3
)
, (4.4)

where the zeroth order term, L[η̂], depends only on the classical field configurations
and yields the tree-level effective action (as we will see later). Linear terms in η in the
expansion around the background fields are, up to a total derivative, proportional
to the EOMs and thus vanish. The term quadratic in the quantum fields, L(η2),
contains all the one-loop contributions and will be further analyzed in Chapter 6,
while terms with three or more quantum fields yield higher-order loops and are not
of interest for this thesis.

We can rewrite the partition function in Eq. (4.1) as

Z [JL, JH = 0] ' N
∫
DηLDηH exp

{
i

∫
ddx

(
L[η̂] + JL η̂L + L(η2) [η̂, η]

)}
,

(4.5)

where we removed the terms contributing beyond one-loop order. The corresponding
effective action is obtained from a Legendre transform of the partition function and
reads

iS [η̂] = ln Z [JL, JH = 0]− i
∫
ddx JLη̂L , (4.6)

which, using the expression in Eq. (4.5), simply gives

eiS[η̂] ' N
∫
DηLDηH exp

{
i

∫
ddx

(
L[η̂] + L(η2) [η̂, η]

)}
. (4.7)

The term L[η̂] is independent of the quantum fields and can be taken out of the
path integral yielding the result

S [η̂] '
∫
ddxL [η̂] + S1loop [η̂] , (4.8)
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where we defined the one-loop effective action as

eiS
1loop[η̂] = N

∫
DηLDηH exp

{
i

∫
ddxL(η2) [η̂, η]

}
. (4.9)

A systematic method to obtain the one-loop EFT from the one-loop effective action
will be discussed in Chapter 6. Here we simply ignore this contribution and focus
on the tree-level EFT, which is obtained from L[η̂] upon removing the background
heavy fields; these can be written in terms of the light fields by using their EOMs,
given in the second equation in (4.2). The resulting effective action will be a non-
local function of the light fields

Stree [η̂L] =

∫
ddxL [η̂L, η̂H [η̂L]] . (4.10)

At energies much lower than the mass of the heavy fields, mH , we can solve pertu-
batively their EOMs, in an expansion in inverse powers of mH . This allows us to
expand the expression in the r.h.s in a series of local (effective) operators, Oi, which
finally leads to the effective Lagrangian

Stree
EFT[η̂L] =

∫
ddxLtree

EFT[η̂L] =

∫
ddx

∑
i

ci(mH) Oi[η̂L] , (4.11)

where the corresponding WCs, ci(mH), will appear as a polynomial expansion in
powers of mH .

In the next section we will provide examples of EFTs within the SM framework.
These are of great importance in the analysis of possible NP that extends the SM
at high energies. In particular, in Section 4.2.2 we will provide an explicit example
of the application of the method to obtain the Fermi Lagrangian.

4.2 Effective field theories within the SM

The SM is an extremely successful theory that yields accurate predictions for the
outcome of a wide range of high-energy experiments at both the intensity and energy
frontiers. However, as we have already commented, the lack of an explanation
within the SM to several theoretical and experimental problems makes this theory
incomplete. On the other hand, the SM has been tested to very high accuracy
over the last decades. This has strong implications for the possible NP scenarios,
which are typically required to involve high-mass scales, and most manifestations
of NP are expected to show up above the TeV scale. This situation makes EFTs
particularly useful to describe the possible NP extensions. Indeed following the EFT
philosophy, the SM can be seen as the lowest contribution of an EFT whose higher-
order operators parametrize the effects of any possible underlying NP theory that
decouples at low energies. This idea will be outlined in Section 4.2.1.

The masses of the SM particles span several orders of magnitude. When one
aims to describe the dynamics at lower energies it is useful to “integrate out” those
particles that, being heavier, appear suppressed in the dynamics of the problem.
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Figure 4.1: Illustration of the match-
ing and running procedures in the
SMEFT and the WET. Figure taken
from Ref. [19]

For this reason it is convenient to trade the full-theory top, higgs, and weak gauge
bosons contributions by effective operators in order to describe the physics at the b-
mass scale which, as we will see in Chapter 7, is a region of great phenomenological
interest. The resulting EFT is often called WET. It is crucial for the WET to
include one-loop effects since many of its features that do not appear at tree-level
happen at one loop. This is because, as we commented in Section 1.2, FCNCs only
appear in the SM at one loop. For a coherent description of the one-loop dynamics
it is also necessary to perform the running of the WCs of the SMEFT down to the
matching scale of the WET (i.e. around the W mass) and of the WET WCs to
the b-mass scale or any other low-energy scale of phenomenological interest. This
whole procedure is illustrated in Figure 4.1. The complete RGE of the WCs of the
SMEFT were calculated in Refs. [20–23] while the matching and running of these
operators in the WET was performed in Ref. [24].1 These results can be used in an
automated way with to the Mathematica package DsixTools [19].

4.2.1 The Standard Model Effective Theory

The great number of NP theories and the lack for a clear guiding principle that
could tell us which of them (if any) provides a true description of Nature makes
necessary the use of model-independent techniques. In this sense, if we assume that
the NP that extends the SM decouples at low energies, we can embed the SM in a
EFT framework where any possible heavy degrees of freedom have been integrated
out. In this way the SM appears as the lowest-order terms in an effective expansion

1See also Ref. [25] for the matching between the SMEFT and the WET at one loop, and
Refs. [26–36] for the anomalous dimension in the SM operator basis, i.e. not including the effects
of the SMEFT dimension-six operators.
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where NP effects are encoded in the WCs of an expansion of higher-dimensional
local operators, which depend only on SM fields, suppressed by the high energy
scale. The SMEFT gives the most general low-energy description compatible with
the SM fields and gauge symmetry2

L = LSM +
1

Λ

∑
k

C
(5)
k Q

(5)
k +

1

Λ2

∑
k

C
(6)
k Q

(6)
k +O

(
1

Λ3

)
, (4.12)

where Λ denotes the new physics scale, typically associated with the mass of a heavy
particle or set of particles, which is assumed to be much larger than the electroweak
scale. The SM Lagrangian only contains dimension-two and -four operators. There
is only one dimension-five operator, the Weinberg operator, that gives a Majorana
mass term for the neutrinos [41]. A complete list of dimension-six operators was
first presented in Ref. [42]. However, it was shown in Refs. [43–46] that some of
the operators in this list where redundant, since they can be related by using the
EOMs [14,47–50]. A non-redundant basis of dimension-six operators was introduced
in Ref. [51] and is commonly known as the Warsaw basis. Ignoring flavor indices and
assuming baryon number conservation, the dimension-six basis has 59 operators, of
which some are non-Hermitian and therefore have complex WCs. This leads to a
total of total 76 real WCs. If we also take into account flavor indices, the dimension-
six basis contains 1350 CP-even and 1149 CP-odd operators, resulting in a total
of 2499 hermitian operators [22]. The complete set of independent dimension-six
baryon-number-violating operators was identified in Ref. [52], and barring flavor
indices it is formed by four operators.

4.2.2 The Weak Effective Theory

Except for the top quark, the SM fermions have a mass which is much lower than the
ones of the weak gauge bosons, the W and the Z. For this reason, it is convenient
to describe the low-energy dynamics of the weak interactions in an EFT framework
where those degrees of freedom that are much heavier than the b quark have been
integrated out. Following the approach in Section 4.1, the first step to construct
this EFT is to evaluate the SM Lagrangian in the background fields, i.e LSM [η̂L, η̂H ].
In this expression ηH corresponds to the heavy fields we want to integrate, i.e.
ηH = W,Z, h, t, and ηL to the light ones, which in this case are given by the rest of
SM fields. At energies much lower than the mass of the heavy fields, this expression
is then expanded in powers of the heavy masses, yielding the corresponding EFT
for the weak interactions.

Since we are mostly interested in flavor violating transitions in this thesis, let us
perform as an example the tree-level integration of the W up to O

(
M−2

W

)
, whose

result is the so-called Fermi theory. In this case we only have to obtain the W

2By construction the SMEFT does not include any possible light NP such as light right-handed
neutrinos, axions or axion-like particles (see for example Ref. [37,38] for an EFT framework where
axion-like particles have been included). Moreover, the SMEFT assumes that the electroweak
symmetry breaking is triggered, as in the SM, by a Higgs doublet; a more general EFT that
considers a generic non-linear realization of the electroweak symmetry breaking has been considered
for instance in Refs. [39, 40].
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W =⇒

Figure 4.2: Illustration of the procedure of integrating out the W boson. At low
energies, the lowest order effects of the W -exchange are reduced to a four-fermion
interaction.

background configuration, Ŵ , in terms of the background light fields. From the
EOM of Ŵ we get

δLSM

δW †
µ

[η̂L, η̂H ] = M2
W Ŵ µ +

g√
2

(
ûLγ

µ V d̂L + ν̂Lγ
µêL

)
+ · · · = 0 , (4.13)

where we have omitted the contributions from the kinetic term of the W and terms
with two or more heavy fields, which would yield higher-order terms in the expansion
in M−1

W . From this equation one immediately obtains the value of Ŵ in terms of the
background light fields

Ŵµ = − g√
2M2

W

Jµ +O
(
M−4

W

)
, (4.14)

where the fermion current is defined as

Jµ ≡ ûLγµV d̂L + ν̂LγµêL . (4.15)

Inserting the expression in Eq. (4.14) into the SM Lagrangian and expanding up to
O
(
M−2

W

)
, it is straightforward to get the following effective Lagrangian for the W

interactions

LFermi = −4GF√
2
Jµ†J µ , (4.16)

with the Fermi coupling constant defined as

GF√
2
≡ g2

8M2
W

. (4.17)

As we see, the effects of the W at lowest order are reduced to an effective four-
fermion interaction, situation that is depicted in Figure 4.2. The corresponding
WCs for these four-fermion interactions receive a suppression of O

(
M−2

W

)
through

the Fermi constant, showing that the effects of these interactions decouple when
MW is taken to infinity. Expanding further in Eqs. (4.13) and (4.14) we would
get operators of higher dimension that would yield higher-order corrections to the
interactions in Eq. (4.16).

Integrating out the Z in the SM would give a similar result but in this case the
corresponding four-fermion interactions would be flavor conserving. This result is
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W
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Figure 4.3: Diagrams contributing to O`9,10 in the SM. Leaving the photon leg
unattached in the first two diagrams we get the corresponding contributions to O7.

expected, since as we discussed in Section 1.2, the SM has no tree-level FCNCs. The
situation changes at one loop and FCNCs appear through transitions like the ones
shown in Figure 4.3. Since one-loop corrections introduce completely new effects,
these are crucial in the description of low-energy phenomena in terms of the WET.
Given that b → s`+`− transitions are of special interest for some of the topics
addressed in this thesis, we show explicitly the part of the WET related to these
transitions [53–55]3

HWET ⊃ −
4GF√

2

e2

16π2
VtbV

∗
ts

∑
i,`

[
C`
i O`i + h.c.

]
+Hb→sγ

eff , (4.18)

where the operators

O`9 = (sγµPLb)
(
`γµ`

)
, O`9′ = (sγµPRb)

(
`γµ`

)
,

O`10 = (sγµPLb)
(
`γµγ5`

)
, O`10′ = (sγµPRb)

(
`γµγ5`

)
,

O`S = mb(s̄PRb)(¯̀̀ ) , O`S′ = mb(s̄PLb)(¯̀̀ ) ,

O`P = mb(s̄PRb)(¯̀γ5`) , O`P ′ = mb(s̄PLb)(¯̀γ5`) ,

(4.19)

with ` = e, µ, τ and PL,R = 1/2(1 ∓ γ5), constitute a complete basis for the four-

fermion operators involving the b → s`+`− interaction. The piece Hb→sγ
eff gives the

effective Hamiltonian for the radiative transitions including dipole operators [56]

O7 =
mb

e
(s̄ σµν PR b) F

µν , O7′ =
mb

e
(s̄ σµν PL b) F

µν . (4.20)

In the SM only the C7, C`
9 and C`

10 WCs receive non-negligible contributions, through
diagrams like the ones showed in Figure 4.3 (see e.g. Refs. [57,58] for the numerical
values including next-to-leading-order QCD corrections). At the b-quark mass scale
C`

9 and C`
10 satisfy the approximate relation in the SM: CSM `

9 (mb) ' −CSM `
10 (mb) '

3For historical reasons it is common to use a Hamiltonian instead of a Lagrangian in this case.
The only difference is a global sign in the interactions. Also, given that all the fields appearing in
the EFT are classical and there is no room for confusion, in what follows we omit the hat in the
fields for notational simplicity.
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4.2, which is lepton-family universal. However NP interactions could modify these
WCs and/or induce other WCs that are not present in the SM alone. As we will
see in the next chapter, there are several experimental anomalies that hint that this
indeed might be the case for the WCs of some of the operators in Eq. (4.19).
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CHAPTER

5 Flavor anomalies in B decays

Without change something sleeps inside us, and
seldom awakens. The sleeper must awaken.

— Frank Herbert, Dune

Low-energy experiments have been crucial in the development of the EW sector
of the SM), based on the gauge group SU(2)L × U(1)Y . The EW structure of the
SM was beautifully revealed by a large variety of experimental observations at low
energy, together with requirements of a proper high-energy behavior of the theory.
In particular, the intermediate vector bosons W±, Z were predicted theoretically
before their experimental discovery. Precision experiments at low energies continue
providing important information about the possible UV completions of the SM, and
NP might be revealed again first at the precision frontier.

Indeed, there are currently two sets of interesting tensions in B-physics data that
seem to point to large violations of lepton-flavor universality:

• The LHCb Collaboration has reported deviations from the SM prediction in the
theoretically-clean ratios RK(∗) = Br(B → K(∗)µ+µ−)/Br(B → K(∗)e+e−) [1,
2]. These discrepancies are supported by other not-so-clean deviations in the
angular observables of B → K∗µ+µ− [3, 4] and in the branching ratio of Bs →
φµ+µ− [5, 6], which are compatible with the same NP explanation under the
assumption of small NP couplings to electrons. These are the so-called b →
s`+`− anomalies.

• The BaBar, Belle and LHCb collaborations have measured departures from lep-
ton universality at the 25% level in the exclusive semileptonic b → c`ν decays,
through a measurement of the ratios R(D(∗)) = Br(B → D(∗)τν)/Br(B →
D(∗)`ν) [7–12], with ` = e, µ.

In this chapter we will briefly review the current status of these experimental anoma-
lies, and outline several ideas that have been proposed in the recent literature to
account for them from NP extensions of the SM. In doing so, we will separate the
discussion for each set of anomalies since, while they share some features, they are
of different nature.
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5.1 The b→ s`+`− anomalies

While most flavor observables agree very well with the SM, current data in b→ s`+`−

transitions show an intriguing pattern of deviations. In 2013 using the 1 fb−1 dataset,
the LHCb Collaboration reported the measurement of angular observables in the
B → K∗µµ decay [3]. In this analysis, the optimized observable P ′5 [13] showed
a discrepancy of 3.7σ with respect to the SM prediction in one of the bins, the
so-called P ′5 anomaly [14]. In 2015, LHCb confirmed the anomaly with more statis-
tics (3 fb−1) and a finer binning [4], reporting a deviation in two adjacent bins of
P ′5 with a significance of 3σ for each of them. LHCb has also observed a deficit
in the branching ratios of other decays, such as Bs → φµ+µ− [5, 6], whose value
differs 3.1σ from the SM prediction, or B → K(∗)µ+µ− [15]. Recent analyses by the
Belle Collaboration [16,17] provided an independent confirmation of the P ′5 anomaly,
showing a 2.6σ deviation from the SM prediction consistent with the LHCb mea-
surement, though with larger errors. The ATLAS [18] and CMS [19] Collaborations
also presented at Moriond EW 2017 their preliminary analyses of the angular ob-
servables with the full Run I dataset. The compatibility of all these measurements
was studied in Ref. [20], confirming the presence of a sizable discrepancy with the
SM prediction.

These experimental anomalies has led to the reassessment of the possible the-
oretical uncertainties in these observables due to form factors [21–24] and non-
factorisable hadronic effects [25–28]. In this regard, the measurement of b→ s`+`−

observables that are free from hadronic uncertainties is particularly important. In-
terestingly enough, the LHCb Collaboration has also found discrepancies in the
ratio

R
[q2

min,q
2
max]

K =

∫ q2
max

q2
min

dΓ(B → Kµ+µ−)∫ q2
max

q2
min

dΓ(B → Ke+e−)
, (5.1)

that provides a very clean theoretical prediction since, in the absence of large NP
LFUV, hadronic uncertainties cancel to a very good approximation in the ratio
and appear suppressed by m2

µ/m
2
b [29].1 In particular, in 2014 LHCb reported the

measurement of RK in the dilepton-invariant-mass region q2 ∈ [1, 6] GeV2 [1]

R
[1,6]
K = 0.745+0.090

−0.074 ± 0.036 , (5.2)

that implies a deviation from the SM prediction [29–31],

R
[1,6]
K

∣∣∣
SM

= 1.00± 0.01 , (5.3)

at the 2.6σ level and hints for large LFUV. Also recently, the Belle Collaboration
found slight differences between the electron and muon channels in their lepton-
flavor-dependent angular analysis of B → K∗`+`− [17], in particular in the mea-
surement of the clean observables Q4 and Q5 [32]. Very recently, the LHCb Collab-
oration has reported the measurement of the ratio RK∗ [2], analogous to RK but

1The impact of radiative electromagnectic corrections was evaluated in Refs. [30, 31], where it
was found that the associated theory error is at the level of O(1%). It is also important to note
that, when NP LFUV is included, hadronic uncertainties are not suppressed by m2

µ/m
2
b , but only

by (1− RK(∗) |SM+NP).
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Figure 5.1: Global fit to b→ s`` data in the
(
CNP

9µ , C
NP
10µ

)
plane for the corresponding

two-dimensional hypothesis, using all available data (left) and only LFUV ratios
(right). Figures taken from Ref. [34].

with different final-state meson. This measurement has been performed in two q2

bins

R
[0.045,1.1]
K∗ = 0.660+0.110

−0.070 ± 0.024 ,

R
[1.1,6.0]
K∗ = 0.685+0.113

−0.069 ± 0.047 ,
(5.4)

and, when compared with respect to the SM predictions [33],

R
[0.045,1.1]
K∗

∣∣∣
SM

= 0.92± 0.02 ,

R
[1.1,6.0]
K∗

∣∣∣
SM

= 1.00± 0.01 ,

(5.5)

it shows a deviation of 2.2σ for the low-q2 region (i.e. q2 ∈ [0.045, 1.1] GeV2), and
2.4σ in the central-q2 region (i.e q2 ∈ [1.1, 6.0] GeV2). Although the individual
discrepancies are not statistically significant to claim the discovery of LFUV, in
combination they yield an intriguing set of anomalies.

Global fits to b→ s`+`− data, using the WET introduced in Section 4.2.2, show
a good overall agreement and obtain a consistent NP explanation of these departures
from the SM (at the level of −25% of the SM prediction) with significances at the
4−5σ level [34–38], depending on the statistical methods used and the treatment of
hadronic uncertainties. Four symmetry-based solutions (taking into account at most
two non-zero WCs) give a very good fit to data: NP in CNPµ

9 only, CNPµ
9 = −CNPµ

10 ,
CNPµ

9 = −Cµ
9′ and CNPµ

9 = −3CNPe
9 . Interestingly, global fits including only the

LFUV ratios already give a discrepancy with the SM at the 3 − 4 sigma level. It
is encouraging that the independent global fits to b → sµµ data and to the LFUV
ratios prefer similar regions for the NP Wilson coefficients (assuming no NP in the
electron sector); this can be seen in Figure 5.1 where the results of the global fit
from Ref. [34] for a particular NP scenario is presented. A complementary analysis
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in terms of the SMEFT was presented in Ref. [39], where it was shown that the
dimension-six effective operators of the SMEFT,[

C
(1)
`q

]
2223

=
(
¯̀
2γµ`2

)
(q̄2γ

µq3) ,
[
C

(3)
`q

]
2223

=
(
¯̀
2γµτ

a`2

)
(q̄2γ

µτaq3) , (5.6)

generated either at tree-level or at one loop through RGE operator-mixing effects,
play a crucial role in the explanation of the anomalies. This can be seen in Fig-
ure 5.2, where the individual constraints from the different LFUV ratios as well as
the global fits only to LFUV ratios and to all b→ s`` data are shown. An important
implication of the RK∗ measurement is that if offers a complementary direction in
the test for NP with respect to RK . Indeed, as noted in Refs. [40, 41], left- and
right-handed b→ s contributions appear in almost orthogonal combinations for RK

and RK∗ in the central-q2 region; as can also be seen in Figure 5.2. This implies
that the double ratio R̂K∗ = RK∗/RK is mostly sensitive to only right-handed cur-
rents [40]. Given that the measured values of RK and RK∗ in the central-q2 region
are comparable, the recent measurement of RK∗ disfavors the presence of large right-
handed b→ s contributions when considering only the LFUV ratios [41]. Finally, it
is interesting to comment that, given the current experimental error, the measured
q2 dependence of RK∗ is compatible with NP in the form of WCs from the WET.
However, the measured central value of RK∗ in the low-q2 bin is hard to accommo-
date through NP of this type. This is because the branching ratio is dominated in
the low-q2 region by the photon pole, making NP contributions from the WET to
this observable to appear more suppressed. One should note, though, that with the
values of the WCs preferred by the other observables, the tension in the low-q2 bin
gets lowered with respect to that of the SM. Moreover, as already commented, the
hadronic uncertainties could be larger in the presence of NP since the cancellation in
the branching ratio is not as strong as in the SM. It is well possible that the current
experimental value of RK∗ in this bin is partly due to a downward statistical fluc-
tuation. However, the presence of significant discrepancies in future measurements
could imply the existence of a new light mediator with a mass around or below the
low-q2 region, whose effects cannot be encoded in the effective description of the
WET.

A considerable amount of effort has been devoted to provide ultraviolet-complete
models that can explain the anomalies. Models that supplement the SM with lepto-
quarks [42–49] or with an extended gauge sector [50–68] are among the most popular
ones. Explanations of the anomalies with a massive resonance from a strong sec-
tor [69–72] or with Kaluza-Klein excitations [73–75] have also been considered in
the literature. Alternatively, models with extra scalars and fermions that induce
the required interactions at the one-loop level have been studied in Refs. [76, 77].
In Refs. [78, 79] it was found that the MSSM with R-parity cannot explain the
anomalies. In this thesis we will focus on explanations of the anomalies from gauge
extended models. Extensions of the SM gauge group by an additional U(1)′ factor
are among the simplest NP scenarios that could explain these deviations. The cor-
responding Z ′ should couple to quarks and have LFUV couplings to leptons. As we
saw in Section 1.3, the only anomaly-free symmetry one can gauge in the SM is one
of the combinations of family-specific lepton numbers, Lα − Lβ (with α, β = e, µ, τ
and α 6= β). Since the resulting Z ′ boson couples only to leptons, these cannot
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30 TeV, assuming no NP in the electron
modes. The constraints are the same for
the (C

(3)
`q , C`d) plane. The individual con-

straints from RK and RK∗ at the 3σ level
are represented by filled bands. The com-
bined fit to RK and RK∗ is shown in blue
(1,2 and 3 σ contours). The result of a
global fit with all b→ s`+`− data included
in [34] is shown in a similar way as red
dashed contours. Taken from Ref. [39].

accommodate the anomalies and have been discussed mostly in the context of neu-
trino phenomenology, usually considering the Lµ − Lτ symmetry [80]. A way to
circumvent this problem is by introducing additional fermions (vector-like quarks)
that induce the required couplings to quarks through mixing effects once the U(1)′

symmetry gets broken [50, 51, 65]. A similar idea was used in Ref. [53] to explain
the anomalies from a dark sector, while providing a dark matter candidate; see also
Refs. [55,60,61,64,65] for other models that explore the interplay between the flavor
anomalies and dark matter. One can avoid vector-like fermions if the U(1)′ involve
both quarks and leptons and is flavor-nonuniversal. However, such a non-trivial
flavor symmetry in the quark sector requires the extension of the scalar sector in
order to accommodate the quark masses and mixing angles [81], typically by adding
an additional Higgs doublet. For instance, Ref. [52] gave an explanation based on
the gauge symmetry U(1)′ ⊂ U(1)µ−τ × U(1)q, where U(1)q is the symmetry as-
sociated to B1 + B2 − 2B3 with Bi the individual baryon family numbers. As we
will see in Section 7.2 (see also Ref. [62]), the U(1)µ−τ ×U(1)q can appear naturally
from the sequential breaking of the flavor symmetry introduced in Eq. (1.31). Other
horizontal symmetries have been explored in Refs. [64, 66, 67]. In Section 7.1 (see
also Ref. [54]) we will present in detail a model with a gauged horizontal symmetry,
based on the U(1)BGL introduced in Section 2.2.2, characterized by being anomaly-
free with SM fermion content alone and by having all the FCNCs exactly related
to the quark mixing matrix. Larger gauge groups and their possible connections to
other anomalies (see next section) have also been explored in the literature; see for
instance Refs. [57–59]. In Section 7.3 we will present one of such extensions, based
on the works in Refs. [58, 59].

5.2 Anomalies in b→ c`ν transitions

Measurements of b → c`ν transitions for different final-state leptons can also be
used to test lepton-flavor universality to a great precision given the cancellation of
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Figure 5.3: Experimental measurements of R(D) and R(D∗) together with their
average (dashed lines indicate the 2, 3 and 4σ contours) and the SM prediction.
Figure taken from [82].

many sources of theoretical uncertainties occurring in ratios such as

R(D) =
Γ(B → Dτν)

Γ(B → D`ν)
,

R(D∗) =
Γ(B → D∗τν)

Γ(B → D∗`ν)
,

(5.7)

which in the SM model are predicted to take the values R(D) = 0.300±0.008 [83–85]
(see also Ref. [86]) and R(D∗) = 0.252± 0.003 [87]. Interestingly, the measurement
of these observables can also be interpreted as a hint for lepton-flavor nonuniversal-
ity. In 2012 the BaBar Collaboration reported the measured values of these ratios,
R(D) = 0.440 ± 0.072 and R(D∗) = 0.332 ± 0.030 [7], which show an excess with
respect to the SM prediction of 2.0σ and 2.7σ respectively [87, 88]. The Belle Col-
laboration also measured these ratios in 2015 showing a slight enhancement with
respect to the SM, R(D) = 0.375±0.069 and R(D∗) = 0.293±0.041 [10]. The LHCb
Collaboration also reported the measurement R(D∗) = 0.336± 0.040 [9], represent-
ing a deviation from the SM at the ∼ 2σ level. Recently, the Belle Collaboration has
presented a new independent determination of R(D∗) [11] which is 1.6σ above the
SM and is compatible with all the previous measurements: R(D∗) = 0.302± 0.032.
Yet another measurement of R(D∗), also including for the first time the mea-
surement of the τ polarization, was recently reported by the Belle Collaboration:
R(D∗) = 0.270 ± 0.035+0.028

−0.025 [12], which is compatible with the SM prediction.
The latest average of BaBar, Belle and LHCb measurements for these processes is
R(D) = 0.403 ± 0.047 and R(D∗) = 0.310 ± 0.017, implying a combined deviation
from the SM of 3.9σ [82] (see also Ref. [89]). All these results are summarized in
Figure 5.3.
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While the b→ s`+`− transitions are mediated by neutral currents, which in the
SM appear at one-loop, the R(D(∗)) anomalies involve charged current contributions
that are mediated by a tree-level W exchange in the SM. This makes its explanation
within a NP framework typically more involved, since one needs to account for
a large NP contribution while evading other experimental bounds. The R(D(∗))
anomalies have been explained with charged scalars [90–98], leptoquarks (or with
R-parity violating supersymmetry) [99–106], or a W ′ boson [107]. Effects due to the
presence of light sterile neutrinos have also been explored in Refs. [108, 109]. The
impact of direct searches on these explanations using the 8 TeV and 13 TeV LHC
data was studied in Refs. [110,111].

Unified explanations of both sets of anomalies are scarcer. This is due to the
difficulty of accounting for deviations of similar size in processes that take place in
the SM at different orders: loop level for b → s`+`− and tree-level for R(D(∗)). A
simultaneous explanation of the b→ cτν and b→ s`+`− anomalies has been initially
discussed in Ref. [112] within an EFT point of view, building on the idea of Ref. [113]
that nonuniversality in RK could be due to NP coupling predominantly to the third
generation. This EFT approach was followed later in a series of works [43,44,114,115]
and some observations about the relevance of quantum effects have been given in
Ref. [116]. We can also find models based on leptoquarks [43, 46, 47, 117–120], or
strongly-interacting models [121]. In Section 7.3 we will present a UV complete
model aimed for the simultaneous explanation of both set of anomalies from a SU(2)-
extended gauge sector. One should note however that these models typically receive
strong constraints from LHC searches in the τ+τ− channel [110, 111] and/or their
contributions to B → K(∗)ν̄ν. One can elude these bounds if there are more than one
mediators involved in the explanation of the anomalies and a (partial) cancellation
in their contributions to the dangerous observables takes place; see for instance
Refs. [48, 121].



76 Chapter 5. Flavor anomalies in B decays

Bibliography

[1] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 113 (2014) 151601
[arXiv:1406.6482 [hep-ex]].

[2] Simone Bifani on behalf of the LHCb Collaboration, LHCb seminar at CERN,
18 April 2017.

[3] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 111 (2013) 191801
[arXiv:1308.1707 [hep-ex]].

[4] R. Aaij et al. [LHCb Collaboration], JHEP 1602 (2016) 104 [arXiv:1512.04442
[hep-ex]].

[5] R. Aaij et al. [LHCb Collaboration], JHEP 1307 (2013) 084 [arXiv:1305.2168
[hep-ex]].

[6] R. Aaij et al. [LHCb Collaboration], JHEP 1509 (2015) 179 [arXiv:1506.08777
[hep-ex]].

[7] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett. 109 (2012) 101802
[arXiv:1205.5442 [hep-ex]].

[8] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 88 (2013) no.7, 072012
[arXiv:1303.0571 [hep-ex]].

[9] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 115 (2015) no.11, 111803
Erratum: [Phys. Rev. Lett. 115 (2015) no.15, 159901] [arXiv:1506.08614 [hep-
ex]].

[10] M. Huschle et al. [Belle Collaboration], Phys. Rev. D 92 (2015) no.7, 072014
[arXiv:1507.03233 [hep-ex]].

[11] Y. Sato et al. [Belle Collaboration], Phys. Rev. D 94 (2016) no.7, 072007
[arXiv:1607.07923 [hep-ex]].

[12] S. Hirose et al. [Belle Collaboration], arXiv:1612.00529 [hep-ex].

[13] S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, JHEP 1305 (2013) 137
[arXiv:1303.5794 [hep-ph]].

[14] S. Descotes-Genon, J. Matias and J. Virto, Phys. Rev. D 88 (2013) 074002
[arXiv:1307.5683 [hep-ph]].

[15] R. Aaij et al. [LHCb Collaboration], JHEP 1406 (2014) 133 [arXiv:1403.8044
[hep-ex]].

[16] A. Abdesselam et al. [Belle Collaboration], arXiv:1604.04042 [hep-ex].

[17] S. Wehle et al. [Belle Collaboration], Phys. Rev. Lett. 118 (2017) no.11, 111801
[arXiv:1612.05014 [hep-ex]].



5.2 Bibliography 77

[18] The ATLAS collaboration [ATLAS Collaboration], ATLAS-CONF-2017-023.

[19] CMS Collaboration [CMS Collaboration], CMS-PAS-BPH-15-008.

[20] W. Altmannshofer, C. Niehoff, P. Stangl and D. M. Straub, arXiv:1703.09189
[hep-ph].
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[37] L. S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X. L. Ren and R. X. Shi,
arXiv:1704.05446 [hep-ph].

[38] M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini and
M. Valli, arXiv:1704.05447 [hep-ph].

[39] A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, arXiv:1704.05672 [hep-ph].

[40] G. Hiller and M. Schmaltz, JHEP 1502 (2015) 055 [arXiv:1411.4773 [hep-ph]].

[41] G. Hiller and I. Nisandzic, arXiv:1704.05444 [hep-ph].

[42] I. de Medeiros Varzielas and G. Hiller, JHEP 1506 (2015) 072 [arXiv:1503.01084
[hep-ph]].

[43] R. Alonso, B. Grinstein and J. Martin Camalich, JHEP 1510 (2015) 184
[arXiv:1505.05164 [hep-ph]].

[44] L. Calibbi, A. Crivellin and T. Ota, Phys. Rev. Lett. 115 (2015) 181801
[arXiv:1506.02661 [hep-ph]].

[45] H. Päs and E. Schumacher, Phys. Rev. D 92 (2015) no.11, 114025
[arXiv:1510.08757 [hep-ph]].
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CHAPTER

6 One-loop matching of Effective Field
Theories

“You know my methods. Apply them, and it
will be instructive to compare results.”

— Arthur Conan Doyle, The Sign of Four

Although the rationale and procedure for EFT has been well developed long
ago in the literature (see Chapter 4 for a brief review), the integration at next-to-
leading order in the upper theory, that is to say at one loop, is undergoing lately an
intense debate [1–6] that, as we put forward in this chapter, still allows for simpler
alternatives.1 One of the issues recently arisen involves the widely used technique
to perform the functional integration of the heavy fields set up more than thirty
years ago by the works of Aitchison and Fraser [10–13], Chan [14, 15], Gaillard [16]
and Cheyette [17]. As implemented by Refs. [1, 2], this technique did not include
all the one-loop contributions from the integration, in particular those where heavy
and light field quantum fluctuations appear in the same loop. This fact was noticed
in Ref. [3], and fixed later on in Refs. [5, 6], by the use of variants of the functional
approach which require additional ingredients in order to subtract the parts of the
heavy-light loops which are already accounted for by the one-loop EFT contribution.

Here we would like to introduce a more direct method to obtain the one-loop
effective theory that builds upon the works of Refs. [8,9], and that uses the technique
of “expansion by regions” [18–20] to read off the one-loop matching coefficients from
the full theory computation, thus bypassing the need of subtracting any infrared
contribution. In short, the determination of the one-loop EFT in the approach we
propose reduces to the calculation of the hard part of the determinant of ∆̃H , where
∆̃H arises from the diagonalization of the quadratic term in the expansion of the full
theory Lagrangian around the classical field configurations, and the determinant is
just the result of the Gaussian integration over the heavy quantum fluctuations. In
this way, the terms that mix light and heavy spectra inside the loop get disentangled
by means of a field transformation in the path integral that brings the quadratic
fluctuation into diagonal form: The part involving only the light quantum fields
remains untouched by the transformation and all heavy particle effects in the loops
are shifted to the modified heavy quadratic form ∆̃H . This provides a conceptually

1The contents of this chapter are based in the publication in Ref. [7].
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simple and straightforward technique to obtain all the one-loop local EFT couplings
from an underlying theory that can contain arbitrary interactions between the heavy
and the light degrees of freedom. A diagrammatic formulation of this technique has
been recently put forward in Ref. [21].

The contents of this chapter are the following. The general outline of the method
is given in Section 6.1, where we describe the transformation that diagonalizes the
quadratic fluctuation which defines ∆̃H , and then discuss how to extract the contri-
butions from ∆̃H that are relevant for determining the one-loop EFT. In Section 6.2
we compare our procedure with those proposed recently by [1, 5] and [2, 6]. The
virtues of our method are better seen through examples: first we consider a simple
scalar toy model in Section 6.3, where we can easily illustrate the advantages of our
procedure with respect the conventional matching approach; then we turn to an ex-
tension of the SM with a heavy real scalar triplet, that has been used as an example
in recent papers. We conclude with Section 6.4. Additional material concerning the
general formulae for dimension-six operators, and the expression of the fluctuation
operator in the SM case is provided in the appendices.

6.1 The method

In Section 4.1 we outlined the functional method to determine the EFT Lagrangian
describing the dynamics of the full-theory at energies much smaller than mH , the
typical mass of a heavy particle, or set of particles. In this section we present the
extension of this functional method to the one-loop level. The application of the
method to specific examples is postponed to Section 6.3.

Let us consider a general theory whose field content can be split into heavy, ηH ,
and light, ηL, degrees of freedom, that we collect generically in η = (ηH , ηL). For
charged degrees of freedom, the field and its complex conjugate enter as separate
components in ηH and ηL. As described in Section 4.1, the one-loop effective ac-
tion is obtained, after applying the BFM, from the quadratic term in the quantum
fluctuations in the expansion of Eq. (4.4) (see also Eq. (4.9)). The latter is given in
terms of the Lagrangian of the full-theory by

L(η2) =
1

2
η†

δ2L
δη∗ δη

∣∣∣∣
η=η̂

η ≡ 1

2
η†O η . (6.1)

From this expression we identify the fluctuation operator O, with generic form

O =

(
∆H X†LH
XLH ∆L

)
, (6.2)

and which depends only on the classical fields η̂.
The one-loop effective action is simply obtained by Gaussian integration of the

path integral in Eq. (4.9). Our aim is to compute the one-loop heavy particle
effects in the Green functions of the light fields as an expansion in the heavy mass
scale mH . In terms of Feynman diagrams, the latter corresponds to computing
all one-loop diagrams involving heavy lines and expanding them in 1/mH . This
can be formally achieved by doing the functional integration over the fields ηH .
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However, the presence of mixing terms among heavy and light quantum fields in
L(η2) (equivalently, of one-loop diagrams with both heavy and light lines inside the
loop), makes it necessary to first rewrite the fluctuation operator in Eq. (6.2) in an
equivalent block-diagonal form. A way of achieving this is by performing shifts (with
unit Jacobian determinant) in the quantum fields, which can be done in different
ways. We choose a field transformation that shifts the information about the mixing
terms XLH in the fluctuation operator into a redefinition of the heavy-particle block
∆H , while leaving ∆L untouched. This has the advantage that all heavy particle
effects in the one-loop effective action are thus obtained through the computation
of the determinant that results from the path integral over the heavy fields. This
shifting procedure was actually used in Refs. [8,9] for integrating out the Higgs field
in the SU(2) gauge theory and in the SM. An alternative shift, which is implicitly
used in Ref. [5], will be discussed in Section 6.2.

The explicit form of the field transformation that brings O into the desired
block-diagonal form reads

P =

(
I 0

−∆−1
L XLH I

)
, (6.3)

and one immediately obtains

P †OP =

(
∆̃H 0
0 ∆L

)
, (6.4)

with

∆̃H = ∆H −X†LH∆−1
L XLH . (6.5)

The functional integration over the heavy fields ηH can now be carried out easily,

eiS
1loop

=
(

det ∆̃H

)−c
N
∫
DηL exp

[
i

∫
dx

1

2
η†L∆LηL

]
, (6.6)

with c = 1/2,−1 depending on the bosonic or fermionic nature of the heavy fields.
For simplicity, we assume that all degrees of freedom in the heavy sector are either
bosons or fermions. In the case of mixed statistics, one needs to further diagonalize
∆̃H to decouple the bosonic and fermionic blocks. The remaining Gaussian integra-
tion in Eq. (6.6) reproduces the one-loop contributions with light particles running
inside the loop, and heavy fields can appear only as tree-level lines through the
dependence of ∆L in η̂H . We thus define the part of the one-loop effective action
coming from loops involving heavy fields as

SH = i c ln det ∆̃H . (6.7)

In order to compute the determinant of ∆̃H we use standard techniques developed
in the literature [14,22]. First it is rewritten as

SH = i cTr ln ∆̃H , (6.8)
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where Tr denotes the full trace of the operator, also in coordinate space. It is conve-
nient for our purposes to rewrite the functional trace using momentum eigenstates
defined in d dimensions as

SH = i c tr

∫
ddp

(2π)d
〈 p| ln ∆̃H |p〉

= i c tr

∫
ddx

∫
ddp

(2π)d
e−ipx ln

(
∆̃H (x, ∂x)

)
eipx

= i c tr

∫
ddx

∫
ddp

(2π)d
ln
(

∆̃H (x, ∂x + ip)
)

1 .

(6.9)

The derivatives in ∆̃H yields factors of ip upon acting on the exponentials2. The
symbol tr denotes the trace over internal degrees of freedom only. Since ∆̃H contains
the kinetic term of the heavy fields, in the case of scalar fields it has the generic
form

∆̃H = −D̂2 −m2
H − U , (6.10)

with D̂µ denoting the covariant derivative for the heavy fields with background gauge
fields. Performing the shift ∂x → ∂x + ip we find

SH =
i

2
tr

∫
ddx

∫
ddp

(2π)d
ln
(
p2 −m2

H − 2ipD̂ − D̂2 − U (x, ∂x + ip)
)

1 . (6.11)

For fermions, the same formula, Eq. (6.11), applies but with an overall minus sign
and with U replaced by

Uferm. = − i
2
σµν

[
D̂µ, D̂ν

]
− i
[
/̂D,Σe

]
+ i
{
/̂D,Σo

}
+ 2mHΣe + Σ (Σe − Σo) .

(6.12)

Here Σ ≡ Σe + Σo is defined by ∆̃H = i /̂D −mH − Σ, and Σe (Σo) contains an even
(odd) number of gamma matrices. Finally, we can Taylor expand the logarithm to
get

SH = ∓ i
2

∫
ddx

∞∑
n=1

1

n

∫
ddp

(2π)d
tr

{(
2ipD̂ + D̂2 + U (x, ∂x + ip)

p2 −m2
H

)n

1

}
, (6.13)

where we have dropped an irrelevant constant term, and the negative (positive)
global sign corresponds to the integration of boson (fermion) heavy fields.

The effective action Eq. (6.13) generates all one-loop amplitudes with at least one
heavy particle propagator in the loop. One-loop diagrams with n heavy propagators
are reproduced from the n-th term in the expansion of Eq. (6.13). In addition

2Note that ∆̃H can also depend in ∂ᵀx . Transpose derivatives are defined from the adjoint
operator, which acts on the function at the left, and can be replaced by −∂x, the difference being
a total derivative term. The identity 1 in Eq. (6.9) serves as a reminder that derivatives at the
rightmost disappear after acting on the exponential.
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the diagram can contain light propagators, that arise upon expanding the term
X†LH∆−1

L XLH in ∆̃H using

∆−1
L =

∞∑
n=0

(−1)n
(

∆̃−1
L XL

)n
∆̃−1
L , (6.14)

which corresponds to the Neumann series expansion of ∆−1
L , and we have made the

separation ∆L = ∆̃L + XL, with ∆̃L corresponding to the the fluctuations coming
from the kinetic terms, i.e. ∆̃−1

L is the light field propagator. From the definition

of the fluctuation operator O, Eq. (6.2), the terms in ∆̃L are part of the diagonal
components of O. At the practical level, for the calculation of ∆−1

L using Eq. (6.14)

it is simpler to define ∆̃L directly as the whole diagonal of O.
Loops with heavy particles receive contributions from the region of hard loop

momenta p ∼ mH , and from the soft momentum region, where the latter is set by
the low-energy scales in the theory, either p ∼ mL or any of the light-particle ex-
ternal momenta, pi � mH . In dimensional regularization the two contributions can
be computed separately by using the so-called “expansion by regions” [18–20]. In
this method the contribution of each region is obtained by expanding the integrand
into a Taylor series with respect to the parameters that are small there, and then
integrating every region over the full d-dimensional space of the loop momenta. In
the hard region, all the low-energy scales are expanded out and only mH remains
in the propagators. The resulting integrand yields local contributions in the form
of a polynomial in the low-energy momenta and masses, with factors of 1/mH to
adjust the dimensions. This part is therefore fully determined by the short-distance
behaviour of the full theory and has to be included into the EFT Lagrangian in order
to match the amplitudes in the full and effective theories. Indeed, the coefficients of
the polynomial terms from the hard contribution of a given (renormalized) ampli-
tude provide the one-loop matching coefficients of corresponding local terms in the
effective theory. This can be understood easily since the soft part of the amplitude
results upon expanding the vertices and propagators according to p ∼ mL � mH ,
with p the loop momentum. This expansion, together with the one-loop terms with
light particles that arise from the Gaussian integral of ∆L in Eq. (6.6), yields the
same one-loop amplitude as one would obtain using the Feynman rules of the ef-
fective Lagrangian for the light fields obtained by tree-level matching, equivalently
the Feynman rules from Ltree in Eq. (4.4) where the background heavy field η̂H has
been eliminated in favour of η̂L using the classical EOM. Therefore, in the difference
of the full-theory and EFT renormalized amplitudes at one-loop only the hard part
of the full-theory amplitude remains, and one can read off the one-loop matching
coefficients directly from the computation of the latter. Let us finally note that in
the conventional matching approach, the same infrared regularization has to be used
in the full and EFT calculations, in order to guarantee that the infrared behaviour
of both theories is identical. This is of course fulfilled in the approach suggested
here, since the one-loop EFT amplitude is defined implicitly by the full theory re-
sult. Likewise, the ultraviolet (UV) divergences of the EFT are determined by UV
divergences in the soft part, that are regulated in d dimensions in our approach. For
the renormalization of the amplitudes, we shall use the MS scheme.
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Translated into the functional approach, the preceding discussion implies that
the EFT Lagrangian at one-loop is then determined as∫

ddxL1loop
EFT = Shard

H , (6.15)

where Shard
H , containing only the hard part of the loops, can be obtained from the

representation (6.13) by expanding the integrand in the hard loop-momentum limit,
p ∼ mH � mL, ∂x. In order to identify the relevant terms in this expansion, it is
useful to introduce the counting

pµ, mH ∼ ζ , (6.16)

and determine the order ζ−k, k > 0, of each term in the integrand of Eq. (6.13).
For a given order in ζ only a finite number of terms in the expansion contributes
because U is at most O(ζ) and the denominator is O(ζ2).3 For instance, to obtain
the dimension-six effective operators, i.e. those suppressed by 1/m2

H , it is enough
to truncate the expansion up to terms of O (ζ−2), which means computing U up to
O (ζ−4) (recall that d4p ∼ ζ4). Though it was phrased differently, this prescription
is effectively equivalent to the one used in Refs. [8, 9] to obtain the non-decoupling
effects (i.e. the O(m0

H) terms) introduced by a SM-like heavy Higgs.
Finally we recall that, although the covariance of the expansion in Eq. (6.13)

is not manifest, the symmetry of the functional trace guarantees that the final
result can be rearranged such that all the covariant derivatives appear in commu-
tators [15, 23]. As a result, one can always rearrange the expansion of Eq. (6.13) in
a manifestly covariant way in terms of traces containing powers of U , field-strength
tensors and covariant derivatives acting on them. As noted in Refs. [16, 22, 23],
this rearrangement can be easily performed when U does not depend on deriva-
tives, as it is the case when only heavy particles enter in the loop4. However,
for the case where U = U (x, ∂x + ip), as it happens in general in theories with
heavy-light loops, the situation is more involved and the techniques developed in
Refs. [16,22,23] cannot be directly applied. In this more general case it is convenient
to separate U into momentum-dependent and momentum-independent pieces, i.e.
U = UH(x) + ULH (x, ∂x + ip) which, at the diagrammatic level, corresponds to a
separation into pure heavy loops and heavy-light loops. This separation presents two
major advantages: first, the power counting for UH and ULH is generically different,
with UH at most O (ζ) and ULH at most O (ζ0), both for bosons and fermions, which
allows for a different truncation of the series in Eq. (6.13) for the terms involving
only pure heavy contributions and those involving at least one power of ULH . Sec-
ond, universal expansions of Eq. (6.13) in a manifestly covariant form for U = UH(x)

3The part of the operator U coming from ∆H arises from interaction terms with at least three
fields. If all three fields are bosons, the dimension-4 operator may contain a dimensionful parameter
∼ ζ or a derivative, giving rise to a term in U ofO(ζ). If two of the fields are fermions the operator is
already of dimension 4 and then Σ ∼ ζ0, which yields a contribution in U of O(ζ) upon application

of Eq. (6.12). Contributions from X†LH∆−1
L XLH , in the following referred as heavy-light, appear

from the product of two interaction terms and a light-field propagator and hence they generate
terms in U of O(ζ0).

4With the exception of theories with massive vector fields and derivative couplings among two
heavy and one light fields.
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have been derived in the literature up to O (ζ−2), i.e. for the case of dimension-six
operators [1, 22, 24, 25], that we reproduce in Eq. (6.A.2). The evaluation of the
remaining piece, corresponding to terms containing at least one power of ULH can
be done explicitly from Eq. (6.15).

Let us end the section by summarizing the steps required to obtain the one-loop
matching coefficients in our method:

1. We collect all field degrees of freedom in L, light and heavy, in a field multiplet
η = (ηH , ηL), where ηi and (ηi)

∗ must be written as separate components for
charged fields. We split the fields into classical and quantum part, i.e η → η̂+η,
and identify the fluctuation operator O from the second order variation of L
with respect to η∗ and η evaluated at the classical field configuration, see
Eqs. (6.1) and (6.2),

Oij =
∂2L

∂η∗i ∂ηj

∣∣∣∣
η=η̂

. (6.17)

2. We then consider U(x, ∂x), given in Eqs. (6.10) and (6.12), with ∆̃H defined
in Eq. (6.5) in terms of the components of O. Derivatives in U must be
shifted as ∂x → ∂x + ip. The computation of U requires the inversion of ∆L:
A general expression for the latter is provided in Eq. (6.14). The operator
U(x, ∂x + ip) has to be expanded up to a given order in ζ, with the counting
given by p,mH ∼ ζ � mL, ∂x. For deriving the dimension-six EFT operators,
the expansion of U must be taken up to O (ζ−4).

3. The final step consists on the evaluation of the traces of U(x, ∂x + ip) in
Eq. (6.13) up to the desired order –O (ζ−2) for the computation of the one-loop
dimension-six effective Lagrangian –. For this computation it is convenient to
make the separation U(x, ∂x + ip) = UH(x) + ULH (x, ∂x + ip) and apply the
standard formulas for the traces of UH(x), see Eq. (6.A.2). The remaining
contributions consist in terms involving at least one power of ULH (x, ∂x + ip):
A general formula for the case of dimension-six operators can be found in
Eq. (6.A.3). Their computation only requires trivial integrals of the form:∫

ddp

(2π)d
pµ1 . . . pµ2k

(p2)α (p2 −m2
H)

β
=

(−1)α+β+k i

(4π)
d
2

Γ
(
d
2

+ k − α
)

Γ
(
−d

2
− k + α + β

)
Γ(β) Γ

(
d
2

+ k
)

× gµ1...µ2k

2k
md+2k−2α−2β
H , (6.18)

where gµ1...µ2k
is the totally symmetric tensor with 2k indices constructed from

gµν tensors.

Terms containing open covariant derivatives, i.e. derivatives acting only at
the rightmost of the traces, should be kept throughout the computation and
will either vanish or combine in commutators, yielding gauge-invariant terms
with field strength tensors. A discussion about such terms can be found in
Appendix 6.A.
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6.2 Comparison with previous approaches

In Ref. [5], a procedure to obtain the one-loop matching coefficients also using
functional integration has been proposed. We wish to highlight here the differences
of that method, in the following referred as HLM, with respect to the one presented
in this manuscript.

The first difference is how Ref. [5] disentangles contributions from heavy-light
loops from the rest. In the HLM method the determinant of the fluctuation oper-
ator O which defines the complete one-loop action S is split using an identity (see
their Appendix B) that is formally equivalent in our language to performing a field
transformation of the form

PHLM =

(
I −∆−1

H X†LH
0 I

)
, (6.19)

that block-diagonalizes the fluctuation operator as:

P †HLMOPHLM =

(
∆H 0

0 ∆̃L

)
, (6.20)

where now

∆̃L = ∆L −XLH∆−1
H X†LH . (6.21)

The functional determinant is then separated in the HLM framework into two terms:
The determinant of ∆H , that corresponds to the loops with only heavy particles,
and the determinant of ∆̃L, containing both the loops with only light propagators
and those with mixed heavy and light propagators. The former contributes directly
to UH , and provides part of the one-loop matching conditions (namely those denoted
as “heavy” in Ref. [5]), upon using the universal formula valid for U not depending
in derivatives, Eq. (6.A.2), up to a given order in the expansion in 1/mH . On the

other hand, to obtain the matching conditions that arise from ∆̃L (called “mixed”
contributions in the HLM terminology), one has to subtract those contributions
already contained in the one-loop terms from the EFT theory matched at tree-level.
To perform that subtraction without computing both the determinant of ∆̃L and
that of the quadratic fluctuation of Ltree

EFT, HLM argues that one has to subtract

to the heavy propagators that appear in the computation of det ∆̃L the expansion
of the heavy propagator to a given order in the limit mH → ∞. According to
HLM, the subtracted piece builds up the terms (“local counterparts”) that match
the loops from Ltree

EFT. These “local counterparts” have to be identified for each
order in the EFT, and then dropped prior to the evaluation of the functional traces.
This prescription resembles the one used in Ref. [25] to obtain the one-loop effective
Lagrangian from integrating out a heavy scalar singlet added to the SM.

While we do not doubt the validity of the HLM method, which the authors of
Ref. [5] have shown through specific examples, we believe the framework presented
in this manuscript brings some important simplifications. Let us note first that in
the method of Ref. [5], contributions from heavy-light loops are incorporated into

det ∆̃L, which results from the functional integration over the light fields. If the light
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sector contains both bosonic and fermonic degrees of freedom that interact with the
heavy sector (as it is the case in most extensions of the SM), a further diagonal-

ization of ∆̃L into bosonic and fermionic blocks is required in order to perform the
Gaussian integral over the light fields. That step is avoided in our approach, where
we shift all heavy particle effects into ∆̃H and we only need to perform the path
integral over the heavy fields. Secondly, our method provides a closed formula (up to
trivial integrations which depend on the structure of ULH) valid for any given model,
from which the matching conditions of all EFT operators of a given dimension are
obtained. In this sense it is more systematic than the subtraction prescription of the
HLM method, which requires some prior identification of the subtraction terms for
the heavy particle propagators in the model of interest. Furthermore, in the HLM
procedure the light particle mass in the light field propagators is not expanded out
in the computation of the functional traces, and intermediate results are therefore
more involved. In particular, non-analytic terms in the light masses can appear
in intermediate steps of the calculation, and cancellations of such terms between
different contributions have to occur to get the infrared-finite matching coefficients
at one loop. Given the amount of algebra involved in the computation of the func-
tional traces, automation is a prerequisite for integrating out heavy particles in any
realistic model. In our method, such automation is straightforward (and indeed has
been used for the heavy real scalar triplet example given in Section 6.3). From the
description of Ref. [5], it seems to us that is harder to implement the HLM method
into an automated code that does not require some manual intervention.

An alternative framework to obtain the one-loop effective Lagrangian through
functional integration, that shares many similarities with that of HLM, has been
suggested in Ref. [6]. The authors of Ref. [6] have also introduced a subtraction pro-
cedure that involves the truncation of the heavy particle propagator. Their result
for the dimension-6 effective Lagrangian in the case that the heavy-light quadratic
fluctuation is derivative-independent has been written in terms of traces of mani-
festly gauge-invariant operators depending on the quadratic fluctuation U(x), times
coefficients where the EFT contributions have been subtracted. Examples on the
calculation of such subtracted coefficients, which depend on the ultraviolet model,
are provided in this reference. The approach is however limited, as stated by the
authors, by the fact that it cannot be applied to cases where the heavy-light in-
teractions contain derivative terms. That is the case, for instance, in extensions of
the SM where the heavy fields have interactions with the SM gauge bosons (see the
example we provide in Section 6.3.2). Let us also note that the general formula
provided in the framework of Ref. [6] is written in terms of the components of the
original fluctuation operator where no diagonalization to separate heavy- and light-
field blocks has been performed. This implies that its application to models with
mixed statistics in the part of the light sector that interacts with the heavy one,
and even to models where the heavy and light degrees of freedom have different
statistics, must require additional steps that are not discussed in Ref. [6].
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6.3 Examples

In this section we perform two practical applications of the framework that we have
developed above. The first one is a scalar toy model simple enough to allow a
comparison of our method with the standard matching procedure. Through this
example we can also illustrate explicitly that matching coefficients arise from the
hard region of the one-loop amplitudes in the full theory. The second example
corresponds to a more realistic case where one integrates out a heavy real scalar
triplet that has been added to the SM.

6.3.1 Scalar toy model

Let us consider a model with two real scalar fields, ϕ with mass m and φ with mass
M , whose interactions are described by the Lagrangian

L(ϕ, φ) =
1

2

(
∂µφ ∂

µφ−M2 φ2
)

+
1

2

(
∂µϕ∂

µϕ−m2 ϕ2
)
− κ

4!
ϕ4 − λ

3!
ϕ3 φ . (6.22)

Assuming M � m we wish to determine the effective field theory resulting from
integrating out the φ field: LEFT(ϕ̂). We perform the calculation up to and including
1/M2-suppressed operators in the EFT. Within this model this implies that we
have to consider up to six-point Green functions. This same model has also been
considered in Ref. [5].

At tree level we solve for the equation of motion of the φ field and we obtain

φ̂ = − λ

6M2
ϕ̂3 +O(M−4) , (6.23)

that, upon substituting in Eq. (6.22), gives the tree-level effective Lagrangian

Ltree
EFT =

1

2

(
∂µϕ̂ ∂

µϕ̂−m2 ϕ̂2
)
− κ

4!
ϕ̂4 +

λ2

72M2
ϕ̂6 . (6.24)

To proceed at one loop we use the background field method as explained in Sec-
tion 6.1: φ→ φ̂+ φ and ϕ→ ϕ̂+ϕ. We have η = (φ, ϕ)ᵀ and we consider the same
counting as in Eq. (6.16): pµ,M ∼ ζ. The fluctuation operator in Eq. (6.2) is given
by

∆H = −∂2 −M2 ,

∆L = −∂2 −m2 − κ

2
ϕ̂2 − λ ϕ̂ φ̂ ,

XLH = −λ
2
ϕ̂2 ,

(6.25)

that only depends on the classical field configurations. In order to construct ∆̃H(x, ∂x+
ip) in Eq. (6.5) we need to determine ∆−1

L (x, ∂x + ip) up to, and including, terms of
order ζ−4:

∆L(x, ∂x + ip) = p2 −m2 − 2i pµ ∂
µ − ∂2 − κ

2
ϕ̂2 − λ ϕ̂ φ̂ ,

∆−1
L (x, ∂x + ip) =

1

p2

(
1 +

m2

p2

)
+

1

p4

(
2i pµ∂

µ + ∂2 +
κ

2
ϕ̂2
)
− 4

pµpν
p6

∂µ∂ν +O(ζ−5) .

(6.26)
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Using this result we get U(x, ∂x + ip) from Eq. (6.10)

U(x, ∂x + ip) =
λ2

4
ϕ̂2

[
1

p2

(
1 +

m2

p2

)
+

1

p4

(
2i pµ∂

µ + ∂2 +
κ

2
ϕ̂2
)
− 4

pµpν
p6

∂µ∂ν
]
ϕ̂2

+O(ζ−5) . (6.27)

Inserting this operator in Eq. (6.13), we notice that at the order we are considering
only the n = 1 term contributes, with

L1loop
EFT = − i

2

∫
ddp

(2π)d
U(x, ∂x + ip)

p2 −M2
. (6.28)

The momentum integration can be readily performed: In the MS regularization
scheme with µ = M we finally obtain

L1loop
EFT =

λ2

16(16π2)

[
2

(
1 +

m2

M2

)
ϕ̂4 − 1

M2
ϕ̂2∂2ϕ̂2 +

κ

M2
ϕ̂6

]
. (6.29)

Let us recover now this result through the usual matching procedure between
the full theory L(ϕ, φ) in Eq. (6.22) and the effective theory without the heavy
scalar field φ. Our goal is to further clarify the discussion given in Section 6.1 on
the hard origin of the matching coefficients of the effective theory by considering
this purely academic case. In order to make contact with the result obtained in
Eq. (6.29) using the functional approach, we perform the matching off-shell and we
use the MS regularization scheme with µ = M . We do not consider in the matching
procedure one-loop diagrams with only light fields, since they are present in both
the full-theory and the effective theory amplitudes and, accordingly, cancel out in
the matching.

For the model under discussion there is no contribution to the two- and three-
point Green functions involving heavy particles in the loop. The diagrams contribut-
ing to the matching of the four-point Green function are given by

=
i

16π2
λ2

[
3 + 3

m2

M2
+
s+ t+ u

2M2

] ∣∣∣∣∣
hard

+
i

16π2
λ2

[
−3

m2

M2
+ 3

m2

M2
ln

(
m2

M2

)] ∣∣∣∣∣
soft

+O(M−4),

=
i

16π2
λ2

[
−2

m2

M2
+ 2

m2

M2
ln

(
m2

M2

)] ∣∣∣∣∣
soft

+O(M−4),

(6.30)

where we have explicitly separated the contributions from the hard and soft loop-
momentum regions. Note that a non-analytic term in m can only arise from the
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soft region, since in the hard region the light mass and the external momenta are
expanded out from the propagators. For the corresponding EFT computation we
need the effective Lagrangian matched at one-loop:

LEFT = Ltree
EFT +

α

4!
ϕ̂4 +

β

4!M2
ϕ̂2∂2ϕ̂2 +

γ

6!M2
ϕ̂6 , (6.31)

which now includes the dimension-6 operator with four light fields, and the one-loop
matching coefficient for the 4- and 6-light field operators already present in Ltree

EFT.
The EFT contributions to the four-point Green function read

=
i

16π2
λ2

[
−5

m2

M2
+ 5

m2

M2
ln

(
m2

M2

)]
+O(M−4) ,

= i α − i
β

3M2
(s+ t+ u) .

(6.32)

We see that the soft components of the full-theory amplitude match the one-loop
diagram in the effective theory, and the matching coefficients of the ϕ4 operators
get thus determined by the hard part of the one-loop full-theory amplitude:

α =
3

16π2
λ2

(
1 +

m2

M2

)
, β = − 3

16π2

λ2

2
. (6.33)

in agreement with the result for the ϕ4 terms in Eq. (6.29).
The next contribution to the one-loop effective theory comes from the six-point

Green function. The full theory provides two diagrams for the matching:

=
i

16π2
45
κλ2

M2

∣∣∣∣∣
hard

+
i

16π2
45
κλ2

M2
ln

(
m2

M2

) ∣∣∣∣∣
soft

+O(M−4),

=
i

16π2
30
κλ2

M2
ln

(
m2

M2

) ∣∣∣∣∣
soft

+O(M−4),

(6.34)

where once more we have explicitly separated the hard and soft contributions from
each diagram. The six-point effective theory amplitude gives

=
i

16π2
75
κλ2

M2
ln

(
m2

M2

)
+O(M−4) ,

= i
γ

M2
.

(6.35)



6.3 Examples 97

Again, we note that the soft terms of the full theory are reproduced by the one-loop
diagram in the effective theory. The local contribution is determined by the hard
part of the full theory amplitude and thus reads

γ =
45

16π2
κλ2 , (6.36)

that matches the result found in Eq. (6.29) for the ϕ̂6 term.

6.3.2 Heavy real scalar triplet extension

As a second example, we consider an extension of the SM with an extra scalar sector
comprised by a triplet of heavy scalars with zero hypercharge, Φa, a = 1, 2, 3, which
interacts with the light Higgs doublet [26]. A triplet of scalars are ubiquitous in
many extensions of the SM since the seminal article by Gelmini and Roncadelli [27].
However, we are not interested here in the phenomenology of the model but in how
to implement our procedure in order to integrate out, at one loop, the extra scalar
sector of the theory, assumed it is much heavier than the rest of the spectrum.
Partial results for the dimension-6 operators involving the light Higgs doublet that
are generated from this model have been provided in the functional approaches of
Refs. [5, 6].

The Lagrangian of the model is given by

L = LSM +
1

2
DµΦaDµΦa − 1

2
M2ΦaΦa − λΦ

4
(ΦaΦa)2 + κ

(
φ†τaφ

)
Φa − η

(
φ†φ
)

ΦaΦa,

(6.37)

Here φ is the SM Higgs doublet and the covariant derivative acting on the triplet
is defined as DµΦa ≡ Dac

µ Φc =
(
∂µ δ

ac + gεabcW b
µ

)
Φc. Within the background field

method we split the fields into their classical (with hat) and quantum components:
Φa → Φ̂a + Φa, φ→ φ̂ + φ and W a

µ → Ŵ a
µ + W a

µ . Given as an expansion in inverse
powers of its mass, the classical field of the scalar triplet reads

Φ̂a =
κ

M2

(
φ̂†τaφ̂

)
− κ

M4

[
D̂2 + 2η

(
φ̂†φ̂
)](

φ̂†τaφ̂
)

+O
( κ

M6

)
. (6.38)

Following the procedure described in the Section 6.1 we divide the fields into heavy
and light, respectively, as ηH = Φa and ηL = {φ, φ∗,W a

µ}. The fluctuation matrix is
readily obtained from Eqs. (6.1) and (6.2),

∆H = ∆ab
ΦΦ ,

X†LH =
((
Xa
φ∗Φ

)† (
Xa
φ∗Φ

)ᵀ (
Xν da
WΦ

)ᵀ)
,

∆L =


∆φ∗φ X†φφ

(
Xν d
Wφ

)†
Xφφ ∆ᵀ

φ∗φ

(
Xν d
Wφ

)ᵀ
Xµ c
Wφ

(
Xµ c
Wφ

)∗
∆µν cd
W

 ,

(6.39)
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with

∆µν ab
W =

(
∆µν ab
W

)
SM

+ g2 gµν ε
acmεbdm Φ̂cΦ̂d,

∆φ∗φ = (∆φ∗φ)SM + κ τaΦ̂a − η Φ̂aΦ̂a,

∆ab
ΦΦ = − D̂2

ab + δab

[
−M2 − λΦΦ̂cΦ̂c − 2η

(
φ̂†φ̂
)]
− 2λΦΦ̂aΦ̂b ,

Xµab
WΦ = gεabc

(
D̂µΦ̂c

)
+ gεacd Φ̂cD̂µdb,

Xa
φ∗Φ =κ τa φ̂− 2η φ̂ Φ̂a,

(6.40)

and the rest of fluctuations in ∆L involving only the light fields are contained in the
quadratic piece of the SM Lagrangian, which we provide in Eqs. (6.B.2) and (6.B.4).
The quadratic term containing all fluctuations related to the heavy triplet is given
by our formula (6.5),

∆̃ΦΦ = ∆ΦΦ −X†LH∆−1
L XLH . (6.41)

The expansion in inverse powers of the heavy mass of the triplet requires a counting
analogous to the one in Eq. (6.16), i.e. pµ ∼ ζ and M ∼ ζ. For the counting of
the dimensionful parameter κ we choose κ ∼ ζ and then, from Eq. (6.38) we have
Φ̂a ∼ ζ−1. As we are interested in dimension-six effective operators we can neglect
contributions O (ζ−5) and smaller. This is because in Eq. (6.13) the propagator in
the heavy particle provides an extra power ζ−2. Hence we only need the numerator
up to O(ζ−4).

For practical reasons we choose to work in the Landau gauge for the quantum
fluctuations, i.e. the renormalizable gauge with ξW = 0 in Eqs. (6.B.5) and (6.B.8).
The computation is much simpler in this gauge because the inverse of the propaga-
tors are transverse. Rearranging the expression in Eq. (6.41), we can write

∆̃ab
ΦΦ = ∆ab

ΦΦ −
[(
Xa
φ∗Φ

)†
∆
−1

φ∗φX
b
φ∗Φ +

(
Xa
φ∗Φ

)ᵀ
XφφX

b
φ∗Φ + c.c.

]
−
(
X
µ ca

WΦ

)ᵀ (
∆µν cd
W

)−1

X
ν db

WΦ + O
(
ζ−5
)
,

(6.42)

where c.c. is short for complex conjugation and we have used the following defini-
tions:

∆
−1

φ∗φ = ∆−1
φ∗φ + ∆−1

φ∗φX
†
φφ

(
∆−1
φ∗φ

)ᵀ
Xφφ∆−1

φ∗φ ,

Xφφ = −
(
∆−1
φ∗φ

)ᵀ
Xφφ ∆−1

φ∗φ ,

X
µab

WΦ = Xµab
WΦ −

(
Xµa
Wφ∆−1

φ∗φX
b
φ∗Φ + c.c.

)
.

(6.43)

To proceed we now come back to Eq. (6.13) (with negative sign), with mH = M

and U = −D̂2 −M2 − ∆̃ΦΦ. Remember that the hat on the covariant derivatives
indicates that only the classical field configuration for the gauge bosons is involved.
Then by computing Eq. (6.42) up to O(ζ−4) one can obtain the one-loop effective
theory that derives from the model specified in Eq. (6.37) upon integrating out the
triplet of heavy scalars.
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We do not intend here to provide the complete result of the generated dimension-
six operators. As a simple example and for illustrative purposes, we provide details
on the computation of the heavy-light contributions arising from the quantum fluc-
tuations of the electroweak gauge bosons. The latter provide the matching con-
tributions to the dimension-six operators with Higgs fields and no field strength
tensors proportional to g2, which were not obtained with the functional approach
in Ref. [6] due to the presence of “open” covariant derivatives. The computation of
such contributions was also absent in the approach of Ref. [5]. The relevant term in
U(x, ∂x + ip) for this calculation is[(

X
µ ca

WΦ

)ᵀ (
∆µν cd
W

)−1

X
ν db

WΦ

]
(x, ∂x + ip) . (6.44)

The first operator in Eq. (6.44) simply reads

X
µab

WΦ (x, ∂x + ip) = −ig εabc Φ̂cpµ +
κ

p2
ig εabc

(
φ̂†τ cφ̂

)
pµ

+ gεabc
(
D̂µΦ̂c

)
+ gεacd Φ̂cD̂µdb − 1

p2
gκ

{
− i

2

[(
D̂µφ̂

)†
τaτ b φ̂

]
+
i

2

(
φ̂†τaτ bD̂µφ̂

)
+
i

2

(
φ̂†τaτ dφ̂

)
D̂db
µ + c.c.

}
+O

(
ζ−2
)

= g εabc
(
D̂µΦ̂c

)
− gκ

p2
i δab

(
φ̂†
↔

D̂µφ̂
)

− g p
2 −M2

p2
εacd Φ̂d

(
D̂cb
µ + ipµ δ

cb
)

+O
(
ζ−2
)
, (6.45)

where, in the last line, we used the EOM for the heavy triplet, Eq. (6.38), and we
defined the hermitian derivative terms(

φ†
↔

Dµφ
)
≡
(
φ†Dµφ

)
−
[
(Dµφ)† φ

]
, (6.46)

with the covariant derivative acting on the Higgs field as specified in Eq. (1.9). The
contributions from the heavy triplet to the fluctuation ∆W , see Eq. (6.40), do not
affect the computation of ∆−1

W (x, ∂x + ip) at leading order, and we can take the
expression given in Eq. (6.B.8) (with ξW = 0) for the latter. As a result we obtain[(

X
µ ca
WΦ

)ᵀ (
∆µν cd
W

)−1
X
ν db
WΦ

]
(x, ∂x + ip) = g2

[
−g

µν

p2
+
pµpν

p4

] [
δab

(
D̂µΦ̂c

)(
D̂νΦ̂

c
)

− δab
κ2

p4

(
φ̂†
↔

D̂µφ̂

)(
φ̂†
↔

D̂νφ̂

)
−
(
D̂µΦ̂a

)(
D̂νΦ̂

b
)]

+O
(
ζ−5
)
,

(6.47)

and we dropped the terms proportional to (p2 −M2) since they yield a null contri-
bution in the momentum integration, as explained below.

Only the first term of the series in Eq. (6.13) contributes in this case:

L1loop
EFT

∣∣
W

= − i
2

∫
ddp

(2π)d

[(
X
µ ca

WΦ

)ᵀ (
∆µν cd
W

)−1

X
ν da

WΦ

]
(x, ∂x + ip)

p2 −M2
. (6.48)



100 Chapter 6. One-loop matching of Effective Field Theories

From Eq. (6.48) it is clear that terms proportional to (p2−M2) yield scaleless terms
that are set to zero in dimensional regularization, which justifies having dropped
them in Eq. (6.47). After evaluating the integral in the MS regularization scheme,
using the heavy triplet EOMs and rearranging the result through partial integration
we finally get for µ = M

L1loop
EFT

∣∣
W

=
1

16π2

g2κ2

M4

[
−25

16

(
φ̂†φ̂
)
∂2
(
φ̂†φ̂
)

+
5

4

[(
φ̂†φ̂
)(

φ̂†D̂2φ̂
)

+ h.c.
]

−5

4

∣∣∣φ̂†D̂µφ̂
∣∣∣2] . (6.49)

In order to compare this result with previous calculations done in the literature, we

focus on the heavy triplet contributions to QφD =
∣∣φ†Dµφ

∣∣2. From the result in
Eq. (6.49) we find for its one-loop matching coefficient

CφD(µ = M)
∣∣∣
O(g2)

= − 1

16π2

κ2

M4

5

4
g2 , (6.50)

which agrees with the result given in Ref. [3] for the term proportional to g2. The
remaining contributions to CφD(µ = M) have also been calculated with our method.
However their computation is lengthy and does not provide any new insight on the
method. The final result reads

CφD(µ = M) =
κ2

M4

[
−2 +

1

16π2

(
5
κ2

M2
− 5

4
g2 + 16η − 3λ− 20λΦ

)]
. (6.51)

In Eq. (6.51) we have also included the term arising from the redefinition of φ that
absorbs the one-loop contribution to the kinetic term, φ →

(
1 − 3κ2/64π2M2

)
φ.

This result is in agreement with the one provided in Ref. [3] once we account for the
different convention in the definition of λ: our λ equals 2λ in that reference.

6.4 Conclusions

The search for new physics in the next run at LHC stays as a powerful motivation for
a systematic scrutiny of the possible extensions of the SM. The present status that
engages both collider and precision physics has, on the theoretical side, a robust tool
in the construction, treatment and phenomenology of effective field theories that are
the remains of ultraviolet completions of the SM upon integration of heavy spectra.

Though, traditionally, there are two essential procedures to construct those ef-
fective field theories, namely functional methods and matching schemes, the latter
have become the most frequently used. Recently there has been a rediscovery of
the functional methods, initiated by the work of Henning et al. [1]. The latter work
started a discussion regarding the treatment of the terms that mix heavy and light
quantum fluctuations, that was finally clarified but which, in our opinion, was al-
ready settled in the past literature on the subject. In this chapter we have addressed
this issue and we have provided a framework that further clarifies the treatment of
the heavy-light contributions and simplifies the technical modus operandi.
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The procedure amounts to a particular diagonalization of the quadratic form in
the path integral of the full theory that leaves untouched the part that entails the
light fields. In this way we can integrate, at one loop, contributions with only heavy
fields inside the loop and contributions with mixed components of heavy and light
fields, with a single computation and following the conventional method employed
to carry out the first ones only. We have also showed that in the resulting deter-
minant containing the heavy particle effects only the hard components are needed
to derive the one-loop matching coefficients of the effective theory. Within dimen-
sional regularization these hard contributions are obtained by expanding out the
low-energy scales with respect the hard loop momentum which has to be considered
of the same order as the mass of the heavy particle. In this way, our determination
of the EFT local terms that reproduce the heavy-particle effects does not require
the subtraction of any one-loop contributions from the EFT, as opposed to the con-
ventional (diagrammatic) matching approach or to the recently proposed methods
that use functional techniques. We have included two examples in Section 6.3: A
scalar toy model, that nicely illustrates the simplicity of our approach as compared
to the diagrammatic approach, and a heavy real scalar triplet extension of the SM,
which shows that our method can be applied also to more realistic cases.
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Appendices

6.A General expressions for dimension-six opera-

tors

In this appendix we workout L1loop
EFT for the case of dimension-six operators. Following

the guidelines in Section 6.1, we make the separation U(x, ∂x + ip) = UH(x) +
ULH(x, ∂x + ip) and expand Eq. (6.13) up to O(ζ−2). The Lagrangian L1loop

EFT then
consists of two pieces:

L1loop
EFT = L1loop

EFT

∣∣∣
H

+ L1loop
EFT

∣∣∣
LH

. (6.A.1)

The first term comes from contributions involving UH(x) only and, since UH(x) is
momentum independent, it can be obtained from the universal formula provided in
the literature [1,22,24,25] (see also [2] for the case when several scales are involved)
which, for completeness, we reproduce here:

L1loop
EFT

∣∣∣
H

=
cs

16π2

{
m2
H

(
1 + ln

µ2

m2
H

)
tr {UH}

+
[1

2
ln

µ2

m2
H

tr
{
U2
H

}
+

1

12
ln

µ2

m2
H

tr
{
F̂µνF̂

µν
}]

+
1

m2
H

[
− 1

6
tr
{
U3
H

}
+

1

12
tr
{

(D̂µUH)2
}
− 1

12
tr
{
UHF̂

µνF̂µν

}
+

1

60
tr
{

(D̂µF̂
µν)2

}
− 1

90
tr
{
F̂ µνF̂νρF̂

ρ
µ

}]
+

1

m4
H

[ 1

24
tr
{
U4
H

}
− 1

12
tr
{
UH(D̂µUH)2

}
+

1

60
tr
{
F̂µν(D̂

µUH)(D̂νUH)
}

+
1

120
tr
{

(D̂2UH)2
}

+
1

40
tr
{
U2
HF̂µνF̂

µν
}

+
1

60
tr
{

(UHF̂µν)
2
}]

+
1

m6
H

[
− 1

60
tr
{
U5
H

}
+

1

20
tr
{
U2
H(D̂µUH)2

}
+

1

30
tr
{

(UHD̂µUH)2
}]

+
1

m8
H

1

120
tr
{
U6
H

}
+O

(
ζ−3
)
, (6.A.2)

where cs = 1/2,−1/2 depending, respectively, on the bosonic or fermionic nature of
the heavy fields. Here Fµν ≡ [Dµ, Dν ] and the momentum integrals are regulated in
d dimensions, with the divergences subtracted in the MS scheme. The second term
in Eq. (6.A.1) is built from pieces containing at least one power of ULH . Given that
UH is at most O(ζ) and ULH at most O(ζ0) in our power counting, the series in
Eq. (6.13) has to be expanded up to n = 5 for the contributions to dimension-six
operators

L1loop
EFT

∣∣∣
LH

= −ics
∫

ddp

(2π)d

{
1

p2 −m2
H

trs {U}+
1

2

1

(p2 −m2
H)

2 trs

{
U2
}

+
1

3

1

(p2 −m2
H)

3

[
trs

{
U3
}

+ trs

{
UD̂2U

}
+ 2ipµ trs

{
UD̂µU

}]
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+
1

4

1

(p2 −m2
H)

4

[
trs

{
U4
}

+ 2ipµ trs

{
U2D̂µU

}
+ 2ipµ trs

{
UD̂µU

2
}

+ trs

{
U2D̂2U

}
+ trs

{
UD̂2U2

}
−4 pµpν trs

{
UD̂µD̂νU

}
+ 2ipµ trs

{
UD̂2D̂µU

}
+2ipµ trs

{
UD̂µD̂

2U
}

+ trs

{
U(D̂2)2 U

}]
+

1

5

1

(p2 −m2
H)

5

[
trs

{
U5
}

+ 2ipµ trs

{
U3D̂µU

}
+ 2ipµ trs

{
U2D̂µU

2
}

+2ipµ trs

{
UD̂µU

3
}
− 4pµpν trs

{
U2D̂µD̂νU

}
−4pµpν trs

{
UD̂µUD̂νU

}
− 4pµpν trs

{
UD̂µD̂νU

2
}

−8i pµpνpρ trs

{
UD̂µD̂νD̂ρU

}]}
+ LFEFT +O

(
ζ−3
)
. (6.A.3)

We have introduced a subtracted trace which is defined as

trs {f(U,Dµ)} ≡ tr {f(U,Dµ)− f(UH , Dµ)−Θf} , (6.A.4)

where f is an arbitrary function of U and covariant derivatives, and Θf generically
denotes all the terms with covariant derivatives at the rightmost of the trace (i.e.
open covariant derivative terms) contained in the original trace. The terms involving
only UH that are subtracted from the trace were already included in Eq. (6.A.2) while
all open derivative terms from the different traces are collected in LFEFT. The latter
combine into gauge invariant pieces with field-strength tensors, although the manner
in which this occurs is not easily seen and involves the contribution from different
orders in the expansion.

With the purpose of illustration, we compute LFEFT that results from the inte-
gration of the real scalar triplet extension of the SM presented in Section 6.3.2. In
this case, gauge invariance of the final result guarantees that the leading order con-
tribution to LFEFT should contain at least four covariant derivatives, as terms with
two covariant derivatives cannot be contracted to yield a gauge invariant term. As
it is clear from Eq. (6.13), traces with j derivatives and a number k of U operators
have a power suppression of O

(
ζ4−j−2k

)
(we recall that ddp ∼ ζ4). The expansion

of the operator ULH can yield in addition ` covariant derivatives, and each of these
receives a further suppression of ζ−1 because they are accompanied with a light-field
propagator, see Eq. (6.A.6). Since ULH is at most O(ζ0) we then find that, in gen-
eral, terms with k insertions of UHL and a total number of j + ` derivatives have
a power counting of at most O(ζ4−j−`−2k). As a result, the only gauge invariant
object involving ULH and four derivatives that one can construct at O(ζ−2) includes
only one power of ULH (i.e. j + ` = 4 and k = 1). Moreover, since ULH has to be
evaluated at leading order, the only relevant piece from ULH for the computation of
LFEFT reads

UF
LH = X

(1) †
LH ∆−1

L

∣∣
η̂=0

X
(1)
LH . (6.A.5)
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Here X
(1)
LH is defined as the part of XLH that is O (ζ), and we remind that η̂ stands

for the classical field configurations. Using the expressions in Eqs. (6.39) and (6.40)
we have

UF
LH(x, ∂x + ip) ⊂ κ2

p2

4∑
m=0

[
φ̂†τa

(
2ipD̂ + D̂2

p2

)m

τ bφ̂

+ φ̂ᵀ(τa)ᵀ

(
2ipD̂∗ + D̂∗ 2

p2

)m

(τ b)∗φ̂∗

]
,

(6.A.6)

where the covariant derivatives have to be expanded by applying the identities

Dµτ
aφ = τa (Dµφ) + τ cφDca

µ ,

D∗µ (τa)∗φ∗ = (τa)∗ (Dµφ)∗ + (τ c)∗φ∗Dca
µ ,

(6.A.7)

with Dµ denoting the Higgs field covariant derivative, see Eq. (1.9), and with Dca
µ

as defined in Section 6.1. For the computation of LFEFT up to O (ζ−2) we need to
isolate the terms in Eq. (6.13) with up to four open covariant derivatives and just
one power of UF

LH . These are given by

LFEFT ⊂ −
i

2

∫
ddp

(2π)d
1

p2 −M2

4∑
n=0

n∑
k=0

1

n+ 1

× tr


(

2ipD̂ + D̂2

p2 −M2

)n−k

UF
LH(x, ∂x + ip)

(
2ipD̂ + D̂2

p2 −M2

)k
 ,

(6.A.8)

and using the cyclic property of the trace we get5

LFEFT ⊂ −
i

2

∫
ddp

(2π)d
1

p2 −M2

4∑
n=0

tr

{
UF
LH(x, ∂x + ip)

(
2ipD̂ + D̂2

p2 −M2

)n}
. (6.A.9)

Finally, keeping only terms with up to four covariant derivatives, performing the
momentum integration (see Eq. (6.18)) and evaluating the SU(2) trace we arrive at
the final result

LFEFT =
1

16π2

κ2

M4

[
−g

2

3

(
φ̂†φ̂
)
Ŵ µν a Ŵ a

µν + g
(
φ̂† i

↔

D̂a
µ φ̂
)(
D̂ν Ŵ

µν
)a

−gg
′

2

(
φ̂†τaφ̂

)
Ŵ a
µνB̂

µν

]
,

(6.A.10)

5The use of the cyclic property when derivative terms are involved is only justified for the
functional trace, that we denoted in this chapter as Tr. However, as noted in Refs. [15, 22], in the
evaluation of the functional determinant, which is a gauge invariant object, the trace over internal
degrees of freedom ‘tr’ can be recast into the full trace through the use of the identity (we recall
that S =

∫
ddxL)

Tr{f(x̂)} =

∫
ddx tr{〈x|f(x̂)|x〉} =

∫
ddx tr{f(x)} δd(0) ,

and then reverted to a trace over internal degrees of freedom after the application of the cyclic
property.
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with the field-strength tensors defined in Eq. (1.7) and(
φ† i

↔

Da
µφ
)

= i
(
φ† τaDµφ

)
− i
[
(Dµφ)† τaφ

]
. (6.A.11)

6.B The fluctuation operator of the SM

In this appendix we provide the fluctuation operator for the SM Lagrangian, which
was introduced in Chapter 1. Following the same procedure as in Section 6.1, we
separate the fields into background, η̂, and quantum field configurations, η, and
expand the SM Lagrangian to second order in the quantum fluctuation:

LSM = Ltree
SM (η̂) + L(η2)

SM +O
(
η3
)
, (6.B.1)

where Ltree
SM is the tree-level SM effective Lagrangian, and L(η2)

SM is computed using
Eq. (6.1):

L(η2)
SM =

1

2

(
φ† φᵀ Aa ᵀ

µ ψ ψᵀ
)


∆φ∗φ X†φφ

(
Xν b
Aφ

)†
Xψ̄φ −Xᵀ

ψ̄φ∗

Xφφ ∆ᵀ
φ∗φ

(
Xν b
Aφ

)ᵀ
Xψ̄φ∗ −Xᵀ

ψ̄φ

Xµa
Aφ

(
Xµa
Aφ

)∗
∆µν ab
A X

µa

ψ̄A −
(
Xµa

ψ̄A

)ᵀ
Xψ̄φ Xψ̄φ∗ Xν b

ψ̄A
∆ψ̄ψ 0

−Xᵀ
ψ̄φ∗ −Xᵀ

ψ̄φ −
(
X
ν b

ψ̄A

)ᵀ
0 −∆ᵀ

ψ̄ψ





φ

φ∗

Abν

ψ

ψ
ᵀ


+ L(η2)

ghost, (6.B.2)

with Aaµ =
(
Gα
µ W a

µ Bµ

)ᵀ
denoting the gauge fields and

∆µν ab
A =


∆µν αβ
G 0 0

0 ∆µν ab
W ∆µν a

BW

0 ∆µν a
BW ∆µν

B

 , Xµa
Aφ =

 0

Xµa
Wφ

Xµ
Bφ

 , X
µa

ψ̄A =


X
µα

ψ̄G

X
µa

ψ̄W

X
µ

ψ̄B

 ,

(6.B.3)

where, generically, X = X†γ0. The pieces in the quadratic fluctuation are defined
as

∆φ∗φ =− D̂2 −m2
φ − λ

(
φ̂†φ̂
)
− λφ̂φ̂†,

∆µν αβ
G = δαβ

[
gµνD̂2 +

1− ξG
ξG

D̂µD̂ν

]
− gcεαβγĜµν γ,

∆µν ab
W = δab

{
gµν
[
D̂2 +

1

2
g2
(
φ̂†φ̂
)]

+
1− ξW
ξW

D̂µD̂ν

}
− gεabcŴ µν c,

∆µν
B = gµν

[
∂2 +

1

2
g′ 2
(
φ̂†φ̂
)]

+
1− ξB
ξB

∂µ∂ν ,

∆µν a
BW =

1

2
gg′gµν

(
φ̂†τaφ̂

)
,
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∆ψ̄ψ = i /̂D −
[(
iτ2 φ̂

∗ yLu Pu + φ̂ yLd Pd + φ̂ yLe Pe

)
PR +

(
h.c.

R→ L

)]
,

Xφφ =− λ φ̂∗φ̂† ,

Xµa
Wφ =

1

2
ig

[
φ̂†τaD̂µ −

(
D̂µφ̂

)†
τa
]
,

Xµ
Bφ =

1

2
ig′
[
φ̂†D̂µ −

(
D̂µφ̂

)†]
,

Xµα

ψ̄G
=

1

2
gc λ

αPq γ
µψ̂ ,

Xµa

ψ̄W
=

1

2
g τa γµPLψ̂ ,

Xµ

ψ̄B
= g′γµYψ ψ̂ ,

Xψ̄φ = −
←

P uPLy
†
u ψ̂

t iτ2 − yd PdPR ψ̂ ,

Xψ̄φ∗ = − iτ 2 yuPuPRψ̂ −
←

P dPLy
†
dψ̂

t . (6.B.4)

Here Pq = Pu + Pd, the operators Pu,d,e project over the corresponding fermion,
and the superscript t in the fermion fields denotes transposition in isospin space.
Additionally, we have fixed the gauge of the quantum fields using the background field
gauge, which ensures that the theory remains invariant under gauge transformations
of the background fields. This choice corresponds to the following gauge-fixing
Lagrangian:

LGF =− 1

2ξG

(
D̂µG

µα
)2

− 1

2ξW

(
D̂µW

µa
)2

− 1

2ξB
(∂µB

µ)2 . (6.B.5)

Finally we also provide the expansion for the inverse operators ∆X (x, ∂x + ip)−1,
with X = {φ∗φ, B, W}, when pµ ∼ ζ. We have:

∆φ∗φ (x, ∂x + ip) = p2 −m2
φ − 2ipD̂ − D̂2 − λ

(
φ̂†φ̂
)
− λφ̂φ̂† ,

∆µν ab
W (x, ∂x + ip) = δab

[
−gµνp2 − 1− ξW

ξW
pµpν

]
+O (ζ) ,

∆µν
B (x, ∂x + ip) = −gµνp2 − 1− ξB

ξB
pµpν +O (ζ) .

(6.B.6)

from where, and defining

Ω = D̂2 + λ
(
φ̂†φ̂
)

+ λ φ̂φ̂† , (6.B.7)

it is straightforward to get

∆φ∗φ (x, ∂x + ip)−1 =
1

p2

(
1 +

m2
φ

p2
+
m4
φ

p4

)
+ 2i

pµ
p4

(
1 + 2

m2
φ

p2

)
D̂µ

+
1

p4

(
1 + 2

m2
φ

p2

)
Ω − 4

pµpν
p6

(
1 + 3

m2
φ

p2

)
D̂µD̂ν
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+ 2i
pµ
p6

{
D̂µ Ω + Ω D̂µ

}
+

1

p6
Ω2

− 8i
pµpνpρ
p8

D̂µD̂νD̂ρ + 16
pµpνpρpσ
p10

D̂µD̂νD̂ρD̂σ

− 4
pµpν
p8

{
D̂µD̂ν Ω + Ω D̂µD̂ν + D̂µ Ω D̂ν

}
+O

(
ζ−7
)
,

∆µν
B (x, ∂x + ip)−1 = −g

µν

p2
+ (1− ξB)

pµpν

p4
+O

(
ζ−3
)
,

∆µν ab
W (x, ∂x + ip)−1 = δab

[
−g

µν

p2
+ (1− ξW )

pµpν

p4

]
+O

(
ζ−3
)
, (6.B.8)

and analogously for ∆µν αβ
G (x, ∂x + ip)−1. The inverse operator [∆∗φ∗φ (x, ∂x + ip)]−1

can be obtained from ∆φ∗φ (x, ∂x + ip)−1 by making the substitution D̂µ → D̂∗µ
while [∆ᵀ

φ∗φ (x, ∂x + ip)]−1 and [∆∗φ∗φ (x, ∂x + ip)]−1 share the same expression, up to
a total derivative term.
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CHAPTER

7 Flavor anomalies in B decays from
extended gauge sectors

The only thing that makes life possible is perma-
nent, intolerable uncertainty: not knowing what
comes next.

— Ursula K. Le Guin, The Left Hand of Darkness

We saw in Chapter 5 that there are several interesting tensions in B-physics
data. These can be classified in two sets according to their nature: the ones involv-
ing b → s`+`− data, and those related to the b → c`ν transitions. As we outlined
in that section, there are several attempts from different extensions of the SM to
explain these tensions, either focusing in just one set of anomalies or considering
both together. In this section we will present in detail three particular examples of
these extensions, all of them based on an enlarged gauge sector. In particular, we
will present two models that are able to accommodate the anomalies in b→ s`+`−

transitions: In Section 7.1 we will introduce a minimal class of Z ′ models charac-
terized by having all of its couplings completely determined by the gauge symmetry
and the CKM matrix (with no need for extra fermions); while in Section 7.2 we will
present a more elaborated framework, based on the hypothesis of dynamical Yukawa
couplings, that offers for a possible explanation to the basic features of quark and
leptons masses and mixings. Finally, in Section 7.3 we will address the possibility
of explaining simultaneously the anomalies in b → s`+`− and b → c`ν data from
an extended SU(2) gauge symmetry. The phenomenology of each these models, to-
gether with their predictions, will be addressed in detail in each of the corresponding
sections.

Note added: While this thesis was being completed, several new experimental
measurements concerning the b → s`+`− anomalies have been reported. Of those,
the most relevant for the present discussion is the measurements of RK∗ in two bins
by the LHCb Collaboration [1] (see Chapter 5 for a brief discussion). Because of
time constraints, in this chapter we will not include the new measurements in the
phenomenological discussion of the models, or use the global fits to flavor observables
that incorporate them. However we note that, given that all the models presented in
this chapter predict the approximate relation RK |q2∈[1,6] GeV2 ' RK∗|q2∈[1.1,6] GeV2 ,
the inclusion of the new measurements would not modify the overall picture and,
in any case, would contribute to improve the global significance of these models
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with respect to the SM prediction. We will also not discuss the phenomenological
implications of the recent dilepton resonance search performed by ATLAS at 13 TeV
with 36.1 fb−1 of data [2].

7.1 Non-universal Z′ models with protected flavor-

changing interactions

In this section, based on the publication in Ref. [3], we present a class of models
that extends the SM gauge symmetry with an extra U(1)′ such that all the fermion
couplings to the new gauge bosons are related exactly to elements of the CKM ma-
trix. We achieve that by gauging the BGL symmetry introduced in Section 2.2.2.
As we saw in this section, while the BGL model can be implemented through an
abelian discrete symmetry, this always yields an accidental continuous abelian sym-
metry which introduces an undesired Goldstone boson into the theory [4]. Several
solutions to this problem have already been proposed in the literature [4–6] and
discussed in this thesis (see Section 8.2); in the following we provide a new solu-
tion: promoting the BGL symmetry to a local one. In this gauged BGL framework
(U(1)′ ≡ U(1)BGL), the properties of the BGL models are transferred to the gauge
boson sector: we obtain FCNC mediated at tree-level by the neutral scalar and mas-
sive gauge vector bosons of the theory, all of which are suppressed by off-diagonal
CKM elements and/or fermion masses, and therefore naturally suppressed. This
class of models necessarily exhibits deviations from lepton universality due to its
gauge structure. Note that this form of flavor suppression in the down-quark sector
also appears in certain 3-3-1 models [7, 8]. However, in our framework this is not a
choice, but a consequence of the gauge symmetry.

This section is organized as follows: We formulate the gauged U(1)BGL models
in Section 7.1.1. In Section 7.1.2 we discuss the constraints from flavor and col-
lider data, testing the strong correlations present in these models, specifically with
respect to the deviations observed by LHCb. We conclude in Section 7.1.5. The
appendices 7.A and 7.B include technical details on anomaly cancellation and the
scalar sector.

7.1.1 Gauged BGL symmetry

The aim of this section is to study the necessary conditions required to promote the
U(1)BGL introduced in Section 2.2.2 to a local symmetry. As we are dealing with a
chiral symmetry, one should pay special attention to the cancellation of anomalies
when gauging the BGL symmetry.1 In Section 8.2.1 (see also Refs. [5,6]) we showed
that BGL 2HDM are automatically free of color anomalies, i.e. U(1)′[SU(3)c]

2. How-
ever, we also need to fulfill the anomaly conditions for the following combinations:

U(1)′[SU(2)L]2 , U(1)′[U(1)Y]2 , [U(1)′]2U(1)Y ,

[U(1)′]3 , U(1)′[Gravity]2 .
(7.1)

1In this section we consider only symmetries as “good” if all gauge anomalies are canceled.
It would be also possible to consider anomalous U(1) extensions in the low-energy theory whose
anomaly graphs get canceled via the so-called Green–Schwarz mechanism [9–11].
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We find that there is no solution for this system within the quark sector alone
with the charge assignments in Eq. (2.38). Satisfying these anomaly conditions
is highly non-trivial and requires, in general, additional fermions. However, the
implementation of the BGL symmetry as a local symmetry is possible by adding only
the SM leptonic sector when allowing for lepton-flavor non-universal couplings. As
in the SM, the cancellation of the gauge anomalies then occurs due to a cancellation
between quark and lepton contributions; the cancellation will however involve all
three fermion generations, contrary to the SM gauge group, for which the anomaly
cancellation occurs separately within each fermion generation.

Gauging the BGL symmetry therefore not only removes the unwanted Goldstone
boson, which is “eaten” by the Z ′, but also provides a consistent Z ′ model without
extending the particle content beyond the additional scalars, i.e. no extra fermions
are necessary. The flavor structure is extended to the Z ′ couplings, yielding again
strongly suppressed FCNCs in the down-type quark sector, while the up-type-quark
couplings remain diagonal. Especially, since the flavored gauge symmetry fixes also
the charged-lepton Yukawa matrices to be diagonal, we can obtain large deviations
from lepton universality without introducing lepton-flavor violation. Our models
provide thereby explicit examples for which the general arguments given in Refs. [12–
14] do not hold.

Lepton sector

As emphasized above, the anomaly constraints can be fulfilled by assuming that
leptons are also charged under the U(1)′ symmetry. The resulting charge constraints
are given in Appendix 7.A.

For XΦ2 = 0 the mixing between the neutral massive gauge bosons is suppressed
for large tan β. With this choice, we obtain only one possible solution to the anomaly
conditions up to lepton-flavor permutations, implying the following charge assign-
ments:

X d
R = 1 , X u

R = diag

(
−7

2
,−7

2
, 1

)
,

X q
L = diag

(
−5

4
,−5

4
, 1

)
, X `

L = diag

(
9

4
,
21

4
,−3

)
,

X e
R = diag

(
9

2
,
15

2
,−3

)
, XΦ = diag

(
−9

4
, 0

)
.

(7.2)

We have normalized all U(1)′ charges by setting XdR = 1, thereby fixing also the
normalization for the gauge coupling g′. In addition to the top, this particular
model singles out the tau lepton as the only one coupling to Φ2. Permutations of
the charges in X `

L and X e
R give rise to 5 more models.

With the charge transformations in Eq. (7.2), the charged-lepton Yukawa sector
takes the form

−Lc-leptons
Yuk = `0

L Πi Φie
0
R + h.c. , (7.3)
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with

Π1 =

× 0 0
0 × 0
0 0 0

 , Π2 =

0 0 0
0 0 0
0 0 ×

 , (7.4)

while the quark Yukawa sector remains unchanged.
We call to attention that no reference to the neutrino sector has been made in

the previous arguments. In this section we are mostly interested in the properties
of the quark and charged-lepton sectors in the presence of a new gauge boson, while
we leave a detailed discussion of the neutrino sector to future work. For a possible
implementation with the SM fermion content we can build the d = 5 Weinberg
effective operator (`Φ̃a)(Φ̃

T
b `

c), which after spontaneous symmetry breaking induces
a Majorana mass term for the neutrinos. If this effective operator is invariant under
the new flavored gauge symmetry in Eq. (7.2), we are led to a Lµ − Lτ symmetric
d = 5 effective operator and, consequently, Majorana mass term. This structure has
been studied in Refs. [15–19], and while it is not capable of fully accommodating
the neutrino data, it can serve as a good starting point.

If we want to improve on this scenario while keeping our solution to the anomaly
conditions, we may want a mechanism that at the effective level already breaks
the accidental Lµ − Lτ symmetry. For instance, we may extend the model with 3
right-handed neutrinos, where one of them is not charged while the other two have
opposite charges. In this way the anomaly solutions remain unchanged. Choosing
the charges of the right-handed neutrinos appropriately, the Dirac mass term for the
neutrinos can be made diagonal and the Majorana mass for the right-handed ones
Lµ−Lτ symmetric. Along the lines of Ref. [20], coupling an additional scalar to the
right-handed neutrinos could break the accidental symmetry at the effective level.
We can also envisage other mechanisms that do change the anomaly conditions and,
therefore, introduce new solutions

Gauge boson sector

In order to avoid experimental constraints on a Z ′ boson, the U(1)′ symmetry must
be broken at a relatively high scale, rendering the new gauge boson significantly
heavier than the SM ones [21]. This can be achieved through the introduction of a
complex scalar singlet S, charged under the BGL symmetry with charge XS, which
acquires a vev |〈S〉| = vS/

√
2� v. The charge of the scalar singlet is fixed once the

scalar potential is specified, in our case XS = −9/8, see Appendix 7.B for details.
As a consequence of the gauge symmetry breaking, GSM × U(1)′ → U(1)em, the

neutral massive gauge bosons mix, giving rise to a Lagrangian of the form2

L = −1

4
AµνA

µν − 1

4
ẐµνẐ

µν − 1

4
Ẑ ′µνẐ

′µν +
1

2
M̂2

ZẐµẐ
µ +

1

2
M̂2

Z′Ẑ
′
µẐ
′µ

+ ∆2Ẑ ′µẐ
µ − J µ

AAµ − Ĵ
µ
Z Ẑµ − Ĵ

µ
Z′Ẑ

′
µ ,

(7.5)

2We neglect here a possible mixing coming from the gauge kinetic Lagrangian as the mass
mixing shows already all relevant qualitative effects [21].
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where J µ
A and Ĵ µ

Z are the SM currents of the photon and the Z, respectively. The
fermionic piece of the new current takes the form

Ĵ µ
Z′ ⊃ g′ ψiγ

µ

[(
X̃ ψ
L

)
ij
PL +

(
X̃ ψ
R

)
ij
PR

]
ψj , (7.6)

with PL,R = (1 ∓ γ5)/2 denoting the usual chiral projectors, g′ the U(1)′ gauge

coupling, and X̃ ψ
X the phase transformation matrices in the fermion mass basis, i.e.

X̃ ψ
R = X ψ

R , X̃ u
L = X q

L , X̃ e
L = X `

L , and

X̃ d
L = −5

4
1 +

9

4

 |Vtd|2 VtsV
∗
td VtbV

∗
td

VtdV
∗
ts |Vts|2 VtbV

∗
ts

VtdV
∗
tb VtsV

∗
tb |Vtb|2

 .
(7.7)

The neutral gauge boson mass and mass-mixing parameters in this model are
given by

M̂2
Z =

e2v2

4ŝ2
W ĉ

2
W

, M̂2
Z′ = g′ 2

(
v2
iX

2
Φi

+ v2
SX

2
S

)
, ∆2 = − e g′

2ĉW ŝW
XΦiv

2
i , (7.8)

where e =
√

4πα is the electromagnetic charge and its ratio with the SU(2)L coupling
g defines θ̂W ≡ arcsin (e/g), which differs from the experimentally measured weak
angle due to mixing effects [22]: ŝW ĉWM̂Z = sW cWMZ , where MZ is the physical Z
mass. We rotate to the physical eigenbasis by performing the following orthogonal
transformation:(

Zµ
Z ′µ

)
= O

(
Ẑµ
Ẑ ′µ

)
, with O =

(
cξ sξ
−sξ cξ

)
and tan 2ξ =

2∆2

M̂2
Z − M̂2

Z′

. (7.9)

Since we assume v � vS, we obtain M̂2
Z , ∆2 � M̂2

Z′ and the resulting mixing angle
is small [21]:

g′ξ ' e

2ĉW ŝW

XΦ1v
2
1 +XΦ2v

2
2

X2
Sv

2
S

' − 9e

8ĉW ŝW

(
g′cβv

MZ′

)2

. (7.10)

Expanding in this small parameter, we obtain the following leading expression for
the hatted weak angle in terms of physical quantities

ŝ2
W ' s2

∗ ≡ s2
W −

c2
W s

2
W

c2
W − s2

W

ξ2

(
M2

Z′

M2
Z

− 1

)
. (7.11)

In the physical basis the neutral gauge boson masses read

M2
Z,Z′ =

1

2

[
M̂2

Z′ + M̂2
Z ∓

√(
M̂2

Z′ − M̂2
Z

)2

+ 4∆4

]
, (7.12)

and their fermionic currents are given by

Jµ
Z(′) ⊃ ψiγ

µ
[
ε

(′)ψ
L,ijPL + ε

(′)ψ
R,ijPR

]
ψj , (7.13)
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with the couplings (up to O (ξ2))

εψX,ij =
e

cW sW

[
1 +

ξ2

2

(
M2

Z′

M2
Z

− 1

)][(
TψX3 − s2

∗Qψ

)
1 + ξ

g′cW sW
e
X̃ ψ
X

]
ij

,

ε′ψX,ij =
e

cW sW

[
g′cW sW

e
X̃ ψ
X − ξ

(
TψX3 − s2

WQψ

)
1

]
ij

.

(7.14)

Here TψL3 is the third component of weak isospin for the left-handed fields (TψR3 = 0)
and Qψ the electric charge. We also define the vector and axial-vector combinations
of the Z(′) couplings,

ε
(′)ψ
V,ij ≡ ε

(′)ψ
L,ij + ε

(′)ψ
R,ij , ε

(′)ψ
A,ij ≡ ε

(′)ψ
R,ij − ε

(′)ψ
L,ij . (7.15)

The coefficients εψV (A),ij encode corrections to the SM Z couplings due to mixing

with the Z ′ which are proportional to g′ξ at leading order in the mixing angle.
Such corrections are restricted to be small (g′ξ . 10−4) [23, 24]. In addition to our
initial assumption, vS � v, which already gives a small ξ, we will assume that the
mixing angle receives an additional suppression, because tan β is large.3 This also
guarantees that flavor-changing effects mediated by the Z are negligible compared
with those of the Z ′.

Another important theoretical constraint is obtained when requiring the absence
of a low-energy Landau pole, i.e. an energy scale ΛLP at which perturbativity is
lost. This scale can be found from the renormalization-group running of the U(1)′

coupling, we have:
dα′

d ln q2
= b α′ 2 +O(α′ 3) , (7.16)

where the one-loop beta function b contains the charge information of the model. It
reads

b =
1

4π

[
2

3

∑
f

X2
fL,R +

1

3

(
2
∑
i

X2
Φi +X2

S

)]
, (7.17)

with f including all fermion degrees of freedom and i = 1, 2. The Landau pole can
be extracted from the pole of α′(q2) = g′ 2(q2)/4π, we obtain

ΛLP 'MZ′ exp

[
1

2 b α′(M2
Z′)

]
. (7.18)

For the charges in our model we have b ' 12.90, see Eq. (7.2). Taking MZ′ '
4 TeV, we get a Landau pole at the Planck scale, ΛLP

>∼ 1019 GeV, for g′ <∼ 0.12.
Notice that this bound is stronger than the näıve perturbativity bound α′(M2

Z′)
<∼

O(1/max{|Xi|}2), which in our model gives g′ <∼ 0.47. We can relax this condition
by assuming that additional NP will appear at the see-saw or the Grand Unification
scale. This way we obtain g′ <∼ 0.14 for ΛLP ≥ 1014 GeV and g′ <∼ 0.13 for ΛLP ≥
1016 GeV. The extension of the model to these scales is beyond the scope of this
thesis.

3This limit is quite natural in our model since Φ2 is coupled to the top quark, while Φ1 is
coupled to the light first two generations. Therefore, the hierarchy v2 > v1 accommodates well the
quark mass spectrum.
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Scalar sector

Here we discuss the main features of the Higgs sector of the model, a detailed
derivation of these results is given in Appendix 7.B. It consists of two complex Higgs
doublets and a complex scalar gauge singlet. Their properties are largely determined
by the fact that v/vS � 1. The spectrum contains four would-be Goldstone bosons
giving mass to the EW gauge vector bosons {MW ,MZ ,MZ′}, a charged Higgs H±

and four neutral scalars (three CP-even {H1, H2, H3} and a CP-odd A).
We obtain a decoupling scenario with a light SM-like Higgs boson, M2

H1
∼ O(v2),

three heavy quasi-degenerate states coming mainly from the scalar doublets M2
H2
'

M2
A ' M2

H± ∼ O(v2
S) and another heavy CP-even Higgs coming mainly from the

scalar singlet M2
H3
∼ O(v2

S).4 The Yukawa interactions of the scalar bosons reflect
this decoupling. They can be written as

−LY ⊃
∑

ϕ=Hk,A

ϕ
[
dL Y

ϕ
d dR + uL Y

ϕ
u uR + `L Y

ϕ
` eR

]
+

√
2

v
H+

(
uLNddR − uRN †udL + `LN`eR

)
+ h.c.

(7.19)

Neglecting corrections of O(v2/v2
S) we obtain

Y H1
f =

Df

v
, Y H2

f = −Nf

v
,

Y A
u = i

Nu

v
, Y A

d,` = −iNd,`

v
,

(7.20)

with (f = u, d, `). Here fermions have been rotated to the mass eigenbasis. The
diagonal matrices Df=u,d,` contain the fermion masses, and the matrices Nf are given
as

(Nd)ij =
v2

v1

(Dd)ij −
(
v2

v1

+
v1

v2

)
(V †)i3(V )3j(Dd)jj ,

Nu =
v2

v1

diag(mu,mc, 0)− v1

v2

diag(0, 0,mt) ,

N` =
v2

v1

diag(me,mµ, 0)− v1

v2

diag(0, 0,mτ ) .

(7.21)

The couplings of the scalar H3 to the fermions are additionally suppressed, since
they are generated only through mixing with the doublet degrees of freedom: Y H3

f '
O(v/vS). The matrix Nd is non-diagonal in flavor space, giving again rise to tree-
level FCNCs in the down-quark sector controlled by the CKM matrix V . Further-
more, as shown in Appendix 7.B, the constraints from the U(1)′ symmetry render
the scalar potential CP invariant. CP violation in our model is therefore uniquely
controlled by the CKM phase, like in the SM.5

4It is also possible to motivate scenarios that avoid decoupling based on an enhanced Poincaré
symmetry protecting the weak scale [25]. These can give rise to a rich scalar sector at the EW
scale and a pseudo-Goldstone boson in the spectrum.

5We do not consider strong CP violation in this section.
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Model variations

As aforementioned, we have six model implementations according to the different
lepton flavor permutations of the U(1)′ charges, with identical quark and scalar
charges given in Eq. (7.2). These permutations are performed in the basis where the
lepton mass matrix is diagonal and the eigenvalues are correctly ordered. This way
each permutation corresponds to the simultaneous interchange of the charges of both
left- and right-handed leptons. It is straightforward to check that the permutation
of just one set of charges, while satisfying the anomaly conditions as well, would give
rise to a non-diagonal mass matrix and reduce to one of the six cases considered
here after diagonalization.

In order to present the predictions for each of these models, we introduce the
generic lepton charges

X1L =
9

4
, X2L =

21

4
, X3L = −3 ,

X1R =
9

2
, X2R =

15

2
, X3R = −3 ,

(7.22)

such that each implementation is labeled by (e, µ, τ) = (i, j, k). For instance, the
model presented in Eq. (7.2) is now labeled as (1, 2, 3).

The additional possibilities to implement the quark and neutrino sectors have
been discussed in the previous sections.

7.1.2 Discussion

In this section we discuss the phenomenology of the gauged BGL models introduced
in the previous section. The phenomenology of a scalar sector with a flavor structure
identical to the one of our model has been analyzed in Refs. [26, 27]. Since we are
assuming a decoupling scalar sector, we can naturally accommodate a SM-like Higgs
at 125 GeV; the heavy scalars are not expected to yield sizable contributions to flavor
observables in general. We therefore focus on the phenomenological implications of
the Z ′ boson for this class of models. In the cases where the constraints depend on
the choice of lepton charges in our model, we give here the most conservative bound
and discuss the differences in the next sections.

Low-energy constraints

Despite the large mass of several TeV, the Z ′ boson yields potentially significant
contributions on flavor observables, due to its flavor-violating couplings in the down-
type quark sector. However, because of M2

W/M
2
Z′ ≤ 0.1% and the CKM suppression

of the flavor-changing Z ′ couplings, these contributions can only be relevant when
the corresponding SM amplitude has a strong suppression in addition to GF . This is
specifically the case for meson mixing amplitudes and electroweak penguin processes
which we will discuss below. Further examples are differences of observables that
are small in the SM, for example due to lepton universality or isospin symmetry.

The particular flavor structure of the model implies a strong hierarchy for the size
of different flavor transitions: |V ∗tsVtd| ∼ λ5 � |V ∗tdVtb| ∼ λ3 � |V ∗tsVtb| ∼ λ2 (where



7.1 Non-universal Z ′ models with protected flavor-changing interactions 119

λ ' 0.226). However, since the SM amplitudes often show a similar hierarchy, the
relative size of the Z ′ contribution has to be determined on a case-by-case basis.
We obtain for example similar bounds from the mass differences ∆md,s in the Bd,s

systems and εK . Here we include exemplarily the constraint from Bs mixing, while
we leave a detailed phenomenological analysis for future work.

Given the high experimental precision of ∆ms [28], the strength of the corre-
sponding constraint depends completely on our capability to predict the SM value.

The limiting factors here are our knowledge of the hadronic quantity fBs
√
B̂s (see

Ref. [29–32]) and the relevant CKM elements. Using the corresponding values from
Refs. [33] and [34], respectively, we conclude that contributions to ∆ms up to 20%
remain possible at 95% CL; from this we obtain the limit MZ′/g

′ & 25 TeV. Tree-
level scalar contributions have been neglected, since their effect cancels to a very
good approximation in the decoupling limit considered here [35,36].

Regarding the input for the CKM parameters, we make the following obser-
vations in our models: (i) Charged-current tree-level processes receive negligible
contributions. (ii) The mixing phase in Bd,s mixing and the ratio ∆ms/∆md remain
SM-like. (iii) The additional direct CP violation in B → ππ, ρπ, ρρ and B → J/ΨK
is negligible. These observations imply that in our context the global fits from
Refs. [34, 37] remain valid to good approximation.

In our models the Z ′ boson couples to muons and will contribute to NTP, νµN →
νNµ+µ−. We expect dominance of the Z ′ vector current for our models. The NTP
cross section normalized to the SM one was calculated in Refs. [38–40]. Using a
combination of the latest NTP cross-section measurements we obtain a bound on
the parameter combination MZ′/g

′ [41–43], which is however weaker than the one
from Bs mixing.

APV measurements also place bounds on additional neutral gauge bosons cou-
pling to electrons and light quarks. In particular, the precise measurement of the
133Cs weak charge from APV experiments is in a reasonable agreement with the
prediction of the SM and can be used to set bounds on the Z ′ boson of our mod-
els [44–50]. The bound we obtain on MZ′/g

′ from the latest determination of the
133Cs weak charge is however again weaker than the limit from Bs mixing.

Further potentially strong bounds stem from EDM and the anomalous magnetic
moment of the muon. EDMs from the scalar sector occur at the two-loop level;
while this alone does not render them necessarily sufficiently small, the additional
suppression and cancellations in the decoupling limit imply very small effects [26,
27, 51, 52]. Anomalous magnetic moments can be present at the one loop level, but
are again too small in 2HDMs near the decoupling limit [26, 27, 53]. Concerning
the new gauge boson, one-loop contributions to EDMs require different phases for
left- and right-handed Z ′ couplings to quarks and/or leptons [54]; this feature is
not present in our model, therefore the Z ′ contributions are again at the two-loop
level and sufficiently suppressed, given the large Z ′ mass. In the case of anomalous
magnetic moments we have non-vanishing one-loop contributions, which for the
muon read [55,56]

aNP
µ '

m2
µ

4π2

g′2

M2
Z′

(
1

3
X2
µV −

5

3
X2
µA

)
, (7.23)
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where XµV ≡ (XµL + XµR)/2 and XµA ≡ (XµR − XµL)/2. Using the bound on
MZ′/g

′ from B̄0
s − B0

s mixing, we get aNP
µ < 1.3× 10−11 for all charge assignments,

which is smaller than the current theory uncertainty in the prediction of aSM
µ [23].

Direct searches

The obvious way to search directly for a Z ′ is via a resonance peak in the invariant-
mass distribution of its decay products. At the LHC this experimental analysis
is usually performed by the ATLAS [57, 58] and CMS [59, 60] collaborations6 for
Z ′ production in the s-channel in a rather model-independent way, but assuming
validity of the NWA, negligible contributions of interference with the SM [65], and
flavor-universal Z ′ couplings to quarks. Under these assumptions, the cross section
for pp→ Z ′X → ff̄X takes the simplified form [66,67]

σ =
π

48s

[
cfuwu

(
s, M2

Z′

)
+ cfdwd

(
s, M2

Z′

)]
, (7.24)

where the functions wu,d are hadronic structure factors that encode the information
of the Drell-Yan production processes of the Z ′ and their QCD corrections (for a
precise definition of these functions we refer the reader to Ref. [67]). The model-
dependent part of the cross section is contained in the coefficients cu,d:

cfu ' g′ 2
(
X2
uL +X2

uR

)
Br
(
Z ′ → ff̄

)
,

cfd ' g′ 2
(
X2
uL +X2

dR

)
Br
(
Z ′ → ff̄

)
.

(7.25)

While the assumptions for these expressions are not exactly fulfilled in our model,
they are applicable when neglecting the small contributions proportional to the off-
diagonal CKM matrix elements. The reason is that under this approximation the
Z ′ couplings to the first two generations - which yield the dominant contribution
to the Drell-Yan production of the Z ′ - are universal and flavor conserving in the
quark sector, see Eqs. (7.2) and (7.7). Note that XuL ' XdL up to small corrections
proportional to the off-diagonal CKM matrix elements that we are neglecting.7

For high values of g′ the ratio ΓZ′/MZ′ can be quite large, spoiling the NWA. The
constraint is therefore only applicable for g′ <∼ 0.2, such that ΓZ′/MZ′ does not exceed
15%. However, for the mass range accessible so far such a large coupling is typically
excluded by the constraint RK , as will be shown below. Combined exclusion limits
on the Z ′ at 95% CL using the dimuon and dielectron channels have been provided
by the CMS collaboration in the (cu, cd) plane [59,60]. Using these bounds together
with the constraint from RK , we find that a Z ′ boson is excluded in our models for
MZ′ . 3-4 TeV, depending on the lepton charge assignments, while g′ should be
O(10−1). These bounds are stronger than those from many Z ′ benchmark models,

6In this section we will not consider the analyses on dilepton resonance searches at 13 TeV [2,
61–63]. However, we note that a very recent recast of the ATLAS search at 13 TeV with 36.1 fb−1

of data shows tensions in scenarios with a flavor structure similar to the one presented here [64].
An extension of this minimal framework is currently under investigation.

7Flavor changing Z ′ couplings between the first two quark generations are suppressed by
|VtdV ∗ts| ∼ λ5 while violations of universality are suppressed by |Vtd|2 ∼ λ6 and |Vts|2 ∼ λ4,
with λ ' 0.226.
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for which current LHC data typically give a lower bound of MZ′ & 2-3 TeV [57–60].
The reason is a combination of a sizable value for g′/MZ′ required by the constraint
from RK and the combination of Z ′ couplings to fermions appearing in our model,
see Eq. (7.25).

When the Z ′ is too heavy to be produced at a given collider, M2
Z′ � s, indirect

searches can be carried out by looking for effects from contact interactions, i.e.
effective operators generated by integrating out the heavy Z ′. At the LHC, the
corresponding expressions hold for MZ′ � 4.5 TeV, and limits can be extracted
e.g. from searches for the contact interactions (q̄γµPL,Rq)(¯̀γµPL,R`) [68]. These
are presented in terms of benchmark scenarios considering a single operator with
a specific chirality structure. From the 95% CL limit provided in Ref. [68] for
the operator (q̄γµPLq)(ēγ

µPRe) we extract MZ′/g
′ & 22 TeV. Searches for contact

interactions of the type (ēγµPL,Re)(f̄γ
µPL,Rf) were performed at LEP [69]. These

are sensitive to a Z ′-boson coupling to electrons assuming MZ′ � 210 GeV and the
resulting limits are again given for benchmark scenarios. In this case we extract
MZ′/g

′ & 25 TeV from the 95% CL bound on the operator (ēγαPRe)(µ̄γαPRµ).
It is important to note that the extracted bounds from contact interactions using
benchmark scenarios do not capture the full dynamics of our models once the Z ′

boson is integrated out. Interference effects due to operators with different chirality
structures will be relevant in general; a detailed analysis of these effects is however
beyond the scope of this thesis. These bounds should therefore be taken as a rough
guide to the sensitivity of contact interactions searches at LEP and the LHC to the
Z ′ of our models. However, in general they do not put relevant bounds as long as
g′ is not too large.

7.1.3 Discriminating the different models

The constructed class of models has two important features which imply specific
deviations from the SM: controlled FCNCs in the down-quark sector and violations
of lepton universality. Thanks to the very specific flavor structure, the two are
strongly correlated in each of our models. While the flavor-changing couplings are
universal in the models we discuss here, the lepton charges differ. Correspondingly
the models can be discriminated by processes involving leptons, specifically rare
leptonic and semileptonic decays of B mesons, which can test both features.

The effective Hamiltonian describing these b→ s`+`− transitions was introduced
in Section 4.2.2. New physics contributions to the Hb→sγ

eff part of this Hamiltonian
arise in our models from one-loop diagrams mediated by Z ′ and Higgs bosons. Both
of them are very small due to the assumed mass scale of several TeV [70]. At the
b-quark scale, the SM contribution to the remaining part reads CSM

9 ' −CSM
10 '

4.2 and is universal for the three lepton families, while all other contributions are
negligible. The chirality-flipped operators O9′,10′ receive negligible contributions also
in our models since ε′ dR,sb = 0, while all others receive contributions from Z ′ or Higgs
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Model CNPµ
10 /CNPµ

9 CNPe
9 /CNPµ

9 CNPe
10 /CNPµ

9 CNPτ
9 /CNPµ

9 CNPτ
10 /CNPµ

9 κµ9
(1,2,3) 3/17 9/17 3/17 −8/17 0 −1.235

(1,3,2) 0 −9/8 −3/8 −17/8 −3/8 0.581

(2,1,3) 1/3 17/9 1/3 −8/9 0 −0.654

(2,3,1) 0 −17/8 −3/8 −9/8 −3/8 0.581

(3,1,2) 1/3 −8/9 0 17/9 1/3 −0.654

(3,2,1) 3/17 −8/17 0 9/17 3/17 −1.235

Table 7.1: Correlations among the NP contributions to the effective operators O`9,10.
Each model is labeled by its lepton charge implementation (e, µ, τ) = (i, j, k).

exchanges [35, 36,70]. The Z ′ contribution to C`
9,10 is given by

CNP`
9 '− πv2

αV ∗tsVtb

ε′ dL,sbε
′ e
V,``

M2
Z′

,

CNP`
10 '− πv2

αV ∗tsVtb

ε′ dL,sbε
′ e
A,``

M2
Z′

,

(7.26)

where C`
i ≡ CSM

i + CNP`
i . In Table 7.1 we show the correlations between the Wil-

son coefficients CNP`
9,10 in our models and provide CNPµ

9 as a function of g′/MZ′ by
introducing a conveniently normalized parameter κµ9 :

CNPµ
9 ≡ κµ9 × 104

(
g′v

MZ′

)2

= κµ9 × 605 TeV2

(
g′

MZ′

)2

. (7.27)

This allows the direct estimation of CNP`
9,10 in terms of g′/MZ′ , useful for phenomeno-

logical purposes.
The CP-even Higgs H2 and the CP-odd Higgs A can give sizable contributions

to O`
S and O`

P , respectively. For muons we have8

CNPµ
S ' −CNPµ

P '
−2π (tβ + t−1

β )(N`)µµ

αM̄2
H

. (7.28)

Here we have denoted the quasi-degenerate masses of H2 and A by M̄H ≡ MH2 '
MA, see Appendix 7.B for details of the scalar sector. The coupling (N`)µµ is again
model-dependent: (N`)µµ = tβmµ for models (1, 2, 3), (2, 1, 3), (3, 1, 2) and (3, 2, 1),
while (N`)µµ = −t−1

β mµ for (1, 3, 2) and (2, 3, 1). The suppression by the muon
mass renders these contributions negligible, apart from observables in which also
the SM and Z ′ contributions receive this suppression, e.g. Bs → µ+µ−. Higgs
contributions to O`

S′,P ′ will be additionally suppressed by a factor ms/mb compared
to the corresponding non-primed operators and are neglected in the following.

8The correlation CS = −CP was expected given the assumed decoupling in the scalar sector [71].
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The angular distributions of neutral-current semileptonic b→ s`+`− transitions
allow for testing these coefficients in global fits. Furthermore, they provide precise
tests of lepton universality when considering ratios of the type

RM ≡
Br(B̄ → M̄µ+µ−)

Br(B̄ → M̄e+e−)

SM
= 1 +O(m2

µ/m
2
b) , (7.29)

with M ∈ {K,K∗, Xs, K0(1430), . . .} [72], where many sources of uncertainties can-
cel when integrating over identical phase-space regions.

Additional sensitivity to the dynamics of NP can be obtained via double-ratios [73],

R̂M ≡
RM

RK

. (7.30)

It was shown in Ref. [73] that the dependence on the NP coupling to left-handed

quarks cancels out in R̂M . Since C`
9′,10′ = 0 in our models we have R̂K∗ = R̂Xs =

R̂K0(1430) = 1, providing an important test of the flavor structure of our models.9

The possible hadronic final states for these ratios yield sensitivity to different
NP structures, thereby providing complementary information. The discriminating
power of these observables has been shown in Ref. [74] within the framework of
leptoquark models and in more general contexts in Refs. [73,75,76].

To analyze the deviations from flavor-universality we define RM ' 1 + ∆ + Σ,
where Σ is the pure contribution from NP and ∆ the one from the interference with
the SM. These quantities are given by

∆ =
2

|CSM
9 |2 + |CSM

10 |2
[
Re
{
CSM

9

(
CNPµ

9

)∗}
+ Re

{
CSM

10

(
CNPµ

10

)∗}
− (µ→ e)

]
,

Σ =

∣∣∣CNPµ
9

∣∣∣2 +
∣∣∣CNPµ

10

∣∣∣2
|CSM

9 |
2

+ |CSM
10 |

2 − (µ→ e) ,

(7.31)

and are valid to a very good approximation given the present experimental uncer-
tainties.

Our models also give clean predictions for the rare decays B →Mνν̄, with M =
K,K∗, Xs [70]. Tree-level Z ′-boson contributions to these decays are generically
expected of the same size as in b → s`+`− transitions. However, the modes with
neutrino final states do not distinguish between our different models, since there is
no sensitivity to the neutrino species. We obtain again a universal value for all ratios
Rν
M = Br(B → Mν̄ν)/Br(B → Mν̄ν)|SM, due to the fact that ε′ dR,sb = 0. For the

same reason the average of the K∗ longitudinal polarization fraction in B → K∗νν̄
is not affected by the Z ′ exchange contribution [70]. The enhancement of Rν

M turns
out to be relatively small, O(10%) for g′ ∼ 0.1 and MZ′ ∼ O(TeV). The reason is
again the sum over the different neutrino species: due to the different charges, the
Z ′ contribution interferes both constructively and destructively, leaving a net effect
that is smaller than in the modes with charged leptons.

9This important prediction of the model is in agreement with the recent measurement of RK∗

in the dilepton invariant-mass-squared region q2 ∈ [1.1, 6] GeV2 performed by the the LHCb
Collaboration [1]. See note added at the beginning of the chapter.
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Model µe/µ µe/τ µµ/τ

(1,2,3) 45/149 45/32 149/32

(1,3,2) 45/32 45/149 32/149

(2,1,3) 149/45 149/32 45/32

(2,3,1) 149/32 149/45 32/45

(3,1,2) 32/45 32/149 45/149

(3,2,1) 32/149 32/45 149/45

Table 7.2: Model-dependent predictions for the ratio µ`/`′. The different models are
labeled by their lepton charge implementations, i.e. (e, µ, τ) = (i, j, k).

The leptonic decays B0
s,d → `+`− constitute another sensitive probe of small

NP effects. Within the SM, these decays arise again at the loop level and are
helicity suppressed. Due to the leptonic final state, the theoretical prediction of
these processes is very clean. They receive Z ′- and Higgs-mediated contributions at
tree-level in our model through the operators Oµ10,S,P [75],

Br(B̄s → µ+µ−)

Br(B̄s → µ+µ−)SM
'
∣∣∣1− 0.24CNPµ

10 − yµCNPµ
P

∣∣∣2 + |yµCNPµ
S |2 , (7.32)

where yµ ' 7.7mb. For the range of model parameters relevant here, the Z ′ contri-
bution to B̄s → µ+µ− is very small with respect to the SM, ∼ 1% for MZ′ ∼ 5 TeV
and g′ ∼ 0.1. Larger contributions are possible due to scalar mediation for the
models (1, 2, 3), (2, 1, 3), (3, 1, 2) and (3, 2, 1), given that CS ' −CP ∝ t2β in these
cases. Taking M̄H ∼ 10 TeV and tβ ∼ 30 for example, one obtains a suppres-
sion of Br(B̄s → µ+µ−) of about 10% relative to the SM. In our model the ratio
Br(B̄d → µ+µ−)/Br(B̄s → µ+µ−) remains unchanged with respect to the SM to a
very good approximation.

If a Z ′ boson is discovered during the next runs of the LHC [77], its decays to
leptons can be used to discriminate the models presented here. We define the ratios

µf/f ′ ≡
σ(pp→ Z ′ → ff̄)

σ(pp→ Z ′ → f ′f̄ ′)
, (7.33)

where again the dominant sources of uncertainty cancel, rendering them particu-
larly useful to test lepton universality. This possibility has also been discussed in
Refs. [78–83]. In our models we have

µb/t '
X2
bL +X2

bR

X2
tL +X2

tR

, µ`/`′ '
X2
`L +X2

`R

X2
`′L +X2

`′R

. (7.34)

The first ratio is fixed in our models, µb/t ' 1, while large deviations from µ`/`′ = 1
are possible. The model-specific predictions for the ratio µ`/`′ are shown in Table 7.2.
We note that there is a correlation between RK and µe/µ: an enhancement of RK

(as present in models (1, 3, 2), (2, 1, 3) and (2, 3, 1)) implies an enhancement of µe/µ
and the other way around. Violations of lepton universality can therefore be tested
by complementary measurements of flavor observables at LHCb or Belle II and Z ′

properties to be measured at ATLAS and CMS.
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Figure 7.1: Model-dependent predic-
tions for RK as a function of g′/MZ′.
The measurement of RK by the LHCb
collaboration is shown at 1σ and 2σ.
Constraints from Bs mixing are also
shown at 95% CL.

7.1.4 Interpretation of b→ s`+`− anomalies

The LHCb collaboration has performed two measurements of decays with b→ s`+`−

transitions that show a tension with respect to the SM expectations.10 The first
measurement is that of the ratio RK introduced in the last section, where LHCb
measures [84] RLHCb

K = 0.745+0.090
−0.074±0.036 for q2 ∈ [1, 6] GeV2, a 2.6σ deviation with

respect to the SM prediction [72, 85–87]. The second measurement is the angular
analysis of B → K∗µ+µ− decays [88], where an excess of 2.9σ is observed for the
angular observable P ′5 in the bin q2 ∈ [4, 6] GeV2,11 which has been constructed
to reduce the influence of form factor uncertainties [89]. Similarly the branching
fraction of Bs → φµ+µ− also disagrees with the SM prediction [90, 91] by about
3σ [92]

Attributing the measurement of RK solely to NP, i.e. assuming that it will be
confirmed with higher significance in the next run of the LHC and/or by additional
RM measurements, it is the first way to exclude some of our models, since it requires
sizable non-universal contributions with a specific sign. The flavor structure in each
of our models is fixed, so half of them cannot accommodateRK < 1, namely (1, 3, 2),
(2, 1, 3) and (2, 3, 1). This is illustrated in Figure 7.1, where it is additionally seen
that a large deviation from RK = 1, as indicated by the present central value and
1σ interval, can actually only be explained in two of the remaining models. This
strong impact shows the importance of further measurements of RM ratios.

In Figure 7.2 we show the constraints from the RK measurement for the re-
maining models (1, 2, 3), (3, 1, 2) and (3, 2, 1). The allowed regions are consistent
with the constraint from B0

s -meson mixing. LHC searches for a Z ′ boson exclude
values of MZ′ below 3-4 TeV, as discussed in the previous section; the correspond-
ing areas are shown in gray. We also show the theoretical perturbativity bounds

10As already stated, we exclude from the discussion the very recent measurement of RK∗ by the
LHCb Collaboration [1]. See note added at the beginning of the chapter.

11The bin q2 ∈ [6, 8] GeV2 shows nominally a tension with identical significance; however, this
bin is considered less theoretically clean, due to the larger influence of charm resonances.
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Figure 7.2: Regions allowed at 1σ and 2σ by the RK measurement in the {MZ′ , g
′}

plane for the models (1, 2, 3), (3, 1, 2) and (3, 2, 1). Exclusion limits from Z ′ searches
at the LHC are shown in gray. The black lines indicate bounds from perturbativity
of g′.

obtained from the requirement that the Landau pole for the U(1)′ gauge coupling
appears beyond the see-saw or the Grand Unification scales, i.e. ΛLP > 1014 GeV
and ΛLP > 1016 GeV, respectively.

Regarding the angular analysis in B → K∗µ+µ−, the situation is more compli-
cated. The wealth of information provided in this and related measurements requires
a global analysis, which is beyond the scope of this thesis. However, a number of
model-independent studies have been carried out [92–99]. These analyses differ in
terms of the statistical methods used, treatment of hadronic uncertainties (see also
Ref. [100]), and consequently in the significance they find for the NP hypothesis over
the SM one. However, they agree that a contribution CNPµ

9 ∼ −1 can fit the data
for P ′5 and Br(Bs → φµ+µ−) without conflicting with other observables. Additional
contributions from e.g. CNPµ

10 can be present, but are less significant and tend to
be smaller. When using Table 7.1 to translate the RK measurement into a bound
on CNPµ

9 in our models, see Table 7.3, the ranges are perfectly compatible with the
values obtained by the global fits to b → sµµ data, as also observed for other Z ′

models [92–94,96,99]. This is highly non-trivial given the strong correlations in our
models and will allow for decisive tests with additional data.

Let us further comment on the implications of the recent measurements of B̄0
d,s →

µ+µ− decays [101],

Br(B̄s → µ+µ−)exp

Br(B̄s → µ+µ−)SM
= 0.76+0.20

−0.18 ,

Br(B̄d → µ+µ−)exp

Br(B̄d → µ+µ−)SM
= 3.7+1.6

−1.4 .

(7.35)

Both results seem to hint at a deviation from the SM, however in opposite directions.
A confirmation of this situation with higher significance would rule out our models
which predict these ratios to be equal; however, the uncertainties in the Bd mode
are still large.12 Regarding the Bs mode, which is measured consistent with the

12While this thesis was being completed, the LHCb Collaboration presented a new measurement
of these observables in agreement with the SM expectations [102]; this is compatible with our
models expectations.
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Model CNPµ
9 (1σ) CNPµ

9 (2σ)
(1,2,3) – [−1.20,−0.61]

(3,1,2) [−0.63,−0.43] [−0.63,−0.17]

(3,2,1) [−1.20,−0.53] [−1.20,−0.20]

Table 7.3: Model-dependent bound on
CNPµ

9 from the RK measurement. The
constraint from Bs mixing is taken
into account.

SM prediction, it should be noted that the result depends sensitively on the value
adopted for |Vcb|, where the value from inclusive B → Xc`ν decays was chosen in the
SM calculation [103]. In any case, as already discussed, a potential shift could be
explained in the context of our models by scalar contributions, which are, however,
not directly related to the Z ′ contributions discussed above.

The models that accommodate the b→ s`+`− data can be further discriminated
using the observables described in the last section, notably using the ratios µ`/`′ ,
provided a Z ′ boson is discovered at the LHC.

7.1.5 Conclusions

The class of family-non-universal Z ′ models presented in this section exhibits FC-
NCs at tree level that are in accordance with available flavor constraints while still
inducing potentially sizable effects in various processes, testable at existing and fu-
ture colliders. This is achieved by gauging the specific (BGL-)symmetry structure,
introduced in Ref. [4], which renders the resulting models highly predictive.

The particle content of the models is minimal in the sense that the extension
of the U(1)′ symmetry to the lepton sector allows to restrict the fermion content
to the SM one. The only additional particles are then a second Higgs doublet, a
scalar singlet and the Z ′ boson, all of which are heavy after spontaneous symmetry
breaking, due to the large mass scale for the singlet. The anomaly conditions largely
determine the charge assignments under the U(1)′ symmetry; the remaining free-
dom is used for two phenomenologically motivated choices, leaving only six possible
models which are related by permutations in the lepton sector.

The main phenomenological features of these models can be summarized as fol-
lows:

1. FCNCs at tree level in the down-quark sector, which are mediated by heavy Z ′

gauge bosons and neutral scalars, controlled by combinations of CKM matrix
elements and/or fermion mass factors.

2. Non-universal lepton couplings determined by the charges under the additional
U(1)′ symmetry.

3. No FCNCs in the charged-lepton or up-quark sectors.

4. Complete determination of the U(1)′ sector up to two real parameters, MZ′

and g′, where all observables at the electroweak scale and below depend only
on the combination g′/MZ′ .

Present data already strongly restrict the possible parameter ranges in our mod-
els: direct searches exclude Z ′ masses below 3 − 4 TeV and the constraint from B
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mixing implies MZ′/g
′ ≥ 16 TeV (95% CL). Theoretical bounds from perturbativity

give an upper bound on the value of the gauge coupling, e.g. g′ <∼ 0.14 for a Landau
pole beyond the see-saw scale. Nevertheless, three of our models can explain the
deviations from SM expectations in b → s`+`− transitions seen in LHCb measure-
ments [84, 88], while the other three are excluded (at 95% CL) by RK < 1. These
findings are illustrated in Figs. 7.1 and 7.2.

Any significant deviation from the SM in an observable with Z ′ contributions
allows for predicting all other observables, for instance the values for CNP`

9,10 obtained
from RK , see Tables 7.1 and 7.3. Further characteristic predictions in our models
include the following:

• The absence of flavor-changing Z ′ couplings to right-handed quarks implies
R̂M = 1, i.e. all ratios defined in Eq. (7.29) are expected to be equal, RK =
RK∗ = RXs = . . . The same holds for the ratios Rν

M in B →Mν̄ν decays.

• If a Z ′ is discovered at the LHC, measurements of σ(pp→ Z ′ → `i ¯̀i)/σ(pp→
Z ′ → `j ¯̀j) can be used to discriminate between our models, due to the specific
patterns of lepton-non-universality, see Table 7.2.

• Leptonic down-quark FCNC decays are sensitive to the Higgs couplings in our
model, specifically Bd,s → `+`−. Double ratios of Bs and Bd decays are again
expected to equal unity.

In the near future we will therefore be able to differentiate our new class of
models from other Z ′ models as well as its different realizations from each other.
This will be possible due to a combination of direct searches/measurements at the
LHC and high-precision measurements at low energies, e.g. from Belle II and LHCb.
Further progress can come directly from theory, e.g. by more precise predictions for
∆md,s or εK .

As a final remark, we recall that in this minimal implementation of gauged
BGL symmetry neutrinos are massless. Additional mechanisms to explain neutrinos
masses can introduce new solutions to the anomaly equations; these new variants
are subject to future work.

7.2 Flavor anomalies from dynamical Yukawas

In this section, based on the publication in Ref. [104], we analyze the possible in-
terplay between the flavor anomalies in b → s`+`− transitions and the SM flavor
puzzle. As already discussed, the SM flavor puzzle –the lack of explanation for
the peculiar structure of fermion masses and mixing angles– with masses spanning
several orders of magnitude and very hierarchical mixing in the quark sector in
contrast to the anarchical structure in the lepton sector, remains as one of the long-
standing questions the SM cannot address. An interesting approach to reproduce
the main features of quark and lepton mass matrices is to assume the Yukawa cou-
plings are generated from dynamical fields, whose background values minimize a
generic potential invariant under a large non-Abelian flavor symmetry group, such
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as [SU(3)]5×O(3) [105,106] (see Section 1.3). Employing general group theory argu-
ments, the natural extrema of such potential, corresponding to maximally unbroken
subgroups, robustly predict large (zero) third (first two) generation quark mass, and
a trivial CKM matrix (equal to the identity matrix). In the lepton sector, the same
approach leads to a solution with hierarchical charged lepton masses accompanied
by at least two degenerate Majorana neutrinos, with potentially large θ12 mixing
angle, θ23 = π/4, θ13 = 0 and one maximal Majorana phase [107]. Adding small
perturbations to this picture, quantitatively reconciles well with observations.

In such framework, in order to avoid massless Goldstone bosons, it is natural
to expect that the flavor symmetry is gauged (see e.g. [108–110]). The complete
spectrum of the corresponding massive vector bosons is quite complicated and may
span several orders of magnitude. However, a large fraction of such states may
be irrelevant at low energies. In this section we focus on the phenomenology of
the potentially lightest vector states, associated to some of the residual unbroken
subgroups. In particular, this setup naturally leads to a gauged Lµ − Lτ symme-
try [15–18,111–115] in the lepton sector [107] and an independent Abelian symmetry
in the quark sector, U(1)q, that may have interesting implications for the observed
deviations from the SM in b→ sµ+µ−. Interestingly, gauging a linear combination
of the two U(1)’s was already proposed in Ref. [20] as a solution of the LHCb anoma-
lies. While this was purely phenomenologically motivated, here we suggest that such
symmetries might be connected with the observed pattern of fermion masses and
mixings. In contrast to Ref. [20], the presence of two neutral gauge bosons make the
collider signatures of this model quite different, allowing for lighter gauge bosons.

7.2.1 Natural minima perturbations and lowest-lying Z′

bosons

Building on Ref. [107], we consider the extension of the SM gauge sector by the max-
imal flavor symmetry in the limit of vanishing Yukawa couplings and non-vanishing
Majorana mass term for the right-handed neutrinos: G = SU(3)Q × SU(3)D ×
SU(3)U × SU(3)` × SU(3)E × O(3)νR . Here, Q (`) corresponds to the left-handed
quarks (leptons) while U (D) and E stand for the right-handed up (down) quarks
and charged leptons, respectively. Neutrino masses are accounted for via the see-
saw mechanism by introducing three right-handed neutrinos. Natural extrema of a
generic Yukawa scalar potential break the flavor symmetry to a maximal subgroup,
providing a good first-order explanation of the fermion masses and mixings, both in
quark and lepton sectors [107]. In a second step, perturbations are introduced (e.g.
via extra scalar fields [116, 117]), breaking the residual flavor symmetry and fitting
the observed masses and mixing angles. Below we present a detailed discussion of
the sequential breaking patterns for both sectors, identifying the appearance of the
two residual U(1) symmetries. Finally, the spectrum and the couplings of the cor-
responding Z ′ bosons are discussed. The global picture is illustrated in Figure 7.3.
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Figure 7.3: Illustration of the symmetry breaking pattern in the quark and lepton
sectors.

Quark sector

Step I: Following the approach in Ref. [107], we choose the hierarchical natural
minima of the flavon fields in such a way that the following form for the Yukawa
couplings is generated:

Y (0)
u = diag (0, 0, yt) , Y

(0)
d = diag (0, 0, yb) , (7.36)

leading to a diagonal CKM matrix and resulting in the following flavor symmetry
breaking pattern

SU(3)Q × SU(3)U × SU(3)D → SU(2)Q × SU(2)U × SU(2)D × U(1)q . (7.37)

This solution provides a good starting point for the explanation of fermion masses
and mixings. Here U(1)q is defined by the subgroup of the flavor symmetry given
by

U(1)q : exp(iαλQ8 )× exp(iαλU8 )× exp(iαλD8 ) , (7.38)

with λI8 denoting the Gell-Mann matrix, which corresponds to the following charge
assignments in generation space

XQ = XU = XD =

(
−1

2
,−1

2
, 1

)
. (7.39)
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Step II: Perturbations around this minima are needed to provide the correct
description of the observed masses and mixing angles. However, since the natural
minima are very stable, it is not possible to induce these perturbations through
one-loop corrections and (or) higher dimensional operators including Yukawa fields
only [118]. In Ref. [116–118] it was shown that the correct perturbations can be
introduced in a natural way through the inclusion of additional scalars in reducible
representations of the flavor group. In this section, we focus on the perturbations
yielding the following flavor symmetry breaking pattern

SU(2)Q × SU(2)U × SU(2)D × U(1)q → U(1)q , (7.40)

at a very high scale, followed by a subsequent breaking of U(1)q around the TeV
scale (Step III).

Finally, the perturbations to Eq. (7.36) take the form

Y
(1)
u(d) =

ε11
u(d) ε12

u(d) δ1
u(d)

ε21
u(d) ε22

u(d) δ2
u(d)

σ1
u(d) σ2

u(d) 0

 , (7.41)

and the full Yukawa matrix is given by Yu(d) = Y
(0)
u(d) +Y

(1)
u(d). The correct masses and

mixings are obtained for
|εiju(d)| � |δ

i
u(d)| � 1 . (7.42)

For simplicity, we assume negligible σiu(d): these terms are not required for fitting the

CKM matrix and their absence/smallness is welcome to suppress right-handed FC-
NCs. In a given model, εu(d) and δu(d) are functions of the vevs of the corresponding
extra flavon fields that induce step-II (and III) breaking, and other physical scales
involved (see Section 7.2.2 for a specific realization).

Lepton sector

Step I: For leptons, the presence of a Majorana mass term for neutrinos yields a
different structure for the natural extrema of the flavon fields [107]

Y (0)
e = diag (0, 0, yτ ) , Y (0)

ν =

iy1 0 0
0 i√

2
y2

1√
2
y2

0 i√
2
y3 − 1√

2
y3

 , (7.43)

that break the flavor group to the maximal subgroup

SU(3)` × SU(3)E ×O(3)νR → SU(2)E × U(1)l , (7.44)

where the U(1)l subgroup is defined as

U(1)l : exp(iαλ′ `3 )× exp(i

√
3

2
αλE8 )× exp(iαλνR7 ) , (7.45)

with λ′3 = diag(0, 1,−1). Again, the induced Yukawa pattern provides a good
starting point for the description of the lepton masses and mixing angles.
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Step II: Perturbations will in turn induce additional breaking of the flavor
group. Here we assume that the charged lepton Yukawas are generated at very high
energies, i.e.

Y (1)
e = diag (ye, yµ, 0) , (7.46)

with |ye| � |yµ| � |yτ |, implying the following breaking pattern

SU(2)E × U(1)l → U(1)µ−τ . (7.47)

Note that this symmetry breaking pattern requires the perturbations in the charged-
lepton Yukawa to be flavor diagonal, as shown in Eq. (7.46), therefore predicting no
charged lepton flavor violation.

Step III: Finally, the U(1)µ−τ symmetry given by

U(1)µ−τ : exp(iαλ′ `3 )× exp(iαλ′E3 )× exp(iαλνR7 ) , (7.48)

gets broken around the TeV scale by perturbations of the neutrino Yukawa. As
shown in Ref. [107], these small perturbations allow to fully accommodate for the
PMNS matrix.

Couplings of the lightest Z ′ bosons

The breaking pattern illustrated above leads to two massive neutral gauge boson
with masses around the TeV scale associated to the U(1)q×U(1)µ−τ flavor symmetry
while the other flavour gauge bosons are much heavier.

Quarkphilic Ẑq: The fermion current associated to the Ẑq field in the gauge

basis (L ⊃ gqẐq µĴ
µ
Zq

) is

ĴµZq = −1

2
q0
kLγµq

0
kL −

1

2
u0
kRγµu

0
kR −

1

2
d0
kRγµd

0
kR

+ q0
3Lγµq

0
3L + t0Rγµt

0
R + b0

Rγµb
0
R ,

(7.49)

where k = 1, 2. In order to diagonalize Yu(d) after the perturbation in Eq. (7.41),

we introduce the unitary matrices UL,R
u(d), such that Mu(d) ∝ UL†

u(d)Yu(d)U
R
u(d). To the

leading order in δiu(d) expansion we find

UL
u(d) '


1 0

δ1
u(d)

yt(b)

0 1
δ2
u(d)

yt(b)

−
δ1
u(d)

yt(b)
−
δ2
u(d)

yt(b)
1

 R(θ
u(d)
12 ), UR

u(d) ' 1 , (7.50)

where θ
u(d)
12 is an arbitrary 1−2 rotation angle, determined beyond the leading order.

Note that the CKM mixing matrix, VCKM = UL†
u UL

d , can already be adjusted at this
order with the appropriate choice of parameters. Finally, in the mass basis we get

ĴµZq = −1

2
ukγµuk −

1

2
dkγµdk + tγµt + bγµb

+
(

ΓuLij uiLγµujL + ΓdLij diLγµdjL + h.c.
)
,

(7.51)
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with i, j = 1, 2, 3 and the coupling matrices defined as

Γ
uL(dL)
ij =

3

2

[(
UL
u(d)

)∗
3i

(
UL
u(d)

)
3j
− δ3iδ3j

]
. (7.52)

Note that the flavor universality of the gauge interactions with respect to the first
two generations guarantees a suppression of the FCNCs among them, which are
generated only at O(δ2). An interesting scenario is given by the limit UL

u → 1,
where the coupling matrices read

ΓuL = 0 , ΓdL =
3

2

 |Vtd|2 VtsV
∗
td VtbV

∗
td

V ∗tsVtd |Vts|2 VtbV
∗
ts

V ∗tbVtd V ∗tbVts |Vtb|
2 − 1

 . (7.53)

This limit, characterized by having no FCNCs in the up-quark sector, is realized
in the explicit model in Section 7.2.2. In what follows, we will not consider the
scenarios with FCNCs in the up-quark sector, given their strong model dependency.

Leptophilic Ẑ`: Since we assume that the charged lepton Yukawa matrix is
generated at a high scale where U(1)µ−τ is unbroken, the Ẑ` charged lepton current

in the mass basis is given by (L ⊃ g`Ẑ` µĴ
µ
Z`

),

ĴµZ` = −τγµτ + µγµµ . (7.54)

Gauge-boson mixing: At the scale where the two U(1)’s are broken, the most
general quadratic Lagrangian in the unitary gauge reads 13

L ⊂ −1

4
Ẑq µνẐ

µν
q −

1

4
Ẑ` µνẐ

µν
` −

sinχ

2
Ẑq µνẐ

µν
`

+
1

2
M̂2

Zq Ẑq µẐ
µ
q +

1

2
M̂2

Z`
Ẑ` µẐ

µ
` + δM̂2Ẑq µẐ

µ
` ,

(7.55)

where χ and δM̂ parametrize the kinetic and mass gauge mixing, respectively. The
kinetic and mass mixing terms can be removed by means of a non-unitary and an
orthogonal rotation, respectively (see Refs. [21,22] for more details). These are given
by (

Ẑ`
Ẑq

)
=

(
1 −tχ
0 1/cχ

)(
cξ −sξ
sξ cξ

)(
Z1

Z2

)
, (7.56)

where we used the following abbreviations: cξ ≡ cos ξ, sξ ≡ sin ξ, and tξ ≡ tan ξ,
and similarly for χ. The induced mass-mixing angle is defined as

t2ξ =
−2cχ

(
δM̂2 − sχM̂2

Z`

)
M̂2

Zq
− c2χM̂2

Z`
− 2 sχδM̂2

. (7.57)

13For simplicity, and without loss of generality, we assume that the new gauge bosons decouple
from the SM gauge sector and there is no relevant kinetic or mass mixing with the SM gauge fields.
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SU(2)Q SU(2)U SU(2)D U(1)q SU(3)c SU(2)L U(1)Y

qjL 2 1 1 −1/2 3 2 1/6
ujR 1 2 1 −1/2 3 1 2/3
djR 1 1 2 −1/2 3 1 −1/3
q3L 1 1 1 1 3 2 1/6
tR 1 1 1 1 3 1 2/3
bR 1 1 1 1 3 1 −1/3
UjL 1 2 1 −1/2 3 1 2/3
DjL 1 1 2 −1/2 3 1 −1/3
UjR 2 1 1 −1/2 3 1 2/3
DjR 2 1 1 −1/2 3 1 −1/3

H 1 1 1 0 1 2 1/2
φu 2̄ 2 1 0 1 1 0
φd 2̄ 1 2 0 1 1 0
φmix 1 1 2 −3/2 1 1 0

Table 7.4: Particle content of the quark sector. Particles added to the SM are shown
in a gray background.

The gauge boson eigenstate masses are

M2
Z1,2

=
M̂2
Z`

+ M̂2
Zq
− 2δM̂2sχ ±

√(
M̂2
Z`
− M̂2

Zq

)2
+ 4∆

2c2
χ

, (7.58)

where

∆ = M̂2
Z`
M̂2

Zqs
2
χ + δM̂4 −

(
M̂2

Z`
+ M̂2

Zq

)
δM̂2sχ . (7.59)

Finally, the interactions of the gauge bosons with fermions in the mass eigenstate
basis are given by

L ⊃
[
(cξ − tχsξ) g`ĴµZ` +

sξ
cχ
gqĴ

µ
Zq

]
Z1µ +

[
cξ
cχ
gqĴ

µ
Zq
− (sξ + tχcξ) g`Ĵ

µ
Z`

]
Z2µ .

(7.60)

7.2.2 Explicit model example

In this section we present an explicit realization of the framework presented in
the previous section. We assume that the maximal flavor group in the absence of
Yukawas, G, is a local symmetry of nature that gets broken by the natural minima in
Eqs. (7.36) and (7.43) at a very high scale leading to an unbroken SU(2)Q×SU(2)U×
SU(2)D × SU(2)E ×U(1)q ×U(1)l. For simplicity, we will ignore in this section the
generation of neutrino masses, that is not directly relevant to our phenomenological
analysis.

Following a similar approach to that in Refs. [108,110], we introduce a minimal
set of fermions to cancel the gauge anomalies, i.e. those of the flavor and SM
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groups and mixed anomalies among them, see Tables 7.4 and 7.5. The most general
renormalizable Lagrangian compatible with the symmetries and particle content of
the model reads

L = Lkin − V (φu, φd, φmix, φe, φν , H) + (yt q3LH̃tR + yb q3LHbR + yτ `3LHτR

+ λu qiLH̃UiR + λ′u UiL(φu)ij UjR +Mu UiLuiR + λd qiLHDiR
+ λ′dDiL(φd)ij DjR +MdDiLdiR + λmixDiL(φmix)i bR + λe1 `1LHE1R

+ λe2 `2LHE2R + λ′e1 EiL(φe)i E1R + λ′e2 EiL(φ̃e)i E2R +Me EiLeiR + h.c.) , (7.61)

with i, j = 1, 2 and where Mu,d,e and λ
(′)
u,d are universal parameters for the first two

generations, and φ̃e = iσ2φ
∗
e with σ2 the Pauli matrix. We assume that the scalar

flavons φu,d,e take a vev at a high scale with 〈φf〉 �Mf (f = u, d, e). This gives rise
to the Yukawa couplings of the first and second generation SM fermions. Through a
flavor transformation, we can make 〈φu〉 diagonal and 〈φd〉 → 〈φd〉V , with V a 2×2
unitary matrix that, at leading order, corresponds to the Cabbibo matrix. After
step II symmetry breaking, the Yukawa couplings are given by

Yu(d) =

(
y

(2)
u(d) 0

0 yt(b)

)
, Ye =

(
y

(2)
e 0
0 yτ

)
. (7.62)

At leading order in the Mf〈φf〉−1 expansion, the (light generation) Yukawa matrix
elements read

y(2)
u =

λuMu

λ′u
〈φu〉−1 , y

(2)
d =

λdMd

λ′d
V †〈φd〉−1 , (y(2)

e )ii =
λeiMe

λ′eive
, (7.63)

with 〈φe〉 = (ve 0)ᵀ. On the other hand, the extra fermions acquire a mass pro-
portional to the vevs of the flavon fields, which are assumed to be large, and they
decouple at low energies. The vevs of the flavon fields break the flavor group down to
U(1)q ×U(1)µ−τ . The unbroken U(1)µ−τ symmetry ensures that the charged lepton
Yukawa couplings are diagonal, and therefore there are no flavor violating couplings
in the charged lepton sector.

Finally in the step III, the scalar flavons φmix and φν develop a vev around the
TeV scale giving a heavy mass to the neutral gauge bosons associated to the U(1)’s
(M̂Zq(`) ∼ gq(`)〈φmix(ν)〉). Mixing among the third and the first two generations of
quarks in the down-quark sector is generated,

Yd
〈φmix〉−→ Yd =

(
y

(2)
d ymix

d

0 yb

)
, (7.64)

where, at leading order in 〈φd〉−1〈φmix〉,

ymix
d = y

(2)
d

λmix〈φmix〉
Md

. (7.65)

Note that in this model Vub ' (ymix
d )1/yb and Vcb ' (ymix

d )2/yb, and therefore in order
to accommodate the measured values of the CKM matrix elements the hierarchy
λmix〈φmix〉 &Md has to be enforced.
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SU(2)E U(1)l SU(3)c SU(2)L U(1)Y

`jL 1 δj2 1 2 −1/2
ejR 2 1/2 1 1 −1
`3L 1 −1 1 2 −1/2
τR 1 −1 1 1 −1
EjL 2 1/2 1 1 −1
EjR 1 δj2 1 1 −1

H 1 0 1 2 1/2
φe 2 1/2 1 1 0
φν 1 −1 1 1 0

Table 7.5: Particle content of the lepton sector. Particles added to the SM are
shown in a gray background.

Finally, as we will discuss in Section 7.2.3 (see Eq. (7.76)), a relatively large
amount of mass mixing between the gauge bosons associated to the flavored U(1)’s
is needed in order to accommodate the b → s`+`− anomalies. In the minimal
framework presented in this section, the only connection between the two sectors is
given by the portal interaction (φ†mixφmix)(φ†νφν). This interaction is however unable
to induce the required mixing at sufficient level, which in the minimal model is
absent even at the one-loop order. Therefore, the minimal model presented here
has to be extended. The necessary amount of mixing can be easily accounted for by
the inclusion of additional particles, either fermions or scalars, charged under both
U(1)q and U(1)µ−τ , and with a mass around the TeV scale. For the purpose of this
study it is not necessary to provide a precise realization of such extensions but we
rather consider the gauge boson mixing as a free parameter.

7.2.3 Phenomenological implications

Rare transitions: b→ sµ+µ−

We start with the effective Hamiltonian for b → sµ+µ− transitions introduced in
Section 4.2.2. In our model only a contribution to the operator Oµ

9 is generated. For
our numerical analysis we rely on the results of the fit for the Wilson coefficients
reported in Ref. [119] (see also Ref. [99]), where the best fit is CNPµ

9 = −1.09± 0.22
at the 1σ level. In our case, we have

CNPµ
9 =

gqg`Γ
∗
bs

VtbV ∗ts

cξsξ
cχ

[
1− tξtχ
M2

Z1

− 1 + tχ/tξ
M2

Z2

]
Λ2
ν , (7.66)

where Λv =
√√

2π/(GFαem) = 7 TeV.

Naive effective field theory power counting suggests that the contribution due
to pure kinetic mixing is expected to be additionally suppressed by a factor ∼
m2
b/M

2
Z1,2

. This is due to the presence of derivatives from the field-strength ten-

sors. Indeed, we explicitly checked that CNPµ
9 in Eq. (7.66) vanishes in the limit

δM̂2,mb → 0. Therefore, from now on, we set χ to zero and allow for non-zero mass
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mixing δM̂2 = M̂ZqM̂Z`ε, where the parameter ε is expected to be small. Expanding
in ε, we find

CNPµ
9 = − Γ∗bs

VtbV ∗ts

(
gqΛv

MZ2

)(
g`Λv

MZ1

)
ε+O(ε2) . (7.67)

∆F = 2 processes

Flavor violating Z ′ couplings to b and s unavoidably induce tree level contribution
to Bs − B̄s mixing. In our model

∆RBs = |gqΓbs|2
(

s2
ξ

M2
Z1

+
c2
ξ

M2
Z2

)(
g2(VtbV

∗
ts)

2

16π2v2
S0

)−1

, (7.68)

where the SM loop factor is given by S0 = 2.322± 0.018 [120]. Expanding in ε, we
find

∆RBs =

∣∣∣∣ Γbs
VtbV ∗ts

∣∣∣∣2(gqΛv

MZ2

)2(
2s2

W

S0

)
+O(ε2) , (7.69)

where sW is the sine of Weinberg angle. Requiring NP contributions to the mixing
amplitude to be at most O(10%), we find the following condition∣∣∣∣ Γbs

VtbV ∗ts

gqΛv

MZ2

∣∣∣∣ . 0.7 . (7.70)

In the numerical fit we take NP contributions to the mixing amplitude to be ∆RBs =
−0.10± 0.07 (see discussion in Ref. [121]).

Figure 7.4: Combined fit to Bs mixing,
neutrino trident production and b →
sµ+µ− observables assuming ε = 0.1
(green - 1σ, yellow - 2σ). Relaxing
the first (second) constraint is illustrated
with red (blue).

It is worth noting that the contribution to ∆F = 2 processes have necessarily
constructive interference and are MFV-like (i.e. a similar relative correction com-
pared to the SM is also expected in Bd − Bd and kaon mixing). This conclusion
would not hold if the σid terms in Eq. (7.41) were not negligible. Tuning the σid one
can generate arbitrary contributions to ∆F = 2 amplitudes and relax the bound in
Eq. (7.70). However, since this tuning does not find a natural explanation within our
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framework, we will not consider this possibility any further. Flavon fields also give
tree-level MFV-like contributions to ∆F = 2 transitions. However, since they are
SM singlets, their contributions to these processes receive an extra suppression of
O (m2

b/〈φmix〉2), and can be neglected. We checked this explicitly in the model exam-
ple and also verified that flavon-Higgs box contributions can be neglected since they
are not parametrically enhanced by large masses compared to the Z ′ contribution.

Neutrino Trident Production

Bounds on flavor-diagonal Z ′ couplings to muons can also arise from NTP, where
a muon pair is created by scattering a muon-neutrino with a nucleon: νµN →
νNµ+µ− [39]. Note that as the flavor of the neutrino in the final state is not
detected, one must sum over all three generations in the case of flavor-violating
interactions. We obtain for the cross section of NTP

σNP

σSM

=
1 +

(
1 + 4s2

W + 2v2V NP
)2

1 + (1 + 4s2
W )

2 , (7.71)

with

V NP = g2
`

[(
cξ
MZ1

)2

+

(
sξ
MZ2

)2
]
, (7.72)

while expanding in ε

V NP =
g2
`

M2
Z1

+O(ε2) . (7.73)

The bound from the CCFR collaboration [42] is given by

RNTP ≡ σexp/σSM = 0.82± 0.28 . (7.74)

Requiring this constraint to be satisfied at the 2σ level implies∣∣∣∣g`Λv

MZ1

∣∣∣∣ . 12 . (7.75)

Combined fit to low-energy data

Using the limits in Eq. (7.70) and Eq. (7.75), and plugging in Eq. (7.67), we find
that the NP contribution to Cµ

9 can be

CNPµ
9 ' − 8× ε . (7.76)

We then conclude that ε ∼ O(0.1) is required to reconcile low-energy constraints
with the correct size of Cµ

9 . To make this point more precise, we perform a combined
fit to the set of measurements discussed above. The total likelihood as a function
of three parameters: gqΛv/MZ2 , g`Λv/MZ1 and ε, is constructed by adding the cor-

responding χ2 terms from the three measurements: CNPµ
9 , ∆RBs and RNTP. The

preferred region for gqΛv/MZ2 and g`Λv/MZ1 at 1σ (green) and 2σ (yellow), setting
ε = 0.1, is shown in Figure 7.4. In the numerical analysis, we set Γbs = VtbV

∗
ts as sug-

gested by Eq. (7.52). Possible O(1) modifications of this parameter shift accordingly
the preferred value of gqΛv/MZ2 .
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ATLAS 8 TeV: pp→Z1 (Z2 )→μμ

ϵ = 0.1
gqΛv /MZ2 = 0.5
gℓΛv /MZ1 = 10

allowed
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Figure 7.5: Allowed region in
the (MZ1 ,MZ2) plane from di-
rect searches for dimuon res-
onances in pp → Z1(Z2) →
µ+µ− at LHC [58]. Here we fix
ε = 0.1, gqΛv/MZ2 = 0.5, and
g`Λv/MZ1 = 10 in agreement
with the preferred region from
the low-energy fit. The mixing
angle ξ is small for these points,
at most ∼ 0.1.

Direct searches at LHC

In this section, we discuss the LHC phenomenology of the two Z ′ bosons. In the
limit of zero mass and kinetic mixing and assuming that right-handed neutrinos are
heavy, Z1 ' Ẑ` (see Eq. (7.56)) decays predominantly to τ+τ−, µ+µ− and ν̄ν with
the partial decay widths

Γ(Ẑ` → µµ) = Γ(Ẑ` → ττ) = Γ(Ẑ` → ν̄ν) =
g2
`

12π
MẐ`

, (7.77)

while Z2 ' Ẑq decays to t̄t, b̄b and light jets with the partial widths

Γ(Ẑq → bb̄) = Γ(Ẑ` → jj) =
g2
q

4π
MẐq

, (7.78)

where jj = uū+ dd̄+ ss̄+ cc̄ and

Γ(Ẑq → tt̄) = Γ(Ẑq → bb̄)

(
1 +

2m2
t

M2
Ẑq

)√
1− 4m2

t

M2
Ẑq

, (7.79)

in agreement with the general decay formula in Eq. (B9) of Ref. [122]. In the zero
mixing limit, only Ẑq is produced at the LHC. The total hadronic cross section in
the narrow width approximation is given by

σ(qq̄ → Ẑq) =
8π2

3MẐq
s0

Γ(Ẑq → qq̄) Lqq̄ , (7.80)

where Lqq̄ is the corresponding parton luminosity function. The dominant contribu-
tion is for q = u, d. We use NNLO MMHT2014 PDF [123] set for numerical studies.
Furthermore, we cross-checked the results using MadGraph [124].
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Figure 7.6: Predictions for the LHC signals (σ × B) at 8 TeV (first row) and 13
TeV (second row) for µ+µ−, tt̄ and jj resonance searches for Z1 (green) and Z2

(blue). Present limits are shown with black line, and future-projected with dashed
line.

ATLAS searched for a narrow Z ′ resonance in pp collisions at 8 TeV decaying to
µ+µ− [58]. The reported limits on σ×B in the mass range [150− 3500] GeV can be
used to set constraints on the parameter space of our model. Production and decay
formulas are easily generalized in the case of arbitrary mass mixing ξ. We compute
the signal strength for both Z ′ and confront with these limits.

Interestingly, we find that it is possible to have relatively light vectors (. TeV)
with O(1) couplings. In particular, fixing ε = 0.1, gqΛv/MZ2 = 0.5, and g`Λv/MZ1 =
10, in agreement with the preferred region from the low-energy fit, we have performed
a scan in the (MZ1 ,MZ2) plane. In Figure 7.5 we show in green the region allowed by
present dimuon searches from Ref. [58]. The most plausible scenario is the one with
a mass hierarchy between the vectors, MZ1 < MZ2 , and with small mass mixing.
That is, the lighter vector Z1 is predominantly Ẑ`, while the heavier Z2 is predom-
inantly Ẑq. In conclusion, requiring small (perturbative) couplings (g` ∼ 2 implies
ΓZ1/MZ1 ∼ 0.3), low-energy flavor data together with dimuon resonance searches
require a relatively light leptophilic Z ′, that might be probed in the near future.

In order to check the robustness of the above statement, we have performed an
exhaustive parameter scan of the model randomly varying five input parameters with
flat priors: M̂Zq and M̂Z` in the range [150, 4000] GeV, ε and gq in the range [0,1],
and g` in the range [0,2]. We have constructed the combined likelihood function for
the low-energy data, together with the dimuon search [58] for both Z ′s, in terms of
the model parameters using the complete formulas (not expanded in small mixing).
The best fit point gives χ2

min ≈ 7, while the SM point has χ2
SM ≈ 27. We have kept

the points that provide a good fit to all data, namely ∆χ2 ≡ χ2 − χ2
min . 6.
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Shown in Figure 7.6 are the corresponding predictions for σ × B for µ+µ−, tt̄
and jj resonance searches at LHC. In addition, we show the present limits from
Refs. [61, 125–128], and estimate the future sensitivity with 300 fb−1. Interestingly
enough, the unpublished 13 TeV dimuon resonance search [61] is already probing
the relevant region, with conclusive answers expected in the near-future data. On
the other hand, we find the impact of the present (and future) t̄t and jj searches
to be less relevant. We restricted our scan to the mass range of dimuon resonance
searches reported by ATLAS and CMS (namely Mµµ ≥ 150 GeV) but it is interesting
to note that a very light (almost leptophilic) Z1 could evade the experimental bounds
provided its gauge coupling is sufficiently small. In this case, Z → 4µ provides a
bound of MZ1 & 30 GeV [38, 39, 129], when the three-body decay Z → µ+µ−Z ′(→
µ+µ−) is kinematically open. Finally, one can establish a rough estimate on the
future mass reach at LHC using the ColliderReach tool for extrapolations [130]. We
find that by Run 3, with 300 fb−1, this value should rise to about 5 TeV.

7.2.4 Summary and conclusions

The assumption of dynamically generated Yukawa couplings provides a natural ex-
planation to the observed pattern of fermion masses and mixing angles, both in the
quark and lepton sectors [107]. In this framework the maximal [SU(3)]5×O(3) flavor
group is assumed to be a local symmetry of nature, broken spontaneously (and in
several steps) by flavon fields. In this section we have shown that in this context,
under reasonable assumptions about the flavor symmetry breaking pattern, it is pos-
sible to obtain an explanation of the anomalies observed in b→ sµ+µ− transitions.
The main features of the proposed model can be summarized as follows.

• Two Z ′ bosons arise as the lowest-lying resonances resulting from the gauging
of the flavor group, one corresponding to a gauged U(1)q and the other one to a
gauged µ− τ flavor symmetry. A small but non-vanishing mass-mixing among
the Z ′ bosons is required in order to accommodate the flavor anomalies.

• The flavor symmetry acting on the light quark families ensures a partial pro-
tection for quark FCNCs, which turn out to be sufficiently small to avoid the
tight existing constraints while allowing for sizable effects in b→ sµ+µ−. The
model predicts no FCNCs in the charged lepton sector.

• Concerning b→ sµ+µ− transitions, our model predicts Cµ
9 |NP only, and max-

imal µ − e universality violation. Therefore, no deviations from the SM pre-
dictions in Bs → µ+µ− are expected but sizable effects in angular observables
measuring lepton flavor universality violation [131–133] should occur.

Present data already provides important restrictions on the parameter space of
the model: for small gauge mixing, the bound from Bs mixing implies gq/MZ2 .
0.1 TeV−1 while the constraint from NTP gives the bound g`/MZ1 . 1.7 TeV−1.
Direct searches at LHC allow for a very light (almost leptophilic) Z ′ together with
a heavier one (mostly quarkphilic) in the TeV domain. This full region of the
parameter space will be explored in the near future by dimuon searches.
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Figure 7.7: New physics contributions to B → K(∗)µ+µ− and B → D(∗)τν from the
tree-level exchange of massive vector bosons.

7.3 Non-universal SU(2)× SU(2)×U(1) models

In this section, based on the publications in Refs. [134,135], we explore the possibility
of having an unified explanation of the b→ c`ν and b→ s`+`− anomalies from the
breaking of a SU(2) extended gauge group. In this framework, the new massive gauge
vector bosons that arise from the breaking of this group mediate flavor transitions at
tree-level as shown in Figure 7.7, providing a possible explanation to the deviations
from the SM observed in B-meson decays.

The plan of this section is as follows: In Section 7.3.1 we discuss possible real-
izations of the SU(2) extended framework, and show that the conditions imposed
by the anomalies restrict this extension to a particular model, that we present in
more detail in Section 7.3.2. We derive the gauge boson and fermion masses and
mixings, as well as the required textures in Section 7.3.3. A detailed description of
the flavour and electroweak observables included in the global fit is given in Sec-
tion 7.3.4. Our global fit main results and predictions are presented in Section 7.3.5
and Section 7.3.6, respectively. Finally, in Section 7.3.7 we provide our conclusions.
Details of the model are provided in the Appendices.

7.3.1 Gauge Extensions with Lepton Non-Universality

A common explanation of universality-violating hints in the decays b → cτν and
b → s`+`− poses serious challenges for model building. This is mostly because the
NP mediators responsible for such processes would have to act at tree level. Indeed,
the semileptonic decays B → D(∗)τν are charged current processes which arise at
tree level in the SM. Since the observed deviation from the SM prediction is quite
sizable, O(25%), this strongly suggests the presence of tree-level charged mediators.
The same applies to the decays B → K(∗)`+`− even though they are due, in the
SM, to neutral current processes arising at one-loop level. The large deviation from
the SM, again O(25%), would imply a very light mediator if the new interactions
followed the SM pattern. Such a light mediator, O(MZ), would be hard to hide
from other flavor observables which are in perfect agreement with the SM as well as
from direct searches for new states at high energy colliders such as the LHC.

We assume from now on that the anomalies RK and R(D(∗)) are genuine and
due to new gauge bosons entering at tree level. We are therefore looking for a



7.3 Non-universal SU(2)× SU(2)× U(1) models 143

non-universal gauge extension of the SM which could explain both anomalies at the
same time. We will be interested in scenarios where new physics effects in the lepton
sector affect mainly the muon and tau leptons.

There are essentially two strategies to follow in constructing non-universal gauge
extensions of the SM:

• Non-Universality from gauge couplings (g-NU): via a non-universal em-
bedding of SM fermions into a larger gauge group, or

• Non-Universality from Yukawas (y-NU): through non-universal interac-
tions between SM fermions and extra particles which are universally coupled
to new vector bosons.

This means that, in general, non-universality is either controlled by Yukawa cou-
plings or by gauge couplings. Of course, one can always mix these two approaches,
however we keep them separated for the sake of clarity and to gain insights based
on generic considerations.

For simplicity and definiteness, we will focus on implementations where the gauge
extensions consist of SU(2) and U(1) factors only. The minimal possibilities are
denoted generically as G(221) models. In addition to the source of non-universality,
G(221) models can be classified according to the gauge symmetry-breaking pattern.
We distinguish two broad categories:

• L-Breaking Pattern (L-BP): For this breaking pattern the U(1)Y group
appears from a non-trivial breaking of the extended group:

SU(2)L × SU(2)H × U(1)H → SU(2)L × U(1)Y . (7.81)

• Y-Breaking Pattern (Y-BP):

The SU(2)L factor is non-trivially embedded in the extended gauge group and
arises from the breaking pattern:

SU(2)1 × SU(2)2 × U(1)Y → SU(2)L × U(1)Y . (7.82)

We now proceed to review the viability of the different possibilities that are
available in our classification.

Non-Universality from gauge couplings

In this scenario, the extended gauge group should distinguish among the different
SM fermion flavors. As aforementioned, in this case we have two possibilities:

• Breaking chain L-BP: A model within this scenario was already presented
in Ref. [136] to explain the R(D(∗)) anomalies. However, just with the SM
particle content one can only couple right-handed fermions to the extra gauge
group, making it unable to accommodate RK .
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• Breaking chain Y-BP: This model has been studied in Refs. [137–139].
In this scenario it is only possible to reproduce the desired non-universal Z ′

and W ′ couplings to leptons if the gauge coupling hierarchy g2 � g1 ∼ g
is enforced, with a single SM family coupling to SU(2)2. However the large
g2 limit has to face constraints from rapid proton decay and perturbativity.
Instanton mediated processes will, in general, induce proton decay when a
single SM family is coupled to a non-abelian gauge group, setting a bound
on the gauge coupling: g2 (M2

Z′) . 1.3− 1.6, depending on the parameters of
the model [140, 141]. This bound can be circumvented by introducing extra
fermions that couple to this gauge group, such as VL fermions. However,
even in this case, perturbativity sets an upper bound on the gauge coupling of
g2 (M2

Z′) <
√

4π ' 3.5. Given these limits, it is not possible to reproduce the
requested hierarchy on the lepton couplings, making this framework disfavored
for the simultaneous explanation of RK and R(D(∗)).

Non-Universality from Yukawa couplings

Here new VL fermions, charged universally under a new force to which the SM
fermions are neutral, are Yukawa-coupled to the SM quarks and leptons. The effec-
tive coupling of the SM with the new bosons is achieved via mixings with the VL
fermions and is hence controlled by the Yukawas, which can be in principle adjusted
to get the desired flavor textures. In general these mixings will also modify the SM
gauge and Higgs couplings. However one can charge the VL fermions under the
gauge group in such a way that GIM protection is enforced at the scale of the first
symmetry breaking, making these deviations sufficiently small to avoid experimen-
tal constraints. This translates in the two breaking patterns we are considering as
follows:

• Breaking chain L-BP: In order to obtain an effective coupling W ′± to left-
handed quarks, it is necessary to add VL quarks which mix with the SM weak
quark doublet. The electric charge formula of this breaking chain is:

Q = T3L + (T3H +H) , (7.83)

where T3L (T3H ) and H are respectively the isospin under SU(2)L (SU(2)H)
and the U(1)H charge. Since the SM fields are neutral under the new SU(2)H

interactions, U(1)H charges coincide with the standard hypercharges. In order
for two new quarks, Qb and Qc, to couple to W ′± they must belong to the
same SU(2)H multiplet and their isospin must satisfy |T3H (Qb)−T3H (Qc)| = 1.
On the other hand, to preserve the GIM mechanism in the presence of the
new mixings the new quarks must have the same SM quantum numbers (T3L

and Y ≡ T3H + H) as the SM quarks with which they mix [142]. These two
requirements are in conflict with each other and so we conclude that models
of type L-BP cannot account for a unified description of RK and R(D(∗)).

• Breaking chain Y-BP: The product SU(2)1 × SU(2)2 can be broken to
the diagonal SU(2)L by a Higgs bidoublet. This specific type of breaking
allows for both couplings to W ′ and GIM suppression. It is enough to charge
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L-BP Y-BP

g-NU 7 No left-handed currents 7 perturbativity

y-NU 7 No GIM 3

Table 7.6: Summary of model building possibilities for G(221) models: source of
flavor non-universality versus symmetry-breaking patterns. Blocks denote scenarios
which are disfavored as an explanation of the B-decay anomalies while a star denotes
a viable framework.

SM fermions under one of the two SU(2) groups, say SU(2)2, and copy the
exact same assignments for the VL fermions. This is the scenario we deem
more promising for the simultaneous explanation of b → s`+`− and b → cτν
anomalies.

Summary

In summary, restricted to minimal gauge extensions we have found four broad classes
of models that lead to flavor non-universality and can potentially address the flavor
anomalies. These classes depend on the breaking pattern (L-BP or Y-BP) and
the source of flavor non-universality (g-NU or y-NU). Table 7.6 summarizes our
main conclusion: the most promising candidates are gauge extensions where gauge
couplings are universal and non-universality arises from Yukawa couplings of the SM
fermions with a set of new VL fermions.

7.3.2 Description of the model

In this section we construct in full detail a minimal realization of the type y-NU/Y-
BP models discussed in the previous section. We consider a theory with the elec-
troweak gauge group promoted to SU(2)1 × SU(2)2 ×U(1)Y. The factor U(1)Y cor-
responds to the usual hypercharge while the SM SU(2)L is contained in the SU(2)
product. The gauge bosons and gauge couplings of the extended electroweak group
will be denoted as:

SU(2)1 : g1, W 1
i ,

SU(2)2 : g2, W 2
i ,

U(1)Y : g′, B ,

(7.84)

where i = 1, 2, 3 is the SU(2) index. All of the SM left-handed fermions transform
exclusively under the second SU(2) factor, i.e.

qL = (3,1,2) 1
6
, `L = (1,1,2)− 1

2
,

uR = (3,1,1) 2
3
, eR = (1,1,1)−1 ,

dR = (3,1,1)− 1
3
,

(7.85)
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generations SU(3)c SU(2)1 SU(2)2 U(1)Y

φ 1 1 1 2 1/2
Φ 1 1 2 2̄ 0
φ′ 1 1 2 1 1/2

qL 3 3 1 2 1/6
uR 3 3 1 1 2/3
dR 3 3 1 1 −1/3
`L 3 1 1 2 −1/2
eR 3 1 1 1 −1
QL,R nVL 3 2 1 1/6
LL,R nVL 1 2 1 −1/2

Table 7.7: Particle content of the model.

where the representations refer to SU(3)c, SU(2)1 and SU(2)2, respectively, while the
subscript denotes the hypercharge. The SM doublets qL and `L can be decomposed
in SU(2)2 components in the usual way,

qL =

(
u
d

)
L

, `L =

(
ν
e

)
L

. (7.86)

In addition, we introduce nVL generations of VL fermions transforming as

QL,R ≡
(
U
D

)
L,R

= (3,2,1) 1
6
, LL,R ≡

(
N
E

)
L,R

= (1,2,1)− 1
2
. (7.87)

For the moment we take the number of generations nVL as a free parameter to be
constrained by phenomenological requirements. Symmetry breaking is achieved via
the following set of scalars: a self-dual bidoublet Φ (i.e., Φ = σ2Φ∗σ2, with σ2 the
usual Pauli matrix) and two doublets φ and φ′,

φ = (1,1,2) 1
2
, Φ = (1,2, 2̄)0 , φ′ = (1,2,1) 1

2
, (7.88)

which we decompose as:

φ =

(
ϕ+

ϕ0

)
, Φ =

1√
2

(
Φ0 Φ+

−Φ− Φ̄0

)
, φ′ =

(
ϕ′+

ϕ′0

)
, (7.89)

with Φ̄0 = (Φ0)∗ and Φ− = (Φ+)
∗
. We summarize the particle content of the model

in Table 7.7.

Yukawa interactions

The SM fermions couple to the SM Higgs-like φ doublet via the usual Yukawa terms,

−Lφ = qL y
d φ dR + qL y

u φ̃ uR + `L y
e φ eR + h.c. , (7.90)

with φ̃ ≡ iσ2φ∗. The yu,d,e Yukawa couplings represent 3 × 3 matrices in family
space. The VL fermions, on the other hand, have gauge-invariant Dirac mass terms,

−LM = QLMQQR + LLML LR + h.c. , (7.91)
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and our choice of representations allows us to Yukawa-couple them to the SM
fermions via

−LΦ = QR λ
†
q Φ qL + LR λ

†
` Φ `L + h.c. , (7.92)

and

−Lφ′ = QL ỹ
d φ′ dR +QL ỹ

u φ̃′ uR + LL ỹ
e φ′ eR + h.c. , (7.93)

where λq,` and ỹu,d,e are 3 × nVL and nVL × 3 Yukawa matrices, respectively. After
spontaneous symmetry breaking, these couplings will induce mixings between the
VL and SM chiral fermions. This is crucial for the phenomenology of the model, in
particular for its flavour sector, as will be clear in the next sections.

Scalar potential and symmetry breaking

The scalar potential can be cast as follows:

V = m2
φ|φ|2 +

λ1

2
|φ|4 +m2

φ′ |φ′|2 +
λ2

2
|φ′|4 +m2

Φ Tr(Φ†Φ) +
λ3

2

[
Tr(Φ†Φ)

]2
+ λ4(φ†φ)(φ′†φ′) + λ5(φ†φ)Tr(Φ†Φ) + λ6(φ′†φ′)Tr(Φ†Φ) +

(
µφ′†Φφ+ h.c.

)
.

(7.94)

We will assume that the parameters in the scalar potential are such that the scalar
fields develop vevs in the following directions:

〈φ〉 =
1√
2

(
0
vφ

)
, 〈φ′〉 =

1√
2

(
0
vφ′

)
, 〈Φ〉 =

1

2

(
u 0
0 u

)
. (7.95)

Assuming u� vφ, vφ′ , the symmetry breaking proceeds via the following pattern:

SU(2)1 × SU(2)2 × U(1)Y
u−→ SU(2)L × U(1)Y

v−→ U(1)em , (7.96)

with the assumed vev hierarchy u ∼ TeV� v ' 246 GeV. With this breaking chain,
the charge of the unbroken U(1)em group is defined as

Q =
(
T 1

3 + T 2
3

)
+ Y = TL3 + Y , (7.97)

with T a3 the diagonal generator of SU(2)a. In the first step, the original SU(2)1 ×
SU(2)2 group gets broken down to the diagonal SU(2)L. Under the diagonal sub-
group, φ and φ′ transform as doublets and, as usual with 2HDM, we parametrize
their vevs as

vφ = v sin β ,

vφ′ = v cos β ,
(7.98)

where v2 = v2
φ + v2

φ′ . Since the two doublets transformed originally in a ‘mirror’ way
under the two original SU(2) factors, it is clear that the ratio between their vevs,
tan β = vφ/vφ′ , controls the size of the gauge mixing effects. In particular, the limit
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tan β = g1/g2 corresponds to the purely diagonal limit with no gauge mixing, see
Section 7.3.3 for more details.

The scalar fields {φ,Φ, φ′} contain 12 real degrees of freedom, six of these become
the longitudinal polarization components of the W (′)± and Z(′) bosons. In the CP-
conserving limit the scalar spectrum is composed of three CP-even Higgs bosons,
one CP-odd Higgs and one charged scalar, forming an effective (constrained) 2HDM
plus CP-even singlet system. The scalar sector will present a decoupling behavior,
with a SM-like Higgs boson at the weak scale (to be associated with the 125 GeV
boson) and the rest of the scalars at the scale u ∼ TeV.14 Further details of the
scalar sector are given in Appendix 7.C.

7.3.3 Gauge boson and fermion masses and interactions

We now proceed to the analysis of the model presented in the previous section. Here
we will derive the masses and mixing of the gauge bosons and fermions of the model,
as well as the neutral and charged vectorial currents.

Fermion masses

We can combine the SM and the VL fermions as

U IL,R ≡
(
uiL,R, U

k
L,R

)
, DIL,R ≡

(
diL,R, D

k
L,R

)
,

N I
L ≡

(
νiL, N

k
L

)
, N I

R ≡
(
0, Nk

R

)
, (7.99)

EIL,R ≡
(
eiL,R, E

k
L,R

)
,

where i = 1, 2, 3, k = 1, . . . , nVL and I = 1, . . . , 3 + nVL. With this notation the
fermion mass Lagrangian after symmetry breaking is given by

−Lfm = ULMUUR +DLMDDR + ELMEER +NLMNNR + h.c. (7.100)

The mass matrices are given in terms of the Yukawa couplings, VL Dirac masses
and vevs as

MU =

(
1√
2
yuvφ

1
2
λqu

1√
2
ỹuvφ′ MQ

)
, MD =

(
1√
2
ydvφ

1
2
λqu

1√
2
ỹdvφ′ MQ

)
,

ME =

(
1√
2
yevφ

1
2
λ`u

1√
2
ỹevφ′ ML

)
, MN =

(
0 1

2
λ`u

0 ML

)
.

(7.101)

Note that we did not include any mechanism to generate neutrino masses, and
consequently MN leads to three massless neutrinos and nVL heavy neutral Dirac
fermions. It is nevertheless straightforward to account for neutrino masses without
impacting our analysis and conclusions by including one of the usual mechanisms,
such as the standard seesaw.

14We will assume that µ is of the same order of the largest scale in the scalar potential, i.e.
µ ∼ u.
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In order to have a manageable parameter space and simplify the analysis we will
assume that the Yukawa couplings of φ′ can be neglected, ỹu,d,e ' 0. This can be
justified by introducing a softly-broken discrete Z2 symmetry under which φ′ is odd
and all the other fields are even. We take the Dirac masses of the VL fermions to
be generically around the symmetry breaking scale u ∼ TeV.

The fermion mass matrices can be block-diagonalized perturbatively in the small
ratio ε = v/u� 1 by means of the following field transformations

UL → V †QV
†
u UL , UR → W †

u UR ,
DL → V †QV

†
d DL , DR → W †

d DR ,
EL → V †LV

†
e EL , ER → W †

e ER ,
NL → V †L NL ,

(7.102)

defined in terms of the unitary matrices

VQ,L =

 V 11
Q,L =

√
1− 1

4
λq,`M̃

−2
Q,Lλ

†
q,` V 12

Q,L = −u
2
V 11
Q,Lλq,`M

−1
Q,L

V 21
Q,L = 1

2
M̃−1

Q,Lλ
†
q,` V 22

Q,L = 1
u
M̃−1

Q,LM
†
Q,L

 , (7.103)

Vf = 1 + iε2Hf
V + . . . ; Wf = 1 + iεHf

W +
(iε)2

2
Hf
W

2 + . . . (7.104)

Here the freedom in the definition of V 11
Q,L is removed by choosing it to be hermitian.

Furthermore, u× M̃Q,L are the physical VL masses at leading order in ε,

M̃Q,L =

√
M †

Q,LMQ,L

u2
+
λ†q,`λq,`

4
' diag

(
M̃Q1,L1 , . . . , M̃QnVL

,LnVL

)
, (7.105)

and the matrices Hf
V and Hf

W are given by

Hf
V =

i

2

 0 V 11
F yfy

†
fV

21†
F M̃−2

F

−M̃−2
F V 21

F yfy
†
fV

11
F 0

 , (7.106)

Hf
W =

i√
2

 0 y†fV
21†
F M̃−1

F

−M̃−1
F V 21

F yf 0

 , (7.107)

with F = Q,L and f = u, d, e. After the block-diagonalization, a further diag-
onalization of the SM fermion block can be done by means of the 3 × 3 unitary
transformations

uL → S†uuL , uR → U †u uR ,

dL → S†d dL , dR → U †d dR ,

eL → S†e eL , eR → U †e eR .

(7.108)

As in the SM, only one combination of these transformations appears in the gauge
couplings: the CKM matrix, VCKM = SuS

†
d.
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Vector boson masses and gauge mixing

Neutral gauge bosons

The neutral gauge bosons mass matrix in the basis V0 = (W 1
3 ,W

2
3 , B) is given by:

M2
V0 =

1

4

 g2
1

(
v2
φ′ + u2

)
−g1g2u

2 −g1g
′v2
φ′

−g1g2u
2 g2

2

(
v2
φ + u2

)
−g2g

′v2
φ

−g1g
′v2
φ′ −g2g

′v2
φ g′2

(
v2
φ + v2

φ′

)
 . (7.109)

This matrix has one vanishing eigenvalue, corresponding to the photon and two
massive eigenstates which are identified with the Z and Z ′ bosons. Before fully
diagonalizing this mass matrix we consider first the rotation from (W 1

3 , W
2
3 ) to

(Zh, W3), with W3 the electrically neutral SU(2)L gauge boson. In order to do this
we have to study the first symmetry breaking step, i.e. u 6= 0 and v = 0, diagonalize
the top-left 2× 2 block and identify the massless state with W3 (the SU(2)L group
remains unbroken in the first step). As a result we get:

Zh =
1

n1

(
g1W

1
3 − g2W

2
3

)
, W3 =

1

n1

(
g2W

1
3 + g1W

2
3

)
, (7.110)

with n1 =
√
g2

1 + g2
2 and the gauge coupling of SU(2)L taking the value g = g1g2/n1.

In the (Zh, W3, B) basis, the rotation from (W3, B) to (Zl, A) is just like in the SM
and we obtain:

Zl =
1

n2

(gW3 − g′B) , A =
1

n2

(g′W3 + g B) , (7.111)

where n2 =
√
g2 + g′ 2 and the weak angle is defined as usual: ŝW = g′/n2 and

ĉW = g/n2. We are now in condition to write the neutral gauge boson mass matrix
in the (Zh, Zl, A) basis where it takes the form:

M2
V0 =

1

4


(g2

1 + g2
2)u2 +

g2g2
2

g2
1
v2
(
s2
β +

g4
1

g4
2
c2
β

)
−g n2

g2

g1
v2
(
s2
β −

g2
1

g2
2
c2
β

)
0

−g n2
g2

g1
v2
(
s2
β −

g2
1

g2
2
c2
β

)
(g2 + g′ 2) v2 0

0 0 0

 .

(7.112)
We see from this mass matrix that in the particular limit v = 0, only Zh gets a mass
MZ′ = 1

4
(g2

1 + g2
2)u2, which is expected since SU(2)L × U(1)Y remains unbroken in

that case. Moreover, we can extract the Zl − Zh mixing. The mass eigenvectors
(Z ′, Z) are given, in terms of (Zh, Zl), by:

Z ′ = cos ξZ Zh − sin ξZ Zl , Z = sin ξZ Zh + cos ξZ Zl , (7.113)

with the mixing suppressed by the ratio ε ≡ v/u,

ξZ '
g n2

n2
1

g2

g1

ε2
(
s2
β −

g2
1

g2
2

c2
β

)
=

g

n2

g2

g1

M2
Z

M2
Z′

(
s2
β −

g2
1

g2
2

c2
β

)
. (7.114)
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We define the parameter controlling the mixing as

ζ = s2
β −

g2
1

g2
2

c2
β . (7.115)

In the limit ζ → 0, the SU(2)L sub-group corresponds to the diagonal subgroup
of the original SU(2) product and gauge mixing vanishes. As already anticipated,
ζ → 0 corresponds to the limit tan β → g1/g2.

Finally, the masses of the neutral massive vector bosons are given by

M2
Z′ '

1

4

(
g2

1 + g2
2

)
u2 , M2

Z '
1

4

(
g2 + g′ 2

)
v2 . (7.116)

Charged gauge bosons

In the basis V+ = (W 1
12,W

2
12), with W r

12 = 1√
2

(W r
1 − iW r

2 ), the charged gauge boson
mass matrix is given by

M2
V+ =

1

4

(
g2

1

(
v2
φ′ + u2

)
−g1g2u

2

−g1g2u
2 g2

2

(
v2
φ + u2

) ) . (7.117)

As before, it is convenient to work in the basis (Wh, Wl) where the SU(2)L gauge
boson appears explicitly. To obtain this basis in terms of the original one, we set
v = 0, diagonalize the mass matrix and associate the null eigenvalue to Wl (SU(2)L

remains unbroken in the first stage of symmetry breaking). We get:

Wh =
1

n1

(
g1W

1 − g2W
2
)
, Wl =

1

n1

(
g2W

1 + g1W
2
)
. (7.118)

In the basis (Wh, Wl) the mass matrix reads:

M2
V+ =

1

4

(g2
1 + g2

2)u2 +
g2g2

2

g2
1
v2
(
s2
β +

g4
1

g4
2
c2
β

)
−g2 g2

g1
v2
(
s2
β −

g2
1

g2
2
c2
β

)
−g2 g2

g1
v2
(
s2
β −

g2
1

g2
2
c2
β

)
g2v2

 . (7.119)

The Wl − Wh mixing presents the same structure as in the neutral gauge boson
sector and reads:

ξW ' ζ
g2

n2
1

g2

g1

ε2 = ζ
g2

g1

M2
W

M2
W ′

, (7.120)

such that the physical eigenstates are given by:

W ′ = cos ξW Wh − sin ξW Wl , W = sin ξW Wh + cos ξW Wl , (7.121)

with masses

M2
W ′ 'M2

Z′ '
1

4

(
g2

1 + g2
2

)
u2 , M2

W '
1

4
g2v2 . (7.122)
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Gauge boson couplings to fermions

Neutral currents

The neutral currents of the fermions are given by

LNC = ψγµ
(
g′BµY + g1W

1µ
3 T 1

3 + g2W
2µ
3 T 2

3

)
ψ

= ψγµ

{
eQψ A

µ +
g

cW
Zµ
l [(T 1

3 + T 2
3 )− s2

W Qψ] + gZµ
h

[
g1

g2

T 1
3 −

g2

g1

T 2
3

]}
ψ,

(7.123)

with ψ = U ,D, E ,N , and e = gg′/n2 and Qψ denoting the electric coupling and
the electric charge of the fermions, respectively. Applying the transformations in
Eqs. (7.102) and (7.108) we can easily translate the above interactions to the fermion
mass eigenbasis

LNC → LNC = Aµ ψγµ eQψψ +
g

cW
Zµl

{
ψγµ

[
(T 1

3 + T 2
3 )PL − s2

WQ
]
ψ

− 1

2

(
DR γµOddR DR − UR γµOuuR UR + ER γµOeeR ER −NR γµNR

)}
+
ĝ

2
Zµh

[
DL γµOQL DL − UL γµ V O

Q
LV
† UL + EL γµOLL EL −NL γµOLLNL

− g2
1

g2
2

(
DR γµOddR DR − UR γµOuuR UR + ER γµOeeR ER −NR γµNR

) ]
+O

(
m2
f

u2

)
.

(7.124)

Here mf denotes the mass of a SM fermion with f = u, d, e, and we introduced the
following definitions:

OQ,L
L ≡

(
∆q,` Σ
Σ† ΩQ,L

)
= 1− g2

1 + g2
2

g2
2

(
V 12
Q,L(V 12

Q,L)† V 12
Q,L(V 22

Q,L)†

V 22
Q,L(V 12

Q,L)† V 22
Q,L(V 22

Q,L)†

)
, (7.125)

Off ′

R ≡

(
0 Σ̂f(

Σ̂f ′
)†

1

)
=

(
0 −mf

u

(
V 11
F

)−1(
V 21
F

)†
M̃−1

F

−M̃−1
F V 21

F

(
V 11
F

)−1mf ′

u
1

)
,

(7.126)

V =

(
VCKM 0

0 1

)
, (7.127)

with F = Q,L, and finally ĝ ≡ gg2/g1.
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Charged currents

Similarly, the charged currents take the following form

LCC =
g1√

2
W 1
µ

[
UγµD +NγµE

]
+

g2√
2
W 2
µ [uγµ PL d+ νγµ PL e] + h.c.

=
g√
2
W µ
l

[
UγµPLD +NγµPLE + UγµPRD +NγµPRE

]
− g√

2
W µ
h

[
g2

g1

(uγµPLd+ νγµPLe)−
g1

g2

(
UγµD +NγµE

)]
+ h.c. ,

(7.128)

and, in the fermion mass eigenbasis (see Eqs. (7.102) and (7.108)), we have

LCC → LCC =
g√
2
W µ
l

[
UL γµ VDL +NL γµ EL + UR γµOud

R DR +NR γµOνe
R ER

]
− ĝ√

2
W µ
h

[
UL γµ V OQ

L DL +NL γµOL
L EL −

g2
1

g2
2

(
UR γµOud

R DR

+NR γµOνe
R ER

)]
+ h.c.+O

(
m2
f

u2

)
. (7.129)

Flavour textures for the gauge interactions

In order to accommodate the hints of lepton universality violation from the recent
anomalies in B decays without being in tension with other bounds, we require
negligible couplings of the new gauge bosons to the first family of SM-like leptons and
a large universality violation among the other two. We now derive the conditions on
the number of generations of the exotic fermions to accommodate such constraints.

Using Eqs. (7.125) and (7.103), the matrix ∆q,`, that parametrize NP contribu-
tions to the left-handed gauge interactions with SM fermions, can be readily written
in the following form

∆q,` = 1− g2
1 + g2

2

4g2
2

λq,`M̃
−2λ†q,` , (7.130)

where the second term is the source of lepton non-universality induced by the mixings
between the SM and VL fermions generated by the λq,` Yukawa couplings. On the

other hand, right-handed couplings involving SM fermions, controlled by Off ′

R , are
mass suppressed and they can be neglected for the interactions we are considering.

If we consider the minimal scenario with nVL = 1, the Yukawa couplings λq,` can
be written generically as

λq,` =
2g2

n1

M̃Q,L

∆d,e

∆s,µ

∆b,τ

 . (7.131)

Here ∆d,e, ∆s,b and ∆µ,τ are free real parameters, and without loss of generality
we have chosen an appropriate normalization factor to simplify the expression of



154 Chapter 7. Flavor anomalies in B decays from extended gauge sectors

∆q,`. We have also ignored possible complex phases in the couplings since we are
not interested in CP violating observables. From Eq. (7.130) it is then clear that,
for nVL = 1, NP contributions to the left-handed gauge couplings to SM fermions
are given by

∆q,`
nVL=1 =

1− (∆d,e)
2 ∆d,e∆s,µ ∆d,e∆b,τ

∆d,e∆s,µ 1− (∆s,µ)2 ∆s,µ∆b,τ

∆d,e∆b,τ ∆s,µ∆b,τ 1− (∆b,τ )
2

 . (7.132)

As we can see, in the limit of no gauge boson mixing, NP contributions to the first
family of SM fermions can only be suppressed if we fix ∆d,e ' 1 and ∆s,µ, ∆b,τ � 1
which then implies approximate universal couplings for the second and the third
families. Hence, we need at least two generations of VL fermions in order to have
enough freedom to accommodate the observed hints of lepton universality violation.

In the rest of this article we will take the minimal setup consisting of nVL = 2
since there is no compelling reason to assume additional VL generations. Moreover,
in order to reduce the number of free parameters in the analysis we choose the
following texture for the Yukawa matrices λq,`:

λq,` =
2g2

n1

M̃Q1,L1 0

0 M̃Q2,L2 ∆s,µ

0 M̃Q2,L2 ∆b,τ

 , (7.133)

where, again, ∆s,b and ∆µ,τ are free real parameters and the normalization factor is

chosen for convenience.15 The left-handed currents, parametrized in terms of OQ,L
L

(see Eq. (7.125)) now read

∆q,` =

0 0 0
0 1− (∆s,µ)2 ∆s,µ∆b,τ

0 ∆s,µ∆b,τ 1− (∆b,τ )
2

 , (7.134)

Σ =


g1

g2
0

0 ∆s,µ

√
n2

1

g2
2
−∆2

s,µ −∆2
b,τ

0 ∆b,τ

√
n2

1

g2
2
−∆2

s,µ −∆2
b,τ

 , (7.135)

ΩQ,L =

(
1− g2

1

g2
2

0

0 ∆2
s,µ + ∆2

b,τ −
g2
1

g2
2

)
, (7.136)

which, by construction, provide the desired patterns for the NP contributions to
accommodate the data.

15Note however that the free parameters have to satisfy the condition (1−g2/g2
2)(∆2

s,µ+∆2
b,τ ) ≤ 1

for consistency with Eq. (7.105).
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7.3.4 Flavour constraints

We consider in our analysis flavour observables receiving new physics contributions
at tree-level from the exchange of the massive vector bosons. Additionally, we
consider bounds from electroweak precision measurements at the Z and W pole
which are affected in our model due to gauge mixing effects.

Regarding electroweak precision observables at the Z and W pole, we use the fit
to Z- and W -pole observables performed in Ref. [143]. The fit includes the observ-
ables listed in Tables 1 and 2 of [143], and provides mean values, standard deviations
and the correlation matrix for the following parameters: the correction to the W
mass (δm), anomalous W and Z couplings to leptons (δgW`i

L , δgZ`iL,R) and anomalous

Z couplings to quarks (δgZuiL,R, δgZdiL,R). The results for these “pseudo-observables” can
be found in Eqs. (4.5-4.8) and Appendix B of Ref. [143]. The relevant expressions
for these pseudo-observables within our model are given in Appendix 7.D.

We collect the list of flavour observables included in our analysis in Table 7.8
and describe them in more detail in the following sections.

Leptonic Tau decays

Leptonic tau decays pose very stringent constraints on lepton flavour universality
[144]. We consider the two decay rates Γ(τ → {e, µ}νν̄), normalized to the muon
decay rate to cancel the dependence on GF . We take the individual experimental
branching ratios and lifetimes from the PDG [23]. For the branching ratios we
take the result of the constrained fit, which gives a correlation of 14% between both
measurements. Once normalized to the τ lifetime, the decay rates have a correlation
of 45%, while the normalization to the muon decay rate has a minor impact on the
correlation of the ratios because its uncertainty is negligible. The experimental
results are summarized in Table 7.8.

In our model, we have:

Γ(τ → eνν̄)

Γ(µ→ eνν̄)
=

∑
i,j |Ceτ

ij |2∑
i,j |C

eµ
ij |2
× m5

τ f(xeτ )

m5
µ f(xeµ)

, (7.137)

Γ(τ → µνν̄)

Γ(µ→ eνν̄)
=

∑
i,j |C

µτ
ij |2∑

i,j |C
eµ
ij |2
× m5

τ f(xµτ )

m5
µ f(xeµ)

, (7.138)

where x``′ = m2
`/m

2
`′ and f(x) = 1−8x+8x3−x4−12x2 lnx. The Wilson coefficients

C`a`b
ij are given by

C`a`b
ij =

4GF√
2
δajδib +

ĝ2

4M2
W ′

[
2∆`

aj∆
`
ib −∆`

ab∆
`
ij + ζ(∆`

abδij + 2∆`
ajδib + 2δaj∆

`
ib)

]
.

(7.139)

The resulting predictions in the SM can be found in Table 7.8. Leading radiative
corrections and W -boson propagator effects are included in the SM predictions [145–
148].
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Leptonic τ decays

Observable Experiment Correlation SM Theory

Γτ→eνν̄/Γµ→eνν̄ 1.350(4) · 106

0.45
1.3456(5) · 106 Eq. (7.137)

Γτ→µνν̄/Γµ→eνν̄ 1.320(4) · 106 1.3087(5) · 106 Eq. (7.138)

d→ u transitions

Observable Experiment Correlation SM Theory

Γπ→µν/Γπ→eν 8.13(3) · 103

0.49
8.096(1) · 103 Eq. (7.140)

Γτ→πν/Γπ→eν 7.90(5) · 107 7.91(1) · 107 Eq. (7.141)

s→ u transitions

Observable Experiment Correlation SM Theory

ΓK→µν/ΓK→eν 4.02(2) · 104


· · ·

0.27 · ·

0.01 0.00 ·


4.037(2) · 104 Eq. (7.145)

Γτ→Kν/ΓK→eν 1.89(3) · 107 1.939(4) · 107 Eq. (7.146)

ΓK+→πµν/ΓK+→πeν 0.660(3) 0.663(2) Eq. (7.147)

c→ s transitions

Observable Experiment SM Theory

ΓD→Kµν/ΓD→Keν 0.95(5) (S = 1.3) 0.921(1) Eq. (7.149)

ΓDs→τν/ΓDs→µν 10.0(6) 9.6(1) Eq. (7.150)

b→ s transitions

Observable Experiment SM Theory

∆Ms/∆Md 35.13(15) 31.2(1.8) Eq. (7.151)

Coefficient Fit [119] Correlation SM Theory

CNPµ
9 −1.1(0.2)


· · · ·

−0.08 · · ·

0.10 −0.10 · ·

0.02 0.02 0.87 ·


0. Eq. (7.153)

CNPµ
10 +0.3(0.2) 0. Eq. (7.153)

CNPe
9 −0.3(1.7) 0. Eq. (7.153)

CNPe
10 +0.6(1.6) 0. Eq. (7.153)

b→ c transitions

Observable Experiment Correlation SM Theory

ΓB→Dµν̄/ΓB→Deν̄ 0.95(09)
+0.51

0.995(1) Eq. (7.154)

ΓB→D∗µν̄/ΓB→D∗eν̄ 0.97(08) 0.996(1) Eq. (7.154)

R(D) 0.397(49)
−0.21

0.297(17) Eq. (7.155)

R(D∗) 0.316(19) 0.252(3) Eq. (7.155)

ΓB→Xcτν/ΓB→Xceν 0.222(22) 0.223(5) Eq. (7.156)

Table 7.8: List of flavour observables used in the fit.
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d→ u transitions

We consider the decay rates Γ(π → µν) and Γ(τ → πν), normalized to Γ(π → eν)
in order to cancel the dependence on the combination GF |Vud|fπ. These ratios
constitute important constraints on flavour non-universality in d→ u`ν transitions.

We calculate the experimental values for these ratios taking the averages for
branching fractions and lifetimes from the PDG [23], and imposing the constraint
B(π → eν) + B(π → µν) = 1. We find a correlation of 49% between both ratios.
The corresponding results are summarized in Table 7.8.

The model predictions for these ratios are:

Γ(π → µν̄)

Γ(π → eν̄)
=

∑
j |Cud

2j |2∑
j |Cud

1j |2
×
[

Γ(π → µν̄)

Γ(π → eν̄)

]
SM

, (7.140)

Γ(τ → πν)

Γ(π → eν̄)
=

∑
j |Cud

3j |2∑
j |Cud

1j |2
×
[

Γ(τ → πν)

Γ(π → eν̄)

]
SM

, (7.141)

where the Wilson coefficients C
uidj
ab are given by

C
uidj
ab =

4GF√
2
Vijδab +

ĝ2

2M2
W ′

[
(V∆q)ij∆

`
ab − ζ

(
Vij∆

`
ab + (V∆q)ijδab

)]
. (7.142)

For the SM contributions we follow Ref. [144]. We have:[
Γ(π → eν̄)

Γ(π → µν̄)

]
SM

=
m2
e

m2
µ

[
1−m2

e/m
2
π

1−m2
µ/m

2
π

]2

(1 + δRπ→e/µ) , (7.143)

[
Γ(τ → πν)

Γ(π → µν)

]
SM

=
m3
τ

2mπm2
µ

[
1−m2

π/m
2
τ

1−m2
µ/m

2
P

]2

(1 + δRτ/π) . (7.144)

The calculation of δRπ→e/µ relies on Chiral Perturbation Theory to order O(e2p2)
[149]. The radiative correction factor δRτ/π can be found in Ref. [150]. The SM
predictions for both ratios are collected in Table 7.8.

s→ u transitions

We consider the decay rates Γ(K → µν) and Γ(τ → Kν), normalized to Γ(K → eν)
in order to cancel the dependence on the combination GF |Vus|fK , as well as the
semileptonic (K`3) ratio Γ(K+ → π0µ+ν)/Γ(K+ → π0e+ν). These ratios pose also
important constraints on flavour non-universality.

We take the experimental values for the decay rates Γ(K+ → µ+ν), Γ(K+ →
π0e+ν) and Γ(K+ → π0µ+ν) from the constrained fit to K+ decay data done by the
PDG [23], including the correlation matrix. The correlation between Γ(K+ → µ+ν)
and Γ(K+ → e+ν) is calculated comparing the averages for the individual rates
with the ratio given by the PDG, resulting in a correlation of 60%. Assuming no
correlation between Γ(K+ → e+ν) and the semileptonic modes, and assuming that
the τ mode is uncorrelated to the K modes, we construct a 5× 5 correlation matrix
and calculate the three ratios of interest, including their 3 × 3 correlation matrix.
These results are collected in Table 7.8.
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The model predictions for these ratios are:

Γ(K → µν̄)

Γ(K → eν̄)
=

∑
j |Cus

2j |2∑
j |Cus

1j |2
×
[

Γ(K → µν̄)

Γ(K → eν̄)

]
SM

, (7.145)

Γ(τ → Kν)

Γ(K → eν̄)
=

∑
j |Cus

3j |2∑
j |Cus

1j |2
×
[

Γ(τ → Kν)

Γ(K → eν̄)

]
SM

, (7.146)

Γ(K+ → πµν̄)

Γ(K+ → πeν̄)
=

∑
j |Cus

2j |2∑
j |Cus

1j |2
×
[

Γ(K+ → πµν̄)

Γ(K+ → πeν̄)

]
SM

, (7.147)

with the Wilson coefficients Cus
ij given in Eq. (7.142). The SM contributions for the

first two ratios are given by the analogous expressions to Eqs. (7.143,7.144) [149,150].
The SM contributions to K`3 are given by [151,152]

Γ(K+ → πµν̄)

Γ(K+ → πeν̄)
=
I

(0)
Kµ(λi)

(
1 + δKµEM + δKπSU(2)

)
I

(0)
Ke(λi)

(
1 + δKeEM + δKπSU(2)

) , (7.148)

where quantities I
(0)
K`(λi), δ

K`
EM, δKπSU(2) encoding phase-space factors, electromagnetic

and isospin corrections can be found in Refs. [151–153]. The numerical results for
the SM contributions are collected in Table 7.8.

c→ s transitions

We consider the ratios Γ(D → Kµν)/Γ(D → Keν) and Γ(Ds → τν)/Γ(Ds → µν),
constraining respectively µ− e and τ − µ non-universality.

For D → K`ν, we consider charged and neutral modes separately. For D+ →
K̄0`+ν we take the separate branching ratios from the PDG assuming no correlation.
For D0 → K−`+ν we take the results from the PDG constrained fit, including the
5% correlation. We construct the D+ and D0 ratios separately, obtaining Γ(D+ →
K̄0µ+ν)/Γ(D+ → K̄0e+ν) = 1.05(9) and Γ(D0 → K−µ+ν)/Γ(D0 → K−e+ν) =
0.93(4). These two ratios, corresponding to the same theoretical quantity (isospin-
breaking effects are neglected here), are combined according to the PDG averaging
prescription. Since there is a ∼ 1σ tension between both results, we rescale the
error by the factor S = 1.3.

For Ds → `ν we take the individual branching fractions from the PDG, assuming
no correlation. The resulting experimental numbers for both ratios are collected in
Table 7.8.

The model predictions for these ratios are:

Γ(D → Kµν̄)

Γ(D → Keν̄)
=

∑
j |Ccs

2j |2∑
j |Ccs

1j |2
×
[

Γ(D → Kµν̄)

Γ(D → Keν̄)

]
SM

, (7.149)

Γ(Ds → τ ν̄)

Γ(Ds → µν̄)
=

∑
j |Ccs

3j |2∑
j |Ccs

2j |2
×
[

Γ(Ds → τ ν̄)

Γ(Ds → µν̄)

]
SM

, (7.150)

with the Wilson coefficients Ccs
ij given in Eq. (7.142).
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Our SM prediction for the leptonic decay modes includes electromagnetic cor-
rections following [154]. For the SM prediction of the semileptonic modes we use
the BESIII determination of the form factor parameters in the simple pole scheme
as quoted in HFAG [28]. The resulting SM predictions are given in Table 7.8.

b→ s transitions

We consider here b→ s transitions that are loop-mediated in the SM but receive NP
contributions at tree-level in our model (via Z ′ and Z with anomalous couplings). To
the level of precision we are working, the normalization factors in the SM amplitude
(GF and CKM elements) can be taken from tree-level determinations within the
SM, and it is not necessary in this case to consider only ratios where these cancel
out.

Mass difference in the Bs system

The observable ∆Ms constitutes a strong constraint on the Z ′sb coupling, indepen-
dent of the coupling to leptons. In order to minimize the uncertainty from hadronic
matrix elements, we consider the ratio ∆Ms/∆Md. We note that within our model
set-up, ∆Md does not receive NP contributions at tree-level.

The experimental value for the ratio is obtained from the individual measure-
ments for ∆Md,s, which are known to subpercent precision [28]. The result is given
in Table 7.8.

The theory prediction is given by:

∆Ms

∆Md

=
MBs

MBd

ξ2

∣∣∣∣CsbCdb

∣∣∣∣ =
MBs

MBd

ξ2

∣∣∣∣V 2
ts

V 2
td

+
CNP
sb

CSM
db

∣∣∣∣ , (7.151)

where the Wilson coefficients Cdib = CSM
dib

+ CNP
dib

are given by

CSM
dib

=
G2
FM

2
W

4π2
(VtiV

?
tb)

2S0 , CNP
dib

=
ĝ2

8M2
W ′

(∆q
i3)2 . (7.152)

Here S0 = 2.322 ± 0.018 is the loop function in the SM [120]. The parameter

ξ2 = f 2
Bs
B

(1)
Bs
/f 2

Bd
B

(1)
Bd

is a ratio of decay constants and matrix elements determined
from lattice QCD. We consider the latest determination of the parameter ξ from the
FNAL/MILC collaborations [155]: ξ = 1.206(18)(6). The SM prediction is given by
the first term in Eq. (7.151) and results in (∆Ms/∆Md)SM = 31.2(1.8).

b→ s`+`− observables

We consider all b→ s`` observables used in the fit of Ref. [119]:

• Branching ratios for B → Xsµ
+µ− and Bs → µ+µ− [101,103,156–158].

• Branching ratios for B → Ke+e− (in the bin [1, 6] GeV2) and B → Kµ+µ−

(both at low and high q2) [84, 159].
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• Branching ratios, longitudinal polarization fractions and optimized angular
observables [89,160,161] for B → K∗e+e− (at very low q2) and B → K∗µ+µ−,
Bs → φµ+µ− (both at low and high q2) [162–168].

Definitions, theoretical expressions and discussions on theoretical uncertainties can
be found in Refs. [89, 119]. We follow the approach of Ref. [169] for B → V form
factors, and take into account the lifetime effect for Bs measurements at hadronic
machines [170] for Bs → µµ [171] and Bs → φµµ [172] decays.

We implement the fit in two different ways. First, we construct the full χ2 as a
function of the model parameters, including all theoretical and experimental corre-
lations, exactly as in Ref. [119].16 Second, in order to provide simplified expressions
to allow the reader to repeat the fit without too much work, we perform a global
fit to the relevant coefficients of the effective weak Hamiltonian introduced in Sec-
tion 4.2.2. We consider the coefficients receiving non-negligible NP contributions
within our model, i.e. (Cµ

9 , C
µ
10, C

e
9 , C

e
10), and provide the best fit points, standard

deviations and correlation matrix.17 These are collected in Table 7.8. The NP
contributions to the Wilson coefficients (C`

i = CNP`
i + CNP`

i ) are

CNPa
9 = −

√
2

GF

π

α

1

VtbV ∗ts

ĝ2

8M2
W ′

(∆q)bs
[
(∆`)aa + ζ

(
4s2

W − 1
)]
,

CNPa
10 =

√
2

GF

π

α

1

VtbV ∗ts

ĝ2

8M2
W ′

(∆q)bs
[
(∆`)aa − ζ

]
.

(7.153)

Using these four coefficients as “pseudo observables” and constructing the χ2 func-
tion leads to a linearized approximation to the fit. We have checked that the result
of such a fit is in reasonable agreement with the full fit.

b→ c transitions

We consider the exclusive ratios R(D(∗)) ≡ Γ(B → D(∗)τ ν̄)/Γ(B → D(∗)`ν̄), and
the inclusive ratio R(Xc) ≡ Γ(B → Xcτ ν̄)/Γ(B → Xc`ν̄) as measures of flavour
non-universality between the τ and the light leptons, as well as the ratios Γ(B →
D(∗)µν̄)/Γ(B → D(∗)eν̄) constraining e− µ non-universality.

The experimental value for the inclusive ratio R(Xc) is obtained from the PDG
averages for Br(b̄ → Xτ+ν) and Br(b̄ → Xe+ν). The allowed size of lepton
flavour universality violating effects in b → c`ν (` = e, µ) transitions is not triv-
ial to account for given that experimental analyses tend to present combined re-
sults for the electron and muon data samples. This aspect was also stressed in
Ref. [173]. Experimental results are however reported separately for the e and µ
samples in an analysis performed by the BaBar collaboration [174]. We use the
values of Br(B → D(∗)`ν̄) reported in Table IV of Ref. [174] to extract the ra-
tios Γ(B → D(∗)µν̄)/Γ(B → D(∗)eν̄). The correlation between the two ratios is

16 The fit in Ref. [119] includes b → sγ observables. These observables are not included in our
fit.

17Contributions to the primed operators Q9′,10′ are found to be negligible since the right-handed
flavour changing Z(′) couplings to down-type quarks are suppressed by m2

f/u
2, see Section 7.3.3.
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estimated from the information provided in [174], adding the covariance for the
systematic and statistical errors. For the experimental values of R(D) and R(D∗)
we consider the latest HFAG average [28]. The latter includes R(D) and R(D∗)
measurements performed by BaBar and Belle [175,176], the LHCb measurement of
R(D∗) [177], and the independent Belle measurement of R(D∗) using a semileptonic
tagging method [178].18 The results are summarized in Table 7.8.

The model expressions for these ratios are:

Γ(B− → D(∗)µν̄)

Γ(B− → D(∗)eν̄)
=

∑
j |Ccb

2j|2∑
j |Ccb

1j|2
×
[

Γ(B− → D(∗)µν̄)

Γ(B− → D(∗)eν̄)

]
SM

, (7.154)

R(D(∗)) =
2 (
∑

j |Ccb
3j|2)∑

j(|Ccb
1j|2 + |Ccb

2j|2)
×R(D(∗))SM , (7.155)

R(Xc) =

∑
j |Ccb

3j|2∑
j |Ccb

1j|2
×R(Xc)

SM , (7.156)

where the Wilson coefficients Ccb
ij are given in Eq. (7.142). We use the SM predictions

of R(D) and R(D∗) obtained in Refs. [181, 182]. Note that recent determinations
of R(D) in lattice QCD are compatible with the one used here [183, 184]. For
R(Xc) we use the SM prediction reported in Ref. [185]. For the ratios Γ(B− →
D(∗)µν̄)/Γ(B− → D(∗)eν̄) we derive the SM predictions using the Caprini-Lellouch-
Neubert parametrization of the form factors [186], with the relevant parameters
taken from HFAG [28]. The resulting SM predictions are given in Table 7.8.

Lepton Flavour Violation

We consider current limits on the lepton flavour violating decays τ → 3µ and Z →
τµ. The decay Z → τµ occurs due to gauge mixing effects. The decay rate for
Z → τµ ≡ (τ+µ− + τ−µ+) is

Γ (Z → τµ) =
MZ

48π

(
ζ n2

g4
2

n4
1

∆µ∆τ ε
2

)2

. (7.157)

We use the limit Br(Z → τµ) < 1.2× 10−5 [23].
The decay τ → 3µ receives tree-level contributions from Z(′) exchange, the decay

rate is given by

Γ (τ → 3µ) =
[2 (Cτµ

LL)2 + (Cτµ
LR)2]m5

τ

1536π3
, (7.158)

18New results for R(D∗) and the tau polarization asymmetry in B → D∗τν decays (Pτ ) us-
ing a hadronic tag have been presented by the Belle collaboration in Ref. [179]. The reported
measurements are R(D∗) = 0.276± 0.034+0.029

−0.026 and Pτ = −0.44± 0.47+0.20
−0.17 [179]. These measure-

ments are not included in our analysis but would have a negligible impact if added given that the
weighted average for R(D∗) remains basically the same and the experimental uncertainty in Pτ is
still very large. Note that the measured tau polarization asymmetry is well compatible with the
SM prediction Pτ = −0.502+0.006

−0.005 ± 0.017 [180].
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λ = 0.22541(+30
−21) [187] A = 0.8212(+66

−338) [187]

ρ̄ = 0.132(+21
−21) [187] η̄ = 0.383(+22

−22) [187]

GF = 1.16638(1)× 10−5 GeV−2 [23] MZ = 91.1876(21) GeV [23]

α = 1/137.036 [23]

Table 7.9: Electroweak and CKM inputs.

where the Wilson coefficients Cτµ
LL and Cτµ

LR are given by

C`a`b
LL =

ĝ2

4M2
W ′

∆`
ab

[
∆`
bb + ζ

(
2s2

W − 1
)]
,

C`a`b
LR =

ĝ2

2M2
W ′

ζ ∆`
ab s

2
W .

(7.159)

We use the HFAG limit Br(τ → 3µ) < 1.2× 10−8 [28].

7.3.5 Global fit

Fitting procedure

We first fix the values of g, g′ and the electroweak vev v with the values of {GF , α,MZ}
reported in Table 7.9. The SU(2)1 gauge coupling g1 is then determined as a function
of g2. The observables considered will depend on seven model parameters:

MZ′ : The Z ′ mass, note that MW ′ 'MZ′ ,

g2 : The SU(2)2 gauge coupling ,

ζ : Controls the size of gauge mixing effects, see Eq. (7.115) ,

∆s,∆b,∆µ,∆τ : Determine the gauge couplings to fermions, see Eq. (7.134) .

The observables will also depend on the CKM inputs {λ,A, ρ̄, η̄}. We construct a
global χ2 function that includes information from electroweak precision data at the
Z and W poles together with flavour data. It reads

χ2 ≡ (O −Oexp)TΣ
−1

(O −Oexp) +
∑

x=λ,A,ρ̄,η̄

(x− x̂)2

σ2
±

, (7.160)

with Σ being the covariance matrix, O denoting the observables included in the
analysis and Oexp the corresponding experimental mean values. These are described
in Section 7.3.4. The CKM inputs {λ,A, ρ̄, η̄} are included as pseudo-observables in
the fit taking into account the values in Table 7.9.19 The latter are reported in the
form x̂

+σ+

−σ− . In the χ2 we introduce the asymmetric error: σ± = σ+ (for x > x̂) and
σ± = σ− (for x < x̂).

The global fit includes then seven model parameters {MZ′ , g2,∆s,∆b,∆µ,∆τ , ζ}
and four CKM quantities {λ,A, ρ̄, η̄}. To sample the 11-dimensional parameter space
we use the affine invariant Markov chain Monte Carlo ensemble sampler emcee [188].

19These CKM inputs are obtained from a fit by the CKMfitter group with only tree-level
processes [187], as used in Ref. [155].
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Figure 7.8: Allowed regions for the model parameters at 68% and 95% CL from the
global fit. The best fit point is illustrated with a star.

Results of the fit

We restrict the parameter space to 500 GeV ≤ MZ′ ≤ 3000 GeV, g < g2 <
√

4π,
|∆a| ≤ 3 and 0 ≤ ζ ≤ 1. The global minimum of the χ2 is found to be at

{MZ′ [GeV], g2,∆s,∆b, |∆µ|, |∆τ |, ζ} = {1436, 1.04,−1.14, 0.016, 0.39, 0.075, 0.14} ,
(7.161)

with the CKM values {λ,A, ρ̄, η̄} within the 1σ range in Table 7.9. It is enlight-
ening to characterize the best-fit point in terms of the couplings appearing in the
Lagrangian. We find that the corresponding Yukawas are, up to a global sign,

λ` '

 −1.2 0
0 −0.3
0 −0.06

 × ML

TeV
, λq '

 −1.2 0
0 1.8
0 −0.03

 × MQ

TeV
. (7.162)

At the best-fit point we obtain χ2
min = 54.8, to be compared with the correspond-

ing value in the SM-limit χ2
SM = 93.7. We derive contours of ∆χ2 ≡ χ2−χ2

min in two-
dimensional planes after profiling over all the other parameters, taking ∆χ2 = 2.3
for 68% CL and ∆χ2 = 6.18 for 95% CL. Allowed regions for the model parameters
obtained in this way are shown in Figure 7.8.

There is a four-fold degeneracy of the χ2 minimum with the sign of ∆µ,τ as
no observable in the fit is sensitive to the relative sign between ∆µ and ∆τ . The
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Figure 7.9: Allowed regions at 68% and 95% CL from the global fit for the Wilson
coefficients of b → s`+`− transitions. The best fit point is illustrated with a star.
The red line on the left plot illustrates the correlation CNPµ

9 = −CNPµ
10 .

allowed values of ∆µ,τ lie in the region |∆µ,τ | . 1. While ∆b is bounded to be very
small ∼ 10−2, the allowed values for ∆s are around −1. The negative sign obtained
for the combination ∆s∆b is related to the preference for negative values of CNPµ

9

by b → s`+`− data. The allowed regions for the Wilson coefficients of b → s`+`−

transitions from the global fit are shown in Figure 7.9. Note that with the assumed
flavour structure we have the correlation CNPe

10 = (4s2
W − 1)CNPe

9 . The relation
CNPµ

9 = −CNPµ
10 on the other hand holds in our model only in the absence of gauge

mixing effects. Departures from this correlation are possible as gauge mixing effects
can be sizable, see Figure 7.9 (left).

Allowed values at 68% and 95% CL for RK and R(D∗) are shown in Figure 7.10.
The best fit point presents a sizable deviation from the SM in RK in the direction
of the LHCb measurement while the ratios R(D∗) are SM-like. Note that the NP
scaling of R(D) is the same as for R(D∗) because the W ′ couplings are mostly
left-handed, with the right-handed couplings suppressed by m2

f/u
2. A significant

enhancement of R(D(∗)) is possible within the allowed parameter region. The model
presents a positive correlation between RK and R(D(∗)) so that RK is above its
best-fit value whenever R(D(∗)) gets enhanced. The ratios Γ(B → D(∗)µν)/Γ(B →
D(∗)eν) are found to be SM-like with possible deviations only at the ∼ 1% level.
As expected, R(Xc) and R(D(∗)) show a strong correlation, in the region of the
parameter space where R(D(∗)) accommodates the current experimental values one
obtains a slight tension in R(Xc) with experiment. The flavour observables with
light-mesons and leptonic τ -decays are found to be in good agreement with the SM
and experiment, we show the resulting allowed values for K → µν/K → eν and
τ → µνν̄/µ→ eνν̄ as an example in Figure 7.10.

As noted in Ref. [134], gauge mixing effects play a crucial role in the possible
enhancement of R(D(∗)) in this model. In Figure 7.10 we also show the results of
the global fit for R(D∗) as a function of the parameter controlling the size of gauge
mixing effects ζ. Having an enhancement of R(D∗) of order ∼ 20% as suggested by
the experimental measurements is only possible for ζ � 1. The situation is very
different for RK , with the parameter ζ playing no major role in this case as shown
in Figure 7.10. We find that the allowed points from the global fit accommodating
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Figure 7.10: Allowed regions at 68% and 95% CL from the global fit. Experimental
values for these observables are also shown at 1σ (dark-band) and 2σ (light-band).
The best fit point is illustrated with a star.

both RK and R(D(∗)) within 2σ lie within a very restricted region:

MZ′ ∈ [500, 1710] GeV , g2 ∈ [1.2, 3.5] , ζ ∈ [0, 0.02] , ∆s ∈ [−1.16,−0.97] ,

∆b ∈[0.003, 0.007] , |∆µ| ∈ [0.94, 0.99] , |∆τ | ∈ [0, 0.11] . (7.163)

The Z ′ mass and the SU(2)2 gauge coupling g2 are positively correlated, going
from g2 ∼ 1 for MZ′ ∼ 500 GeV up to the perturbativity limit g2 ≤

√
4π for

MZ′ ∼ 1700 GeV. A limit on tan β can be derived in this region using Eq. (7.115),
we get tan β ∈ [0.2, 0.65]. Similarly, in this region the SU(2)1 gauge coupling satisfies
0.66 ≤ g1 ≤ 0.78 and the combination ĝ = gg2/g1 is found to be within 1 ≤ ĝ ≤
3.4. Note that the Z ′ and W ′ interactions with the SM fermions are proportional
to 1 − ∆2

a, see Eq. (7.134). In the parameter space region where both RK and
R(D(∗)) are accommodated within 2σ, the massive gauge bosons, Z ′ and W ′, couple
predominantly to the third fermion generation.

7.3.6 Predictions

In the following we take the current measured values of RK and R(D(∗)) at face
value, focusing on the parameter space region described in Eq. (7.163). We are
interested in possible signatures that can be used to test or falsify this scenario with
upcoming measurements at the LHC and flavour factories.
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Differential distributions in B → D(∗)τν decays

Due to the gauge structure of the model, new physics contributions to the B →
D(∗)`ν decay amplitudes have the same Dirac structure as the SM contribution to
a good approximation. This gives rise to a clean prediction

R(D)

R(D∗)
=

[
R(D)

R(D∗)

]
SM

, (7.164)

which is compatible with current data [28]. The inclusive ratio R(Xc) can provide
an additional handle to test the proposed scenario. The model gives rise to an
enhancement in R(Xc) within the parameter space region considered, we obtain
0.24 ≤ R(Xc) ≤ 0.29. The Dirac structure of the new physics contributions can also
be tested by using information from the q2 ≡ (pB−pD(∗))2 spectra and by measuring
additional observables that exploit the rich kinematics and spin of the final state
particles. The differential decay rate for B → D(∗)τν is affected in the model with a
global rescaling factor, implying that forward-backward asymmetries as well as the
τ and D∗ polarization fractions are expected to be as in the SM. For recent studies
of differential distributions in b → cτν decays see Refs. [180, 182, 189–200]. Future
measurements of b → cτν transitions at the Belle-II experiment will be crucial to
disentangle possible new physics contributions in these decays [201].

Lepton universality tests in RM

Confirming the violation of lepton flavour universality in other b → s observables
would be definite evidence in favor of new physics at work. Examples of such
additional observables are RM , with M = K∗, φ [73, 202], defined analogously to
RK ,

R
[q2

1 ,q
2
2 ]

M =

∫ q2
2

q2
1
dΓ(Bq →Mµ+µ−)∫ q2

2

q2
1
dΓ(Bq →Me+e−)

, (7.165)

with q = d, s for M = K∗, φ.20

The expected values for RK , RK∗ and Rφ within each bin are strongly correlated,
except for the fact that hadronic uncertainties are mostly independent (but small).
From the results of the fit, we find the following expected ranges for the different
ratios (q2 in GeV2):

R
[1,6]
K ∈ [0.62, 0.91] at 68% CL , R

[1,6]
K ∈ [0.57, 0.95] at 95% CL ,

R
[1.1,6]
K∗ ∈ [0.66, 0.91] at 68% CL , R

[1.1,6]
K∗ ∈ [0.62, 0.95] at 95% CL ,

R
[15,19]
K∗ ∈ [0.61, 0.90] at 68% CL , R

[15,19]
K∗ ∈ [0.56, 0.94] at 95% CL ,

R
[1.1,6]
φ ∈ [0.64, 0.91] at 68% CL , R

[1.1,6]
φ ∈ [0.60, 0.94] at 95% CL ,

R
[15,19]
φ ∈ [0.61, 0.90] at 68% CL , R

[15,19]
φ ∈ [0.56, 0.94] at 95% CL ,

(7.166)

20See Ref. [132] for other observables in B → K∗`` testing lepton-flavour non-universality.
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where it is understood that a strong (positive) correlation exists among all the
predictions, lower values of one observable corresponding to lower values of another
and viceversa.21

Lepton flavour violation

One of the first generic consequences of the violation of lepton flavour universality
is lepton flavour violation [12], as explored in connection to the B-meson anomalies
in Refs. [14, 40, 197, 203–210]. In our model, the branching fraction for τ → 3µ is
proportional to ∆2

τ and is therefore suppressed for |∆τ | ' 0. When |∆τ | is near its
upper bound, |∆τ | ' 0.1, we obtain values for Br(τ → 3µ) that saturate the current
experimental limit 1.2×10−8. Semileptonic decays of the tau lepton into a muon and
a pseudo-scalar meson also receive tree-level contributions from Z(′) exchange, these
will also be proportional to ∆2

τ so that the largest rates possible will be obtained
for |∆τ | ' 0.1. In our model the decays τ → µη(′) receive important new physics
contributions through the axial-vector strange-quark current. Following [211] we
obtain Br(τ → µη′) ≤ 3.9 × 10−8 and Br(τ → µη) ≤ 4.2 × 10−8, very close to the
current experimental limits Br(τ → µη′)exp ≤ 1.3 × 10−7 and Br(τ → µη)exp ≤
6.5 × 10−8 [212]. The observation of lepton flavour violating tau decays decays
might therefore lie within the reach of future machines such as Belle-II, where an
improvement of the current experimental bounds by an order of magnitude can be
expected [201]. On the other hand, due to the suppression of gauge mixing effects
(ζ � 1) the decay Z → τµ lies well-below the current experimental limit, for which
we obtain Br(Z → µτ) ≤ 1.2× 10−9.

Direct searches for new states at the LHC

In this model we expect a plethora of new states lying at the TeV scale: scalar
bosons (in the CP-conserving limit we would have two CP-even Higgs bosons, one
CP-odd Higgs and one charged scalar, cf. Section 7.3.2), heavy fermions and the
massive vector bosons W ′, Z ′.

The heavy VL leptons will be pair-produced at the LHC via Drell-Yan processes
due to their coupling to the massive electroweak gauge bosons. These will decay
into gauge bosons and charged leptons or neutrinos. Though no dedicated searches
for VL leptons have been performed at the LHC, one can obtain limits on their mass
and production cross-section by recasting existing multilepton searches [213]. It was
found that current limits for a heavy lepton doublet decaying to ` = e, µ flavours are
around 450 GeV while for decays into τ -leptons the limits are around 270 GeV [213].
Searches for pair production of heavy VL quarks at the LHC focus primarily into
final states with a third generation fermion and bosonic states, setting upper limits
on the VL quark masses ranging from ∼ 700 GeV up to ∼ 1 TeV [214–219].

The massive vector bosons W ′, Z ′ couple predominantly to the third fermion
generation. The LHC phenomenology of this type of states has been discussed in
Ref. [173]. The Z ′ coupling to muons is found to be at most ∼ 12% of its coupling

21As it happened for the other models presented in this chapter, the prediction of the model for
RK∗ in the q2 ∈ [1.1, 6] GeV2 bin is in good agreement with the measured value reported by the
LHCb Collaboration [1]. See note added at the beginning of the chapter.
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to τ -leptons. In the quark sector, the Z ′ coupling to the second quark generation
is found to be at most ∼ 36% of the coupling to third generation quarks. The Z ′

boson would be produced at the LHC via Drell-Yan processes due to its coupling to
b-quarks and s/c-quarks.

The total Z ′ width normalized by the Z ′ mass (ΓZ′/MZ′) is found to grow with
MZ′ , since ĝ and MZ′ are positively correlated. Assuming that the Z ′ can only decay
into the SM fermions we have

ΓZ′

MZ′
' ĝ2

48π

[
3
∑
q=s,b

(1−∆2
q)

2 +
∑
`=µ,τ

(1−∆2
`)

2

]
, (7.167)

where we have neglected fermion mass effects. We obtain that ΓZ′/MZ′ is between
2% and 31%, with ΓZ′/MZ′ & 10% for MZ′ & 1 TeV.

If kinematically open, additional decay channels of the Z ′ boson would reduce
the branching fractions to SM particles by enhancing the total Z ′ width, making the
Z ′ resonance broader. The latter scenario will generically be the case provided the
VL fermions are light enough, opening decay channels of the Z ′ boson into a heavy
VL fermion and a SM-like fermion or into a VL fermion pair. The decay rate for
these processes is given by:

Γ(Z ′ → Fif̄j) '
λ1/2(1, xi, xj) ĝ

2NCMZ′

192π

[
2− xi − xj − (xi − xj)2

]
(Σij)

2 ,

Γ(Z ′ → FiF̄i) '
λ1/2(1, xi, xi) ĝ

2NCMZ′

96π

{
(1− xi)

(
(ΩQ,L

ii )2 +
g4

1

g4
2

)
− 6

g2
1

g2
2

xi Ω
Q,L
ii

}
.

(7.168)

Here λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + xz), NC = 3(1) for (un)colored
fermions and xi = m2

i /M
2
Z′ . We have denoted by Fi a generic heavy fermion and

by fj one of the SM-like fermions. The matrices Σ and ΩQ,L have been defined
in Eqs. (7.135) and (7.136). The Z ′ decays into a heavy fermion and a SM-like
fermion are accidentally suppressed due to the small entries of the Σ matrix within
the parameter region of interest. These decays therefore give small contributions to
the total width in general. The decays into a pair of heavy fermions, on the other
hand, can give a significant contribution to the total Z ′ width when kinematically
allowed. For instance, if the masses of the heavy leptons lie around 450 GeV we
obtain a contribution to ΓZ′/MZ′ from the decays Z ′ → EiĒi, NiN̄i (i = 1, 2) of
about 20% for MZ′ ∼ 1.2 TeV, making the Z ′ boson a very wide resonance in this
case: ΓZ′/MZ′ ∼ 30%− 50%.

The ATLAS and CMS collaborations have searched for a resonance in the τ+τ−

channel at
√
s = 8 TeV [58, 60, 220, 221]. Among these, the strongest limits are

those coming from ATLAS and they place important bounds on the model. We
have evaluated the Z ′ production cross-section at the LHC using the computer tool
MadGraph (MG5 aMC 2.4.2) [124]. We find that it is possible to exclude the low-
mass region where the Z ′ resonance remains reasonably narrow and there is not much
room for additional decay channels giving large contributions to the total width. The
latter would require having very light exotic fermions, entering in conflict with direct
searches for these states at colliders. In the heavy Z ′ mass region (& 1 TeV) the
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Z ′ resonance becomes wide (ΓZ′/MZ′ & 10%) and the interpretation of the current
experimental results based on the search of a relatively narrow resonance is not
valid anymore. Dedicated searches at the LHC for a broad resonance in the τ+τ−

channel within the mass range ∼ 1 − 1.7 TeV would then be needed in order to
test this scenario.22 In this regard, a recast of the existing 8 TeV and 13 TeV LHC
analyses in τ+τ− resonance searches allowing for a large resonance width was done
in Ref. [222]. This recast of the LHC bounds severely constraints the parameter
space of the model; however a dedicated analysis including these constraints lies the
scope of this thesis.

The proposed scenario also gives some predictions in the scalar sector relevant
for collider searches. Neglecting mixing between the scalar bidoublet Φ and the
Higgs doublets φ(′), the scalar spectrum will contain a heavy CP-even neutral scalar
transforming as an SU(2)L singlet originating from Φ. We will denote this state by
h2. The mass of this scalar is expected to be around the symmetry breaking scale
u ∼ TeV. The dominant interactions of h2 are with the heavy fermions and the
heavy gauge vector bosons, these are described by

L ⊃ 2(M2
W ′W

′+
µ W ′−µ +

1

2
M2

Z′Z
′
µZ
′µ)
h2

u
− (yQ)ii Q̄iQi h2 − (yL)ii L̄iLi h2 , (7.169)

with QT
i = (Ui, Di), L

T
i = (Ni, Ei) (i = 1, 2) and

yQ =
g2

2

n2
1

(
M̃Q1 0

0 M̃Q2(∆2
s + ∆2

b)

)
, yL =

g2
2

n2
1

(
M̃L1 0

0 M̃L2(∆2
µ + ∆2

τ )

)
.

(7.170)

The production of h2 at the LHC is dominated by gluon fusion mediated by the
heavy quarks and is determined by the same parameters entering in the low-energy
global fit. At the center-of mass energy

√
s the production cross-section reads

σ(pp→ h2) ' cggΓ(h2 → gg)

Mh2s
, Γ(h2 → gg) '

α2
sM

3
h2

18π3

∣∣∣∣∣
2∑
i=1

(yQ)ii

uM̃Qi

∣∣∣∣∣
2

. (7.171)

Here cgg represents a dimensionless partonic integral which we estimate using the
set of parton distribution functions MSTW2008NLO [223] evaluated at the scale
µ = Mh2 . In writing the decay rate for h2 → gg we have taken the local approxima-
tion for the fermionic loops. For Mh2 ∼ 1 TeV, and restricting the rest of the param-
eters to the region described in Eq. (7.163), we obtain σ(pp → h2) ' 110 − 290 fb
at
√
s = 13 TeV center-of-mass energy. For MZ′ ∼ 1.7 TeV (and Mh2 ∼ 1 TeV)

the production cross-section converges towards ∼ 110 fb. The interactions of h2

in Eq. (7.169) will induce loop-mediated decays into gluons (which will hadronize
into jets) and electroweak gauge bosons W+W−, ZZ, γγ, Zγ. Assuming negli-
gible tree-level decays, the h2 boson will manifest in this case as a very narrow
resonance decaying mainly into a pair of jets. The current experimental sensitiv-
ity for dijet-resonances at the LHC around this mass range (Mh2 ∼ 1 TeV) is at

22We find our main conclusions in this regard to agree with those posed previously by the authors
of Ref. [173] while analyzing a similar new physics case.
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the level of 103 fb [224, 225]. The decays into electroweak gauge bosons are found
to be subdominant and for MZ′ ∈ [1, 1.7] TeV we have: Br(h2 → WW ) ∼ 10−2,
Br(h2 → ZZ,Zγ)/Br(h2 → WW ) ∼ 25%, Br(h2 → γγ)/Br(h2 → WW ) ∼ 1%.
Note however that in the case where some of the heavy fermions are below the
threshold Mh2/2, tree-level decay of h2 into these fermions becomes kinematically
open and will generically dominate over the loop-induced decays commented above.

7.3.7 Conclusions

We have performed a phenomenological analysis of a renormalizable and perturba-
tive gauge extension of the SM. We took into account flavour observables sensitive
to tree-level new physics contributions as well as bounds from electroweak precision
measurements at the Z and W pole. More specifically, we have analyzed the model
in light of the current hints of new physics in b→ c`ν and b→ s`+`− semileptonic
decays, finding that the flavour anomalies can be accommodated within the allowed
regions of the parameter space.

As derived from the phenomenological analysis, strong hierarchies in the flavour
structure of the Yukawa couplings are required in order to accommodate both
b → s`+`− and b → c`ν anomalies. We have taken a phenomenologically oriented
approach in this section, not invoking any flavour symmetry behind such struc-
ture. One interesting question would be the exploration of possible flavour sym-
metries accommodating the observed flavour structure. We confirm the conclusions
of Ref. [134] regarding the importance of suppressing gauge bosons mixing. This
translates in a tuning of tan β. Such accidental tuning would be more satisfactory
if there was a dynamical or symmetry-based explanation behind. These last points
also bring us to the question of the validity of our analysis, based on tree-level new
physics effects, once quantum corrections are considered. These corrections might
alter the flavour structure of the theory, remove accidental tunings which hold at the
classical level as well as introduce new constraints from loop-induced processes such
as b → sγ. Though such analysis lies beyond the scope of this thesis, it would be
relevant in order to establish the viability of the proposed framework if the present
deviations in b→ s`+`− and b→ c`ν are confirmed in the future.

From the model building point of view, there are many open questions which
we have not addressed in this thesis and would deserve further investigation, one of
them being the implementation of a mechanism for the generation of the observed
neutrino masses and lepton mixing angles. Our model also lacks a dark matter
candidate, motivating the extension of our framework. It would be interesting to
pursue the investigation of possible embeddings of the model within a larger gauge
group, where the mass of the heavy fermions arise from spontaneous symmetry
breaking.
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Appendices

7.A Anomaly cancellation conditions in the

U(1)BGL model

In this appendix we present the restrictions on the charges derived from the requisite
gauge anomaly cancellation for quarks transforming according to Eq. (2.38) and
allowing the leptons to transform in the most general way:

X `
L = diag (XeL, XµL, XτL) ,

X e
R = diag (XeR, XµR, XτR) .

(7.A.1)

As mentioned in Section 7.1.1, the QCD anomaly condition is automatically
satisfied within BGL models. On the other hand, the anomaly conditions involving
a single U(1)′ gauge boson together with SU(2)L or U(1)Y ones, and the mixed
gravitational-U(1)′ anomaly are non-trivial and read

A221′ = 3XuR +
3

2
XtR +

9

2
XdR +

∑
α=e,µ,τ

XαL ,

A111′ = − 5

2
XuR −

5

4
XtR −

3

4
XdR +

∑
α=e,µ,τ

(
1

2
XαL −XαR

)
,

AGG1′ =
∑

α=e,µ,τ

(2XαL −XαR) .

(7.A.2)

The triangle diagrams involving two or three U(1)′ gauge bosons result in more
complicated conditions for the BGL charges, which include a quadratic and a cubic
equation:

A11′1′ = −7

2
X2
uR −

7

4
X2
tR +

15

4
X2
dR +XuRXdR +

1

2
XtRXdR

−
∑

α=e,µ,τ

(
X2
αL −X2

αR

)
,

A1′1′1′ = −9

4

[
2X3

uR +X3
tR + 3X3

dR −XdR

(
2X2

uR +X2
tR

)
−X2

dR (2XuR +XtR)
]

+
∑

α=e,µ,τ

(
2X3

αL −X3
αR

)
.

(7.A.3)

Satisfying these conditions with rational charges is non-trivial and there is only one
class of solutions giving an anomaly-free model, up to lepton flavor permutations:

XuR = −XdR −
1

3
XµR , XtR = −4XdR +

2

3
XµR ,

XeL = XdR +
1

6
XµR , XµL = −XdR +

5

6
XµR ,

XτL =
9

2
XdR −XµR ,

XeR = 2XdR +
1

3
XµR , XτR = 7XdR −

4

3
XµR .

(7.A.4)
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At this point we have two free charges in the above relations, i.e. XdR and XµR.
Using XΦ2 = 0, as discussed in Section 7.1.1, yields one relation between the two
charges. The remaining free charge, e.g. XdR, is fixed by some normalization con-
vention.

7.B Scalar potential of the U(1)BGL model

The Higgs doublets are parametrized as

Φi =

(
Φ+
i

Φ0
i

)
= eiθi

(
ϕ+
i

1√
2

(vi + ρi + iηi)

)
(i = 1, 2) . (7.B.1)

Their neutral components acquire vevs given by 〈Φ0
j〉 = eiθjvj/

√
2 with vi > 0 and

(v2
1 + v2

2)1/2 ≡ v. In full generality we can rotate away the phase of Φ1, leaving
the second doublet with the phase θ = θ2 − θ1. We parametrize the complex scalar
singlet as

S = e−iαS/2
(vS +R0 + iI0)√

2
, (7.B.2)

with vS > 0.
Since we have in our model three scalar fields, {Φ1,Φ2, S}, the phase-blind part

of the scalar potential has a U(1)3 global invariance. In order to avoid massless
Goldstone bosons, we need to charge the S field in such a way that the phase-
sensitive part breaks this symmetry down to U(1)2 = U(1)Y×U(1)′. Gauge-invariant
combinations can be built only from Φ†1Φ2 and S, leaving us with the possibilities
Φ†1Φ2S, Φ†1Φ2S

2 and combinations involving complex conjugates. For concreteness
we choose Φ†1Φ2S

2 to be invariant, which imposes XS = −9/8. The scalar potential
then reads

V =m2
i |Φi|2 +

λi
2
|Φi|4 + λ3|Φ1|2|Φ2|+λ4|Φ†1Φ2|2 +

b2

2
|S|22 +

d2

4
|S|4

+
δi
2
|Φi|2|S|2 −

δ3

4

(
Φ†1Φ2S

2 + Φ†2Φ1(S∗)2
)
.

(7.B.3)

All the parameters of the scalar potential but δ3 are real due to hermiticity. The
parameter δ3 has been chosen to be real and positive by rephasing the scalar field
S appropriately.

The vacuum expectation value of the potential is given by

V0 =
v4

16

[
8
m2

1

v2
c2
β + 2λ1c

4
β + 4s2

β

(
2
m2

2

v2
+ (λ3 + λ4)c2

β

)
+ 2λ2s

4
β

+ 2v̂2

(
2
b2

v2
+ δ1c

2
β + δ2s

2
β

)
+ d2v̂

4 − 2 δ3 cβsβ v̂
2 cos(αS − θ)

]
.

(7.B.4)

Here we have defined the ratio v̂ = vS/v. The stability of the vacuum requires that

0 =
∂V0

∂θ
= −δ3v

2v2
S

16
s2β sin(αS − θ) . (7.B.5)
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By convention we choose αS = θ, the other possibilities in αS = θ mod 2π simply
amount to an unphysical rephasing of the scalar field S. Stability also requires
∂V0/∂vi = 0, to which the only non-trivial solution reads

b2 =
v2

2

[
−δ1c

2
β + δ3cβsβ − δ2s

2
β − d2v̂

2
]
,

m2
1 =

v2

8

[
−4 (λ3 + λ4) s2

β − 4λ1c
2
β + δ3tβ v̂

2 − 2δ1v̂
2
]
,

m2
2 =

v2

8

[
−4 (λ3 + λ4) c2

β − 4λ2s
2
β + δ3t

−1
β v̂2 − 2δ2v̂

2
]
.

(7.B.6)

Since θ = αS does not appear explicitly, the scalar potential is then determined in
terms of 10 unknown parameters {vS, β, λ1−4, d2, δ1−3}.

The masses of the physical CP-odd boson A and the charged scalar are given by

M2
A =

δ3 v
2
S

4

(
s−1

2β +
s2β

v̂2

)
' δ3 v

2
S

4s2β

,

M2
H± =

v2
S

4

(
δ3

s2β

− 2λ4

v̂2

)
' δ3v

2
S

4s2β

,

(7.B.7)

respectively. The physical states H1,2,3 are expressed in terms of {ρ1, ρ2, R0} via an
orthogonal transformation, H1

H2

H3

 = RS

ρ1

ρ2

R0

 . (7.B.8)

The mass matrix for the CP-even bosons can be diagonalized analytically in a per-
turbative expansion around 1/v̂ � 1. Including the leading corrections in 1/v̂ one
obtains

RS '

 cβ sβ ω13

−sβ cβ ω23

ω23sβ − ω13cβ −(ω23cβ + ω13sβ) 1

 , (7.B.9)

with

ω13 = −
2δ1c

2
β − δ3s2β + 2δ2s

2
β

2v̂d2

,

ω23 =
δ3s4β + 2(δ1 − δ2)s2

2β

2v̂(2d2s2β − δ3)
.

(7.B.10)

The resulting masses for the CP-even scalars are given by

M2
H1
' λ̃v

2

2d2

, M2
H2
' δ3v

2
S

4s2β

, M2
H3
' d2v

2
S

2
, (7.B.11)

with

λ̃ = (2d2λ1 − δ2
1)c4

β + (δ1c
2
β + δ2s

2
β)δ3s2β −

2δ1δ2 + δ2
3

4
s2

2β

− (δ2
2 − 2d2λ2)s4

β + d2(λ3 + λ4)s2
2β .

(7.B.12)
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The exact expression for their Yukawa couplings in Eq. (7.19) is

v Y Hk
f = [cβ(RS)k1 + sβ(RS)k2]Df + [sβ(RS)k1 − cβ(RS)k2]Nf . (7.B.13)

Finally, the vacuum solution in our models allows for complex vevs but that
is not sufficient to have spontaneous CP violation. In the weak gauge sector CP
violation is manifest through the invariant Tr [Hd, Hu]

3 [226]. In the CP-invariant
scenario, i.e. with real Yukawa matrices, the Hermitian combinations Hu,d are given
by

2Hu = v2
1∆1∆T

1 + v2
2∆2∆T

2 + v1v2(∆1∆T
2 + ∆2∆T

1 )cθ + iv1v2(∆1∆T
2 −∆2∆T

1 )sθ ,

2Hd = v2
1Γ1ΓT1 + v2

2Γ2ΓT2 + v1v2(Γ2ΓT1 + Γ1ΓT2 )cθ + iv1v2(Γ2ΓT1 − Γ1ΓT2 )sθ .

(7.B.14)

In our model we get Tr [Hd, Hu]
3 = 0, implying the absence of CP violation in the

gauge interactions when the only phase is carried by the scalar vev. As a conse-
quence, the source of CP violation for the weak currents in our model is present in
the Yukawa couplings and will appear in the observables through the CKM mecha-
nism.

7.C Details of the SU(2)× SU(2)×U(1) model

7.C.1 Tadpole equations

The vev configuration introduced in Section 7.3.2 leads to three minimization con-
ditions or tadpole equations. In the following we will consider all the parameters in
the scalar potential to be real. Defining

ti =
∂V
∂vi

= 0 , (7.C.1)

these are

tφ = m2
φvφ +

1

2
vφ
(
λ4v

2
φ′ + λ5u

2
)

+
1

2
vφ′uµ+

1

2
λ1v

3
φ ,

tφ′ = m2
φ′vφ′ +

1

2
vφ′
(
λ4v

2
φ + λ6u

2
)

+
1

2
vφuµ+

1

2
λ2v

3
φ′ ,

tu = m2
Φu+

1

2
u
(
λ5v

2
φ + λ6v

2
φ′

)
+

1

2
vφvφ′µ+

1

2
λ3u

3 .

(7.C.2)

These three conditions can be solved for the mass squared parameters m2
φ, m2

φ′ and
m2

Φ.



7.C Details of the SU(2)× SU(2)× U(1) model 175

7.C.2 Scalar mass matrices

The neutral scalar fields can be decomposed as

ϕ0 =
1√
2

(vφ + Sφ + i Aφ) ,

ϕ′0 =
1√
2

(vφ′ + Sφ′ + i Aφ′) ,

Φ0 =
1√
2

(u+ SΦ + i AΦ) .

(7.C.3)

Since we assume that CP is conserved in the scalar sector, the CP-even and CP-odd
states do not mix. In this case, one can define the bases

ST ≡ (Sφ, Sφ′ , SΦ) , PT ≡ (Aφ, Aφ′ , AΦ) ,

(H−)T ≡
((
ϕ+
)∗
,
(
ϕ′+
)∗
,
(
Φ+
)∗)

, (H+)T ≡
(
ϕ+, ϕ′+,Φ+

)
,

(7.C.4)

which allow us to obtain the scalar mass Lagrangian

−Lsm =
1

2
STM2

SS +
1

2
PTM2

PP +
(
H−
)TM2

H±H+ . (7.C.5)

The mass matrix for the CP-even scalars is given by

M2
S =

 M
2
SφSφ

M2
SφSφ′

M2
SφSΦ

M2
SφSφ′

M2
Sφ′Sφ′

M2
Sφ′SΦ

M2
SφSΦ

M2
Sφ′SΦ

M2
SΦSΦ

 , (7.C.6)

with

M2
SφSφ

= m2
φ +

1

2

(
3v2

φλ1 + v2
φ′λ4 + u2λ5

)
,

M2
SφSφ′

= vφvφ′λ4 +
1

2
uµ ,

M2
SφSΦ

= vφuλ5 +
1

2
vφ′µ ,

M2
Sφ′Sφ′

= m2
φ′ +

1

2

(
3v2

φ′λ2 + v2
φλ4 + u2λ6

)
,

M2
Sφ′SΦ

= vφ′uλ6 +
1

2
vφµ ,

M2
SΦSΦ

= m2
Φ +

1

2

(
v2
φλ5 + v2

φ′λ6 + 3u2λ3

)
.

(7.C.7)

The lightest CP-even state, S1 ≡ h, is identified with the recently discovered SM-like
Higgs boson with a mass ∼ 125 GeV. Similarly, in the Landau gauge (ξ = 0), the
mass matrix for the CP-odd scalars is given by

M2
P =

 M
2
AφAφ

M2
AφAφ′

M2
AφAΦ

M2
AφAφ′

M2
Aφ′Aφ′

M2
Aφ′AΦ

M2
AφAΦ

M2
Aφ′AΦ

M2
AΦAΦ

 , (7.C.8)
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with

M2
AφAφ

= m2
φ +

1

2

(
v2
φλ1 + v2

φ′λ4 + u2λ5

)
,

M2
AφAφ′

=
1

2
uµ ,

M2
AφAΦ

=
1

2
vφ′µ ,

M2
Aφ′Aφ′

= m2
φ′ +

1

2

(
v2
φ′λ2 + v2

φλ4 + u2λ6

)
,

M2
Aφ′AΦ

= −1

2
vφµ ,

M2
AΦAΦ

= m2
Φ +

1

2

(
v2
φλ5 + v2

φ′λ6 + u2λ3

)
.

(7.C.9)

After application of the tadpole equations in Eq. (7.C.2), it is straightforward to
show that the matrix M2

P has two vanishing eigenvalues. These correspond to the
Goldstone bosons that constitute the longitudinal modes for the massive Z and Z ′

bosons. Finally, the mass matrix for the charged scalars in the Landau gauge (ξ = 0)
is given by

M2
H± =

 M2
ϕ+ϕ+ M2

ϕ+ϕ′+ M2
ϕ+Φ+

M2
ϕ+ϕ′+ M2

ϕ′+ϕ′+ M2
ϕ′+Φ+

M2
ϕ+Φ+ M2

ϕ′+Φ+ M2
Φ+Φ+

 , (7.C.10)

with

M2
ϕ+ϕ+ = m2

φ +
1

2

(
v2
φλ1 + v2

φ′λ4 + u2λ5

)
,

M2
ϕ+ϕ′+ =

1

2
uµ ,

M2
ϕ+Φ+ = −1

2
vφ′µ ,

M2
ϕ′+ϕ′+ = m2

φ′ +
1

2

(
v2
φ′λ2 + v2

φλ4 + u2λ6

)
,

M2
ϕ′+Φ+ =

1

2
vφµ ,

M2
Φ+Φ+ = m2

Φ +
1

2

(
v2
φλ5 + v2

φ′λ6 + u2λ3

)
.

(7.C.11)

Again, one can find two vanishing eigenvalues in M2
H± after applying the tadpole

equations in Eqs. (7.C.2). These correspond to the Goldstone bosons eaten-up by
the W and W ′ gauge bosons.
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7.D Pseudo-observables for Z- and W -pole ob-

servables

In our model, the pseudo-observables considered in Ref. [143] are given by:

δm = −δv g′2

g2 − g′2
,

δgW`i
L = −ζ ε2 g

4
2

n4
1

∆`
ii + f(1/2, 0)− f(−1/2,−1) ,

δgZ`iL = ζ ε2
g4

2

2n4
1

∆`
ii + f(−1/2,−1) ,

δgZ`iR = f(0,−1) ,

δgZuiL = −ζ ε2 g
4
2

2n4
1

(VCKM∆qV †CKM)ii + f(1/2, 2/3) ,

δgZuiR = f(0, 2/3) ,

δgZdiL = ζ ε2
g4

2

2n4
1

∆q
ii + f(−1/2,−1/3) ,

δgZdiR = f(0,−1/3) ,

(7.D.1)

where

δv = −ζε2 1

2

g4
2

n4
1

∆`
22 and f(T 3, Q) = −δv

(
T 3 +Q

g′ 2

g2 − g′ 2

)
. (7.D.2)

The family index i for these shifts covers the three fermion generations except for
δgZuiR , for which i = 1, 2. We neglect corrections to the right-handed Z and W
couplings that are suppressed by the fermion masses, see Section 7.3.3. We also
neglect loop contributions, which we estimate to be comparable to the tree-level
contributions for ζ . 0.02. However, the resulting δg’s in that case would be below
the limits quoted in [143].
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CHAPTER

8 Invisible axion models with non-trivial
flavor structure

There is a theory which states that if ever any-
one discovers exactly what the Universe is for
and why it is here, it will instantly disappear
and be replaced by something even more bizarre
and inexplicable. There is another theory which
states that this has already happened.

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

The benchmark invisible axion models introduced in Chapter 3 are characterized
by presenting a minimal scalar sector and no FCNCs. In this chapter we consider the
possibility of extending the DFSZ framework presented in Section 3.3.1 to account
for a more general class of models, with richer Yukawa and scalar structures. More
concretely, in Section 8.1 we will introduce a model able to accommodate Yukawa
alignment1 within an effective DFSZ-like framework. This way we provide for an
ultraviolet completion of the A2HDM that, at the same time, solves the Strong CP
problem. In Section 8.2 we present a class of invisible axion models based on the BGL
model [1] introduced in Section 2.2.2. Contrary to the previously presented models,
this implementation is characterized by having flavour changing axion interactions
at tree-level, which are controlled by the fermion mixing matrices. We will see that
these models introduce new features, both in the axion and in the Higgs sectors,
that are absent in the benchmark invisible axion models and that give rise to a new
interesting phenomenology.

8.1 Effective A2HDM with a DFSZ-like invisible

axion

This section is based in the publication in Ref. [2] where we discuss the possibility of
having invisible axion models with a non-minimal scalar sector at the EW scale. In
particular, we consider in Section 8.1.1 a simple extension of the DFSZ model with
two additional Higgs doublets that are blind to the PQ symmetry, and show that,
due to mixing effects among the scalar fields, the decoupling structure of the theory
becomes richer than in the DFSZ model. We also show that in certain cases it is

1See Section 2.2.1 for a discussion on the hypothesis of Yukawa alignment and its implications.
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even possible to arrive to an effective 2HDM with a Yukawa aligned structure. While
the number of fields that are blind to the PQ symmetry could be reduced to just
one for many of the issues discussed, by having two of these fields we guarantee that
the scalar potential of the effective theory at the weak scale will be the most general
one. The properties of the axion from this model are discussed in Section 8.1.2.
A study of the possible decoupling limits of the model is given in Section 8.1.3.
In Section 8.1.4 we present two ways of implementing small neutrino masses. We
conclude in Section 8.1.5.

8.1.1 Framework

We consider the DFSZ invisible axion model with two additional complex Higgs
doublets that are not charged under the PQ symmetry. The scalar sector of the
model contains then four complex SU(2)L doublets with hypercharge Y = 1/2 and
a complex scalar gauge singlet S. We denote by Φ1,2 the Higgs doublets that carry
a PQ charge, while the doublets that are blind to the PQ symmetry are denoted
by φ1,2. All the Higgs doublets take part in the spontaneous breaking of the EW
gauge symmetry by acquiring vevs 〈Φ0

j〉 = uj/
√

2 and 〈φ0
j〉 = vj/

√
2 (j = 1, 2), with

(u2
1 + · · ·+v2

2)1/2 ≡ v = (
√

2GF )−1/2 being fixed by the massive gauge boson masses.
As in the DFSZ model we assume that the global U(1)PQ symmetry is spontaneously

broken by a very large vev of the scalar field 〈S〉 = vPQ/
√

2 (vPQ � v).
Our scalar content will transform under the PQ symmetry as

S → eiXS θS , Φj → eiXj θΦj , φj → φj . (8.1)

The most relevant terms in the scalar potential, as will be explained in Section 8.1.3,
are the trilinear interactions

µ1,jΦ
†
1φjS and µ2,jΦ

†
2φjS

∗ , (8.2)

where the implicit sum on j = 1, 2 is assumed. The parameters µ1(2),j have mass
dimension and determine the size of the mixing between both types of doublets.
The above interactions lead to the following charge constraints

X1 = −X2 = XS . (8.3)

The PQ charge normalization is unphysical and therefore we shall set XS = 1, as it
is usually done. The full scalar potential, built with the above constraints, can be
written as V = VS + VΦ + Vφ, with

VS =µ2
S|S|2 + λS|S|4 + λΦS

i (Φ†iΦi)|S|2

+
[
λΦS

12 (Φ†1Φ2)S2 + h.c.
]

+ λφSi (φ†iφi)|S|2 +
[
λφS12 (φ†1φ2)|S|2 + h.c.

]
+
[
µ1,iΦ

†
1φiS + µ2,iΦ

†
2φiS

∗ + h.c.
]
,

VΦ =M2
i Φ†iΦi + λΦ

ii,jj(Φ
†
iΦi)(Φ

†
jΦj)
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+ λΦφ
ii,jj(Φ

†
iΦi)(φ

†
jφj) + λ′Φφii,jj(Φ

†
iφj)(φ

†
jΦi)

+ λΦ
12,21(Φ†1Φ2)(Φ†2Φ1) +

[
λΦφ
ii,12(Φ†iΦi)(φ

†
1φ2)

+λ′Φφii,12(Φ†iφ2)(φ†1Φi) + h.c.
]
,

Vφ =m2
ijφ
†
iφj +

1

2
λij,kl(φ

†
iφj)(φ

†
kφl) , (8.4)

with λij,kl = λkl,ij, m
2
ij = (m2

ji)
∗ and λij,kl = λ∗ji,lk. For the Yukawa interactions

we shall only couple the doublets Φj, we call them active fields. The doublets φj
will not couple to fermions and thus we call them passive fields. For simplicity, we
choose the left-handed doublets to be blind under the chiral U(1)PQ. The charge
assignments for the fermions are the same as in the original axion and the DFSZ
models (see Eq. (3.34))

QLp → QLp, `Lp → `Lp,

uRp → eiXu θuRp, eRp → eiXe θeRp , (8.5)

dRp → eiXd θdRp .

Here p = 1, 2, 3 is a family index. The Yukawa Lagrangian reads

−LY = QL Γ Φ1dR +QL ∆ Φ̃2uR + `L Π ΦkeR + h.c. , (8.6)

where Φ̃2 ≡ iσ2Φ∗2 with σ2 the Pauli matrix. The mass matrices for the fermions in
the flavor basis are given by

Md =
Γu1√

2
, Mu =

∆u2√
2
, Me =

Πuk√
2
. (8.7)

The Yukawa interactions in Eq. (8.6) impose the charge constraints

Xd = −X1 , Xu = X2 , Xe = −Xk . (8.8)

Depending on the values of k, we will have different implementations of the NFC
condition [3, 4]: k = 1 (type-II); and k = 2 (flipped). These are just the usual
implementations of NFC in the DFSZ model. Other implementations of the NFC
condition, i.e. type-I and lepton-specific [4], where both up and down sectors couple
to the same scalar doublet, would not solve the strong CP problem and are not
considered.

8.1.2 Axion properties

Given its similarities with the DFSZ model, the invisible axion model from this im-
plementation share many properties with the DFSZ axion presented in Section 3.3.1.
In particular, its mass and coupling to photons, determined by the color and elec-
tromagnetic anomalies, are the same as in the DFSZ model. However, there is an
important difference in what concerns its couplings to matter. As we saw in Chap-
ter 8, in order to determine the axion-matter couplings it is convenient to define the
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axion so that it does not mix with the longitudinal component of the Z. Since the
information on the passive fields enter through the neutral Goldstone boson, our
model will differ from the DFSZ on the axion couplings to matter. As a result, the
PQ charges are modified in the following way [5] (see Eqs. (3.54) and (3.55) for the
DFSZ analogue)

X ′k = Xk −
1

v2

2∑
m=1

u2
mXm , (8.9)

with k = 1, 2. As a result, the axion coupling to electrons (see Eq. (3.25)) is given
by

ge = X ′k =


2
u2

2

v2
+
v2

1 + v2
2

v2
for k = 1

−2
u2

1

v2
− v2

1 + v2
2

v2
for k = 2

, (8.10)

where Eq. (8.3) has been used. As expected, we recover the DFSZ result for the
axion properties in the limit v1,2 = 0, when the passive fields do not take part in the
breaking of the EW symmetry. However, we can have significant deviations when
this is not the case. In Figure 8.1 we plot the absolute value of the axion-electron
coupling, |ge|, in terms of the ratios uk/v. The black solid line corresponds to the
DFSZ scenario, while the dashed red and dotted blue lines to our cases k = 1 and
k = 2, respectively. Let us take the k = 1 implementation as an example; the
dashed red lines are contours and their intersection with the solid black line give
the same value of |ge| as in the DFSZ model. Fixing, for example, the top Yukawa
to ytop = 1.5 (horizontal dashed line) the DFSZ scenario gives |ge| = 0.9. However,
this horizontal line crosses not only one dashed red contour but many. In particular,
for this specific ytop we have |ge| ∈ [0.9 , 1.44]. This allow us to increase the axion-
electron coupling up to 60%. For the scenario k = 2 the opposite happens, i.e. we
can decrease the axion-electron coupling. The adimensional axion-electron coupling
constant defined as

|haee| =
me|ge|
vPQ

' 1.4× 10−14 ×
( ma

meV

)
× |ge| , (8.11)

is constrained from white dwarfs and stellar evolution considerations, see Section 3.3.4,
requiring |haee| <∼ 1.3× 10−13 [6, 7]. This leads to the mass bound

ma|ge| <∼ 10 meV . (8.12)

Taking the scenario k = 1 and fixing the value of the top Yukawa, we see that the
axion mass is more constrained as we depart from the DFSZ limit. For the scenario
k = 2 the inverse happens, as we depart from the DFSZ limit we soften the bound
on the axion mass (for a fixed value of the top Yukawa). Therefore, the presence
of the passive fields can have important implications for the energy-loss in stars by
modifying the axion coupling to electrons.

Taking into account perturbativity of the top Yukawa, the allowed range for |ge|
is roughly [0.2, 2] and [0, 1.8] for k = 1 and k = 2, respectively. This implies the
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Figure 8.1: Axion coupling to electrons,
|ge|, in the u2/v vs. u1/v plane.
The DFSZ model is represented by the
solid black line, our framework with red
dashed line for k = 1 and blue dotted
one for k = 2. Very small values of
u2/v would lead to a non-perturbative
top Yukawa and are not shown.

following bound on the axion mass ma
<∼ 5 meV. Such bound is well compatible

with the region where the invisible axion could constitute all of the dark matter in
the Universe, see Ref. [8] and references therein.

The presence of the passive fields would also give rise to similar modifications of
the axion coupling to hadrons [5], relevant for interpreting the supernova SN 1987A
limits [6]. The passive fields, on the other hand, do not change the axion coupling to
photons since they are blind to the PQ symmetry. In our scenario this implies that
bounds relying on the axion coupling to photons that we discussed in Section 3.3.4
would be the same as in the DFSZ model. In particular, constraints from the Solar
age, helioseismology, the Solar neutrino flux as well as direct axion searches via
axion-photon conversion are not sensitive to the passive fields [6].

8.1.3 Mixing active and passive doublets and the decoupling
limit

A distinctive feature of invisible axion models is that the large PQ symmetry break-
ing scale usually brings the scalar sector to a decoupling scenario. A SM-like Higgs
remains at the weak scale while the other scalar fields (with the exception of the ax-
ion) get masses around vPQ. In the DFSZ model for example, decoupling arises due
to terms in the scalar potential mixing the Higgs doublets with the scalar singlet;
these terms are crucial so that the axion actually becomes invisible. Under spe-
cific circumstances one can avoid decoupling in the DFSZ model and have the two
Higgs doublets at the weak scale, protection against dangerous flavor changing scalar
couplings is guaranteed by the NFC condition. In order to illustrate the decoupling
limit, let us consider the DFSZ scalar potential which is a particular case of our more
general scalar sector, where the passive fields are absent, i.e. VDFSZ = V |φj=0.
Due to the large hierarchy on the vevs, i.e. vPQ � v, we can extract

v2
PQ = −2µ2

S/λS +O(v2) . (8.13)
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Up to O(v2), we can deal with this mixing as being SU(2)L preserving. The mass
matrix for the doublets reads

V mass
DFSZ = Φ†i (MA)ij Φj +O(v2) , (8.14)

with MA given in Eq. (8.17a). The decoupling condition can be readily obtained
by going to the Higgs basis in which only one Higgs doublet takes a vev, the Higgs
doublet that does not acquire a vev will decouple if

|λΦS
12 | v2

PQ

2 cos β sin β
� v2 . (8.15)

Here tan β ≡ 〈Φ0
2〉/〈Φ0

1〉 and λΦS
12 is defined in Eq. (8.4). In the decoupling limit the

Higgs doublet that gets a vev remains at the EW scale: three degrees of freedom
of this doublet correspond to the Goldstone bosons that give mass to the massive
gauge vector bosons while the remaining degree of freedom is a SM-like Higgs boson.
If |λΦS

12 | happens to be small enough, both doublets remain at the weak scale and
a plethora of new physics phenomena associated with the Higgs sector becomes
accessible to experiments.

In the framework presented in Section 8.1.1, the breaking of U(1)PQ by the
large vev vPQ induces a non-negligible mixing between the active and passive scalar
doublets. The decoupling structure of this framework will then be richer than in the
DFSZ model. Defining the scalar field ϕ = (Φ1, Φ2, φ1, φ2)T , we want to diagonalize
the mass terms for the doublets ϕ†iMij ϕj, where

M =

(
MA MB

M†
B MC

)
. (8.16)

HereM is a 4×4 hermitian matrix and the specific form of the 2×2 blocks is given
by

MA =

(
M2

1 +
λΦS

1

2
v2

PQ

λΦS
12

2
v2

PQ

(λΦS
12 )∗

2
v2

PQ M2
2 +

λΦS
2

2
v2

PQ

)
, (8.17a)

MB =
1√
2
v2

PQ

(
µ1,1 µ1,2

µ2,1 µ2,2

)
, (8.17b)

MC =

 m2
11 +

λφS1

2
v2

PQ m2
12 +

λφS12

2
v2

PQ

(m2
12)∗ +

(λφS12 )∗

2
v2

PQ m2
22 +

λφS2

2
v2

PQ

 . (8.17c)

The block MB is responsible for the mixing of active and passive fields, it comes
solely from the interaction in Eq. (8.2). Let us denote by Hj (j = 1, . . . , 4) the
mass eigenstates, ordered from the heaviest to the lightest one (|MHm| ≥ |MHn|
for m < n). We must find the unitary transformation R, i.e. ϕi = Rij Hj, that
makesM diagonal. The Yukawa interactions will contain, in general, the four mass
eigenstates Hj coupling to the fermions.

We are interested in the two following decoupling limits: (1) H3,4 at the weak
scale; (2) H4 at the weak scale. In case (2) we will get a SM-like Higgs sector at
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the weak scale. Therefore, we shall focus on case (1) (case (2) can be seen as a
limiting case of (1) where H3 decouples). Working in the decoupling limit (1), we
do not need the full information on the entries of R in order to check the low energy
Yukawa interactions. The relevant entries are the block that mixes the active fields
with the lightest mass eigenstates, that is(

Φ1

Φ2

)
= R̂

(
H3

H4

)
, with R̂ =

(
R13 R14

R23 R24

)
. (8.18)

The matrix R̂ is in general not unitary. The effective Yukawa interactions will be
given by

−Leff
Y = QL Γ (R13H3 +R14H4)dR +QL ∆ (R∗23H̃3 +R∗24H̃4)uR

+ `L Π (Rk3H3 +Rk4H4)eR + h.c.
(8.19)

In the decoupling limit, the EW vev should reside completely in the light doublets
〈H0

3,4〉 = w3,4/
√

2, with (w2
3 +w2

4)1/2 = v. We describe below the Yukawa structures

that can arise at the weak scale for different forms of the matrix R̂. The entries
denoted by × shall represent not only nonzero entries, but also of O(1). The last
requirement guarantees perturbative Yukawa couplings. We then have the following
cases:

• R̂ =

(
× 0
× ×

)
A mixing matrix R̂ with this structure will give rise to Yukawa alignment [9]
in the effective theory. A possible texture for the mass matrix is

MA

2b
∼

(
1 +

ε

2b
1

1 1

)
,
MB

b
∼
(

1 1
1 1

)
,
MC

b
∼
(

2 −1
−1 2

)
, (8.20)

with b and ε being parameters of O(b) ∼ O(v2
PQ)� O(ε). The mass spectrum

is of the form, up to O(v2),

M2
H1
∼ 5b , M2

H2
∼ 3b , M2

H3
∼ ε , M2

H4
∼ 0 . (8.21)

Since one is free to perform a basis transformation among the light Higgs dou-
blets, other forms of the mixing matrix R̂ leading to Yukawa alignment at the
weak scale are equivalent to the one presented previously. In this framework
one can only obtain two independent alignment parameters, contrary to the
most general hypothesis of Yukawa alignment formulated in Ref. [9] with three
independent alignment parameters.

• R̂ =

(
× 0
× 0

)
Any UV implementation will always lead in this case to an effective type-I
scenario, where all the fermions couple to the same doublet at the weak scale.
A possible texture for the mass matrix is

MA

b
∼

1 +
ε

b
1

1 1 +
ε

b

 ,
MB

c
∼ MC

b
∼
(

1 1
1 1

)
. (8.22)
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Here c is a parameter of O(c) ∼ O(b) ∼ O(v2
PQ) � O(ε). This leads to a

spectrum of the form

M2
H1,2
' 2(b± c) , M2

3 ' ε , M2
4 ' 0 , (8.23)

with the same hierarchy as before.

In the previous cases, the original Yukawa structure of the active fields is not
manifest at the weak scale. A large mixing µ1(2),j ∼ vPQ between the active and
passive fields generates a decoupling scenario where the light scalar states contain a
significant admixture of both types of fields. However, a large mixing between active
and passive fields does not guarantee that the Yukawa structure will be different in
the effective theory.

• R̂ =

(
× 0
0 ×

)
The original UV implementation will remain at the effective level. A possible
texture for the mass matrix is

MA

b
∼

(
1 +

ε

b
0

0 1

)
,
MB

b
∼
(

0 1
1 0

)
,
MC

b
∼
(

1 0
0 1

)
. (8.24)

We get the mass spectrum

M2
H1,2
∼ 2b , M2

H3
∼ ε , M2

H4
∼ 0 . (8.25)

In general, the original Yukawa structure in Eq. (8.6) will remain in the ef-

fective theory if the mixing matrix R̂ can be brought into diagonal form by
a basis transformation of the light doublets. Finally, if the mixing between
the active and passive doublets is negligible µ1(2),j � vPQ, the only way to get
the desired decoupling is that the light fields H3,4 are simply two independent
combinations of the active doublets. In this case the Yukawa structure is not
altered.

As noted in Section 8.1.1, only the type-II or flipped implementations can solve
the strong CP problem. However, in our scenario we are able to mimic the DFSZ ax-
ion and still allow (at the effective level) for a type-I, type-II, flipped or even aligned
Yukawa structure. Also, recall that in contrast with the usual two-Higgs-doublet
models with NFC, our effective scalar potential has the most general form. Finally,
we are not able to reproduce (at the effective level) the lepton-specific scenario since
the active field coupling to the charged leptons at the UV level is always one of the
active fields coupling to the up or down quarks.

8.1.4 Adding right-handed neutrinos

We shall work in the canonical extension with three right-handed neutrinos NRp

(p = 1, 2, 3). Since the Dirac or Majorana nature of the light neutrinos is still
unknown we shall present an implementation for both scenarios.
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The Majorana neutrinos can be implemented in the well known Type-I seesaw
mechanism [10]. In this framework the fermionic interaction Lagrangian gets ex-
tended by

−Lν = `LY Φ̃jNR +N c
RANR S + h.c. (8.26)

Here j = 1, 2 depending on the implementation of the NFC condition and A is a
dimensionless 3 × 3 symmetric complex matrix. We need to impose a non-trivial
transformation of NR under the U(1)PQ symmetry. With the field transformation

NRp → eiXNθNRp , (8.27)

the above Lagrangian implies the charge constraints2

XN = −1

2
, X` = XN −Xj . (8.28)

After the breaking of the PQ-symmetry, a mass term for the right-handed fields is
generated and the resulting low-energy neutrino mass matrix will then be given by

mν ' −
u∗2j

2
√

2vPQ

Y A−1 Y T . (8.29)

If in Eq. (8.26) instead of Φj we had the passive doublets coupling to neutrinos, X`

becomes −1/2 and in Eq. (8.29) we must do the replacement u∗jY →
∑

k v
∗
kYk.

In general, the introduction of a Majorana mass term for the right-handed neutri-
nos breaks lepton number. The presence of a complex scalar singlet allows the defi-
nition of a conserved lepton number U(1)L in Eq. (8.26), where all leptons have asso-
ciated a +1 charge (−1 for anti-leptons) and the complex scalar S a −2 charge [11].
However, the presence in the scalar potential of the interaction terms in Eq. (8.2)
explicitly violates lepton number. One could see these type of interactions as a soft
breaking, allowing lepton number conservation in a natural limit. As explained in
Ref. [11], in that symmetric limit we get a majoron (the Goldstone of the U(1)L).
In these models the majoron can transmute into the invisible axion as the soft sym-
metry breaking term is turned on. Our scenario is a bit different, since we cannot
define a lepton number up to a soft breaking. The trilinear terms in Eq. (8.2) must
be close to the PQ scale in order to obtain a Yukawa aligned structure at the weak
scale while avoiding non-perturbative Yukawa couplings at the same time. Besides,
the interaction terms in Eq. (8.26), we also have the dimension four lepton number
violating term Φ†1Φ2S

2.3 In this way, lepton number is not at all softly broken.
Summing up, in our scenario lepton number is explicitly (and not softly) broken

and the invisible axion will have no remnant of a majoron. Therefore, the seesaw
scale can be related with the PQ scale, but the dynamical origin of lepton number
violation is not approached in this model.

Choosing the charge assignment X` = XN 6= 0,±1/2, we can avoid the Majorana
mass term for the right-handed neutrinos as well as their Yukawa coupling with the

2Allowing instead for the term N c
RANR S

∗ in Eq. (8.26) would imply XN = 1
2 .

3This term can be eliminated choosing a different PQ charge assignment, in that case the
trilinear couplings are promoted to a dimension four term.
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active doublets. In this case the neutrinos obtain Dirac masses from their Yukawa
interaction with the passive fields,

−Lν = `LYj φ̃jNR + h.c. (8.30)

The neutrino mass matrix will be given by

mν =
v∗j√

2
Yj . (8.31)

This scenario is not as popular as the seesaw mechanism for two main reasons: the
requirement of very small Yukawa couplings, without any dynamical origin; and the
need for a new imposed symmetry, a global B−L, that forbids the Majorana term.

In our framework the very small Yukawa couplings can be avoided if we are
working near the DFSZ limit. In this limiting case we have the strong hierarchy
O(uj) � O(vj), allowing the neutrino Yukawas to be as tuned as the charged
lepton ones. Concerning the global B − L symmetry; due to the particular charge
assignments under U(1)PQ, the theory posses an accidental B − L global symmetry
which remains unbroken. Note that, while the previous seesaw scenario can be
implemented in the usual DFSZ model, the Dirac case is only possible (without
resorting to very small Yukawa couplings) if the scalar fields coupling to neutrinos
do not couple to other type of matter, i.e. are passive fields.

8.1.5 Conclusions

In this section we have considered the DFSZ invisible axion model with an addi-
tional pair of Higgs doublets that are blind to the PQ symmetry. Due to mixing
effects among the scalar fields it is possible to obtain a rich scalar sector at the weak
scale with an underlying natural flavor conservation condition which guarantees the
absence of dangerous flavor changing scalar couplings. We have shown that in a par-
ticular decoupling limit, two Higgs doublets remain at the weak scale with a Yukawa
aligned structure [9], while all the other scalars (with the exemption of the axion)
have masses close to the PQ symmetry breaking scale. In this limit, the model can
then be regarded as an UV completion of the A2HDM. Compared with the original
formulation of the A2HDM, our framework posses some important differences. In
our scenario a chiral global U(1)PQ symmetry provides a dynamical solution to the
strong CP problem via the PQ mechanism, with a DFSZ-like axion. On the other
hand, our model contains at most two independent complex alignment parameters
while the general A2HDM contains three (with the same fermionic content than
the SM). We can also extend it to accommodate small active neutrino masses with
either Dirac or Majorana neutrinos.

Other models that can give rise to Yukawa alignment at the weak scale have been
formulated [12], none of these however solve the strong CP problem. Having an UV
completion of the A2HDM that solves the strong CP problem is crucial for example
when interpreting the stringent limits from hadronic electric dipole moments [13].

Finally, it is worth stressing that invisible axion models as the one proposed
in this section have some drawbacks; besides the fact that the PQ symmetry and
the particle content might seem ad hoc. Being U(1)PQ a continuous symmetry,
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gravitational effects can introduce large contributions to the axion mass and spoil
the solution to the strong CP problem, see Section 3.3.3 for a discussion. While this
is out of the scope of the work presented in this thesis, we call the attention that in
order to make this model more natural a mechanism to avoid these effects, such as
the one discussed in Section 3.3.3, should be implemented.

8.2 Invisible axion models with controlled FCNCs

at tree-level

Up to now, the invisible axion models presented in this thesis are characterized by
having no flavor changing interactions. In this section we will exploit the U(1)BGL

introduced in Section 2.2.1 to build a class of invisible axion models where the PQ
symmetry is not family universal but rather a horizontal symmetry.4 As we saw
in Section 2.2.1, the minimal version of the BGL model leads to the presence of
a dangerous Goldstone boson that calls for the extension of such framework. By
promoting the BGL symmetry to a PQ symmetry, we get rid of this dangerous
Goldstone boson, which now becomes an axion or familon, while at the same time,
we provide a solution to the Strong CP problem within this framework.

The model considered in this section is characterized by several interesting fea-
tures. Among these, we stress the possibility of avoiding the domain wall prob-
lem [16–18]. Moreover, the presence of flavor changing axion interactions can
introduce experimental constraints stronger than the astrophysical ones in some
cases [19]. Invisible axion models with a horizontal PQ symmetry have been built
previously in Refs. [20–24] and in the context of horizontal gauge symmetries in
Ref. [25].

The structure of this section is as follows: in Section 8.2.1 we show that it is
not possible to implement axion models within the 2HDM BGL model presented in
Section 2.2.2 and that an extension of the scalar sector is needed to promote this
symmetry to a PQ symmetry. In Section 8.2.2, we provide a simple extension of the
BGL model for which the proposed mechanism is possible. This model can be min-
imally extended to account for neutrino masses, we explore this possibility within
a concrete implementation in Section 8.2.3. A full study of the axion properties of
the model, including the domain wall problem and the protection from gravitational
effects, is done in Section 8.2.4. All the results shown in the previous sections will
be obtained in the top-BGL implementation where the top quark is singled out and
the FCNCs appear in the down-quark sector; Section 8.2.5 is intended to the study
of all the possible models variations. In Section 8.2.6 we perform a phenomenolog-
ical analysis of the axion in these models taking into account flavor experiments,
astrophysical considerations and axion searches via axion-photon conversion. Some
details concerning Higgs decoupling scenarios and possible new physics signatures
related to the Higgs sector can also be found in Section 8.2.7. We summarize our
results and conclude in Section 8.2.8.

4Such models were introduced in Refs. [14, 15] in which the following section is based.
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8.2.1 The anomalous condition for a BGL-like model

The aim of this section is to consider whether the U(1)BGL symmetry introduced in
Section 2.2.2 can be promoted to a PQ symmetry. As we saw in Section 3.2, for a
global U(1) to act as a U(1)PQ and solve the Strong CP problem, this symmetry has
to be chiral and SU(3)c anomalous. The BGL symmetry introduced in Eq. (2.38) is
a chiral symmetry, however the color anomaly cancellation condition

[SU(3)c]
2 × U(1)PQ : 2XtL −XtR +XuR = 0 . (8.32)

is automatically satisfied for this charge implementation. This result, that also
applies to the other 2HDM BGL model variations, is the consequence of having to
match the Sup

Φ and Sdown
Φ generators (see Eqs. (2.33) and (2.36)) to make the two

Higgs BGL implementation consistent. A simple solution to bypass this matching
condition is to extend the model beyond two Higgs, making the three-Higgs doublet
model the minimal extension. In the three Higgs implementation we can just join
the scalar generators Sup

Φ and Sdown
Φ into a single one

SΦ = diag
(
eiXuR θ, ei(XtR−XtL) θ, ei(XtL−XdR) θ

)
. (8.33)

In this three-Higgs doublet model implementation we get the following Yukawa
textures

Γ1 =

× × ×
× × ×
0 0 0

 , Γ2 = 0 , Γ3 =

0 0 0
0 0 0
× × ×

 ,

∆1 =

× × 0
× × 0
0 0 0

 , ∆2 =

0 0 0
0 0 0
0 0 ×

 , ∆3 = 0 ,

(8.34)

with the charge constraints

Texture Matching Conditions:


XuR = −XdR,
XuR 6= XtR,
XtL 6= XtR −XuR,

Anomaly condition: XtL 6= −
1

2
(XuR −XtR) .

(8.35)

Since we extended the Higgs sector, in principle it is no longer necessary to have
ΓBGL

1 and ∆BGL
1 (see Eq. (2.21) for their definition) coupling to the same Higgs

doublet. We can have another three different implementations:

• ΓBGL
1 with ∆BGL

2 . This implies −XdR = XtR −XtL;

• ΓBGL
2 with ∆BGL

1 . This implies XuR = XtL −XdR;

• ΓBGL
2 with ∆BGL

2 . This implies XtR −XtL = XtL −XdR.
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However, the first two implementations violate the charge restrictions in Eq. (2.37)
whereas the third one is a safe implementation and gives

SΦ = diag
(
eiXuR θ, e−iXdR θ, ei(XtL−XdR) θ

)
, (8.36)

so we get the following Yukawa textures implementation

Γ1 = 0 , Γ2 =

× × ×
× × ×
0 0 0

 , Γ3 =

0 0 0
0 0 0
× × ×

 ,

∆1 =

× × 0
× × 0
0 0 0

 , ∆2 = 0 , ∆3 =

0 0 0
0 0 0
0 0 ×

 .

(8.37)

For this symmetry to be anomalous and in order not to introduce additional textures
that spoil the desired behavior of the model we need to guarantee, in analogy to the
previous case, the following charge restrictions

Texture Matching Conditions:


XtR = 2XtL −XdR,
XtL 6= XuR +XdR,
XtL 6= 1

2
(XuR +XdR) ,

Anomaly Condition: XuR 6= −XdR.

(8.38)

The BGL 2HDM needs to satisfy the condition B in Eq. (2.32). However, when
extending it to a three Higgs scenario, with the possibility of null couplings, this
condition no longer needs to be satisfied. Relaxing this condition by setting XtR =
XuR +XtL, we get a new type of texture in the up sector (the combination of ∆BGL

1

and ∆BGL
2 ). Three new possible implementations become available:

• New texture coupling to ΓBGL
1 . This implies XdR = −XuR;

• New texture coupling to ΓBGL
2 . This implies XdR −XtL = −XuR;

• New texture coupling to a null texture.

The first two cases violate the charge conditions in Eq. (2.37), this is the reason why
there is no BGL 2HDM with this texture. However, the third possibility gives a safe
implementation in a three Higgs scenario with the same scalar charge assignments
as in the previous case, i.e. Eq. (8.36). The Yukawa textures implementation is then
given by

Γ1 = 0 , Γ2 =

× × ×
× × ×
0 0 0

 , Γ3 =

0 0 0
0 0 0
× × ×

 ,

∆1 =

× × 0
× × 0
0 0 ×

 , ∆2 = 0 , ∆3 = 0 .

(8.39)
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For the symmetry to be anomalous and to guarantee that we introduce no additional
Yukawa textures, the following charge conditions apply

Texture Matching Conditions:


XuR 6= −XdR,
XtL 6= XuR +XdR,
XtL 6= − (XuR +XdR) ,
XtL 6= 1

2
(XuR +XdR) ,

Anomaly Condition: XtL 6= 3 (XuR +XdR) .

(8.40)

In conclusion, in this section we have shown that it is not possible to build an
anomalous two-Higgs-doublet model à la BGL and we have found three different
implementations of the PQ symmetry for the three-Higgs-doublet model, up to
permutations in the family or in the up-down sectors. These three cases are built
from the generators in Eqs. (2.29) and (2.34). They read as follows:

• Case I: where the Yukawa textures are given by Eq. (8.34), satisfies conditions
A and B in Eqs. (2.30) and (2.32), and the texture matching and anomaly
conditions in Eq. (8.35).

The charges associated with the Higgs fields are

XΦ1 = XuR , XΦ2 = XtR −XtL , XΦ3 = XtL +XuR . (8.41)

• Case II: with the Yukawa textures shown in Eq. (8.37), satisfies conditions A
and B, and the texture matching and anomaly conditions in Eq. (8.38).

The charges associated with the Higgs fields are

XΦ1 = XuR , XΦ2 = −XdR , XΦ3 = XtL −XdR . (8.42)

• Case III: with the Yukawa textures shown in Eq. (8.39), satisfies the con-
straint XtR = XuR+XtL, condition A, and the texture matching and anomaly
conditions in Eq. (8.40).

The charges associated with the Higgs fields are the same as in case II.

8.2.2 The three-Higgs-doublet class of anomalous models

In the previous section we have shown that the Yukawa textures in the BGL 2HDM
cannot be imposed by a chiral PQ symmetry. We also derived the necessary con-
ditions to build three-Higgs doublet models with FCNC at tree-level completely
determined by the fermion mixing matrices. In the latter scenario, we obtained all
the possible Yukawa texture implementations imposed by a PQ symmetry and de-
termined the restrictions to the PQ charges in each case. In what follows we provide
details about the quark Yukawa sector, the scalar sector, and the extension to the
leptonic sector in these type of models.
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The Yukawa quark sector

In similar a fashion to what was done in Section 2.1, we shall build the relevant
flavor matrix combinations that mediate the FCNCs. The Yukawa Lagrangian in
the three Higgs scenario is now written as

−LY = Q0
L [Γ1 Φ1 + Γ2 Φ2 + Γ3 Φ3] d0

R +Q0
L [∆1 Φ̃1 + ∆2 Φ̃2 + ∆3 Φ̃3]u0

R + h.c. ,
(8.43)

where we just keep the same notation as in Eq. (2.1), but for j = 1, 2, 3 in this case.
We go once more to the Higgs basis, by performing the following transformationsG+

H+

H ′+

 = O3

ϕ+
1

ϕ+
2

ϕ+
3

 ,

G0

I
I ′

 = O3

η1

η2

η3

 ,

H0

R
R′

 = O3

ρ1

ρ2

ρ3

 , (8.44)

with

O3 =


v1

v
v2

v
v3

v

v2

v′
−v1

v′
0

v1

v′′
v2

v′′
− v′2

v′′v3

 , v =
√
v2

1 + v2
2 + v2

3 , v′ =
√
v2

1 + v2
2 , v′′ =

v′v

v3

.

(8.45)

In the Higgs basis the mass and Yukawa interactions are given by

−LY = d0
L

[
Md +

1

v
MdH

0 +
1

v′
N0
dR +

1

v′′
N ′0d R

′ + i
1

v′
N0
d I + i

1

v′′
N ′0d I

′
]
d0
R

+ u0
L

[
Mu +

1

v
MuH

0 +
1

v′
N0
uR +

1

v′′
N ′0u R

′ − i 1

v′
N0
uI − i

1

v′′
N ′0u I

′
]
u0
R

+

√
2

v′
H+

(
u0
LN

0
dd

0
R − u0

RN
0†
u d

0
L

)
+

√
2

v′′
H ′+

(
u0
LN
′0
d d

0
R − u0

RN
′0†
u d0

L

)
+ h.c. ,

(8.46)

with the flavor matrices given by

Md =
1√
2

(v1e
iα1Γ1 + v2e

iα2Γ2 + v3e
iα3Γ3) ,

Mu =
1√
2

(v1e
−iα1∆1 + v2e

−iα2∆2 + v3e
−iα3∆3) ,

(8.47)

and

N0
d =

1√
2

(
v2e

iα1Γ1 − v1e
iα2Γ2

)
,

N0
u =

1√
2

(
v2e
−iα1∆1 − v1e

−iα2∆2

)
,

N ′0d =
1√
2

(
v1e

iα1Γ1 + v2e
iα2Γ2 −

v′2

v3

eiα3Γ3

)
,

N ′0u =
1√
2

(
v1e
−iα1∆1 + v2e

−iα2∆2 −
v′2

v3

e−iα3∆3

)
.

(8.48)
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These last flavor matrix combinations are the ones mediating the FCNCs in our
framework. We can now evaluate them for each of the three cases. In the basis
where the quarks are mass eigenstates we get:

• Case I:

(Nd)ij =
v2

v1

(Dd)ij −
v2

v1

(V †)i3(V )3j(Dd)jj ,

(N ′d)ij = (Dd)ij −
v2

v2
3

(V †)i3(V )3j(Dd)jj ,

Nu = −v1

v2

diag(0, 0,mt) +
v2

v1

diag(mu,mc, 0) ,

N ′u = Du .

(8.49)

• Case II:

(Nd)ij = −v1

v2

(Dd)ij +
v1

v2

(V †)i3(V )3j(Dd)jj ,

(N ′d)ij = (Dd)ij −
v2

v2
3

(V †)i3(V )3j(Dd)jj ,

Nu =
v2

v1

diag(mu,mc, 0) ,

N ′u = diag(mu,mc, 0)− v′2

v2
3

diag(0, 0,mt) .

(8.50)

• Case III:

(Nd)ij = −v1

v2

(Dd)ij +
v1

v2

(V †)i3(V )3j(Dd)jj ,

(N ′d)ij = (Dd)ij −
v2

v2
3

(V †)i3(V )3j(Dd)jj ,

Nu =
v2

v1

Du ,

N ′u = Du .

(8.51)

As expected, in all cases the FCNCs will be mediated by quark masses and off-
diagonal elements of the CKM quark mixing matrix. This is virtually the same
type of suppression as the one obtained in the BGL 2HDM implementation. The
difference lies in the vevs ratios that we get in front of each term. This actually
contrasts with the anomaly-free three Higgs BGL implementation [26]. In that
scenario the Yukawa textures, which differ from the 2HDM implementation, cannot
give such a strong suppression to |∆S| = 2 processes as compared to the original
BGL implementation. One generally gets suppressions of the order of (V ∗cdVcs)

2 ∼ λ2

(λ ' 0.225), requiring heavy neutral scalar fields. However, the fact that we kept the
same Yukawa textures in passing from the two to the three Higgs implementation
allows us to have suppressions of the type (V ∗tdVts)

2 ∼ λ10 for |∆S| = 2 processes,
just like the original BGL scenario.
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The scalar potential

As we saw in Section 3.2.1, current experimental limits exclude axions coming from
a PQ symmetry broken at the EW scale [23,27–29]. To obtain a viable axion model
the PQ symmetry must be broken at a scale much higher than the EW scale. The
axion is then called invisible since its mass and couplings are suppressed by the large
PQ symmetry breaking scale. We can achieve this in a similar way as in the DFSZ
and KSVZ invisible axion models, that is, by introducing a complex scalar singlet
which acquires a very large vev 〈0|S|0〉 = eiαPQvPQ/

√
2, with vPQ � v. The new

complex field S will have the following symmetry transformation

S → eiXS θS . (8.52)

The introduction of the complex scalar singlet increases the number of independent
charges in one unity. From the Yukawa sector alone, with fermion charges chosen
in order for the symmetry to be anomalous, we are able to reduce the number
of independent PQ charges to just three. In this way the number of independent
charges increases to four.

The scalar doublets transform as in Eq. (2.25) with the charges XΦi expressed in
terms of the three quark charges, their explicit form will depend on whether we are
working in case I or II/III (as detailed in the previous section). We shall split the
potential in two parts: the phase blind part [V (Φ, S)]blind, and the phase sensitive
part [V (Φ, S)]sen, i.e.

V (Φ, S) = [V (Φ, S)]blind + [V (Φ, S)]sen . (8.53)

The phase blind terms do not constrain the charge assignments, they are given by

[V (Φ, S)]blind =m2
iΦ
†
iΦi + λii,jj

(
Φ†iΦi

)(
Φ†jΦj

)
+ λ′ij,ji

(
Φ†iΦj

)(
Φ†jΦi

)
+m2

S|S|2 + λS|S|4 + λΦS
i (Φ†iΦi)|S|2 .

(8.54)

The parameters λΦS
i and λii,jj run for all i, j = 1, 2, 3, while the parameter λ′ij,ji

run for i 6= j. This part of the potential possesses a U(1)4 global symmetry. The
role of the phase sensitive part is to introduce terms which break (explicitly) this
symmetry down to U(1)Y ×U(1)PQ. With this symmetry we will have two complex
phases to which the scalar potential will not be sensitive, one will be the neutral
Goldstone boson and the other the axion. This will introduce two new additional
constraints, reducing the number of independent charges down to two.

We shall now present the possible phase sensitive terms that we may built and
their constraints in terms of the PQ charges. We note that any term of the form Φ†iΦj

(or any combination where this is the only phase sensitive part) implies the charge
relation XΦi = XΦj, which is automatically excluded by the charge conditions, see
Eqs. (8.41) and (8.42). Also, terms that are only sensitive to phases of one single
field such as Sk, Φ†iΦiS

k, etc. would imply a discrete phase, which is not allowed in
our framework.

In Table 8.1 we present all the possible, renormalizable and gauge invariant,
phase sensitive terms (up to hermitic conjugation). We now have to check all the
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Case Phase sensitive Constraint

(1)
(

Φ†1Φ2

)(
Φ†1Φ3

)
XΦ2 +XΦ3 − 2XΦ1 = 0

(2)
(

Φ†2Φ1

)(
Φ†2Φ3

)
XΦ3 +XΦ1 − 2XΦ2 = 0

(3)
(

Φ†3Φ1

)(
Φ†3Φ2

)
XΦ1 +XΦ2 − 2XΦ3 = 0

(4)
(

Φ†1Φ2

)
{S, S∗}k1 k1XS = ∓(XΦ2 −XΦ1)

(5)
(

Φ†1Φ3

)
{S, S∗}k2 k2XS = ∓(XΦ3 −XΦ1)

(6)
(

Φ†2Φ3

)
{S, S∗}k3 k3XS = ∓(XΦ3 −XΦ2)

Table 8.1: We consider ki = 1, 2 due to renormalizability. The minus sign (−) is associ-
ated with S and the plus (+) with the conjugated field S∗.

possible combinations of two terms from (1) to (6). Combining just the first three
cases will lead to a constraint of the type XΦi = XΦj, which is excluded. When
combining cases (1) to (3) with cases (4) to (6) all of these last three cases will be
allowed simultaneously. After finding all the possible combinations and using the
information about the explicit forms of XΦi in terms of the quark charges we get
the following charge constraints:

• Case I:

XtL = CI(XuR −XtR) , XS = CI
SXtL . (8.55)

• Case II/III:

XtL = CII(III)(XuR +XdR) , XS = C
II(III)
S XtL . (8.56)

We must also have CI 6= 0,−1,−1/2, CII 6= 0, 1, 1/2 and CIII 6= −1, 0, 1
2
, 1, 3 (see

Eqs. (8.35), (8.38) and (8.40), respectively) in order to preserve the Yukawa textures
and the symmetry to be anomalous. In Table 8.2 we present all possible values for
CI,II,III and CI,II,III

S in each possible phase sensitive potential implementation.
At this point we have two free charges which we choose to be XuR and XS, for

all cases. We can normalize all charges to the scalar singlet charge, without loss of
generality, just by setting the condition XS = 1. This allows the PQ quark charges
to be written in terms of the values CI,II,III

S , CI,II,III and one free charge, XuR.
They will now take the form:

• Case I:

XtL =
1

CI
S

, XdR = −XuR , XtR = XuR −
1

CI
SCI

. (8.57)

• Case II:

XtL =
1

CII
S

, XdR = −XuR +
1

CII
S CII

, XtR = XuR −
1− 2CII
CII
S CII

. (8.58)
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Term Combination CI CI
S CII(III) C

II(III)
S

T1 (4)+(5) k1 = 1, k2 = 2 (S, S∗) −2 1/2 3 1/3
T2 (4)+(5) k1 = 2, k2 = 1 (S, S∗) 1 1 3/2 1/3
T3 (4)+(6) k1 = 1, k3 = 2 (S, S) −3/4 −1/3 −2 −1/2
T4 (4)+(6) k1 = 2, k3 = 1 (S, S) −3/5 −1/3 −1/2 −1
T5 (5)+(6) k2 = 1, k3 = 2 (S, S∗) −1/4 −1 2/3 1/2
T6 (5)+(6) k2 = 2, k3 = 1 (S, S∗) −2/5 −1/2 1/3 1
T7 (1)+(4)+(5) k1 = k2 = 2 (S, S∗) − − 2 1/4
T8 (2)+(4)+(6) k1 = k3 = 2 (S, S) −2/3 −1/4 −1 −1/2
T9 (3)+(5)+(6) k2 = k3 = 2 (S, S∗) −1/3 −1/2 − −
T10 (1)+(4)+(5)+(6) k1 = 1, k2 = 1, k3 = 2 (S, S∗, S∗) − − 2 1/2
T11 (2)+(4)+(5)+(6) k1 = 1, k2 = 2, k3 = 1 (S, S, S) −2/3 −1/2 −1 −1
T12 (3)+(4)+(5)+(6) k1 = 2, k2 = 1, k3 = 1 (S, S, S∗) −1/3 −1 − −

Table 8.2: Allowed values for the charge combinations CI,II,III and CI,II,IIIS . Half of the
possible values are not shown in the table as they can be trivially obtained by interchanging
S ↔ S∗ in the above combinations, which amounts to a replacement CI,II,IIIS → −CI,II,IIIS .
The scenarios T1, T8 and T11 are not possible in case III.

• Case III:

XtL =
1

CIII
S

, XdR = −XuR +
1

CIII
S CIII

, XtR = XuR +
1

CIII
S

. (8.59)

In this section we have found up to 12 distinct phase sensitive potential imple-
mentations, see Table 8.2. For case I, T7 and T10 implementations are not compatible
with the flavor PQ symmetry in the fermionic sector. In case II, the incompatible
implementations are T9 and T12. Finally, case III has the same incompatible im-
plementations as case II plus T1, T8 and T11 implementations. As an illustrative
example, let us choose the implementation T2. The scalar potential would take the
form

V (Φ, S) = [V (Φ, S)]blind +
[
λ(Φ†1Φ2)S2 + µ(Φ†1Φ3)S∗ + h.c.

]
, (8.60)

with λ dimensionless and µ with mass dimension. Under this particular potential
implementation, and with our normalization, the PQ quark charges read

• Case I: XtL = 1 , XdR = −XuR , XtR = XuR − 1.

• Case II: XtL = 3 , XdR = −XuR + 2 , XtR = XuR + 4.

• Case III: XtL = 3 , XdR = −XuR + 2 , XtR = XuR + 3.

While the scalar charges are: XΦ1 = XuR , XΦ2 = XuR − 2 , XΦ3 = XuR + 1.
The fact that the scalar charges are the same for all the three cases should not
be surprising. The scalar potential itself knows nothing about the distinct Yukawa
implementations, that information enters only when we use the explicit expression
of the scalar charges in terms of the quark ones. Therefore, the scalars charges will
only depend on the distinct potential implementations.
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The Yukawa leptonic sector

In this section we shall only be interested in the Yukawa couplings of the charged
leptons and therefore we will say nothing on the Dirac or Majorana nature of the
neutrinos. We will assume that the final neutrino mass matrix texture contains
enough freedom, such that, in combination with the lepton mass matrix, accommo-
dates the full low-energy neutrino data. However, note that the neutrino Yukawa
textures should satisfy some conditions such that the BGL quark and lepton tex-
tures are not spoiled through radiative corrections [30]. In the next section we will
present a particular model implementation were the neutrino sector is worked out.
However, since we are mostly interested in the axion properties of this class of mod-
els, we will focus our attention just to the charged lepton implementation for the
general case.

The Yukawa leptonic Lagrangian is of the form

−Llep
Y = L0

L [Π1 Φ1 + Π2 Φ2 + Π3 Φ3] l0R + h.c. (8.61)

In a similar way as it happens in the quark Yukawa sector, it is convenient to rewrite
the Yukawa lepton Lagrangian by rotating the Higgs doublets to the Higgs basis (see
Eq. (8.44)) and by diagonalizing the lepton mass matrices through the bi-unitary
transformations

ν0
L = UνL νL , l0L,R = UeL,R eL,R . (8.62)

The Yukawa Lagrangian now reads as

−Llep
Y = eL

[
De +

1

v
DeH

0 +
1

v′
NeR +

1

v′′
N ′eR

′ + i
1

v′
NeI + i

1

v′′
N ′eI

′
]
eR

+

√
2

v′
H+νLNeeR +

√
2

v′′
H ′+νLN

′
eeR + h.c.

(8.63)

where, as it happened with the quarks, Ne and N ′e mediate the FCNCs. These flavor
combinations have the same expression, in the flavor basis, as Nd and N ′d present in
Eq. (8.48) with the replacement Γi → Πi.

Regarding the PQ symmetry transformations, the scalar field transformations
are given in Eqs. (8.41) and (8.42) for cases I and II/III respectively. We now need
to determine the PQ charges of the leptonic fields. In general these transform under
the continuous symmetry as

L0
L → S`L L0

L , l0R → S`Rl0R , (8.64)

with

S`L = diag(eiXeLθ, eiXµLθ, eiXτLθ) , S`R = diag(eiXeRθ, eiXµRθ, eiXτRθ) . (8.65)

A global phase transformation allows us to set XeL = 0 without loss of generality,
just as we did in the quark sector.

We could proceed with the symmetry implementation just like in the quark
sector, however, we can also combine the BGL-like textures in the quark sector with
NFC for the charged lepton such that we have several phenomenological models
available. We shall then split these implementations into two classes:
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(1) With FCNCs in the charged lepton sector.

This is the extension to three Higgs doublets of the symmetry implementation
in Ref. [30]. In this case, in order to have the FCNCs under control we choose
the implementation à la BGL, i.e.

{Π1, Π2, Π3} ∼
{

ΓBGL
1 , ΓBGL

2 , 0
}
. (8.66)

Just like in the quark sector, we need the other sector mass matrix (i.e. neu-
trino mass matrix) to be block diagonal, in order to have the PMNS mediating
the FCNCs. The way to achieve this will depend on the Dirac or Majorana
nature of the neutrinos and is out of the scope of this section (see next section
for more details). The symmetry implementation is just like the one in the
quark sector, i.e. XeL = XµL ≡ Xl′L and XeR = XµR = XτR ≡ XlR. The
constraints are

Xl′L −XlR = XΦi , XτL −XlR = XΦj . (8.67)

The equivalent to conditions A and B in the quark sector also apply to the
lepton charges. Since we have set XeL = 0, the charged lepton charges become
completely defined by the known scalar charges, i.e.

XτL = XΦj −XΦi , XlR = −XΦi . (8.68)

(2) Without FCNCs in the charged lepton sector.

In this case there are six implementations possible, as it was shown in Ref. [31].
Using the information that all the charges of the scalar fields are different we
get

(a)

{Π1, Π2, Π3} ∼


× × ×
× × ×
× × ×

 ,

  ,

  . (8.69)

In this scenario both left and right generators must be fully degenerate,
i.e. XeL = XµL = XτL ≡ XlL and XeR = XµR = XτR ≡ XlR. This
implies the following constraint

XlL −XlR = XΦi (or XlR = −XΦi) . (8.70)

(b)

{Π1, Π2, Π3} ∼


× × 0
× × 0
0 0 ×

 ,

  ,

  . (8.71)

In this scenario both left and right generators must be two-fold degener-
ate, i.e. XeL = XµL ≡ Xl′L and XeR = XµR ≡ Xl′R. This implies the
following constraints

Xl′L −Xl′R = XΦi , XτL −XτR = XΦi . (8.72)
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(c)

{Π1, Π2, Π3} ∼


× × 0
× × 0
0 0 0

 ,

0 0 0
0 0 0
0 0 ×

 ,

  . (8.73)

In this scenario the left and right generators have the same form as in
the previous one. However, the constraints are

Xl′L −Xl′R = XΦi , XτL −XτR = XΦj . (8.74)

(d)

{Π1, Π2, Π3} ∼


× 0 0

0 × 0
0 0 ×

 ,

  ,

  . (8.75)

In this scenario the left and right generators must have no degeneracy.
The constraint is given by

XαL −XαR = XΦi (α = e, µ, τ) . (8.76)

(e)

{Π1, Π2, Π3} ∼


× 0 0

0 × 0
0 0 0

 ,

0 0 0
0 0 0
0 0 ×

 ,

  . (8.77)

In this scenario the left and right generators are the same as before. The
constraints are given by

Xα′L −Xα′R = XΦi , XτL −XτR = XΦj (α′ = e, µ) . (8.78)

(f)

{Π1, Π2, Π3} ∼


× 0 0

0 0 0
0 0 0

 ,

0 0 0
0 × 0
0 0 0

 ,

0 0 0
0 0 0
0 0 ×

 .

(8.79)

In this scenario the left and right generators are the same as before. The
constraints are given by

XeL −XeR = XΦi , XµL −XµR = XΦj , XτL −XτR = XΦk . (8.80)

In general, we have only information on the difference between left- and right-
handed charged lepton charges. The condition XeL = 0 allows us to have the charged
lepton charges fully determined by the known scalar charges only in cases (1) and
(2a). For the other cases we would need to know the neutrino sector implementation.
Nevertheless, as we shall see in Section 8.2.4, the knowledge of the difference is
enough to get most of the axion properties.
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8.2.3 Adding right-handed neutrinos: an explicit implemen-
tation

With the purpose of illustration, in this section we will extend one of the implemen-
tations discussed in the previous sections to accommodate for neutrino masses and
mixing. For simplicity we will focus in the particular flavored PQ charges for the
quark fields,

XtL = −2 , XuR =
5

2
, XtR = −1

2
, XdR = −5

2
, (8.81)

that are compatible with the conditions found in Section 8.2.1. For the leptonic
sector many possible implementations of the PQ symmetry are available either with
Dirac or Majorana neutrinos. We shall focus on the last scenario, introducing two
right-handed neutrino fields, NRi (i = 1, 2). These two fields transform under the
PQ symmetry with the same phase, XNR. The charge transformation for this sector
takes the form

XτL = 1 , XlR = −1/2 , XNR = 1/2 , (8.82)

where we have defined XeR = XµR = XτR ≡ XlR and we have set XeL = XµL = 0,
without loss of generality, just as we did in the quark sector. Finally, the scalar
charges are given by

XΦ1 = 5/2 , XΦ2 = 3/2 , XΦ3 = 1/2 , XS = 1 , (8.83)

and the only allowed phase sensitive terms in the scalar potential are

(Φ†1Φ2)S , (Φ†1Φ3)S2 , (Φ†2Φ3)S , (Φ†2Φ1)(Φ†2Φ3) , (8.84)

which correspond to the implementation T11 in Table 8.2.
The Yukawa Lagrangian will then take the form

−LY =Q0
L [Γ1 Φ1 + Γ3 Φ3] d0

R +Q0
L [∆1 Φ̃1 + ∆2 Φ̃2]u0

R

+ L0
L [Π2 Φ2 + Π3 Φ3] l0R + L0

L Σ3 Φ̃3N
0
R

+ (N0
R)cAN0

RS
∗ + h.c. ,

(8.85)

where A is a general 2 × 2 complex symmetric matrix. In this three-Higgs-doublet
model implementation we get the following Yukawa textures:

Down: Γ1 = ΓBGL
1 , Γ3 = ΓBGL

2 ;

Up: ∆1 = ∆BGL
1 , ∆2 = ∆BGL

2 ;

Charged leptons: Π2 = ΓBGL
2 , Π3 = ΓBGL

1 ;

Neutrinos: Σ3 = ∆BGL
1

∣∣
3/
.

(8.86)

The matrix ∆BGL
1

∣∣
3/

corresponds to the original BGL texture but with the third

column removed. The Yukawa textures implemented in this framework are stable
under renormalization group evolution [30].
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As discussed in Section 8.2.2 this implementation possesses FCNCs in the down-
quark sector controlled by the matrices in Eq.(8.49). The model also possesses
tree-level FCNCs in the charged lepton sector, although not as suppressed as in the
quark sector. These will be completely controlled by the PMNS matrix [32]. The
flavor matrices encoding the FCNC interactions among charged leptons take the
form

(N ′e)ij = −(v2
1 + v2

2)

v2
3

(De)ij +
v2

v2
3

(U †)i3(U)3j(De)jj ,

(Ne)ij = −v1

v2

(U †)i3(U)3j(De)jj ,

(8.87)

in the fermion mass basis. Here U represents the PMNS mixing matrix and De the
diagonal charged lepton mass matrix.

The smallness of active neutrino masses is understood in this framework via a
type I seesaw mechanism [10] once the scalar singlet, S, gets a vev. This way the PQ
symmetry breaking scale provides a dynamical origin for the heavy seesaw scale [11].
The effective neutrino mass matrix is given by

mν ' −
v2

3e
i(αPQ−2α3)

2
√

2vPQ

Σ3A
−1ΣT

3 . (8.88)

One active neutrino remains massless because mν is singular, fixing the size of the
other two neutrino masses. For a normal hierarchy: m2 =

√
∆m2

21 ' 9 meV and

m3 =
√
|∆m2

31| ' 50 meV [33]. An inverted hierarchy on the other hand implies
two quasi-degenerate neutrinos: m1 ∼ m2 ' 50 meV.

8.2.4 Axion properties

The anomalous U(1)PQ symmetry of the class of models built in the previous sections
is spontaneously broken by the vev of the singlet field S at a very high scale, just
like in the standard DFSZ and KSVZ models. Non-perturbative QCD effects induce
a potential for the axion field, allowing us to shift away the strong CP phase and
giving a small mass to the axion [34]. The axion mass is given by Eq. (3.56), where
the color anomaly coefficient is given in this class of models by

Cag ≡
∑

i=colored

XiR −XiL = 2XuR + 3XdR +XtR − 2XtL . (8.89)

This quantity turns out to be independent of the free charges and can be expressed
as CM

ag (with M = I, II, III), which takes the form

Case I: CI
ag = −1 + 2CI

CICI
S

, Case II: CII
ag =

2

CIICII
S

,

Case III: CIII
ag =

3− CIII
CIIICIII

S

.

(8.90)

Here we have introduced the parameters CI,II,III and CI,II,III
S specified in Table 8.2.

The quantity CM
ag is therefore only dependent of the scalar implementation once the
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

N I
DW 3 3 2 1 2 1 − 2 2 − 1 1

N II
DW 2 4 2 4 6 6 4 4 − 2 2 −

N III
DW − 3 5 7 7 8 2 − − 1 − −

Table 8.3: Values for the domain wall number in each of the possible scenarios.

Yukawa textures are specified. One of the interesting features of having a flavored
PQ symmetry is that it is possible to avoid the formation of domain walls during the
evolution of the Universe [16,19]. As we saw in Section 3.3.2 the domain wall number
is determined by the color anomaly coefficient with NDW = |CM

ag |. In Table 8.3 we
present the values of the domain wall number for the different implementations of
the models we are presenting. As we can see, while some of the implementations also
suffer from the domain wall problem, others have NDW = 1, for which the resulting
domain wall structure is harmless [35]. This is the case for instance for the specific
implementation that we extended in Section 8.2.3.

The most significant differences of our 3HFPQ framework with the usual bench-
marks invisible axion models is the presence of tree-level flavor changing axion cou-
plings as well as large deviations from the axion coupling to photons, that was given
in Eq. (3.30). In this class of models the electromagnetic factor Caγ is given by

Caγ =2
∑

i=charged

(XiR −XiL)Q2
i

=2

[
8

3
XuR +XdR +

4

3
XtR −

5

3
XtL +

∑
α=e,µ,τ

(XαR −XαL)

]
.

(8.91)

This quantity can be expressed as

CM
aγ =

2

3

AM
CMCM

S

, (8.92)

with M = I, II, III and where the combination of fermionic charges AI,II,II are
defined in Table 8.4. The charged lepton combinations are denoted by a vector
(i, j, k), which represents the Higgs doublet that is coupled to the left-handed lep-
tons (e, µ, τ). For example, the case (1, 1, 3) tell us that Φ1 is coupled to eL and µL
while Φ3 couples to τL. This can correspond to the charged lepton Yukawa imple-
mentations (1), (2c) or (2e). Note also that the case (3, 3, 1) is not a relabeling of
the scalar fields since we keep the quark sector unchanged and, therefore, we will get
a distinct result. Once the choice on the Yukawa textures is made, the parameter
CM
aγ will depend on the potential implementation and the way the charged leptons

transform under the PQ symmetry.
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Cases AI AII AIII

(1, 1, 1) −4− 5CI −1 + 3CII 3− CIII
(2, 2, 2) 5 + 4CI 8 + 3CII 12− CIII
(3, 3, 3) −4− 14CI 8− 6CII 12− 10CIII
(1, 1, 2) −1− 2CI 2 + 3CII 6− CIII
(1, 1, 3) −4− 8CI 2 6− 4CIII
(2, 2, 1) 2 + CI 5 + 3CII 9− CIII
(2, 2, 3) 2− 2CI 8 12− 4CIII
(3, 3, 1) −4− 11CI 5− 3CII 9− 7CIII
(3, 3, 2) −1− 8CI 8− 3CII 12− 7CIII
(1, 2, 3) −1− 5CI 5 9− 4CIII

Table 8.4: Charge combinations AI , AII and AIII entering in the description of the axion
coupling to photons. The numbers in the first column label the Higgs doublet that is coupled
to the left-handed charged leptons (e, µ, τ).

Axion couplings to matter

As already explained in Chapter 3, when calculating the axion couplings to matter
one should redefine the axion current in such a way that it does not mix with the
neutral Goldstone boson associated with the spontaneous symmetry breaking of the
electroweak gauge symmetry. This redefinition results in a shift of the original scalar
charges [5],

X ′Φi = XΦi −X , (8.93)

which in terms of the fermion charges reads

X ′u,tR = Xu,tR −X , X ′dR = XdR +X , X ′tL = XtL ,

X ′`L = X`L , X ′`R = X`R +X ,
(8.94)

with ` = {e, µ, τ} and

X =
1

v2

∑
i

v2
iXΦi . (8.95)

The explicit expression for X will take the same form in cases II and III (they share
the same Higgs charge assignments) but a different form in case I, i.e.

X =


XuR −

v2
2 (1 + CI)− v2

3CI
v2CI

SCI
for case I,

XuR −
v2

2 + v2
3

(
1− CII(III)

)
v2C

II(III)
S CII(III)

for case II and III .
(8.96)

We now define the shifted charge matrix as

XX ≡
1

i

dS ′X
dθ

∣∣∣∣
θ=0

, (8.97)
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which take the explicit form

XuL =XdL = diag(0, 0, X ′tL) , XeL = diag(X ′eL, X
′
µL, X

′
τL) ,

XuR =diag(X ′uR, X
′
uR, X

′
tR) , XdR = X ′dR 1 , XeR = diag(X ′eR, X

′
µR, X

′
τR) .

(8.98)

These charge matrices determine the couplings of the axion to fermions in the flavor
basis. By going to the mass basis the fermion fields are rotated through the unitary
transformations in Eq. (1.21). These transformations will change the charge matrix
to

X̃X = U †XXXUX . (8.99)

In this new basis the quark charge matrices take the explicit form

X̃uL = XuL , X̃uR = XuR , X̃dL = XtL

 |Vtd|2 V ∗tdVts V ∗tdVtb
V ∗tsVtd |Vts|2 V ∗tsVtb
V ∗tbVtd V ∗tbVts |Vtb|2

 , X̃dR = XdR ,

(8.100)

where we have used X ′tL = XtL. For the charged leptons we have in scenario (1)

X̃eL = XτL

 |Vτ1|2 V ∗τ1Vτ2 V ∗τ1Vτ3

V ∗τ2Vτ1 |Vτ2|2 V ∗τ2Vτ3

V ∗τ3Vτ1 V ∗τ3Vτ2 |Vτ3|2

 , X̃eR = XeR , (8.101)

where we have used X ′τL = XτL, in scenario (2) we get

X̃eL = XeL , X̃eR = XeR . (8.102)

The axion vector and axial-vector couplings to matter are then given by

CV,A
au = XuL ±XuR , CV,A

ad = X̃dL ±XdR , CV,A
ae = X̃eL ±XeR . (8.103)

From the above equations we can see that the flavor changing axion interactions will
be mediated by the off-diagonal elements of X̃dL (and X̃eL in case (1)). This is a
common property of Goldstone bosons in flavor models, however it is an additional
feature for the axion compared to the standard DFSZ and KSVZ scenarios. Regard-
ing the vector couplings, it is interesting to remark that, while the flavor-diagonal
interactions yield a null contribution for on-shell axions, this is not the case for the
flavor-violating terms. This reflects the scalar (beside the pseudoscalar) nature of
the axion field in models with FCNCs.

The axion axial-vector couplings to light quarks are explicitly given by (see
Eq. (3.25))

gu ≡ (CA
au)11 =


−v

2
2 (1 + CI)− v2

3CI
v2CI

SCI
for case I,

−
v2

2 + v2
3

(
1− CII(III)

)
v2C

II(III)
S CII(III)

for case II and III ,
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gd ≡ (CA
ad)11 = −gu +


|Vtd|2

CI
S

for case I ,

|Vtd|2CII(III) − 1

C
II(III)
S CII(III)

for case II and III ,
(8.104)

gs ≡ (CA
ad)22 = gd (with the replacement Vtd → Vts) ,

from which one can obtain the corresponding couplings to protons and neutrons,
see Eq. (3.29)

The coupling to electrons in scenario (1) is given by

ge ≡
(
CA
ae

)
11

= XτL|Uτ1|2 −XeR −X . (8.105)

For the particular implementation presented in Section 8.2.3 this coupling reads

ge = −2 + |Uτ1|2 +
v2

2 + 2v2
3

v2
. (8.106)

As we can see, the explicit form of ge depends on the scalar potential implementation
and the vevs of the doublet fields. Finally, in scenario (2) the electron coupling can
be obtained from Eq. (8.105) by taking the limit |Uτ1|2 → 0.

Protecting the axion against gravity

This section is intended to extend the discussion on the protection of the PQ solution
against gravity introduced in Section 3.3.3, and apply it to the class of models
presented here. In what follows we will identify the PQ symmetry as an accidental
global symmetry at low energies, associated with the spontaneous breaking of a
gauge symmetry, U(1)A, at high energies down to a discrete subgroup. We shall
follow Ref. [36], using a discrete gauge symmetry to stabilize the axion without
enlarging the low energy particle content. To this end, we shall use the discrete
version of the Green-Schwarz anomaly cancellation mechanism [37].

From the effective theory point of view, since we have at low energies the SU(3)c×
SU(2)L×U(1)Y gauge group, there are several possible anomalies we must consider:

A1 : [U(1)Y]2 × U(1)A , A2 : [SU(2)L]2 × U(1)A , A3 : [SU(3)c]
2 × U(1)A ,

AA : [U(1)A]3 , AG : [gravity]2 × U(1)A . (8.107)

The Green-Schwarz anomaly cancellation conditions are then given by

A1

k1

=
A2

k2

=
A3

k3

=
AA
kA

=
AG
12

= δGS , (8.108)

with δGS a constant that cannot be specified by the low energy theory and k1,2,3,A the
levels of the Kac-Moody algebra [38] which are integers for non-abelian groups. The
equality involving the hypercharge currents, A1, gives no useful constraints since the
associated level k1 is not an integer in general [39]. Similarly, the anomaly AA can
be canceled by the Green-Schwarz mechanism but with no useful constraints due to
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the arbitrariness in the normalization of U(1)A. Finally, the anomaly AG gives no
useful constraint either.

When the U(1)A is broken down to a ZP , the effective low energy theory will
satisfy the discrete version of the Green-Schwarz cancellation condition [39,40]

A3 +mP/2

k3

=
A2 +m′P/2

k2

, (8.109)

with m and m′ integers. The model under discussion is non-supersymmetric, nev-
ertheless, the Green-Schwarz mechanism should still be available since the breaking
of supersymmetry can happen at the scale much higher that the weak scale.

Our goal is to build a U(1)A symmetry that contains a discrete subgroup capable
of solving the strong CP problem. The U(1)PQ group is anomalous and, therefore,
capable of giving such a solution (as it was seen in the previous sections). However,
U(1)PQ cannot be identified with U(1)A as the PQ symmetry alone is, in general, not
enough to satisfy the Green-Schwarz anomaly conditions. Fortunately, the model
also presents baryon number conservation (+1 charge for quarks, −1 for anti-quarks),
which is QCD anomaly free but it is anomalous under SU(2)L. We shall then try to
see if the combination U(1)PQ +γU(1)B is suitable to be our axial symmetry. As the
lepton charges depend on the specific representation in the neutrino sector, we will
focus on the quark sector. The generalization to the lepton sector will be discussed
at the end. From the U(1)PQ charge assignments in Eqs. (8.57), (8.58) and (8.59)
we can find the anomaly coefficients

A2 =
3

2
(3γ +XtL) =

3

2

(
3γ +

1

CM
S

)
,

A3 =
1

2
(2XtL − 2XuR −XtR − 3XdR) = −

CM
ag

2
,

(8.110)

with M = I, II, III. The factor γ is then found to be

γ = −1

9

(
k2

k3

CM
ag +

3

CM
S

)
. (8.111)

Using the simplest realization of the Kac–Moody algebra, i.e. k2 = k3 = 1, we get
for each case

Case I: γ =
1− CI
9CI

SCI
, Case II: γ = −2 + 3CII

9CII
S CII

,

Case III: γ = − 3 + 2CIII
9CIII

S CIII
.

(8.112)

Normalizing the combination so that all the charges are integers, we define the axial
abelian symmetry as

U(1)A = 9U(1)PQ + 9γU(1)B . (8.113)

The charges under this new symmetry are given in Table 8.5. Finally, note that the
inclusion of PQ lepton charges would modify A2 in the following way

A2 → A2 +
1

2
(XeL +XµL +XτL) , (8.114)
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U(1)A Case I Case II Case III

QL1,2
1−CI
CSCI

−2+3CII
CIIS CII

− 3+2CIII
CIIIS CIII

QL3
8CI+1
CSCI

6CII−2
CIIS CII

7CIII−3
CIIIS CIII

uR1,2 x+ 1−CI
CSCI

x− 2+3CII
CIIS CII

x− 3+2CIII
CIIIS CIII

uR3 x− C1+8
CSCI

x+ 15CII−11
CIIS CII

x+ 7CIII−3
CIIIS CIII

dR1,2,3 −x+ 1−CI
CSCI

−x+ 7−3CII
CIIS CII

−x+ 6−2CIII
CIIIS CIII

Φ1 x x x
Φ2 x− 9+9CI

CISCI
x− 9

CIIS CII
x− 9

CIIIS CIII

Φ3 x+ 9
CIS

x+ 9CII−9
CIIS CII

x+ 9CIII−9
CIIIS CIII

S 9 9 9

Table 8.5: Charge assignments under U(1)A, x = 9XuR.

while A3 would remain unaltered. This accounts to a correction of γ of the form

γ → γ − 1

9
(XeL +XµL +XτL) , (8.115)

which transforms the quark charges in Table 8.5 to

QLi → QLi − (XeL +XµL +XτL) ,

uRi → uRi − (XeL +XµL +XτL) ,

dRi → dRi − (XeL +XµL +XτL) ,

(8.116)

and leaves the lepton and scalar charges unchanged.
In Table 8.6 we present the axial symmetry and its discrete Z13 version in the T6

scenario, for each case I, II and III. The discrete anomaly coefficients are A3 = −2
and A2 = 24 for case I, A3 = −15/2 and A2 = 12 for case II, and A3 = 3 and
A2 = 45/2 for case III. In each case, by construction, the anomaly coefficients
satisfy the discrete Green-Schwarz cancellation condition in Eq. (8.109).

In this example the phase sensitive terms are explicitly given by

T6 : Φ†1Φ3S
2 , Φ†2Φ3S

∗ . (8.117)

Due to gravity effects we expect the most relevant U(1)PQ breaking contributions
to be of the type

[O4−d]×
Sk

Mk−d
P l

:


d = 4 O0 ∼ const
d = 2 O2 ∼ |Φi|2, |S|2, · · ·
d = 1 O3 ∼ Φ†2Φ3S

∗

d = 0 O4 ∼ |Φi|4, |S|4, · · ·

(8.118)

with k integer. The largest contribution will be the one coming from theO0 operator.
Due to the Z13 symmetry this contribution will only take place for k = 13, i.e.
S13/M9

Pl. This operator will give a contribution to the axion mass squared of the
order v11

PQ/M
9
Pl ∼ [10−72, 10−39] GeV2 for PQ scales between 109 to 1012 GeV. The
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T6 QL1,2 QL3 uR1,2 uR3 dR1,2,3 Φ1 Φ2 Φ3 XS

Case I:
U(1)A 7 −11 x+ 7 x− 38 −x+ 7 x x− 27 x− 18 9
Z13 7 2 x+ 7 x+ 1 −x+ 7 x x+ 12 x+ 8 9

Case II:
U(1)A −9 0 x− 9 x− 18 −x+ 18 x x− 27 x− 18 9
Z13 4 0 x+ 4 x+ 8 −x+ 5 x x+ 12 x+ 8 9

Case III:
U(1)A −11 −2 x− 11 x− 2 −x+ 16 x x− 27 x− 18 9
Z13 2 11 x+ 2 x+ 11 −x+ 3 x x+ 12 x+ 8 9

Table 8.6: Particular example with the phase sensitive scalar potential T6.

contribution to the θ̄ will be between 10−54 to 10−15. These are extremely small
contributions, making the model safe against large gravitational corrections.

In this section we have shown how we could avoid large contributions to the axion
mass, as well as to the θ̄ parameter, just by invoking a discrete gauge symmetry.
However, there are many more effective operators that will be induced by gravity
than those presented above. Some of them could give contributions to the original
Yukawa textures potentially spoiling the good behavior of the BGL-like textures.

Let us choose case I as a particular scenario. From the Z13 charge assignments
we have the Yukawa term QL1 uR3 Φ̃2 carrying a net charge 8. This term is not
allowed at the renormalizable level, but the gravity induced effects can introduce the
Z13 invariant term QL1 uR3 Φ̃2 (S/MPl)

2. This term will contribute to the Yukawa
textures once S spontaneously breaks the PQ symmetry with a correction of the
order y × v2

PQ/M
2
Pl, with y the associated Yukawa coupling. For a PQ breaking

scale of order vPQ
<∼ O (1015) GeV this operator gives a harmless contribution.

However, for higher scales this term could give significant corrections to the BGL-
like suppression when y ∼ O(1). Nevertheless, even for a high PQ breaking scale, we
could have O(y)� 1 suppressing this additional contribution. This is not so strange
taking into account that in our framework no information on the Yukawa hierarchy
is given. We know that O(yu, yd, · · · )� 1 and in our framework this is imposed by
hand. In a more complete model, these hierarchies could be made dynamical and
there we should also take attention to these additional gravity induced terms.

8.2.5 Model variations

The class of models presented above had FCNCs in the down-quark sector and the
top quark was singled out. However, there are many other possible implementations
that will still give the same minimal flavor violating scenario. These model variations
can be found by performing any of the two operations:

(i) Symmetric permutations in the flavor space;

(ii) Changing up and down right-handed generators.
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We can apply these two operations to the models previously studied in order to get
all possible model variants.

Type (i) operation

The permutations in flavor space will change the textures in the sector with no
FCNCs, i.e the up sector if we apply this operation in the original formulation. The
symmetry generators take now the form

SL → P TSLP , Su,dR → P TSu,dR P , SeL → P ′TSLP ′ , SeR → P ′TSeRP ′ , (8.119)

with P and P ′ 3× 3 permutation matrices. The 2 by 2 block in the NFC sector will
change structure, we get

P, P ′ = P23 −→


× ×

× ×

 ,

 ×

 ,

× ×
×

× ×

 : Block 1− 3

(8.120a)

P, P ′ = P13 −→


 × ×
× ×

 ,

×  ,

× × ×
× ×

 : Block 2− 3

(8.120b)
Where Pij permutes the lines i and j (when applied on the left) and columns i and
j (when applied on the right). Besides the textures the only changes due to (i) are
in the axion-matter couplings. The permutation matrices single out other flavors.
Therefore, the action of the permutation matrices will change the CKM and PMNS
elements entering in Eq. (8.100) and Eq. (8.101), respectively. We get the following
redefinition

P, P ′ = P23 −→ t→ c, τ → µ

P, P ′ = P13 −→ t→ u, τ → e
(8.121)

Consequently, the couplings u, d, s and e are appropriately changed.

Type (ii) operation

We change the sector where the FCNCs are present, that can be accounted with the
following symmetry generators

SL = diag(1, 1, eiXtLθ) , SuR = eiXdRθ1 , SdR = diag(eiXuRθ, eiXuRθ, eiXtRθ) .
(8.122)

We have switched the SuR and SdR generators, keeping the same labels for the charges.
Thus, in this scenario the SuR is completely degenerate, but instead of labeling the
charge XuR we keep it labeled as XdR, just as in the previous case. By keeping the
same label we can easily compare this new case with the previous scenario where
the FCNCs where in the down sector. The Higgs charges, for the three cases, take



8.2 Invisible axion models with controlled FCNCs at tree-level 223

Cases AI AII AIII

(1, 1, 1) −1− 5CI 11− 3CII 12− 4CIII
(2, 2, 2) −10− 14CI 2− 3CII 3− 4CIII
(3, 3, 3) −1 + 4CI 2 + 6CII 3 + 5CIII
(1, 1, 2) −4− 8CI 8− 3CII 9− 4CIII
(1, 1, 3) −1− 2CI 8 9− CIII
(2, 2, 1) −7− 11CI 5− 3CII 6− 4CIII
(2, 2, 3) −7− 8CI 2 3− CIII
(3, 3, 1) −1 + CI 5 + 3CII 6 + 2CIII
(3, 3, 2) −4− 2CI 2 + 3CII 3 + 2CIII
(1, 2, 3) −4− 5CI 5 6− CIII

Table 8.7: Charge combinations AI , AII and AIII entering in the description of the axion
coupling to photons. The numbers in the first column label the Higgs doublet giving mass
to the charged leptons (e, µ, τ); for example (1, 1, 2) stands for the case where Φ1 gives
mass to e and µ while Φ2 to τ .

the same form as in the original scenario (see Eqs. (8.41) and (8.42)) but with an
overall minus sign.

Case I: XΦ1 = −XuR , XΦ2 = −(XtR −XtL) , XΦ3 = −(XtL +XuR) .

Case II: XΦ1 = −XuR , XΦ2 = XdR , XΦ3 = −(XtL −XdR) .

Case III: XΦ1 = −XuR , XΦ2 = XdR , XΦ3 = −(XtL −XdR) . (8.123)

The quark charges take the same form as in Eq. (8.57), (8.58) and (8.59) as long
as in the scalar sector the role of the S field is substituted by the S∗, keeping the
XS = 1 normalization. This will account for the overall minus sign coming from
the Higgs charges. While the left-handed quark charges have the same expression
as in the original scenario, the right-handed ones switched sectors. The coupling to
gluons will not change, however the coupling to photons changes since the up and
down electric charges are different. It will be given by

Caγ = 2

[
4XdR +

2

3
XuR +

1

3
XtR −

5

3
XtL +

∑
α

(XαR −XαL)

]
. (8.124)

This will have the same form as Eq. (8.92), but now the coefficients take the form
given in Table 8.7

The axion coupling to matter will also change, since we have changed the FCNC
sector. The shift we need to perform in order to account for the orthogonality
between the axion and the Goldstone boson will get an overall minus sign with
respect to Eq. (8.96). Because we changed sectors without changing the labels of
the charges the quark charges shifts will coincide with the ones in Eq. (8.94). The
shift charge matrix takes the form

XuL =XdL = diag(0, 0, X ′tL) , XeL = diag(X ′eL, X
′
µL, X

′
τL) ,

XuR =X ′dR1 , XdR = diag(X ′uR, X
′
uR, X

′
tR) , XeR = diag(X ′eR, X

′
µR, X

′
τR) .

(8.125)
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In the mass basis they take the explicit form

X̃uL = XtL

 |Vub|2 VubV
∗
cb VubV

∗
tb

VcbV
∗
ub |Vcb|2 VubV

∗
tb

VtbV
∗
ub VtbV

∗
cb |Vtb|2

 , X̃uR = XuR , X̃dL = XdL , X̃dR = XdR ,

(8.126)

The axial-vector couplings to the light quarks are now given by

gd ≡ (CA
ad)11 =


−v

2
2 (1 + CI)− v2

3CI
v2CI

SCI
for case I,

−
v2

2 + v2
3

(
1− CII(III)

)
v2C

II(III)
S CII(III)

for case II and III ,

gs ≡ (CA
ad)22 = gd ,

gu ≡ (CA
au)11 = −gd +


|Vub|2

CI
S

for case I ,

|Vub|2CII(III) − 1

C
II(III)
S CII(III)

for case II and III .

(8.127)

Model variations dictionary

In this section we present a compilation of the most significant changes resulting
from applying the operations (i) or (ii) to the original formulation. These can be
found in Table 8.8.

8.2.6 Experimental constraints on the invisible axion

The framework presented here has two important differences with respect to the
benchmark invisible axion models introduced in Chapter 3 that are of phenomeno-
logical interest:

• As we saw in Section 3.3.4, the axion mass and coupling to photons are related
by Eq. (3.66), with ξ taking the approximate values 0.5 for the KSVZ model,
and 1.4 (0.8) for the DFSZ type II (flipped). However, in this framework
we can get, besides the standard values, an additional set of discrete values
depending on the model implementation, which allows us to cover a larger
range of axion-photon couplings.

• Contrarily to what happens in the DFSZ and KSVZ models, the axion cou-
ples differently to different flavors and has flavor changing interactions at tree
level. This class of models presents non-diagonal couplings in the up-quark
sector or in the down-quark sector depending on the model considered, and
has flavor changing axion interactions in the charged lepton sector for some of
the leptonic implementations.

Searches constraining invisible axion models based on astrophysical considera-
tions, and on the axion-photon conversion mechanism where already discussed in
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Original
Operation (i)

Operation (ii)
P23 P13

Yukawa
Eq. (8.34), (8.37), (8.39) Eq. (8.120a) Eq. (8.120b) Original

textures
Symmetry

Eqs. (2.29), (2.34) Eq. (8.119) Eq. (8.122)
generators

Scalar
Eqs. (8.41), (8.42) Eq. (8.123)

charges
Coupling to

Table 8.4 Table 8.7
photons

Orthogonality
Eq. (8.96) Overall minus sign

shift
Mass basis

Eqs. (8.98), (8.100)
t→ c t→ u

Eqs. (8.125), (8.126)
charges τ → µ τ → e
u, d, s

Eqs. (8.104) t→ c t→ u Eqs. (8.127)
couplings
Electron

Eqs. (8.105) τ → µ τ → e Original
coupling

Table 8.8: This table summarizes the changes we need to do in order to get all possible
model variations. The firs column, i.e. Original, presents the various relevant equations
in the scenario where the down sector has FCNCs and the top is singled out. The second
column, i.e. Operation (i), represents models with permutations in the flavor space of
each sector. The last column, i.e. Operation (ii), represent models with quark sectors
interchanged.

Section 3.3.4. However, the presence of flavor-violating axion couplings introduce
new experimental bounds that were not considered before. The most stringent
bounds on flavor-changing axion interactions are extracted from flavor violating de-
cays of kaons or muons into the axion and some other particle(s). Flavor processes
in which the axion enters with a double insertion of the axion coupling (µ → eγ,
µ − e conversion in nuclei, K0 − K̄0 mixing, Bs → µ+µ−, among others) are very
suppressed by an extra v−1

PQ factor at the amplitude level and do not put relevant
bounds.

The leptonic decay µ+ → e+ a can in principle be used to constrain charged lep-
ton flavor violating interactions of the axion. In Ref. [41] the authors reported the
experimental bound Br(µ+ → e+a) < 2.6 × 10−6 at 90% CL. This result however
relies on the assumption that the positron is emitted isotropically to avoid large
backgrounds from the ordinary muon decay µ+ → e+νeν̄µ. This assumption would
be valid if we only had vector couplings but not axial-vector ones. In our scenarios,
the lepton flavor violating axial-vector and vector couplings are equal, so the as-
sumptions behind the µ+ → e+a bound do not apply. In this case the best process
to bound the charged lepton flavor violating axion couplings is the radiative decay
µ+ → e+ a γ. With this process it is possible to extract limits which are independent
of the chirality properties of the axion couplings [42]. The most stringent experimen-
tal bound at the moment is Br(µ+ → e+ a γ) < 1.1× 10−9 at 90% CL [43], obtained
at LAMPF using the Crystal Box detector. From this process we can extract

vPQ >
[∣∣gVµe∣∣2 +

∣∣gAµe∣∣2]1/2

×
(
1.6× 109 GeV

)
=
∣∣gVµe∣∣× (2.3× 109 GeV

)
, (8.128)
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Figure 8.2: Constraints on the invisible axion of the 3HFPQ models where the top-
quark is singled out. Familon searches in flavor experiments, astrophysical considerations
and axion-photon conversion experiments are taken into account. The yellow wide band
represents a scan over all possible 3HFPQ models considered. Constraints from WD cooling
are shown taking the benchmark point |ge|/NDW = 10−1. The dark blue band represents
the most conservative upper bound on the axion mass from µ+ → e+aγ. Predictions for
the KSVZ and DFSZ models (type II and flipped) are also shown.

with the axion-lepton couplings gVµe = gAµe =
(
CA
ae

)
21

in the scenario with FCNCs in
the charged lepton sector. We obtain a robust bound from this process since the
flavor changing couplings gV,Aµe are completely determined by elements of the PMNS
lepton mixing matrix due to the underlying PQ symmetry. The bound extracted on
the PQ scale, or equivalently the axion mass, from µ+ → e+aγ does not vary much
between all the models with FCNCs in the charged lepton sector. The reason being
that the PMNS matrix is very anarchical, that is, |V ∗τ2Vτ1| ∼ |V ∗µ2Vµ1| ∼ |V ∗e2Ve1|.
Obviously, models without tree-level FCNCs in the charged lepton sector avoid the
constraints coming from µ+ → e+aγ.

Models with FCNCs in the up-quark sector do not receive strong constraints
from flavor observables, all the relevant observables involve a double insertion of
the axion couplings in this case. On the other hand, models with FCNCs in the
down-quark sector are strongly constrained by limits on K+ → π+a. To the best of
our knowledge, the strongest bound on K+ → π+a decays has been set by the E787
Collaboration at Brookhaven National Laboratory, achieving Br(K+ → π+a) <
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4.5× 10−11 at 90% CL [44]. The partial decay width for this process is given by

Γ(K+ → π+ a) =
1

64π

m3
K

v2
PQ

∣∣gVsd∣∣2 β3 |F1(0)|2 , (8.129)

with β = 1−m2
π/m

2
K and gVsd =

(
CV
ad

)
21

. The relevant hadronic matrix element〈
π+(p′)

∣∣ sγµd ∣∣K+(p)
〉

= F1(q2)(p+ p′)µ , (8.130)

can be extracted in the limit of exact SU(3) flavor symmetry. At the zero momen-
tum transfer the form factor has the fixed normalization F1(0) = 1 [45]. We have
〈π+(p′)| sγµγ5d |K+(p)〉 = 0 because K+ and π+ are pseudoscalar mesons. From
this result we can extract a lower bound on the PQ scale

vPQ >
∣∣gVsd∣∣× (4.4× 1011 GeV

)
. (8.131)

Just like in the charged lepton sector, the coupling gVsd is fixed in terms of elements
of the CKM quark mixing matrix due to the underlying PQ symmetry. A robust
bound can then be extracted on the axion mass which is independent of the many
free parameters of the model.

Future improvements on the µ+ → e+aγ bounds are difficult to achieve with
present facilities, see discussion in Ref. [46]. On the other hand, improvements on
the K+ → π+a limits can be expected from the NA62 experiment at CERN [47].

In Figs. 8.2 and 8.3 we summarize all the relevant constraints on the axion
properties. In Figure 8.2 we show constraints on models with FCNCs in the charged
lepton sector and in the down-quark sector which select the top-quark. The strongest
bound from flavor observables arises in this case from µ+ → e+aγ because of the
strong suppression factor |V ∗tsVtd| entering in K+ → π+a decays. The wide yellow
band represents the prediction scanning over all the 3HFPQ models of this type. For
this type of models astrophysical bounds from WD cooling put in general a stronger
limit on the axion mass than flavor processes, the WD bound however depends
strongly on the vevs of the Higgs doublets while the flavor limits do not. This is
precisely what occurs for the model analyzed in Ref. [14], which corresponds to a
case I model with scalar potential implementation T11 and leptonic implementation
(3, 3, 2). Predictions for the KSVZ and DFSZ invisible axion models are also shown
in Figs. 8.2 and 8.3. For the KSVZ model we assume that the exotic color triplet
has no electric charge (Xem

Q = 0). In both Figures, the upper DFSZ line corresponds
to the flipped scenario while the bottom one to the type II case.

In Figure 8.3 we show the constraints on those models with FCNCs in the down-
quark sector which select the up or charm quark. The most relevant limit on the
axion mass comes now from K+ → π+a due to the value of the product of CKM
matrix elements |V ∗udVus|2 ∼ |V ∗cdVcs|2 � |V ∗tdVts|2 lifting the decay rate. For some
models of this type the bound from kaon decays can be as strong as ma

<∼ 2×10−5 eV.
This is one of the main results of our work. Among all the models with FCNCs in
the down-quark sector, those which select the top quark are much less constrained
because of the very effective CKM suppression entering in K+ → π+a decays.
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Figure 8.3: Constraints on the invisible axion of the 3HFPQ models where the up-quark
and charm quarks are singled out. Familon searches in flavor experiments, astrophysical
considerations and axion-photon conversion experiments are taken into account. The yel-
low wide band represents a scan over all possible 3HFPQ models considered. The dark
blue band corresponds to the most conservative upper bound on the axion mass extracted
from K+ → π+a, the light blue band corresponds to the strongest upper bound from this
process. Predictions for the KSVZ and DFSZ models (type II and flipped) are also shown.

8.2.7 The scalar sector

The scalar sector of this class of models contains three complex Higgs doublets
Φj (j = 1, 2, 3) and a complex scalar gauge singlet S. The scalar fields are then
parametrized in terms of 14 real degrees of freedom (each doublet carrying 4 and the
singlet 2). Three degrees of freedom correspond to the usual Goldstone bosons G±,0

responsible of giving mass to the massive weak gauge bosons. These have already
being isolated by going to the Higgs basis in Eq. (8.44). Another degree of freedom
corresponds to the axion which, up to corrections of order O (v/vPQ), is given by the
phase of the scalar gauge singlet. The other 10 degrees of freedom become physical
scalar fields, leaving 2 electrically charged and 6 neutral physical scalars. It is not
our intent to present a detailed analysis of the Higgs phenomenology in this class of
models. We will, nevertheless, say a few words on some of these aspects. However,
before discussing the Higgs phenomenology it is necessary to have some basic grasp
of the decoupling structure of the kind of models considered.
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Decoupling in the scalar sector

After the scalar fields acquire a vev, mixing among the scalars with the same charge
is induced. Due to the large hierarchy between the vevs, i.e. vPQ � v, the radial
part of the gauge singlet acquires a large mass and we can treat the mixing as
SU(2)L-conserving. The scalar potential of the SU(2)L doublets is then given by

V (Φ) = (Φ†iM2
ijΦj +O(v2) + h.c.) + quartic terms on Φi , (8.132)

with the square mass matrix taking the form

M2 = v2
PQ



m2
1

v2
PQ

+ λΦS
1 λ4 λ5

λ∗4
m2

2

v2
PQ

+ λΦS
2 λ6

λ∗5 λ∗6
m2

3

v2
PQ

+ λΦS
3


. (8.133)

The couplings λi are associated with the phase sensitive terms (i) of Table 8.1. In
the case where a phase sensitive term has mass dimension, such as in cases (4), (5)
and (6) with ki = 1, we parametrize it as µi = vPQλi. Additionally, note that for
models T1 to T9 the PQ symmetry forces one of the couplings to be zero, that is
λk = 0 with k = 4, 5 or 6, while for models T10 to T12 all the couplings are expected
to be non-zero.

Because of the large value of the PQ symmetry breaking scale, the scalar sector
of invisible axion models usually presents a decoupling scenario. This way only the
axion and a SM-like Higgs remains at the EW scale while the others acquire a mass
of order vPQ. However, it is possible to achieve specific values for the parameters in
order to avoid the decoupling limit in such a way that two (or three) Higgs doublets
get masses around the EW scale.

In what follows, we analyze the different decoupling limits and give a possible
texture reproducing each scenario. In the textures we use the parameters b, c ∼ O(1)
and ε ∼ O

(
v2/v2

PQ

)
. The last parameter, ε, has been introduced in order to show

how EW corrections coming from the terms we have neglected in Eq. (8.132) can
lift the zero eigenvalues to the EW scale. We also distinguish between the case
where one of the λ-couplings is zero as in models T1 to T9 and the case where all
the couplings are non-zero, corresponding to models T10 to T12.

• One doublet at the electroweak scale.
This scenario is characterized by the presence of a SM-like Higgs at the EW
scale, with the other two scalar doublets having masses at the PQ symmetry
breaking scale. As a result, the infrared theory will correspond to the SM plus
the axion (whose properties and couplings were discussed in Section 8.2.4)
supplemented by higher dimension operators suppressed by the PQ breaking
scale which can be neglected.5

5Additionally, one should take special care of higher dimension operators coming from gravita-
tional effects as they give non-negligible contributions. For a detailed analysis see Sections 3.3.3
and 8.2.4.



230 Chapter 8. Invisible axion models with non-trivial flavor structure

We list two textures generating this scenario

M2 = v2
PQ

√2 b+ ε b b

b
√

2 b 0

b 0
√

2 b

 . (8.134)

This texture can be implemented in models T1 to T9, even though the zero has
been located in the position of λ5. The same mass spectrum is generated by
permuting the value of the parameters appropriately. On the other hand, for
the models T10 to T12 one possible texture is given by

M2 = v2
PQ

b+ ε b c
b b+ ε c
c c c

 , (8.135)

where the constraint b 6= c needs to be satisfied to have just one doublet at
the EW scale.

• Two doublets at the electroweak scale.
In this decoupling scenario we obtain a 2HDM with tree-level FCNCs con-
trolled by the CKM and PMNS matrices, the quark masses and the ratio of
the vevs of the two-Higgs-doublets whose masses are at the EW scale (in a
similar fashion as in the BGL 2HDM). However, the values of the flavor chang-
ing scalar couplings cannot be determined in general as it will depend on the
specific implementation of the scalar parameters inM2. In any case, as these
couplings present the same structure as in the BGL models, similar constraints
in the parameter space are expected.

For models T1 to T9 it is not possible to reproduce this scenario unless some
of the parameters are ultraweak, i.e. of order O

(
v2/v2

PQ

)
. In this case one

possible texture is given by

M2 = v2
PQ

b+ ε b ε
b b+ ε 0
ε 0 ε

 , (8.136)

which is only valid for models T1, T2 and T7. The equivalent texture for
models T3 to T6, T8 and T9 can be directly obtained from the previous texture
by permuting the entries in the matrix. Finally, one texture reproducing this
scenario in models T10 to T12 is

M2 = v2
PQ

b+ ε b b
b b+ ε b
b b b

 . (8.137)

• Three doublets at the electroweak scale.
Having the three doublets at the EW scale is only possible if we force all
the parameters in Eq. (8.133) to be ultraweak, that is if every term in M2

take values around the EW scale. As we have discussed in Section 8.2.2, this
scenario gives rise to FCNCs which are suppressed by the CKM and the PMNS
matrices with the explicit scalar flavor violating couplings depending on the
model implementation.
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This simple analysis of the possible decoupling scenarios is by no means a full
and detailed study of the scalar spectrum. The textures above are just illustrative
and many other textures with different degrees of tuning might be present for any of
the three relevant decoupling scenarios. Finally, it should be noted that the scalar
sector in this class of models suffers from a fine tuning problem (commonly known as
the hierarchy problem), just like most models where more than one scale is present
in the theory. A solution for this problem is out of the scope of the work presented
in this thesis. However, it is worth mentioning that some promising directions have
been pursued in the literature within the framework of invisible axion models [48].

Higgs phenomenology

If there is a decoupling in the scalar sector where one Higgs doublet remains at the
weak scale while the other scalar fields become very heavy, three degrees of freedom
of this doublet correspond to the Goldstone bosons giving mass to the massive gauge
bosons while the remaining degree of freedom corresponds to a SM-like Higgs boson.
The possibility of a richer decoupling structure in the scalar sector, with two or three
Higgs doublets at the weak scale would give rise to potentially new physics signatures
at flavor factories and collider experiments like the LHC. The latter scenario would
imply the existence of additional neutral Higgs boson (besides the 125 GeV SM-like
Higgs boson) and charged scalars with masses around the EW scale. Neglecting
mixing effects among the scalar fields, the phenomenology of these scalars would be
basically the same than in the BGL 2HDMs analyzed in Refs. [49–51]. For example,
dangerous |∆S| = 2 contributions to K0 − K̄0 mixing due to neutral scalars would
be very suppressed in the top BGL models because the flavor changing couplings
are proportional to |V ∗tsVtd|, allowing the mass of these scalars to be at the weak
scale [49].

A classification of flavor observables which receive important contributions in
the BGL 2HDMs and a comprehensive phenomenological analysis of these models
was presented in Ref. [49]. Additional neutral scalars with flavor changing couplings
will enter at tree level in pseudoscalar meson leptonic decays M0 → `+`−, neutral
meson mixing M0− M̄0, as well as in lepton flavor violating transitions of the type:
`−1 → `−2 `

+
3 `
−
4 , τ → `ππ and µ − e conversion in nuclei. The previous processes

arise in the SM at the loop level and receive strong suppressions due to the GIM
mechanism or the smallness of neutrino masses, this makes these processes very
sensitive to small new physics contributions. Charged scalars will also contribute
at tree-level to semi-leptonic pseudoscalar meson decays (M → `ν, B → D(∗)`ν)
and leptonic τ decays (τ → `ν̄`ντ ), possibly causing observable violations of lepton
universality. Neutral and charged scalars will contribute at the loop level in processes
like B̄ → Xsγ and `1 → `2γ and will in general dominate over the SM contribution
which appears at the same level. The discovery of additional scalars at the LHC
and characteristic decay signatures of the nonstandard scalars in the BGL 2HDMs
have been analyzed in Ref. [50,51]. The main results of these analyses is that within
BGL 2HDMs additional charged and neutral scalars can be as light as 150 GeV
while being compatible with present 125 GeV Higgs, flavor, electroweak precision
and collider data [49–51].
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Models KSVZ DFSZ 3HFPQ
BSM fields Q+S Φ2+S Φ2+Φ3+S

PQ fields Q, S
q, l, Φ1,2, S q, l, Φ1,2,3, S

(flavor blind) (flavor sensitive)
Caγ/Cag 6(Xem

Q )2 2/3, 8/3 [−34/3, 44/3]
Tree-level CtM No Yes Yes

Tree-level FCAI No No Yes
NDW 1 3, 6 1, 2, · · · , 8

Table 8.9: Comparison of the class of models constructed here with the usual invisible
axion model benchmarks. The different values for Caγ/Cag and NDW in the DFSZ and the
3HFPQ models correspond to different implementations of the PQ symmetry. We use the
notation: CtM=Coupling to Matter; FCAI=Flavor Changing Axion Interaction.

8.2.8 Conclusions

In this section we have built a class of invisible axion models with FCNCs at tree
level which are controlled by the fermion mixing matrices. The scalar sector contains
three-Higgs doublets and a complex scalar gauge singlet field. A flavored Peccei-
Quinn symmetry provides a solution to the strong CP problem via the Peccei-Quinn
mechanism, giving rise to an invisible axion which could account for the cold dark
matter in the Universe. Moreover, it is possible to explain the smallness of active
neutrino masses via a type I seesaw mechanism, providing a dynamical origin for
the heavy seesaw scale, which is related to the PQ breaking scale in this class
of models. The main features of such 3HFPQ class of models are summarized
in Table 8.9, making the relevant comparisons with the KSVZ and DFSZ axion
models. Experimental limits on the axion have been analyzed taking into account
familon searches in rare kaon and muon decays, astrophysical considerations and
axion-photon conversion experiments.
The most important findings of our analysis are:

• Models with tree-level FCNCs in the down-quark or charged lepton sectors re-
ceive important constraints on the PQ scale from familon searches in kaon and
muon decays. These bounds are very robust for the class of models considered
here since the flavor changing axion couplings are completely controlled by
elements of the fermion mixing matrices due to the underlying PQ symmetry.

• Models with tree-level FCNCs in the down-quark sector for which the top
quark is singled out receive the strongest upper bound on the axion mass
from white-dwarf cooling arguments in general, though these bounds depend
strongly on the vevs of the Higgs doublets. Bounds from K+ → π+a are
very weak due to the strong CKM suppression. Figure 8.2 summarizes all the
constraints on this scenario.

• Models with tree-level FCNCs in the down-quark sector for which the up (or
charm) quark is singled out receive the strongest upper bound on the axion
mass from K+ → π+a decays since in this case the flavor changing couplings
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Figure 8.4: Values of Caγ/Cag in 3HFPQ models with NDW = 1. Squares stand for
models with FCNC in the up-quark sector while those with FCNC in the down-quark sector
are denoted with circles. The corresponding values for Caγ/Cag in the DFSZ models (type
II and flipped) are also shown.

are not as suppressed |V ∗usVud| ∼ |V ∗csVcd| � |V ∗tsVtd|. Figure 8.3 summarizes all
the constraints on this scenario.

• Constraints from µ+ → e+aγ are very similar in all models with FCNCs in
the charged lepton sector due to the anarchical structure of the PMNS matrix.
The bounds derived from µ+ → e+aγ are stronger than those obtained from
K+ → π+a in models with tree-level FCNCs in the down-quark sector for
which the top quark is singled out.

• The axion of models without FCNCs in the down-quark and charged lepton
sectors does not receive important constraints from flavor observables. In this
case the strongest bounds on the axion can be derived from the axion-photon
coupling and white-dwarf cooling arguments.

• A large variety of the models considered have NDW = 1, avoiding the domain
wall problem. Allowed values for the model dependent quantity Caγ/Cag (see
Eqs. (8.89) and (8.91)) in these models are presented in Figure 8.4. As we can
see, large deviations on the axion-photon coupling compared with the DFSZ
model are obtained in some cases. One interesting aspect is the fact that we
are able to mimic the DFSZ axion coupling to photons and have at the same
time NDW = 1. A zero Caγ can be achieved but only in models with NDW > 1.
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CHAPTER

9 Final remarks

It’s good to have an end to journey toward; but
it is the journey that matters, in the end.

— Ursula K. Le Guin, The Left Hand of Darkness

The SM possesses several “weak points” that seem to suggest that there might be
something beyond, possibly even at the reach of LHC and/or future flavor facilities.
Motivated by some of these SM weaknesses, this thesis was devoted to the explo-
ration of NP extensions from three different approaches: EFTs and their extension
to one-loop order, the study of the flavor anomalies from a gauge extended sector,
and invisible axion models and their interplay with the flavor sector.

Given the lack of positive direct searches at LHC, and with the increasing precision
reached in many observables, EFTs provide an essential tool in the search for NP,
since they allow for a systematic and model-independent analysis of the experimental
data. EFTs are extensively used, for example, in flavor physics, where the the masses
of some of the particles mediating the relevant processes, either from the SM or from
NP, are expected to lay well beyond the typical scale of the system. In some EFT
analyses, the inclusion of one-loop corrections becomes crucial. This is the case, for
instance, when radiative corrections introduce new effects that are not present or
appear strongly suppressed at tree-level. In order to connect these EFT analyses
with existing models, it is rather useful to have systematic techniques that allow
for a simple determination of the EFT of a given (arbitrary) UV model. In this
sense, functional integration techniques seem more powerful than the diagrammatic
matching procedure when one aims to the determination of the full EFT, since
they directly provide the whole set of EFT operators together with their matching
conditions. Moreover, universal expansions that are applicable in certain limits have
been derived in the literature using these techniques.

Lately, there has been an intense debate on how to determine, from the path
integral, the contributions to one-loop WCs involving both heavy and light fields.
In Chapter 6, we addressed this issue and developed a simplified framework based
on functional techniques for the construction of one-loop EFTs. In this chapter we
have shown that the one-loop WCs are completely determined by the hard region
(i.e. the region where the loop momenta is of the same order as the high-energy
scale) of a functional determinant that contains all one-loop contributions to the
Green functions. This method provides a new insight into the matching procedure
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and introduces important simplifications with respect to previous approaches in the
literature.

Although so far no new particles have been found at the LHC there are some in-
teresting hints of NP in the flavor sector. These consist in a series of deviations
in B-meson decays involving b → sµ+µ− transitions, and in the theoretically-clean
ratios RK(∗) , pointing to a large LFUV in the e−µ sector. Global fits to b→ sµ+µ−

data and/or RK(∗) show compatible results and provide a very good fit when allowing
for rather large non-universal NP effects in b→ s`+`− transitions. This situation is
preferred over the SM hypothesis by 4− 5σ.

While it is still early to know whether these are genuine NP effects, it is in-
teresting to analyze these hints from a model-building approach and try to search
for implications in other observables. We followed this approach in Chapter 7. In
particular, in Section 7.1 we explored a possible explanation of the anomalies based
on a minimal U(1)′ extension of the SM characterized to have all their fermion
couplings related exactly to the CKM matrix elements, avoiding the strong flavor
bounds in a natural way while providing a very predictive model. In this framework,
gauge anomaly cancellation can be achieved with the SM fermion content alone by
fixing the extension of the symmetry to the lepton sector in a very specific way,
giving rise to lepton-flavor-conserving family-non-universal Z ′ couplings. Given the
predictability of these models, with most of the couplings completely fixed by the
gauge symmetry, they provide a very interesting phenomenology. However, as a
result of their large coupling to light quarks, the minimal version of these models
already shows some tension with the most recent ATLAS resonance search in the
dilepton final state. An extension of this framework that is able to relax this bound
is currently under exploration.

A different approach in the explanation of the anomalies consists in searching
for possible connections between these anomalies and other problems of the SM.
Indeed, the SM flavor puzzle, may be hinting to the same underlying dynamics in
the flavor sector as the one needed to explain the anomalies. In Section 7.2 we
analyzed this possibility from the hypothesis of dynamical Yukawa couplings, that
provides a natural explanation to the general structure of the Yukawa matrices. In
this framework, it is assumed that the SM Yukawas appear from the vev of scalar
flavon fields that are charged under the non-abelian flavor symmetry [SU(3)]5×O(3),
which is promoted to a local symmetry. We have shown that the desired pattern of
the SM Yukawa couplings can naturally lead to a sequential breaking of the flavor
symmetry down to U(1)q×U(1)µ−τ , which finally gets spontaneously broken around
the TeV scale. In order to explain the aforementioned experimental hints, the Z ′

bosons resulting from this last breaking are required to mix, yielding very distinctive
collider signatures that will be tested in the near future.

As also discussed in this thesis, other hints of lepton-universality violation have
been reported in the R(D(∗)) ratios, implying a combined deviation from the SM
at the 4σ level, and hinting for a large LFUV in the tau sector. In Section 7.3 we
explored the possibility of accommodating both sets of anomalies by extending the
SM gauge group with an extra SU(2) symmetry and analyzed the phenomenological
implications of such extension in detail. In particular, we have shown that the
model presented in this thesis can significantly ease the tensions with B-physics data
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while satisfying the stringent bounds from other flavor observables and electroweak
precision data. An important issue for this model is whether it is able to avoid the
strong bounds from τ+τ− resonance searches at LHC. Present experimental bounds
force the Z ′ of the model to have a large width, which requires an extension of the
minimal framework.

Another interesting direction in the search for NP is provided by the Strong CP
problem, i.e. the lack of explanation in the SM to why the QCD vacuum angle
cancels with the chiral phase of the quark mass matrix to an accuracy of O(10−11).
The PQ mechanism provides an elegant solution and predicts the existence of a very
light and weakly coupled pseudo-Goldstone boson, the axion, whose phenomenology
is particularly interesting. This solution consists on the introduction of a global
chiral symmetry with mixed anomalies with QCD, U(1)PQ, that gets spontaneously
broken. In order to avoid experimental constraints, the breaking should take place
at very high energies, so that the mass and the couplings of the axion are suppressed
by this high scale, giving rise to the so-called invisible axion models.

In Chapter 8 we explored different invisible axion implementations that extend
the minimal frameworks. In Section 8.1 we presented an invisible axion model
that offers a UV completion to the A2HDM. Additionally, in Section 8.2 we have
introduced a class of models where the PQ symmetry is not universal but rather
a flavor symmetry. This has several interesting features that are not present in
the minimal benchmark models. For instance, these models predict flavor-changing
axion transitions that yield interesting signatures in µ+ → e+aγ and K+ → π+a.
The presence of flavor violations in the axion and scalar sectors controlled by the
CKM matrix, and the possibility to avoid the domain wall problem stand as the
main features of the models presented in this section. Moreover, the smallness of
active neutrinos masses is naturally accounted for in both frameworks via the type-I
see-saw mechanism, providing a common origin for PQ symmetry breaking and the
see-saw scales.
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10 Resumen de la tesis

¿Qué duda cabe que el mundo que conocemos
es el resultado del reflejo de la parte de cosmos
del horizonte sensible en nuestro cerebro? Este
reflejo unido, contrastado, con las imágenes re-
flejadas en los cerebros de los demás hombres
que han vivido y que viven, es nuestro conoci-
miento del mundo, es nuestro mundo. ¿Es aśı,
en realidad, fuera de nosotros? No lo sabemos,
no lo podremos saber jamás.

— Ṕıo Baroja, El árbol de la ciencia

La f́ısica de part́ıculas está viviendo actualmente una era de exploración que
comenzó con la observación en el LHC del bosón de Higgs, proporcionando aśı al
Modelo Estándar de la F́ısica de Part́ıculas la elusiva pieza final que lo completa.
Si bien esta teoŕıa es extremadamente exitosa, se acepta comúnmente que no es la
teoŕıa final ya que no puede responder a todas las preguntas teóricas ni a ciertas
observaciones experimentales. Por lo tanto, se espera que Nueva F́ısica que extienda
al Modelo Estándar aparezca pronto, aunque esto bien podŕıa ser sólo una esperan-
za. Esta tesis recoge algunas de las aventuras en la búsqueda de Nueva F́ısica. Se
organiza en tres partes: la Parte I introduce, en inglés, los principales temas de la
tesis y establece la notación y marcos teóricos que se utilizan más tarde. Esta parte
contiene temas que son de conocimiento general en la literatura y pretende ser una
introducción amplia. Por el contrario, la Parte II, también en inglés, se dedica es-
pećıficamente a compilar la investigación cient́ıfica que se hizo durante el doctorado
y, por tanto, es de naturaleza más técnica que la parte anterior.

La Parte I está organizada de la siguiente forma. En el Caṕıtulo 1 introducimos
el Modelo Estándar, sus principales caracteŕısticas, y varias cuestiones teóricas y
experimentales que este marco teórico no puede explicar. El resto de esta parte se
dedica al análisis de varias extensiones del Modelo Estándar. En particular, en el
Caṕıtulo 2 presentamos el modelo de dos dobletes de Higgs, una extensión mı́nima
del Modelo Estándar donde se añade un doblete de Higgs adicional al sector escalar
de la teoŕıa. En este caṕıtulo se hace especial hincapié en el problema del sabor
del modelo de dos dobletes de Higgs y se estudian sus soluciones. El Caṕıtulo 3
presenta el problema de violación de CP en el sector fuerte en cierto detalle, junto
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con una discusión sobre la solución de Peccei–Quinn y su fenomenoloǵıa asociada.
En el Caṕıtulo 4 introducimos el concepto de Teoŕıas Efectivas y mostramos cómo
construirlas a partir de un modelo ultravioleta dado usando técnicas funcionales.
También mostramos ejemplos de Teoŕıas Efectivas dentro del marco teórico del Mo-
delo Estándar que introducen un enfoque complementario en la búsqueda de Nueva
F́ısica. Finalmente, en el Caṕıtulo 5 presentamos las recientes anomaĺıas experimen-
tales en desintegraciones del mesón B y discutimos sus principales implicaciones.

Mientras que la Parte I sigue una discusión más lineal, con cada caṕıtulo basado
en los anteriores, la Parte II está estructurada en tres caṕıtulos esencialmente in-
dependientes. El Caṕıtulo 6 extiende los métodos funcionales para la construcción
de Teoŕıas Efectivas introducidos en el Caṕıtulo 4. En el Caṕıtulo 7 presentamos
tres modelos construidos para proporcionar una explicación a las anomaĺıas en la
f́ısica del mesón B. Estos se basan en varias extensiones del sector gauge del Modelo
Estándar, cada una de las cuales da lugar a predicciones experimentales caracteŕısti-
cas diferentes. En el Caṕıtulo 8 se introducen dos modelos de axión invisible que
incluyen propiedades adicionales no presentes en las implementaciones originales.

A continuación detallamos los principales objetivos, metodoloǵıa y conclusiones
de la presente tesis.

10.1 Objetivos: Non Terrae Plus Ultra?

El Modelo Estándar es la teoŕıa que recopila todo nuestro conocimiento actual sobre
las interacciones fuertes y electrodébiles. En esta teoŕıa el concepto de simetŕıa juega
un papel central. Sus grados de libertad fundamentales son campos que corresponden
a representaciones de la simetŕıa de Lorentz; y el Lagrangiano que caracteriza las
interacciones entre estos campos está basado en la invariancia bajo la simetŕıa local
SU(3)c×SU(2)L×U(1)Y. El uso de estos principios de simetŕıa proporciona un marco
teórico elegante y simple que es capaz de describir con gran precisión la mayoŕıa
de los datos experimentales conocidos en f́ısica de part́ıculas, haciendo del Modelo
Estándar uno de los mayores éxitos de la F́ısica Moderna. Entre las principales
caracteŕısticas del Modelo Estándar destacan las siguientes:

• El Modelo Estándar es una teoŕıa cuántica de campos basada en los principios
de localidad, causalidad y renormalizabilidad, invariante bajo la simetŕıa de
Lorentz y la simetŕıa local (también llamada gauge) GSM ≡ SU(3)c×SU(2)L×
U(1)Y.

• En este marco teórico, los bosones, part́ıculas de esṕın entero entre las que
se encuentran el bosón Higgs y los bosones gauge, son los mediadores de las
interacciones. Al contrario que el bosón de Higgs, los bosones gauge están com-
pletamente definidos en términos de la simetŕıa gauge del Modelo Estándar.
Tenemos ocho gluones sin masa para las interacciones fuertes, Gα

µ, asociados
a la simetŕıa local SU(3)c; mientras que los bosones gauge correspondientes a
la simetŕıa SU(2)L × U(1)Y son el fotón, Aµ, que no tiene masa y que media
las interacciones electromagnéticas, y tres bosones masivos, el W±

µ y el Zµ,
mediadores de las interacciones débiles. Puesto que en el Modelo Estándar
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Tipo Part́ıcula SU(3)c SU(2)L U(1)Y

Quarks

qL 3 2 1/6

uR 3 2 2/3

dR 3 2 −1/3

Leptones
`L 1 2 −1/2

eR 1 1 −1

Tabla 10.1: Contenido de materia del Modelo Estándar y su transformación bajo la si-
metŕıa gauge.

tanto los mediadores del electromagnetismo como los de la fuerza débil están
asociados a la misma simetŕıa, se dice que estas fuerzas están unificadas y a
la simetŕıa SU(2)L × U(1)Y se le conoce como simetŕıa electrodébil.

• La materia observada está constituida por fermiones, que están descritos en
términos de part́ıculas de esṕın un medio de quiralidad bien definida

qL =

(
uL
dL

)
, uR , dR ,

`L =

(
νL
eL

)
, eR .

(10.1)

Las interacciones de los fermiones con los bosones gauge viene determinadas
por cómo transforman bajo la simetŕıa local del Modelo Estándar. Los fer-
miones del Modelo Estándar aparecen en cinco representaciones diferentes de
la simetŕıa gauge (ver Tabla 10.1). Los fermiones que no transforman bajo
la simetŕıa asociada a la interacción fuerte, SU(3)c, no sienten esta fuerza y
reciben el nombre de leptones. En contrapartida, a los fermiones que śı sienten
esta interacción se les denomina quarks. Los quarks y los leptones aparecen en
tres copias, denominadas comúnmente como familias o sabores:

u ≡

uc
t

 , d ≡

db
s

 , e ≡

eµ
τ

 , ν ≡

νeνµ
ντ

 . (10.2)

Los fermiones de distintos sabor sienten las interacciones gauge forma idéntica,
situación que recibe el nombre de universalidad, y sólo se distinguen entre śı por
sus masas y sus interacciones de Yukawa con el Higgs.

• La simetŕıa gauge impide que los bosones gauge masivos, el W y el Z, y los
fermiones adquieran una masa, en contradicción de las observaciones experi-
mentales. En el Modelo Estándar estas part́ıculas adquieren masa por medio
del mecanismo de Higgs. Este mecanismo se basa en el hecho de que, mientras
que el Lagrangiano es invariante bajo la simetŕıa gauge, el vaćıo (el estado
fundamental) del potencial de Higgs no lo es. De este modo el bosón de Higgs
adquiere un valor esperado en el vaćıo que induce una ruptura espontánea de
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Figura 10.1: Ilustración de los patrones observados en las masas, denotadas como
Df (f = u, d, e, ν), y las mezclas fermiónicas, con V para la matriz CKM y UPMNS

para la matriz PMNS. Los colores más claros en los elementos de matriz indican
valores más suprimidos comparados con los colores más oscuros.

la simetŕıa electrodébil, dando lugar a las masas observadas y, al mismo tiem-
po, introduciendo mezclas entre las distintas familias en las interacciones con
el bosón W . Éstas están parametrizadas en términos de las llamadas matrices
CKM y PMNS que describen, respectivamente, las mezclas en el sector de
quarks y de leptones.1

El Modelo Estándar proporciona un marco teórico sólido y consistente para la
descripción de los fenómenos f́ısicos que tienen lugar a altas enerǵıas. Además re-
produce una inmensa mayoŕıa de los datos experimentales actuales con un acuerdo
asombroso. Sin embargo, existen varias indicaciones, tanto teóricas como experi-
mentales, que parecen apuntar a la posible existencia de F́ısica más allá del Modelo
Estándar. Desde el punto de vista teórico, el Modelo Estándar presenta varias cues-
tiones insatisfactorias:

• El problema de violación de CP en el sector fuerte: La inclusión de
efectos no perturbativos en el sector que describe las interacciones fuertes
da lugar a la aparición de un nuevo término en el Lagrangiano. Este nuevo
término viola la simetŕıa CP; sin embargo, no hay evidencia experimental para
tal fuente de violación de CP. Puesto que el Modelo Estándar carece de un
mecanismo para prohibir la presencia de este término, es necesario realizar
un ajuste de los parámetros de la teoŕıa, del orden de una parte en diez mil
millones, para encontrar buen acuerdo con las observaciones experimentales.

1En sentido estricto, en el Modelo Estándar no existe ningún mecanismo para dar masa a los
neutrinos y como consecuencia la matriz PMNS es igual a la identidad en este marco teórico, en
contradicción con los resultados observados (ver discusión más adelante).
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• El puzzle del sabor: No hay ninguna explicación en el Modelo Estándar
que explique la existencia de tres familias. Por otra parte, como se puede
ver en la Figura 10.1, las masas y mezclas de fermiones del Modelo Estándar
siguen una estructura bastante peculiar, caracterizada por tener elementos
de matriz muy jerárquicos en el sector de quarks y leptones cargados, que
contrasta fuertemente con el patrón anárquico observado en el sector de los
neutrinos. La falta de una explicación, dentro del Modelo Estándar, para estas
caracteŕısticas del sector del sabor, constituye el llamado puzzle del sabor del
Modelo Estándar.

• El problema de las jerarqúıas: A diferencia de lo que ocurre con los fer-
miones y los bosones gauge, la masa del bosón de Higgs, que es una part́ıcula
escalar, es muy sensible a las posibles extensiones del Modelo Estándar. En
presencia de Nueva F́ısica, la masa del bosón de Higgs recibiŕıa correcciones
cuánticas proporcionales a la escala de enerǵıa de esta Nueva F́ısica. La exis-
tencia de estas correcciones cuánticas requeriŕıan, una vez más, la introducción
de un ajuste de parámetros para mantener la masa del bosón de Higgs en su
valor observado.

• Gran Unificación: En teoŕıa de cuántica de campos, los acoplamientos de
una teoŕıa dada vaŕıan con la enerǵıa a la que se miden. Una caracteŕıstica
interesante del Modelo Estándar es que, si evolucionamos los acoplamientos
gauge de cada uno de sus tres grupos de simetŕıa, se puede ver que se vuelven
aproximadamente iguales a una enerǵıa muy alta. Esto podŕıa estar indican-
do que, al igual que sucede con las fuerzas débiles y electromagnéticas, las
fuerzas del Modelo Estándar se unifican. Del mismo modo que ocurre con las
interacciones electrodébiles, esta posible unificación podŕıa estar insinuando la
existencia de una dinámica subyacente alrededor de la escala de unificación.
Las teoŕıas más allá del Modelo Estándar basadas en esta idea de unificación
de fuerzas reciben el nombre de Teoŕıas de Gran Unificación.

• Gravedad: El Modelo Estándar no incluye los efectos de la gravedad. Por
lo tanto debe ser extendido para proporcionar una descripción de la gravedad
cuántica. Estos efectos se pueden agregar al Modelo Estándar usando Teoŕıas
Efectivas siempre que uno se restrinja a enerǵıas por debajo de la escala de
Planck. Sin embargo, más allá de esa escala uno debe confiar en una teoŕıa
completa de la gravedad cuántica.

Por otro lado, a pesar del enorme éxito fenomenológico del Modelo Estándar, hay
observaciones experimentales que no pueden explicarse en esta teoŕıa, y que sugieren
la presencia de f́ısica más allá de este marco teórico:

• Masas y mezclas de neutrinos: Los neutrinos son part́ıculas sin masa en
el Modelo Estándar. Sin embargo, los experimentos de oscilación de neutrinos
han demostrado que estos tienen masa. Aunque el Modelo Estándar se puede
extender fácilmente para dar cuenta de estas masas, existen diferentes meca-
nismos. Además, relacionado con esta cuestión, no está claro si los neutrinos
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son sus propias antipart́ıculas. Cuál es la extensión del Modelo Estándar es-
cogida por la Naturaleza para explicar las masas de los neutrinos permanece
como una de las preguntas abiertas en la F́ısica de Part́ıculas.

• Las anomaĺıas en f́ısica del sabor: Las colaboraciones experimentales de
LHCb, Belle y Babar han reportado un conjunto de interesantes anomaĺıas que
involucran varios observables en el desintegración del mesón B, formado por
un quark d y un anti-quark b. Aunque estas medidas todav́ıa no son lo sufi-
cientemente significativas para anunciar el descubrimiento de Nueva F́ısica, el
conjunto de desviaciones observadas parece mostrar un patrón bastante cohe-
rente. El valor nominal de estas anomaĺıas experimentales implican una gran
violación de la universalidad del sabor de leptónico que no puede explicarse
en el Modelo Estándar.

• Asimetŕıa materia-antimateria: El Modelo Estándar predice que la mate-
ria y la antimateria deben ser creadas en el universo primitivo prácticamente
en la misma cantidad. Sin embargo, el universo observado está hecho princi-
palmente de materia. Para explicar esta asimetŕıa el Modelo Estándar necesita
ser extendido.

• Materia oscura y enerǵıa oscura: Según las observaciones cosmológicas,
el Modelo Estándar sólo representa el 5 % de la enerǵıa en el universo obser-
vable. De la enerǵıa restante, un 26 % debe corresponder a nueva materia que
no interacciona ni fuertemente ni electromagnéticamente, la llamada materia
oscura. El resto (un 69 %) debe consistir en enerǵıa oscura, cuya naturaleza
aún está en debate.

En esta tesis hemos tratado de abordar algunos de estos problemas. En particu-
lar, en el Caṕıtulo 2 se discuten posibles extensiones del sector escalar del Modelo
Estándar, lo cuál puede ser de interés para la explicación de la asimetŕıa materia-
antimateria o para la materia oscura. El objetivo del Caṕıtulo 3 es introducir el
problema de violación de CP en el sector fuerte y presentar un mecanismo capaz de
resolverlo; mientras que en el Caṕıtulo 8 hemos presentado modelos expĺıcitos que
ampĺıan los mecanismos más minimalistas para incluir caracteŕısticas adicionales.
A falta de una indicación clara acerca de cuál podŕıa ser la teoŕıa subyacente que
extienda al Modelo Estándar, es muy útil hacer uso de descripciones efectivas que
parametrizan esta posible nueva dinámica de una manera independiente del modelo.
Hemos introducido estas técnicas en el Caṕıtulo 4, mientras que en el Caṕıtulo 6
las hemos extendido al siguiente orden en teoŕıa de perturbaciones, es decir, a un
loop. Finalmente, en el Caṕıtulo 5 se presentan las anomaĺıas de sabor en detalle, y
el Caṕıtulo 7 se dedica al estudio de posibles explicaciones de las anomaĺıas a través
un sector de gauge extendido.
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10.2 Metodoloǵıa y conclusiones: La búsqueda de

terra incognita

Como hemos comentado en la sección anterior, el Modelo Estándar posee varios
“puntos débiles” que parecen sugerir que podŕıa haber algo más allá, posiblemente
incluso al alcance del LHC y/o futuras factoŕıas de sabor. Motivados por algunas de
estas debilidades del Modelo Estándar, en esta tesis hemos explorado extensiones
de este modelo mediante tres enfoques diferentes: Teoŕıas Efectivas y su extensión a
un loop, el estudio de las anomaĺıas del sabor a través de un sector gauge extendido,
y modelos de axiones y su interacción con el sector del sabor.

Dada la ausencia actual de resultados positivos en las búsquedas directas de Nueva
F́ısica en el LHC, y con la creciente precisión que se está alcanzando en muchos obser-
vables, las Teoŕıas Efectivas proporcionan una herramienta esencial en la búsqueda
de Nueva F́ısica, ya que permiten un análisis sistemático e independiente de mo-
delo de los datos experimentales. Las Teoŕıas Efectivas son ampliamente utilizadas,
por ejemplo, en la f́ısica del sabor, donde se espera que las masas de algunas de
las part́ıculas que median los procesos de interés, ya sean del Modelo Estándar o
nuevas part́ıculas, estén más allá de la escala t́ıpica del sistema. En algunos análisis
de Teoŕıas Efectivas, la inclusión de correcciones a un loop resulta crucial. Este es
el caso, por ejemplo, cuando estas correcciones introducen nuevos efectos que no
están presentes o que aparecen fuertemente suprimidos a primer orden en teoŕıa de
perturbaciones. Con el fin de conectar estos análisis con los modelos existentes, es
bastante útil tener técnicas sistemáticas que permitan una simple determinación de
la Teoŕıa Efectiva de un modelo ultravioleta arbitrario. En este sentido, cuando se
pretende determinar la totalidad de la Teoŕıa Efectiva las técnicas de integración
funcional resulta mucho más eficientes que el el proceso de matching, consistente
en la comparación directa entre la Teoŕıa Efectiva y la teoŕıa ultravioleta a bajas
enerǵıas. Esto es porque los métodos funcionales proporcionan directamente todo el
conjunto de operadores de la Teoŕıa Efectiva junto con sus condiciones de corres-
pondencia. Además, existen ciertas expresiones universales que son aplicables bajo
ciertos ĺımites y que han sido derivadas en la literatura usando estas técnicas.

Últimamente ha habido un intenso debate sobre cómo determinar, a partir de
estos métodos funcionales, las contribuciones a los coeficientes de la Teoŕıa Efec-
tiva cuando estos provienen de procesos a un loop que involucran tanto part́ıculas
pesadas como ligeras. En el Caṕıtulo 6, hemos abordado esta cuestión y hemos
desarrollado un marco teórico simplificado, basado en técnicas funcionales, para la
construcción de Teoŕıas Efectivas a un loop. En este caṕıtulo hemos demostrado que
los acoplamientos de la Teoŕıa Efectiva quedan completamente determinados por la
región hard, donde el momento que involucra las correcciones cuánticas es del mis-
mo orden que la escala de altas enerǵıas, de un determinante funcional que contiene
toda la información relativa a los efectos a un loop que involucran a las part́ıculas
pesadas. Este método proporciona una nueva visión al proceso de construcción de
Teoŕıas Efectivas e introduce importantes simplificaciones con respecto a enfoques
previos presentes en la literatura.
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A pesar de que por el momento no se han encontrado nuevas part́ıculas en el LHC,
existen interesantes discrepancias experimentales en el sector del sabor que parecen
apuntar a efectos de Nueva F́ısica (ver Caṕıtulo 5 para una discusión en inglés).
Estas anomaĺıas experimentales consisten en una serie de desviaciones respecto a
la predicción teórica del Modelo Estándar en los desintegraciones del mesón B que
involucran las transiciones a nivel partónico b → s`+`− (con ` = µ, e). Estas des-
viaciones parecen indicar la existencia de una fuerte violación de universalidad en
el sector e− µ. Los ajustes globales de todos los datos experimentales relacionados
con estas transiciones dan un ajuste muy bueno cuando se incluyen grandes con-
tribuciones de Nueva F́ısica de carácter no universal en acoplamientos relacionados
con transiciones b → s`+`−. Esta situación es preferida a la predicción del Modelo
Estándar por 4− 5σ.

Aunque todav́ıa es pronto para saber si estos efectos son realmente Nueva F́ısi-
ca, es interesante estudiar estas anomaĺıas desde posibles extensiones del Modelo
Estándar e intentar buscar implicaciones en otros observables. Éste es el camino que
seguimos en el Caṕıtulo 7. En particular en la Sección 7.1 hemos explorado una posi-
ble explicación de las anomaĺıas basada en una extensión U(1)′ del Modelo Estándar
que se caracteriza por tener todos sus acoplamientos a quarks exactamente relaciona-
dos con los elementos de su matriz de mezcla. De este modo, estos modelos evitan de
forma natural los fuertes ĺımites que reciben los procesos que violan sabor al tiempo
que proporcionan un marco teórico muy predictivo. En estos modelos, la cancela-
ción de anomaĺıas gauge se puede lograr únicamente con el contenido fermiónico del
Modelo Estándar, fijando la extensión de la simetŕıa al sector leptónico de manera
uńıvoca. Como resultado, estos modelos dan lugar a un Z ′ con acoplamientos no-
universales en el sector leptónico pero que conserva sabor. Dada la predictibilidad
de estos modelos, con la mayor parte de sus acoplamientos completamente fijados
por la simetŕıa gauge, estos proporcionan una fenomenoloǵıa muy interesante. No
obstante, debido a que el Z ′ de estos modelos acopla significativamente a los quarks
ligeros, en su versión mı́nima presentan ciertas tensiones con las búsquedas direc-
tas de Z ′ más recientes llevadas a cabo por la Colaboración ATLAS, en el LHC.
Una extensión de este marco teórico, capaz de evadir estos ĺımites experimentales,
está siendo actualmente objeto de estudio.

Un enfoque diferente en la explicación de las anomaĺıas consiste en buscar po-
sibles conexiones entre éstas y otros problemas del Modelo Estándar. Por ejemplo,
el puzzle del sabor del Modelo Estándar, que introdujimos en la sección anterior,
podŕıa estar sugiriendo la existencia de la misma dinámica subyacente en el sector
del sabor que la que se necesitaŕıa para explicar las anomaĺıas. En la Sección 7.2
hemos explorado esta idea mediante la hipótesis de los acoplamientos de Yukawa
dinámicos, que proporciona una explicación natural a la estructura general de las
matrices de masa y de mezcla fermiónicas mostrada en la Figura 10.1. En este marco
teórico, se asume que los Yukawas del Modelo Estándar surgen a partir del valor
esperado en el vaćıo de nuevos campos escalares cargados bajo la simetŕıa de sa-
bor [SU(3)]5 × O(3), que es tomada como a una simetŕıa local de la naturaleza.
En esta tesis hemos mostrado que el patrón de Yukawas observado puede conducir
naturalmente a una rotura secuencial de la simetŕıa del sabor que preserva a bajas
enerǵıas la simetŕıa U(1)q × U(1)µ−τ , la cual a su vez se rompe espontáneamente
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alrededor de la escala del TeV. Con el fin de explicar las anomaĺıas experimentales
antes mencionadas, los bosones Z ′ que resultan de esta última ruptura de simetŕıa
se deben mezclar, dando lugar a predicciones muy distintivas que serán testadas en
el LHC en un futuro próximo.

Junto a las anomaĺıas ya mencionadas, también se han reportado otros indicios
de violación de la universalidad leptónica en los ratios R(D(∗)), dando lugar a una
desviación combinada con respecto a la predicción del Modelo Estándar de 4σ,
sugiriendo una gran violación de universalidad en la tercera familia de leptones. En
la Sección 7.3 hemos exploramos la posibilidad de acomodar ambos conjuntos de
anomaĺıas extendiendo el sector gauge del Modelo Estándar mediante la inclusión
de una simetŕıa SU(2) adicional, y hemos analizado en detalle las implicaciones
fenomenológicas de dicha extensión. En particular, hemos demostrado que el modelo
presentado en esta tesis puede aliviar significativamente las tensiones experimentales
observadas, al tiempo que puede evadir los fuertes ĺımites experimentales impuestos
por otros observables de f́ısica del sabor y por medidas de precisión en el sector
electrodébil. Una cuestión que este tipo de extensiones debe abordar, es su capacidad
para evadir los fuertes ĺımites experimentales procedentes de búsquedas directas de
resonancias con estado final τ+τ−, que se están llevando a cabo actualmente en el
LHC. Los ĺımites experimentales actuales obligan a el Z ′ de estos modelos a tener
una anchura de desintegración muy grande, lo que requiere una extensión del marco
teórico mı́nimo presentado en esta tesis.

Por otro lado el problema de CP en el sector fuerte, que ya fue comentado en la sec-
ción anterior y que ha sido discutido en más detalle en el Caṕıtulo 3, también ofrece
una dirección interesante en la búsqueda de Nueva F́ısica. El mecanismo de Peccei–
Quinn proporciona una solución elegante y predice la existencia de un bosón escalar
muy ligero y débilmente acoplado, el axión, cuya fenomenoloǵıa es particularmente
interesante. Esta solución consiste en la introducción de una simetŕıa quiral global,
U(1)PQ, que presenta anomaĺıas mixtas con la simetŕıa de la interacción fuerte y que
debe estar espontáneamente rota a bajas enerǵıas. Para evadir los fuertes ĺımites ex-
perimentales sobre esta nueva part́ıcula, la ruptura de la simetŕıa debe tener lugar
a una escala de enerǵıas muy elevadas, haciendo que la masa y los acoplamientos
del axión estén fuertemente suprimidos por esta escala. Al axión resultante de estos
modelos se le conoce como axión invisible, dados sus acoplamientos extremadamente
débiles con el resto de las part́ıculas.

En el Caṕıtulo 8 hemos presentado dos modelos de axiones invisibles que extien-
den los modelos mı́nimos para incorporar nuevas propiedades que están ausentes
en estos últimos. En particular, en la Sección 8.1 hemos presentado un modelo de
axiones invisibles que, al tiempo que resuelve el problema de CP en el sector fuer-
te, ofrece una compleción ultravioleta para el modelo alineado de dos dobletes de
Higgs. También hemos explorado en la Sección 8.2 una clase de modelos donde la
simetŕıa de Peccei–Quinn no es universal sino una simetŕıa de sabor. Los modelos
de este tipo introducen interesantes caracteŕısticas nuevas. Por ejemplo, los axiones
de estas teoŕıas poseen acoplamientos que violan sabor, dando lugar a interesantes
predicciones en los desintegraciones µ+ → e+aγ y K+ → π+a. Entre las caracteŕısti-
cas fundamentales de los modelos de axiones presentados en esta sección, destacan
el que las violaciones de sabor mediadas por el axión y el resto de escalares están
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controladas por la matriz de mezcla fermiónica, aśı como la posibilidad de evitar el
problema de los domain walls, uno de los principales obstáculos en la construcción
de modelos de axiones en los que la rotura de la simetŕıa de Peccei-Quinn se produce
por debajo de la escala de inflación. Por otra parte, el pequeño tamaño de las masas
de los neutrinos activos se puede explicar naturalmente en ambas implementaciones
por medio del mecanismo de see-saw de tipo I, proporcionando un origen común
para la ruptura de la simetŕıa de Peccei–Quinn y la escala de see-saw.
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