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Resumen de la tesis

Esta tesis está compuesta de cuatro partes:

• En la primera parte me he dedicado a describir cómo funciona el modelo estándar
(Capítulo 1), por qué esperamos violaciones de sabor para los procesos con leptones
cargados (Capítulo 2) y un escenario posible fuera del modelo estándar (Capítulo 3)
que justifique tales violaciones de sabor, la jerarquía de la masa del Higgs y que nos
indique nueva física todavía no revelada.

• En la segunda parte he explicado en detalle los procedimientos para conseguir mis re-
sultados en procesos específicos con violación de sabor leptónico de interés fenomenológico:
desintegraciones hadrónicas del leptón tau (Capítulo 4) y desintegraciones leptónicas
del Higgs (Capítulo 5), todo en el contexto del Simplest Little Higgs Model, explicado
en la sección 3.4.

• En la tercera parte he vuelto a resumir todo lo que he hecho en este trabajo de
tesis y he comentado los resultados finales (Capítulo 6). Además he escrito reglas,
aproximaciones y trasformaciones necesarias para reproducir exactamente los cálculos
que llevan a los resultados de los Capítulos 4 y 5.

• En la cuarta parte he incluido toda la literatura útil para comprender los conceptos
que explico en la tesis.
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Introduction

The Standard Model (SM) of particle physics is a theory that has passed many experimen-
tal tests. However, there are still fundamental questions and observations that cannot be
answered or explained by it. One example is neutrino oscillations. The SM Lagrangian
explicitly conserves lepton flavor in any given interaction. This feature does not arise from
a gauge principle, it is an accidental symmetry of the SM which agreed with lepton flavor
conservation as observed at that time. The observation of neutrino oscillations demonstrates
that there is a lepton flavor violation (LFV) in the neutral sector.

Observations of the solar neutrino flux showed discrepancies from predictions made by
the generally accepted model of the Sun. A significantly lower flux than anticipated [1] was
measured. In later years, several other experiments confirmed this deficit [2], [3], [4]. One
possible explanation of this result is neutrino oscillations: an electron neutrino changes its
flavor during flight. These oscillations imply a mixing in the leptonic sector similar to that
of quarks, and were proposed by S.M. Bilenky and B. Pontecorvo [5]. Such mixing requires
massive neutrinos, however. The first direct evidence of neutrino oscillations was found by
the Sudbury Neutrino Observatory in the year 2002 [6]. Since then, various experiments have
confirmed the oscillations of neutrinos of different flavors, and although neutrino masses have
not been measured so far, mass differences of the three mass eigenstates have been shown
to be non vanishing [7].

If neutrino oscillations are taken into account, lepton number is no longer conserved for
individual families and thus, many new decay modes become possible. Examples for decays
accessible to low energy experiments are µ→ eγ, µ→ 3e and τ → µγ.

Although the SM has been succesfully tested, it is commonly accepted that it constitutes
only an effective theory which is valid up to an energy scale Λ (at least of several TeVs)
where new physics enters and additional dynamic degrees of freedom become important.
A renormalizable quantum field theory valid above this scale should satisfy the following
requirements:

• Its gauge group must contain the SM gauge group.

• All SM degrees of freedom should be incorporated either as fundamental or as com-
posite fields.

• At low energies it should reduce to the SM.

ix



Table 1: Experimental upper limits on the branching ratios (B) of the radiative lepton decays.

Process Experimental bound
B (τ → µγ) 4.4× 10−8 [9], [10]
B (τ → eγ) 3.3× 10−8 [9]
B (µ→ eγ) 5.7× 10−13 [11]

Table 2: Experimental upper limits on the branching ratios of the three body charged lepton
decays.

Process Experimental bound
B (τ− → µ−µ+µ−) 2.1× 10−8 [12]
B (τ− → e−e+e−) 2.7× 10−8 [12]
B (τ− → e−µ+µ−) 2.7× 10−8 [12]
B (τ− → µ−e+µ−) 1.7× 10−8 [12]
B (µ− → e−e+e−) 1.0× 10−12 [13]

Flavor observables, especially flavor changing neutral current (FCNC) processes are an
excellent probe of new physics since they are suppressed in the SM and therefore sensitive
even to small new physics contributions.

Especially the search for LFV is very promising since in the SM (minimally extended with
massive neutrinos) all flavor violating effects in the charged lepton sector are proportional
to the very small neutrino masses, the decay rates of heavy charged leptons into lighter
ones are suppressed by the ratio m2

ν

M2
W

and thus are by far too small to be measurable in any
foreseeable experiment [8]. This in turn means that any observation of LFV would prove
the existence of physics beyond the SM. In addition, LFV processes have the advantage of
being “theoretically clean” because they can be computed precisely without problems with
non perturbative QCD effects affecting similar observables in the quark sector. The current
experimental situation and prospects for the search for charged lepton flavor violation are
very promising.

In Tables 1 and 2 we list the experimental bounds on the radiative lepton decays li → lfγ
and on the three body lepton decays li → ljlkll, respectively. Especially the limits on
µ → e transitions are very stringent due to constraints from the MEG and SINDRUM
collaborations at the PSI and will be even further improved in the future, as next generation
B factory experiments will aim to O(10−10) level for the τ LFV branching ratios.

We know that the lepton flavor symmetries are not exact in nature, since neutrino
oscillations have been observed. The neutrino oscillations are induced due to the finite but
tiny neutrino masses. This comes from the GIM mechanism in leptonic sector. In fact,
B (µ→ eγ) is limited to be below 10−54 in the SM with the tiny neutrino masses. On
the other hand, it is considered that the SM should be a low energy effective theory and
new physics may appear at the TeV scale. Now we know that lepton flavor symmetries are
not exact in nature, and we guess that the symmetries may be broken in the model. In
that case, the charged LFV processes could be predicted with branching ratios accessible to



experiments in near future.
In this thesis I tried to review briefly the SM (Part I, Chapter 1) and its frontiers with

particular attention to the flavour violating processes involving charged leptons (Chapter
2). Then I summarized one of the options for the physics beyond the SM, the Little Higgs
(LH) models in the Chapter 3.

After the dissertation of the Part I, I applied the Simplest Little Higgs Model (SLH), in
the case of LFV τ decays into one and two pseudoscalars (Chapter 4).

In the Chapter 5 I discussed the contribution of the scalar Higgs in the LFV always in
the framework of SLH.

I give the conclusion of my work in the Chapter 6.

Andrea Lami, Valencia, 4/5/2016
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The Standard Model and its extensions
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Chapter 1

The Standard Model

1.1 Background

The main parts of the SM were introduced by Salam, Glashow and Weinberg independently
around 1968. Although the correctness of the SM was not plainly apparent, the SM managed
to predate the experimental evidence by years. The theory is considered ugly by most, but
it is successful. The SM is our most confirmed model of elementary particle physics, yet its
failures suggest that the story is not yet over.

To place the SM in context let us return to 1965. Tomonaga, Feynmann, and Schwinger
had just won the Nobel prize for the renormalization of Quantum Electrodynamics. They
calculated the magnetic moment of the electron and other observables using quantum field
theory and regularization to separate out the infinite components of the theory from a finite
contribution. Their calculations and the corresponding experiments verified the vital role of
the subsequent renormalization in fundamental physics. The anomalous magnetic moment
of the electron, which is calculated using the renormalization toolbox, today agrees with
experiment to more than 13 significant digits. Unfortunately in 1965 the models explaining
radioactive decay and the strong interaction were not renormalizable.

The leading theory was called the chiral V - A universal model of weak decays featuring
four-fermion interactions in the combination of vector minus axial-vector currents. The V -
A model could not be renormalized. Although gauge theory and renormalization explained
the interaction of electrons with photons, gauge theory was not able to address the strong
and weak forces. These forces were known to be short range forces. To make a force have
a short range in quantum field theory (QFT), the mediating boson needed a mass. The
Yukawa theory of scalar fields included such a term as an early model for the strong force
with short range. The force law falls off as e−rm

r2 with both the classic inverse square law
multiplied by an an exponential dampening with distance parameterized by the mass m. To
give a gauge boson Aµ a short range, the Lagrangian would need a mass term like m2

AAµA
µ.

This term violates gauge symmetry because when A′µ = Aµ+∂µχ we see that AµAµ 6= A′µA
′µ.

Naively, one would think that gauge symmetry blocks all gauge bosons from having mass;
and therefore, all gauge theories (Abelian and the non-Abelian ones) would obey force laws
that scale as 1

r2 . This would mean that all gauge theories would represent long-range forces

3



4 Chapter 1. The Standard Model

Table 1.1: General structure of the Standard Model fermions, divided in three families, and
the Higgs.

Leptons Hadrons Higgs
(1,2,-1/2) (1,1,1) (3,2,1/6) (3̄,1,-2/3) (3̄,1,1/3) (1,2,-1/2)

Family 1
(
νe
e

)
ē

(
u

d

)
ū d̄

Family 2
(
νµ
µ

)
µ̄

(
c

s

)
c̄ s̄

Family 3
(
ντ
τ

)
τ̄

(
t

b

)
t̄ b̄

similar to gravity and electromagnetism (each of which is mediated by a massless boson).
Apparently there are two solutions to this problem:

• The Higgs mechanism, which gives gauge bosons mass without violating gauge sym-
metry;

• A spontaneously created mass gap phenomena associated with non-Abelian gauge
theories wich is yet not fully understood and seems related to the confinement of
individual quarks within Quantum Chromodynamics (QCD).

The SM chooses the Higgs mechanism while the strong force seems to use the second
option.

1.2 The Standard Model
The SM has a symmetry group of SU(3)C × SU(2)L × U(1)Y [14], [15] [16]. The C on
SU(3)C stands for color. The L on SU(2)L means that it only acts on the left-handed
states. The Y on U(1)Y stands for hypercharge and it is there to distinguish from U(1)
for electromagnetism. The gauge bosons content is therefore 8 “photon-like” fields from the
adjoint of SU(3)C , 3 from the adjoint SU(2)L and 1 from the Abelian U(1)Y .

For each matter field we specify the representations and the charge under three sym-
metry groups as a triplet of numbers. A 1 for SU(3)C or SU(2)L is a singlet (it does not
transform). The value in the third entry is the U(1)Y hypercharge. For example (1,2,-1/2)
means that the field is a singlet under SU(3)C , a doublet under SU(2)L and has a charge
-1/2 under U(1)Y , see Table 1.1.

1.2.1 The Gauge and Higgs Sector

In this section we will treat only the Electroweak (EW) part of the SM, the SU(2)L×U(1)Y
gauge group. All begins with the Higgs complex scalar doublet field φ in the (2,-1/2)



1.2. The Standard Model 5

representation of SU(2)L × U(1)Y . φ will be given a potential that spontaneously breaks
the symmetry of the vacuum. The resulting vacuum expectation value will give mass to the
gauge bosons with a special pattern, with the resulting broken theory having the symmetry
U(1) associated with QED. The pattern of masses of the massive gauge bosons will make
the weak force a short range one.

The first step is to write down the covariant derivative:

(Dµφ)i = ∂µφi − i[g2WµaT
a
2 + g1BµY ]ijφj, (1.1)

we denote the generators of the 2 representation of SU(2):

T a2 =
σa

2
, (1.2)

(for the Pauli matrices see Appendix B.1) and the gauge fields are W a
µ . The generator

of U(1)Y is the identity matrix, Y is the hypercharge (-1/2 in this case) and the U(1)Y
gauge field is Bµ, g1 and g2 are coupling constants for the U(1)Y part and the SU(2)L part,
respectively. Knowing that the generators of SU(2) are the Pauli matrices, we can expand
in matrix form, so the full covariant derivative is:

(Dµφ)i =

(
∂µφ1 + i

2

(
g2W

3
µ − g1Bµ

)
φ1 + ig2

2

(
W 1
µ − iW 2

µ

)
φ2

∂µφ2 + ig2

2

(
W 1
µ + iW 2

µ

)
φ1 − i

2

(
g2W 3

µ + g1Bµ

)
φ2

)
. (1.3)

We know that the Lagrangian will have the kinetic term and some potential:

Lφ = Dµφ
†Dµφ− V

(
φ†, φ

)
, (1.4)

and the Higgs potential is:

V
(
φ†, φ

)
=
λ

4

(
φ†φ− v2

2

)2

. (1.5)

With λ > 0 the minimum field configuration is not at |φ| = 0, but at:

|φ| = v√
2
. (1.6)

We can make a global SU(2) transformation to put the entire Vacuum Expectation Value
(VEV) on the first component of φ, and then make a global U(1) transformation to make
the field real. Therefore:

〈φ〉 = 〈0|φ|0〉 =
1√
2

(
v

0

)
, (1.7)
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and we expand φ around this new vacuum:

φ(x) =
1√
2

(
v + h(x)

0

)
. (1.8)

In this case we have chosen the SU(2) gauge to keep the second component null and the
U(1) phase to keep the first component real. Thus, h(x) is a real scalar field. The other
fluctuations turn out to be the longitudinal components of the massive gauge fields in the
Higgs mechanism.

The gauge choice that keeps the Higgs in the first component is called the Unitary
Gauge. Although it is easiest to see the physical content, the Unitary Gauge is the most
difficult to renormalize and perform advanced calculations with. When we plug the VEV
into the kinetic term in the equation (1.4), we get:

L〈φ〉 = −1

8
(v 0)

(
g2W

3
µ − g1Bµ g2

(
W 1
µ − iW 2

µ

)
g2

(
W 1
µ + iW 2

µ

)
−g2W

3
µ − g1Bµ

)2(
v

0

)
. (1.9)

To find the masses of the gauge bosons we can rewrite this matrix as:

L〈φ〉 = −1

8
v2V T

µ


g2

2 0 0 0
0 g2

2 0 0
0 0 g2

2 −g1g2

0 0 −g1g2 g2
1

V µ, (1.10)

with V T
µ =

(
W 1
µ ,W

2
µ ,W

3
µ , Bµ

)
, so W 1

µ and W 2
µ have mass and are already diagonalized.

The submatrix formed by the other components has a determinant of 0 and therefore
must have a 0 eigenvalue that keeps a massless gauge boson left, with a corresponding
symmetry that keeps it massless under renormalization effects. The eigenvalues are 0,
−1

8
v2g2

2, −1
8
v2g2

2 and −1
8
v2 (g2

1 + g2
2). The normalized eigenvector for the massless state Aµ

is

V T
A = (0, 0, g1, g2)

1√
g2

1 + g2
2

. (1.11)

The eigenvector for the massive vector boson state Zµ is

V T
Z = (0, 0, g2,−g1)

1√
g2

1 + g2
2

, (1.12)

where Zµ =
g2W 3

µ−g1Bµ√
g2
1+g2

2

appeared in equation (1.9).

The format of the eigenvectors suggests a parametrization based on a right triangle with
g1 on one leg and g2 on the other leg. Traditionally, this right triangle is used to describe
the mixed states. The angle opposite to the leg with length g1 is called the Weak Mixing
Angle:
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sw = sin θw =
g1√
g2

1 + g2
2

, cw = cos θw =
g2√
g2

1 + g2
2

. (1.13)

Finally we can define the physical fields using a simple Euler rotations of the old fields:

W+
µ =

W 1
µ − iW 2

µ√
2

, (1.14)

W−
µ =

W 1
µ + iW 2

µ√
2

, (1.15)

(
Zµ
Aµ

)
=

(
cw −sw
sw cw

)(
W 3
µ

Bµ

)
, (1.16)

whereW± are chosen so that each term in the final Lagrangian will have an explicit U(1)EM
gauge symmetry associated with charge conservation. We have to observe that the fieldsW±

µ

are linear combinatons of fields corresponding to non-Cartan generators of SU(2), whereas
Zµ and Aµ are both linear combinations of fields corresponding to Cartan generators of
SU(2) and U(1). For this reason the neutral fields will interact but do not change the
charge, and the charged fields will interact and change the charge.
Through symmetry breaking, we have given mass to the W±

µ and Zµ while the Aµ remain
massless:

MW =
g2v

2
, MZ =

MW

cw
. (1.17)

These massive fields are the vector bosons, wich are the force carrying particles of the Weak
Force. The Aµ remains massless because the U(1) symmetry remains unbroken, these are
the gauge group and field of Electromagnetism. The point of all this is that at very high
energies (above the breaking of the SU(2)×U(1) symmetry), we have only a complex scalar
Higgs field, along with four massless vector boson gauge fields (W 1

µ ,W
2
µ ,W

3
µ , Bµ), each of

which behaves massless like a photon.
At low energies, however, the SU(2) × U(1) symmetry is broken, and the low energy

effective theory consists of a linear combination of the original four fields. The theory above
the symmetry breaking scale is called the Electroweak Theory that below the breaking
scale becomes two separate forces: the broken Weak and the unbroken Electromagnetic.
This is the first and most basic example of unification within particle physics. At low
energies, the electromagnetic and weak forces are separate, at high energies they unify into
a single theory.
Before including leptons and quarks, we first write out the full Lagrangian for the effective
field theory for h(x) and the gauge fields. We start with the complete Lagrangian term for
h(x). We have written the original field φ as in equation (1.8). Our potential in equation
(1.5) is now:
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V
(
φ†, φ

)
=
λ

4

(
φ†φ− v2

2

)2

=
λv2h2

4
+
λvh3

4
+
λh4

16
. (1.18)

The first term on the right hand side is a mass term giving the mass of the Higgs and the
second two terms are self interaction vertices. The kinetic term for the Higgs will be the
usual −1

2
∂µh∂

µh, knowing that in general the field strength for the gauge bosons is:

Fµν(x) =
i

g2

[Dµ, Dν ] = ∂µAν − ∂νAµ − ig2 [Aµ, Aν ] , (1.19)

and

F µν = F µν
a T a ⇒ F µν

a = 2Tr (F µνT a) . (1.20)

The gauge field strength corresponding to the U(1) symmetry will be

Bµν = ∂µBν − ∂νBµ, (1.21)

so we can now write the kinetic term:

LKin = −1

4
F µν
a F a

µν −
1

4
BµνBµν . (1.22)

At the end we can write the Lagrangian for the SU(2)L×U(1)Y gauge fields along with the
Higgs field:

Leff =− 1

4
FµνF

µν − 1

4
ZµνZ

µν −D†µW−νDµW
+
ν +D†µW−νDνW

+
µ

+ ie (F µν + cot θwZ
µν)W+

µ W
−
ν

− 1

2

(
e2

s2
w

)(
W+µW−

µ W
+νW−

ν −W+µW+
µ W

−νW−
ν

)
−
(
M2

WW
+µW−

µ +
1

2
M2

ZZ
µZµ

)(
1 +

h

v

)2

− 1

2
∂µh∂µh−

1

2
m2
hh

2 − 1

2

m2
h

v
h3 − 1

8

m2
h

v2
h4,

(1.23)

where we have chosen the following definitions:

Fµν = ∂µAν − ∂νAµ,
Zµν = ∂µZν − ∂νZµ,
Dµ = ∂µ − ie (Aµ + cot θwZµ) .

(1.24)
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The Leff allows us to see what kinds of interactions will involve the Higgs and the vector
bosons. The photon Aµ does not couple to h. However, the W± do. By expading the
last but one line of (1.23), we see that the interaction is proportional to W+W−h. This
interaction is responsible for charged weak gauge bosons fusing to form a Higgs.

1.2.2 The Lepton Sector and the origin of mass

There are six leptons arranged into three families or generations. Each family behaves nearly
exactly the same way, so we will make three doublets, one for each generation and allow
mixing between generations in the most general possible way.

The SM needs to simplify to the V − A model at low energies. One characteristic of
the V − A model is that only left handed fields were included in the weak interactions.
Because the neutrino only participates in the weak interactions (and gravity) there is only
a left handed neutrino needed for a weak interactions theory. The electron exists in both a
left handed and right handed state. The neutrino is added as part of a left handed SU(2)L
doublet with the left handed electron,

L =

(
νe
e

)
. (1.25)

This is why it is arranged as it is in Table 1.1 with the electron under the (2,−1/2) represen-
tation of SU(2)L × U(1)Y . The right-handed electron is an SU(2)L singlet. The doublet L
is a purely left-handed Weyl spinor 1. The SU(2) singlet field ē is also a purely left-handed
Weyl spinor and is in the (1, 1) representation. The neutrino νe is part of the L doublet and
has no representation of its own. A priori there is no link between the e and ē.

Mimicking what we did in equation (1.1), we can write down the covariant derivative for
each field,

(DµL)i = ∂µLi − ig2W
a
µ (T a)ij Lj − ig1BµYLLi, (1.26)

Dµē = ∂µē− ig1Bµē. (1.27)

The field ē has no SU(2) term in its covariant derivative because the 1 representation of
SU(2) is the trivial representation, this means it doesn’t carry SU(2) charge. Also we know
that:

YL = −1

2

(
1 0
0 1

)
. (1.28)

Following the generic Lagrangian for the spin-1/2 fields ψ of mass m through which we can
write out the Dirac equation (see Appendix D) 2,

1The Weyl Equation is a relativistic wave equation for describing massless spin 1
2 particles.

2For a complete review of the Dirac Equation see [17].
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LD = ψ̄ (iγµ∂µ −m)ψ ⇒ (iγµ∂µ −m)ψ = 0, (1.29)

we can find the kinetic term for both (massless) fields:

LKin = iL†jσ̄µ (DµL)j + iē†σ̄µDµē. (1.30)

If we try to add mass terms for L and ē fields, the gauge symmetry is broken. For example
Lorentz invariant combination of ēaēbεab = ēē is SU(2)L invariant but violates U(1)Y . The
term has a net hypercharge of +2. Likewise LaiLbjεabεij (where εab is the totally antisym-
metric Levi-Civita tensor, see Appendix B.3) is Lorentz invariant on the a,b indices and
SU(2)L invariant on the i,j indices, but not under U(1)Y having a net hypercharge of −1.
If we conjugate one of the terms, then we cannot form the Lorentz invariant combination
and we lose Lorentz invariance.

Therefore we cannot add a mass term, but we know, experimentally that electrons and
neutrinos have mass. We must incorporate mass into the theory and the Higgs mechanism
comes another time to the rescue. So adding a direct mass term destroys gauge invariance,
but we can add a Yukawa term:

LY uk = −yεijφj (Lj ē) + h.c., (1.31)

where y is the Yukawa coupling constant, the (Lj ē) term indicates the Lorentz invariant
combination of the spinor indices for L and ē that are suppressed. We see that the term
has a net hypercharge of 0, and the SU(2)L and Lorentz indices are all contracted to form
singlets. At this point there is still no relationship between e and ē.

Now that we have added LY uk to the Lagrangian, we want to break the symmetry
exactly as we did in the previous section. We continue to work in the Unitary Gauge
where φ2 = 0, so:

LY uk = − 1√
2
y (v + h) (eē)− 1√

2
y (v + h)

(
ē†e†

)
= − 1√

2
yvΛ̄Λ− 1√

2
yvhΛ̄Λ,

(1.32)

where we are supposing that e and ē are each one the hermitic of each other:

Λ =

(
e

iσ2ē†

)
(1.33)

is the Dirac field for the electron (e is the electron and ē the positron).
Comparing (1.32) with (1.29) we see that it is a mass term for the electron and positron

where me = yv√
2
. Therefore when the theory undergoes spontaneous symmetry breaking, the
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fields e and iσ2ē∗ which initially are completely unlinked join to form the left- and right-
handed parts of the electron field Λ. In the presence of the SU(2)L symmetry, νe and e can
be rotated into each other without affecting the theory. Now, we want a kinetic term for
the neutrino. It is generally believed that neutrinos are described by Majorana fields so

N ′ =
(

νe
iσ2ν∗e

)
. (1.34)

Now, we employ a trick because the kinetic term for Majorana fields has only one term,
whereas the Dirac field sums over both Weyl spinors composing it. Hence we can work with
the Dirac field

N =

(
νe
0

)
. (1.35)

So, the Dirac kinetic term iN̄γµ∂µN will result in the correct kinetic term from (1.30).
Continuing with the symmetry breaking, we want to write the covariant derivative (1.26)
and (1.27) in terms of our low energy gauge fields of the previous section (1.14-1.16), that
correspond to Cartan generators and non-Cartan generators [18], [19] and act respectively
like particles that change the charge of the particles they interact with, and particles that
do not change that charge. Therefore to make the calculations simpler, we will break the
covariante derivative up into the non-Cartan part:

g2

(
W 1
µT

1 +W 2
µT

2
)

=
g2√

2

(
0 W+

µ

W−
µ 0

)
, (1.36)

and the Cartan part:

g2W
3
µT

3 + g1BµY = e
(
T 3 + Y

)
Aµ + e

(
cot θwT

3 − tan θwY
)
Zµ. (1.37)

If Aµ is the electromagnetic field, and e is the electromagnetic charge, then T 3 +Y must be
the generator of electric charge.

Notice that the electromagnetic generator is a linear combination of the two Cartan
generators of SU(2)× U(1). We know that

T 3 =
σ3

2
, (1.38)

and YL and Yē are defined in (1.28), so we can find

T 3L =
1

2

(
νe
−e

)
, YLL = −1

2

(
νe
−e

)
. (1.39)

Further, ē carries no T 3 charge, so its T 3 eigenvalues is 0, while Yē is +1. Summarizing all
this,
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T 3νe =
1

2
νe, T 3e = −1

2
e, T 3ē = 0,

Y νe = −1

2
νe, Y e = −1

2
e, Y ē = ē.

(1.40)

Then defining the generator of electric charge to be Q = T 3 + Y , we have

Qνe = 0, Qe = −e, Qē = e (1.41)

So the idea is that electrons/positrons and neutrinos interact with the gauge bosons: then
the exchange of W± will reduce the process to a charged current weak interaction, the
exchange of a Z will reduce to a neutral current weak interaction and the exchange of a
photon will reduce to an electromagnetic interaction.

1.2.3 The Quark Sector

For simplicity we work with only one generation, extending to the others is then trivial. We
define three fields: Q, ū, d̄, in the representation (3,2, 1/6), (3̄, 1,−2/3), and (3̄, 1, 1/3) of
SU(3)C × SU(2)L × U(1)Y . The field Q will be the SU(2)L doublet

Q =

(
u

d

)
. (1.42)

Following what we did with the leptons, we can write out the covariant derivative for all
three fields:

(DµQ)αi = ∂µQαi − ig3A
a
µ (T a3 )βαQβi − ig2W

a
µ (T a2 )ji qβj − ig1

(
1

6

)
BµQαi, (1.43)

(Dµū)α = ∂µū
α − ig3A

a
µ (T a3̄ )αβ ū

β − ig1

(
−2

3

)
Bµū

α, (1.44)

(
Dµd̄

)α
= ∂µd̄

α − ig3A
a
µ (T a3̄ )αβ d̄

β − ig1

(
1

3

)
Bµd̄

α, (1.45)

where i is an SU(2)L index and α is an SU(3)C index. The SU(3) index is lowered for the
3 representation and raised for the 3̄ representation. The 8 generators of the SU(3)C acting
on the 3 are given by T a3 , and acting on the 3̄ are given by T a3̄ = −(T a3 )∗.

The vector field Aaµ is the gluon field. Just as with leptons, we cannot write down a
gauge invariant mass term for the quarks, but we can include a Yukawa term coupling these
fields to the Higgs:
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L = −y′εijφjQαj d̄α − y′′φ†iQαiūα + h.c.

= − y′√
2

(v + h) D̄αDα −
y′′√

2
(v + h) ŪαUα,

(1.46)

where,

Dα =

(
dα

iσ2d̄†α

)
, Uα =

(
uα

iσ2ū†α

)
, (1.47)

so also the quarks finally have acquired masses:

md =
y′v√

2
, mu =

y′′v√
2
. (1.48)

Again the spontaneous symmetry breaking of φi links a term in the doublet with the singlet
ū or d̄ to provide a mass. It is again straightforward to find the electric charge eigenvalue
for each field:

Qu =
2

3
u, Qd = −1

3
d, Qū = −2

3
ū, Qd̄ =

1

3
d̄. (1.49)

So we can collect all these terms and write out a complete Lagrangian. The primary idea
to take away is that the SU(2)L doublet (1.42) behaves exactly as the lepton doublet (1.25)
when interacting with the raising and lowering gauge particles W±. This is why the u and
d are arranged in the SU(2) doublet Q, and why this doublet carries the SU(2) index i in
the covariant derivative (1.43), whereas ū and d̄ carry only the SU(3) index.

To represent the three generations we make three copies of the SM structure; one of each
generation. However there is no symmetry preventing terms from different generations from
coupling to each other, therefore the Yukawa couplings need to be generalized to allow a c̄
to couple to Q from the first generation. Let us denote the generations with the indices A,
B, C, the Yukawa couplings now becomes

LY uk = −Y d
ABφQAd̄B − Y u

ABφ
†QAūB − Y e

ABφL
AēB + h.c., (1.50)

where we have suppressed the SU(3)C and the SU(2)L and the Lorentz indices.
Because neutrinos have mass, we should add several Yukawa terms to give the neutrino

generations mass. For the moment, we stick to the original approximation where the neutri-
nos are massless. The kinetic terms for the fermion generations are invariant under global
SU(3) trasformations so we can redefine L and ē to diagonalize Y e. These entries will be
proportional to the mass of the leptons. However if we diagonalize Y u by redefining Q and
ū we are left without enough freedom to diagonalize Y d. The remaining structure is called
the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
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So now for the sake of convenience let us introduce the following notation for the quarks
with charge Q = 2

3
,

ui ; i = 1, 2, 3 (u, c, t) , (1.51)

and similarly for the quarks with charge Q = −1
3
,

bi ; i = 1, 2, 3 (d, s, b) . (1.52)

These are the quark states with the quantum numbers relevant to strong interactions, they
are the constituents of the physical meson and baryon states.

The weak interactions do not conserve the strong isospin, they couple the ui states to
new states di, with electric charge −1

3
, which are related to the states (1.52) by a unitarity

transformation,

di =
∑
j

Vijbj ; V V † = 1. (1.53)

These new states are referred to as the weak interaction eigenstates. A way to visualize this
relation is by assuming that the weak gauge bosons W± and Z couple to quark currents
which contain the fields ui(x) and di(x), but that the strong interaction Lagrangian contains
quark mass terms which are not diagonal in the basis of the states di,

Lmass =
∑
i

miūi (x)ui (x) +
∑
ij

Mij d̄i (x) dj (x) . (1.54)

The mass matrix Mij can be diagonalized by means of the unitarity transformation V ,∑
ab

V †iaMabVbj = miδij. (1.55)

These states bj, (1.52), are then the mass eigenstates whilst the states dj are the weak
eigenstates.

In the case of two quark families,(
d1

d2

)
=

(
cos θ sin θ
− sin θ cos θ

)(
b1

b2

)
, (1.56)

where θ is called the Cabibbo angle.
In the case of three quark families the most general V is a unitary matrix that depends

on three real mixing angles θ1, θ2, θ3, and one phase δ [20]:

VCKM =

 c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3e
iδ c1c2s3 + s2c3e

iδ

−s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3e

iδ

 , (1.57)
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where ci = cos θi ans si = sin θi. Clearly, if θ2 = θ3 = 0 this matrix reduces to the Cabibbo
case with only two families of quarks.

The parametrization (1.57) is only one of many possibilities. One often writes, more
generally,

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (1.58)

Here subscript indices indicate the charged current vertex (CC-vertex) that appears multi-
plied with the corresponding matrix element. For example the quark vertex ūdW responsible
for the decay of the neutron n→ p e ν̄e is multiplied by Vud.
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Chapter 2

Flavor violation of charged leptons

2.1 Background

Although particle physics is presently dominated by the agreement of virtually all measure-
ments with the predictions of the SM, there remain many unanswered questions. Almost
seventy years after the discovery of the strange quark and after the first search for µ→ eγ
[21], we still puzzle over the apparently redundant multiplicity of the generations of quarks
and leptons.

In the quark sector, there are three generations of doublets wich are related by the
CKM matrix. Unitarity of the CKM is necessary for the accomodation of a complex charge
parity violation (CP-violation) phase parameter, possibly providing a clue to the generation
puzzle. Violation of time reversal invariance may be related to the dominance of matter
over anti-matter in the universe.

The situation in the lepton sector is simpler but no less intriguing. Three generations
of leptons and their associated neutrinos appear to be isolated replications of each other,
except for mass. The weak coupling strengths of the three generations to the gauge bosons
are identical within considerable experimental precision [7]. Although quark flavor is not
conserved, no confirmed mixing of electrically charged leptons has been observed at minute
levels of experimental sensitivity. One can speculate that some global or accidental sym-
metry is responsible for the apparent conservation of lepton flavor or, as in many alternate
theories, that flavor-violating interactions are suppressed by very high mass scales.

A neutrino is, by definition, a flavour eigenstate, in the sense that a neutrino is always
produced with, or absorbed to give, a charged lepton (or antineutrino). However, as with
the quarks and the CKM matrix, it is possible that the flavour eigenstates are not identical
to the mass eigenstates.

A neutrino produced through the weak force in the decay of the muon, is described as the
sum of (at least) two matter waves. As the neutrino travels through space (and depending
on which masses are measured), these matter waves interfere with each other constructively
or destructively. The interference causes first the disappearance and then the reappearance
of the original type of neutrino. The interference can occur only if at least two matter waves
have different masses. Thus, the mechanical oscillation starts from the assumption that the

17
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lepton weak and mass eigenstates are not the same and that one set is composed of mixtures
of the other set. In other words, there must be mixing among the leptons as there is among
the quarks.

The quarks within the composite particles (proton, neutron, Λ) start and end as pure
mass eigenstates, and the fact that they are mixtures of weak states shows up through the
action of the weak force. When a neutron decays through the weak force and the d quark
transforms into a u, only a measurement of the decay rate reflects the degree to which a d
quark is composed of the weak state d′.

In contrast, in neutrino oscillations experiments, the neutrinos always start and end as
pure weak states. They are typically created through weak force processes of pion decay
and muon decay, and they are typically detected through inverse beta decay and inverse
muon decay, weak processes in which the neutrinos are transmuted back to their charged
lepton partners. Between the point of creation and the point of detection, they propagate
freely, and if they oscillate into a weak state from a different family, it is not through the
action of the weak force, but rather through the pattern of interference that develops as the
different mass eigenstates composing the original neutrino state evolve in time.

There are two types of neutrino oscillations experiments one could think of doing:

• The first is to start with a pure beam of known flavour νx, and look to see how many
have disappeared. This is a “disappearance” experiment and measures the survival
probability.

• The second type of experiment is an “appearance” experiment, in which one starts with
a pure beam of known flavour νx and looks to see how many neutrinos of a different
flavour νy are detected.

Most extensions of the SM tell us to expect mixing among leptons in analogy with
mixing among quarks. But so far, those theories make no quantitative predictions on masses
and mixing angles. Thus, neutrino oscillations experiments have a twofold purpose: first
to confirm evidence for oscillations and then to make quantitative determinations of the
neutrino masses and mixing angles.

Among the quarks, the amount of mixing is small and occurs primarily between the first
two families. In all cases of interest, neutrino oscillations can be described accurately using
the two mixing angle approximation. Applying the two family formalism to each experiment
allows one to derive a range of possible values for the relevant mass difference of neutrinos
and a range for the mixing angle. Input to the interpretation includes the neutrino energies
in a particular experiment, the distance from source to detector, the expected neutrino flux,
and the measured flux or probability.

The Lepton Flavor Violation (LFV) 1 reactions have continued to be pursued vigorously
on many fronts. In most extensions of the SM, these reactions occur naturally. Actu-
ally, they are often difficult to eliminate without inventing seemingly artificial mechanisms.
Progress on LFV experiments has spanned many orders of magnitude recently and there is

1For a complete review see [22].
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no indication that the limits of achievable sensitivity have been exhausted. Since the LFV
rates are supposedly suppressed by heavy force carriers, the virtual mass scales accessed by
these experiments have been pushed to extremely high levels reaching the TeV.

LFV is absent in the SM with massless neutrinos. A minimal extension that includes
right handed neutrinos allowing for small neutrino Dirac masses might allow LFV reactions
such as µ→ eγ via diagrams like that shown in Figure 2.1. Even if the masses of the three
known neutrinos were at their present experimental limits the branching ratio for µ → eγ
would be tiny [23], for this reason higher mass scales are being probed in some grand unified
theories (GUTs).

Figure 2.1: Diagram for µ→ eγ with massive neutrinos.

LFV reactions have continued to be pursued vigorously on many fronts including muon,
tau [24] and kaon decays and in ep collisions at HERA [25]. Processes like the spontaneous
conversion of muonium “atoms” to antimuonium (µ+e− → µ−e+) appear in models con-
taining Majorana neutrinos which are natural consequences of the “see-saw mechanism”, a
candidate approach to account for the tiny masses of neutrinos.

The search for manifestations of charged LFV constitutes the goal of several experiments,
exclusively dedicated to look for signals of processes such as rare radiative as well as three-
body decays and lepton conversion in muonic nuclei. In parallel to these low-energy searches,
if the high-energy Large Hadron Collider (LHC) finds signatures of Supersymmetry (SUSY),
it is then extremely appealing to consider SUSY models that can also accommodate neutrino
oscillations (SUSY seesaw).

If the seesaw is indeed the source of both neutrino masses and leptonic mixings and
accounts for low-energy LFV observables within future sensitivity reach, then these phe-
nomena are expected to be observed at the LHC [26]. For this reason, we review how
neutrino masses arise in seesaw models in the next subsection.
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2.2 Neutrino masses and mixing in the Seesaw Model

In the Standard Model, particle masses are proportional to the strengths of the interactions
between the particles and the Higgs bosons. Thus, the Dirac mass term like for example νe
must be multiplied by some very small coupling strength such that his mass is at least 50,000
times smaller than the mass of the electron. But the electron and the electron neutrino are
part of the same weak doublet, and there seems to be no reason why they should have such
enormously different interaction strengths to the Higgs bosons.

In 1979, without introducing an arbitrarily small coupling strength to the Higgs bosons,
Murray Gell-Mann, Pierre Ramond, and Richard Slansky invented a model that yields very
small neutrino masses [27]. The two neutrino states νR and ν̄L that must be added to
the theory to form the Dirac mass term could themselves be coupled to form a Majorana
mass term. That term could also be added to the theory without violating any symmetry
principle. Further, it could be assumed that the coefficient M of the Majorana mass term
is very large. If the theory contains both Dirac mass term and this Majorana mass term,
then the four components of the neutrino would no longer be states of definite mass m
determined by the coefficient of the Dirac mass term.

Instead, the four components would split into two Majorana neutrinos, each made up
of two components. One neutrino would have a very small mass, equal to m2

M
; the second

neutrino would have a very large mass, approximately equal toM . The very light Majorana
neutrino would mostly be the left handed neutrino that couples to the W , and the very
heavy neutrino would mostly be a right handed neutrino that does not couple to the W .
Similarly, the very light antineutrino would be mostly the original right handed antineutrino
that couples to the W , and the very heavy antineutrino would be mostly a left handed
antineutrino that does not couple to the W .

This so called seesaw mechanism in which the Dirac mass m is reduced by a factor of m
M

through the introduction of a large Majorana mass term has been used in many extensions
of the SM to explain why neutrino masses are small. The large Majorana mass M is often
associated with some new, weak gauge force that operates at a very high energy scale
dictated by the mass of a new, very heavy gauge boson. The net result of this approach is
that the neutrino seen at low energies is predicted to be mostly a Majorana particle.

We know that the conserved quantum numbers are always associated with exact sym-
metries, just as the conservation of electromagnetic charge is associated with U(1) gauge
invariance. On the other hand, there is no exact gauge symmetry associated with any of
the lepton numbers.

Moreover, neutrinos have been seen to oscillate between their different flavours [28],
[29], showing that the separate lepton flavours Le,µ,τ are indeed not conserved, though the
conservation of total lepton number is still an open question. The observation of such oscil-
lations strongly suggests that the neutrinos have different masses. Again, massless particles
are generally associated with exact gauge symmetry, so in absence of any leptonic gauge
symmetry, non zero lepton masses are to be expected. The conservation of lepton number
is an accidental symmetry of the renormalizable terms in the SM lagrangian. However, one
could easily add to the SM non-renormalizable terms that would generate neutrino masses,



2.2. Neutrino masses and mixing in the Seesaw Model 21

even without introducing a “right handed” neutrino [30].
The minimal renormalizable model of neutrino masses requires the introduction of weak

singlet right handed neutrinos N [31], [32]. These will in general couple to the conventional
weak doublet left handed neutrinos via Yukawa couplings Yν that yield Dirac masses mD ∼
mW . In addition, these right handed neutrinos N can couple to themselves via Majorana
masses M � mW , since they do not require EW symmetry breaking. Combining the two
types of mass terms, one obtains the seesaw mass matrix:

(νL N)

(
0 MD

MT
D M

)(
νL
N

)
, (2.1)

where each of the entries should be understood as a matrix in generation space.
In order to provide the two measured differences in squared neutrino masses, there must

be at least two non zero masses, and hence at least two heavy singlet neutrinos Ni [31],
[32]. Presumably, all three light neutrino masses are non zero, in which case there must be
at least three Ni. This is indeed what happens in simple GUTs such as SO(10), but some
models [33] have more singlet neutrinos [34].

It is convenient to work in the field basis where the charged lepton masses ml± and the
heavy singlet neutrino mass matrix are real and diagonal. The seesaw neutrino mass matrix
may then be diagonalized by a unitary transformation like that required for the quark mass
matrices in the SM. In that case, it is well known that one can redefine the phases of the
quark fields [35] so that the CKM matrix has just one CP violating phase [20]. We define V ,
the light neutrino mixing matrix first considered by Maki, Nakagawa, Sakata (MNS) [36],

V =

 c12 s12 0
−s12 c12 0

0 0 1

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13

0 1 0
−s13e

−iδ 0 c13e
−iδ

 . (2.2)

that represents the angles of mixing of the three lepton families. If Yν is the neutrino
Dirac coupling matrix like in [37], we know that the leptogenesis [38] is proportional to the
product YνY †ν , which depends on just 1 CP violating phase, with two more phases appearing
in higher orders, when one allows the heavy singlet neutrinos to be non degenerate [37].

In the minimal SUSY seesaw case, of the 18 parameters only 9 are accessible, a priori,
in low energy neutrino physics experiments: mν1 , mν2 , mν3 , θ12, θ23, θ31, δ, φ1 and φ2.
The remaining 9 parameters may be characterized by an auxiliary Hermitean matrix of the
following form [37], [39], [40]:

H = Y †νDYν , (2.3)

where D is an arbitrary real and diagonal matrix. In some definite models we can calculate
H and checking with the experimental results, we can find the last 9 physical parameters.

A freely chosen model will in general violate the experimental upper limit on µ → eγ
but there are 2 parametrizations of H that suppress the leading contribution to this decay
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and correspond to two different suppressions for the tau decays. We can define two generic
textures that correspond to:

H1 =

a 0 0
0 b d
0 d† c

⇒ B (τ → µγ)

B (τ → eγ)
≫ 1, (2.4)

H2 =

 a 0 d
0 b 0
d† 0 c

⇒ B (τ → eγ)

B (τ → µγ)
≫ 1. (2.5)

2.3 Flavor violation in charged leptonic processes

Charged Lepton Flavor Violation (CLFV) is a clear signal of new physics, it directly ad-
dresses the physics of flavor and of generations. The search for CLFV has continued from
the early 1940’s, when the muon was identified as a heavy partner of the electron, until
today.

The most powerful searches have used the muon state or the tau state with additional
contributions from the kaon system. The τ has an advantage since the GIM suppressions are
smaller than in µ but given the high statistics available in muon beams, the muon searches
have been the most powerful ones. The best limits have been set in the muon sector at
the Paul Scherrer Institute (PSI) in Zurich, primarily µ → eγ and µN → eN (muon to
electron conversion, here N is the nucleon) along with a number of other muon processes.
BABAR and BELLE have made significant measurements with tauons, and elegant kaon
experiments at Brookhaven and Fermilab have produced important limits as well [41]. In
the future, the flavor factories (and possibly an electron-ion collider) can be competitive.
Both J-PARC and Fermilab are planning a new muon to electron conversion experiment,
COMET and Mu2e respectively, to reach four orders of magnitude beyond current limits.
PSI is discussing an innovative µ→ 3e search. It is possible to envisage another two orders
of magnitude beyond Mu2e and COMET with upgrades to muon flux and new beams. J-
PARC could build on COMET using innovative muon beam technology in PRISM/PRIME
[41]. Fermilab’s Project X has the potential to make intense muon and kaon beams that
could push the limits of currently planned experiments another two orders of magnitude
or study a signal by varying the Z of the target (where Z is the atomic number). High Z
studies could illuminate the underlying physics of a signal (as explained in [42]), and must
be pursued in the future despite the experimental difficulties.

2.3.1 µ→ eγ and µ→ 3e

The first search for the process µ→ eγ, was performed by Hincks and Pontecorvo [21], now if
we use neutrino masses and mixings from the PDG [7], noting the recent observations of [43]
we find, in the SM, B (µ→ eγ) = O (10−54), an effectively unmeasurable value. We can thus
ignore any SM background. This is an important advantage of these searches since any signal
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is clear evidence for physics beyond the SM. There are two important backgrounds: the first
is an intrinsic, “in-time” physics background from the inner bremsstrahlung radiative muon
decay process µ+ → e+γνeν̄µ, where the neutrinos carry off small momenta. The second set
of backgrounds is “accidental”. The search for µ→ eγ takes place in a sea of normal Michel
decays: µ+ → e+νeν̄µ [44].

The decay µ → 3e is of great interest; it is sensitive to supersymmetry, LH scenarios,
leptoquarks, and other physics models and is complementary to the other decay modes.
The decay mode has signatures in a wide variety of beyond SM physics models [45]. This
mode has been examined in Littlest Higgs scenarios [46] and in the Simplest Little Higgs
(SLH) model [47], [48]. A new measurement of the branching ratio should strive to set a
limit < O(10−16) to be competitive with existing limits and other planned measurements.
Existing experiments have used stopped muons and muon decay at rest. In that case the
outgoing electron and positrons can be tracked and the kinematic constraints |

∑−→p | = 0 and∑
E = me, along with timing, can then be used to identify the rare decay. Unfortunately,

this mode suffers from many of the same problems as µ → eγ. Because it is also a muon
decay, µ → 3e electrons are in the same momentum range as ordinary Michel decays.
Therefore there are accidental backgrounds from Michel positrons that coincide with e+e−

pairs from γ conversions or from other Michel positrons that undergo Bhabha scattering.
In the minimal SM with vanishing neutrino masses, lepton flavor is conserved separately

for each generation. This is not necessarily true if new particles or new interactions beyond
the SM are introduced. In SUSY models, the origin of LFV could be interactions at a
very high energy scale, such as the GUT scale or the mass scale of a heavy right handed
Majorana neutrino that appears in the see-saw mechanism. The effective Lagrangian for
µ→ eγ process is given by [49]:

Lµ→eγ = −4GF√
2

(mµARµ̄RσµνeLF
µν +mµALµ̄Lσ

µνeRFµν + h.c.) , (2.6)

where AR and AL are coupling constants that correspond to µ+ → e+
Rγ and µ+ → e+

Lγ
processes, respectively. For µ+ → e+e+e− decay and µ− − e− conversion, off shell photon
emission also contributes. The general photonic µ− e transition amplitude is, then, written
as

M (γ)µ = ψ(p′)

[
γν (FLPL + FRPR)

(
gνµ −

pµp
ν

p2

)
+
iσµνp

ν

mµ

(GLPL +GRPR)

]
ψ(q) (2.7)

where q and p′ are the µ− and e− four momenta, and p = q − p′ is the four momentum
transfer. The form factors FL;R, GL;R are functions of p2.

The direct four fermion interactions could introduce µ+ → e+e+e− decay and µ− − e−
conversion. For the µ+ → e+e+e− decay, the general four fermion couplings are given by
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Lµ→3e = −GF√
2

(
g1µ̄ReLēReL + g2µ̄LeRēLeR + g3µ̄Rγ

µeRēRγµeR + g4µ̄Lγ
µeLēLγµeL+

+ g5µ̄Rγ
µeRēLγµeL + +g6µ̄Lγ

µeLēRγµeR + h.c.
)
.

(2.8)

The four fermion coupling constants gn are determined by specific contributions of the
models beyond the SM [50], [51].

2.3.2 Flavor violation in nuclei processes

The conversion of a muon captured by a nucleus into an electron has been one of the most
powerful methods to search for CLFV. The core advantage of this mode is that the outgoing
electron is monoenergetic at an energy far above the normal Michel endpoint:

Eµe = mµ − Eb −
E2
µ

2mN

, (2.9)

where Eb ' Z2α2mµ
2

is the muonic binding energy, and the last term is from nuclear recoil
energy and neglects variations of the weak interaction matrix element with energy. For Al (Z
= 13), a currently favored candidate nucleus, the outgoing electron has energy Eµe ' 104.96
MeV. The measured quantity is:

Bµe =
B (µ−N → e−N)

B (µ−N → all captures)
. (2.10)

The normalization to all captures has calculational advantage since many details of the
nuclear wavefunction cancel in the ratio. Detailed calculations have been performed by [52]
and [42].

Normally one does not want to search for a single particle final state since it can be
prone to accidental backgrounds but this conversion process is an exception. In this case,
the electron stands out from the background: the Michel spectrum for free muon decay
peaks and ends at 52.8 MeV. Typical experimental resolutions on the momentum of a 100
MeV electron are a few hundred keV or less, so there would effectively be no background
if the muon were free. Hence muon-electron conversion does not suffer from accidental
coincidences in the same manner as does µ → eγ or µ → 3e where one is searching for
electrons near the peak of the Michel spectrum.

The |∆L| = 2 process

µ− + (A,Z)→ e+(A,Z-2), (2.11)

is of interest as well. As described in [53] this mode searches for |∆L| = 2 transitions with
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|∆Le||∆Lµ| = ±1. The decay is intimately related to K+ → π−l+ (l′)+ transitions and
neutrinoless double β decay [54].

The |∆L| = 2 process is in many ways similar to muon-electron conversion. A single
positron is produced at

Ee = mµ −Bµ − Erecoil −∆Z-2, (2.12)

where ∆Z-2 is the difference in nuclear binding energy between the final and initial nuclear
states (the other terms are as in muon-electron conversion). However, this mode suffers
from experimental difficulties not present in muon-electron conversion. First, since the
initial and final nuclear states are different: it is not a coherent process; therefore it is not
amplified by Z. Therefore the “intrinsic” rate is lower. Next, the enormous advantage of the
monoenergetic electron of µ− e conversion does not apply. Since the initial and final states
are different, the final nucleus can be in either the ground or excited states. If the excited
state is a giant dipole resonance, the width of the final state is ≈ 20 MeV (together with a
downward shift of about 20 MeV) and so the positron is far from monoenergetic.

Hydrogenic bound states of µ+e− can convert to µ−e+, violating individual electron and
muon number by two units. This process is analogous to K0K̄0 mixing. One typically states
the result of a search as an upper limit on an effective coupling analogous to GF , where the
exchange is mediated by such particles as a doubly charged Higgs, dileptonic gauge bosons,
a heavy Majorana neutrino, or a supersymmetric R-parity violating τ -sneutrino [55] 2.

2.4 Flavor violation in the tau physics framework

The EW gauge structure has been successfully tested at the 0.1% to 1% level, confirming
the SM framework [56]. The hadronic τ decays are important channels for studying strong
interaction effects at low energies [57]. The τ is the only known lepton massive enough
to decay into hadrons and with its semileptonic decays we can study the hadronic weak
currents. Also the QCD coupling, |Vus| and the strange quark mass have been studied with
τ decay data. Actually the B Factories have explored LFV τ decays until 10−7 − 10−8

sensitivities, see Figure 2.2.
The τ is an interesting window in the “Three frontiers of Particle physics” [59] as shown

in Figure 2.3. Physics with τ leptons in the final state probes decays of the Higgs, SUSY
and new exotic particles. Physics with decays of τ leptons includes searches of LFV and
CP-violation, tests of lepton universality and measurements of αs, g − 2 (for a complete
review of tau physics see [60]).

The minimally extended SM, predicts charged LFV at a level that is suppressed by a

factor of
(

∆m2
ν

M2
W

)2

at experimentally unobservable rates (here ∆m2 is the difference between

the squared masses of neutrinos with different flavors, so
(

∆m2
ν

M2
W

)2

∼ 10−48). Observation of
LFV in the charged lepton sector would completely change our understanding of Nature, and

2For a more complete discussion of the muonic atoms see [54].
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Figure 2.2: Tau LFV branching fraction upper limits summary plot [58].

herald a new era of discovery in particle physics. Such searches are recognized as discovery
potential experiments in the near future. A complete review of the theoretical branchings of
the tau decays channels can be found in [61]. The Belle II experiment at KEK accelerator
is expected to answer fundamental questions relating to some of the unsolved mysteries
of particle physics, such as the nature of the dark matter candidate, the origin of the CP
violation and large baryon number asymmetry in the early universe, by searching for LFV
as a signature of new physics, which can describe the Nature beyond the SM. Lepton flavour
conservation is unique, because it is not associated with any conserved current. Most new
physics models naturally include lepton flavour violating processes with predicted rates at
the 10−9 level [62], which are slightly lower than the current experimental limits. The tau
subgroup of Heavy Flavour Averaging Group has compiled upper limits up to the level of
10−8 for almost fifty possible LFV decays of the τ lepton [58]. Now is a very interesting
era in the searches for LFV, as the current limits will improve by an order of magnitude
in the next decade. With 50 ab−1 of data by 2020, the Belle II experiment is expected to
be able to probe LFV in τ decays at the level of 10−9 [63] [64]. The observation of a new
particle with a mass around 125 GeV consistent with the properties of a SM Higgs boson
at the LHC experiments [65], [66] marks a beginning of the new era in particle physics.
Higgs bosons decaying into τ leptons provide direct probe into the Yukawa coupling of the
fermions, responsible for the origin of mass of all the quarks and leptons. In this mass
region, decays to τ leptons have one of the largest branching ratios for both the neutral and
charged Higgs bosons [67].

Using the data of pp collisions at 7 and 8 TeV, ATLAS [68], [69] and CMS [70], [71],
experiments observe SMH → τ+τ− decays with significances of 1.1 σ and 1.5 σ, respectively.
Searches for minimal supersymmetric model (MSSM) neutral Higgs and charged Higgs have
also been performed by the ATLAS [72], [73], [74] and CMS [75], [76] experiments.

The τ leptons play a key role in understanding the true nature of the SM Higgs boson.
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Figure 2.3: Impact of τ leptons on the frontiers of particle physics [59].

The di-boson coupling of a pure CP odd Higgs state being zero at tree level, the coupling
of Higgs boson to fermions provides an unique probe into the CP nature of the Higgs, since
the CP even and CP odd components in fermion pair decays can have the same magnitude
[77]. Spin effects in the τ lepton pair production can help us to study the true nature of
this new state at 125 GeV, which in the SM is expected to receive equal contributions from
the left and right handed polarization states [78]. Measurements of the ratio

B
(
B → D(∗)τν

)
B (B → D(∗)lν)

, (2.13)

where l = e, µ, are sensitive to new physics contributions from charged Higgs boson in
type-II two Higgs doublet models (2HDMs). In the SM, the τ polarization in B̄ → D(∗)τ−ν̄τ
receives 70 (30)% contribution from left (right) handed states, while, in the 2HDMs, the
contribution is purely from the right handed state. The excess over the SM prediction as
observed in the BaBar data puts stringent constraints on such 2HDMs [79].
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Chapter 3

Little Higgs models

3.1 Background

Many models exist where EW symmetry breaking is triggered by a light composite Higgs,
which emerges from a strongly interacting sector as a pseudo-Goldstone boson. Two param-
eters broadly characterize these models:

• mρ, the mass scale of the new resonances,

• gρ, their coupling.

An effective low energy Lagrangian approach proves to be useful for LHC and ILC
phenomenology below the scale mρ. One of the main goals of the LHC is to unveil the
mechanism of EW symmetry breaking. A crucial issue that experiments should be able
to settle is whether the dynamics responsible for symmetry breaking is weakly or strongly
coupled. LEP1 has provided us with convincing indications in favor of weakly coupled
dynamics. Indeed, the good agreement of EW precision measurements (or EW precision
tests, EWPT) with the SM predictions showed that the new dynamics cannot significantly
influence the properties of the Z boson, ruling out, for instance, the simplest forms of
Technicolor (TC) models, which were viewed as the prototypes of a strongly interacting
EW sector. Moreover, the best agreement between experiments and theory was obtained
for a light Higgs, corresponding to a weakly coupled Higgs self interaction.

Finally, SUSY, which appeared to be the most favourable realization of a light Higgs
with mass stabilized under quantum corrections, received a further boost by the LEP1
measurements of gauge coupling constants, found to be in accord with supersymmetric
unification. The situation swayed back after the LEP2 results. The lack of discovery of
a Higgs boson below 114 GeV or of any new states, has forced SUSY into fine tuning
territory, partially undermining its original motivation. And now without any signal of
SUSY from LHC, we need to consider new ways to explain the physical world. Moreover,
new theoretical developments, mostly influenced by extra dimensions and by the connection
between strongly interacting gauge theories and gravity on warped geometries, have led the

29
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way to the construction of new models of EW symmetry breaking [80], [81], [82], [83], [84]
, [85].

Still, the complete replacement of the Higgs sector with strongly-interacting dynamics
seemed hard to implement, mostly because of constraints from EW data. A more promising
approach is to keep the Higgs boson as an effective field arising from new dynamics [86],
[87] which becomes strong at a scale not much larger than the Fermi scale. There have been
various attempts to realize such scenario, including the Little Higgs (LH) [81], Holographic
Higgs as Nambu-Goldstone bosons (NGBs) [84] , [85] or not [88], and other variations.

3.2 Strongly Interacting Light Higgs couplings

The massive nature of the weak gauge bosons requires new degrees of freedom and/or new
dynamics around the TeV scale to act as an ultraviolet moderator and ensure a proper
decoupling at high energy of the longitudinal polarizations W±

L , ZL. It is remarkable that
a simple elementary weak doublet not only provides the three NGBs that will become
the spin-1 longitudinal degrees of freedom but also contains an extra physical scalar field,
the Higgs boson, that screens the gauge boson non abelian self interaction contributions
to scattering amplitudes and hence offers a consistent description of massive spin-1 gauge
bosons. EWPT accumulated during the last 20 years, together with the absence of large
FCNC, suggest that violent departures from this minimal Higgs mechanism are unlikely,
and rather call for smooth deviations, at least at low energy. This provides a plausible
motivation for considering a light Higgs boson emerging as a pseudo-NGB from a strongly
coupled sector, the so called Strongly Interacting Light Higgs (SILH) scenario [89].

The effective SILH Lagrangian should be seen as an expansion in v
f
where v = 1√√

2GF
≈

246 GeV and f is the typical scale of the NGBs of the strong sector. Therefore, it can be
used to describe composite Higgs models in the vicinity of the SM limit, v

f
→ 0.

It should be stressed that the couplings of the Higgs boson in the SILH scenario are
not the most general ones that would be allowed by the general principles of quantum field
theory and the local and global symmetries of the models considered: for instance, the
important anomalous couplings will have the same Lorentz structure as the SM ones. In
principle, some couplings with a different Lorentz structure could also be expected, but these
ones would be generated only via the exchange of heavy resonances of the strong sector and
not directly by the strong dynamics of the NGBs, therefore they would be parametrically

suppressed, at least by a factor
(

f
mρ

)2

(mρ & 2.5 TeV is the typical mass scale of these
resonances [89]).

The structure of the theories we want to consider is the following: in addition to the
vector bosons and fermions of the SM, there exists a new sector responsible for EW symmetry
breaking. Collectively indicating by gSM the SM gauge and Yukawa couplings (basically the
weak gauge coupling and the top quark Yukawa), we assume gSM . gρ . 4π. The upper
bound on gρ ensures that the loop expansion parameter ∼

( gρ
4π

)2 is less than unity, while
the limit gρ ∼ 4π corresponds to a maximally strongly coupled theory in the spirit of naive
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dimensional analysis (NDA) [90].
The Higgs multiplet is assumed to belong to the strong sector. The SM vector bosons

and fermions are weakly coupled to the strong sector by means of the SU(3)×SU(2)×U(1)
gauge couplings and by means of proto-Yukawa interactions, namely interactions that in
the low energy effective field theory will give rise to the SM Yukawas.

A second crucial assumption we are going to make is that in the limit gSM = 0, gρ 6=
0 the Higgs doublet is an exact NGB. Two minimal possibilities in which the complex
Higgs doublet spans the whole coset space are SU(3)→ SU(2)× U(1) and the custodially
symmetric SO(5)→ SO(4).

A mass term for the Higgs is generated at 1-loop and if the new dynamics is addressing
the hierarchy problem, it should soften the sensitivity of the Higgs mass to short distances,
that is to say below 1

mρ
. In interesting models, the Higgs mass parameter is thus expected

to scale like αSM
4π
mρ. Observation at the LHC of the new states with mass mρ will be the

key signature of the various realizations of SILH.
The σ-model scale f is related to gρ and mρ by the equation

mρ = gρf. (3.1)

Fully strongly interacting theories, like QCD, correspond to gρ ∼ 4π. In that case equation
(3.1) expresses the usual NDA relation between the pion decay constant f and the mass
scale of the QCD states. On the other hand, the theories we are considering represent
a weakly coupled deviation of this QCD-like pattern. For gρ < 4π, the pure low energy
effective σ-model description breaks down above a scale mρ, which is parametrically lower
than the scale Λ = 4πf where the σ-model would become strongly coupled. The coupling gρ
precisely measures how strong the coupling of the σ-model can become before it is replaced
by a more fundamental description.

A more interesting possibility arises when the strong sector is composite so that the
corrections to the Higgs mass are screened above the “hadron” mass scale mρ. Moreover if
the underlying theory is a large-N gauge theory, we also expect the hadrons to interact with
a coupling

gρ =
4π√
N
, (3.2)

which becomes weaker at large N . This is also basically the picture that holds in ex-
tradimensional constructions where the SM is represented by a weakly coupled boundary
dynamics while the Higgs sector is part of a more strongly coupled bulk dynamics. Examples
of this type are the Holographic Goldstones [85]. In these extradimensional realizations, the
Kaluza-Klein mass and coupling play respectively the role of mρ and gρ, while the number
of weakly coupled Kaluza-Klein modes below the cut-off can be basically interpreted as N .

Other models that basically fall into our class are LH models [80], where the scale mρ is
represented by the masses of the partners of top quark, EW vector bosons and Higgs, the
states that soften the quadratic correction to the Higgs mass. In LH models there is more
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parameter freedom, and the coupling gρ is more accurately described by a set of couplings
that can range from weak (∼ gSM) to strong (� gSM). The effective Lagrangian describing
a SILH involves higher dimensional operators.

There are two classes of higher dimensional operators:

• Those that are genuinely sensitive to the new strong force and will affect qualitatively
the physics of the Higgs boson,

• Those that are sensitive to the spectrum of the resonances only and will simply act as
form factors.

Simple rules control the size of these different operators and the effective Lagrangian
generically takes the form [89]:

LSILH =
cH
2f 2

(
∂µ | H |2

)2
+

cT
2f 2

(
H†

↔
Dµ H

)2

− c6λ

f 2
| H |6 +

(
cyyf
f 2
| H |2 f̄LHfR + h.c.

)
+
icWg

2m2
ρ

(
H†σi

↔
D
µ

H
)

(DνWµν)
i +

icBg
′

2m2
ρ

(
H†

↔
Dµ H

)
(∂νBµν) + . . .

(3.3)

where g, g′ are the SM EW gauge couplings, λ is the SM Higgs quartic coupling and yf
is the SM Yukawa coupling to the fermions fL,R. All the coefficients, cH , cT ..., appearing
in (3.3) are expected to be of order one unless protected by some symmetry. For instance,
in every model in which the strong sector preserves custodial symmetry, the coefficient cT
vanishes and only three coefficients, cH , cy and c6, give sizable contributions to the Higgs
(self-)couplings. The operator cH gives a correction to the Higgs kinetic term which can
be brought back to its canonical form at the price of a proper rescaling of the Higgs field,
inducing a universal shift of the Higgs couplings by a factor 1−cHx

2
. For the fermions, this

universal shift adds up to the modification of the Yukawa interactions.
In this manner all the dominant corrections, the ones controlled by the strong operators,

preserve the Lorentz structure of the SM interactions, while the form factor operators will
also introduce couplings with a different Lorentz structure.

3.3 Little Higgs Models
We would like to believe that the SM, which does not include gravity, must break down at
the Planck energy scale where the gravitational interactions become comparable in strength
to other forces but there are serious theoretical reasons to believe that the SM breaks down
much earlier, at the TeV scale. Several theoretical extensions of the SM, attempting to
provide a more satisfactory picture of EW symmetry breaking and conjecture the structure
of the theory at the TeV scale, have been proposed in the last three decades. Well known
examples include SUSY models, such as the MSSM, and TCs which do not contain a Higgs
boson, relying instead on strong dynamics to achieve EW symmetry breaking.
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LH models incorporate a light composite Higgs boson and remain perturbative until a
scale of order 10 TeV, as required by precision EW data. If a LH model is realized in nature,
the predicted new particles should be observable at the LHC.

In this scenario, f is the energy scale where the composite nature of the Higgs becomes
important.

Unfortunately, precision EW data rule out new strong interactions at scales below about
10 TeV [91]. To implement the composite Higgs without fine tuning, an additional mech-
anism is required to stabilize the “little hierarchy” between the Higgs mass and the strong
interaction scale. In analogy with the pions of QCD, one can attempt to explain the lightness
of the Higgs by interpreting it as a NGB corresponding to a spontaneously broken global
symmetry of the new strongly interacting sector. However, gauge and Yukawa couplings of
the Higgs, as well as its self couplings, must violate the global symmetry explicitly, since
an exact NGB only has derivative interactions. Quantum effects involving the symmetry
breaking interactions generate a potential, including a mass term, for the Higgs. The NGB
nature of the Higgs is completely obliterated by quantum effects, and cannot be used to
stabilize the little hierarchy.

A solution to this difficulty has been proposed by Arkani-Hamed, Cohen and Georgi
[80]. They argued that the gauge and Yukawa interactions of the Higgs can be incorporated
in such a way that a quadratically divergent one-loop contribution to the Higgs mass is
not generated. The cancellation of this contribution occurs as a consequence of the special
collective pattern in which the gauge and Yukawa couplings break the global symmetries.
The remaining quantum loop contributions to mh are much smaller, and no fine tuning is
required to keep the Higgs sufficiently light if the strong coupling scale is of order 10 TeV:
the little hierarchy is stabilized.

All the LH models contain new particles with expected masses around the 1 TeV scale.
The interactions of these particles can be described within perturbation theory, and detailed
predictions of their properties can be made. These states cancel the one loop quadratically
divergent contributions to the Higgs mass from SM loops. They provide distinct signatures
that can be searched for at future colliders, as well as induce calculable, and often sizable,
corrections to precision EW observables [92].

At an energy scale of order 10 TeV, the LH description of physics becomes strongly
coupled, and the LH model needs to be replaced by a more fundamental theory, its ultraviolet
(UV) completion. The UV completion could be, for example, a QCD-like gauge theory with
a “confinement” scale around 10 TeV. The idea of little Higgs models is to break the global
symmetry in such a way that the mass of the Higgs is parametrically two loop factors smaller
than Λ ∼ 10 TeV instead of one loop. The idea is that any one global symmetry breaking
coupling by itself leaves enough of the global symmetry intact so that the Higgs is still an
exact NGB.

In order to work, the global symmetry group needs to be quite large, which implies the
presence of extra particles typically at scale f ∼ 1 TeV. Those particles are responsible for
canceling the one loop quadratic divergences to the Higgs mass. Two ingredients are needed
to build a LH model [93]:
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1. The spontaneous breaking of a global symmetry. The mechanism by which the sym-
metry breaking happens is not specified. It could be strongly coupled physics at 10
TeV, or weakly coupled physics at 1 TeV. The breaking produces a set of NGBs, among
which is the Higgs, and at low energies these link fields (like pions) are described by
a non-linear σ-model field which is written as an exponential of the broken generators
Ta of the global symmetry:

Σ = eiπ
aTa . (3.4)

2. The collective symmetry breaking principle imposes:

• Extension of the gauge group. To achieve this, one needs to gauge a group larger
than the SM gauge group, which breaks to the SM at the scale f . There will
then be extra gauge bosons at the scale f that cancel the quadratically divergent
contributions of the SM NGBs to the Higgs mass. Also this extension requires
extra heavy fermions that cancel the quadratically divergent contribution of the
SM top quark loop to the Higgs mass.

• The Higgs doublet transforms under some extended global symmetry, which is
not completely broken by any single interacting term.

3.3.1 Theory space models

Theory space models were the first little Higgs models and were inspired by the deconstruc-
tion of extra dimensional models where the Higgs is the fifth component of a gauge field
[80], [81], [94], [95], [96], [97], [98], [99]. Theory spaces are sets of sites and links, also called
moose diagrams. Sites represent gauge groups, and links are N × N non linear σ-model
fields transforming as bifundamentals under the gauge groups associated with the sites they
touch (see Figure 3.1).

Figure 3.1: Moose diagram for the minimal moose. The open site corresponds to an SU(3)
gauge group, while the filled site corresponds to an SU(2)× U(1) gauge group.
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Table 3.1: Little Higgs models classified by their type [93].

Model Global Group Gauge Group Features

Minimal
moose SU(3)8 → SU(3)4 SU(3)×SU(2)×U(1)

Can contain extra
light triplet and
singlet scalars.

Theory
Space

Minimal
moose with
SU(2)C

S0(5)8 → S0(5)4 SO(5)×SU(2)×U(1)
Less constrained
from EWPT.

Moose with
T-parity S0(5)10 → S0(5)5 (SU(2)× U(1))3

Very few con-
straints from
EWPT, large spec-
trum, complicated
plaquettes.

Littlest Higgs SU(5)→ S0(5) (SU(2)× U(1))2 Minimal field con-
tent.

Product
gauge
group
models

SU(6) →
Sp(6) model SU(6)→ Sp(6) (SU(2)× U(1))2

Small field content,
contains a heavy
vector-like quark
doublet.

Littlest Higgs
with SU(2)C

S0(9) →
(SO(5)× SO(4))

SU(2)3 × U(1)
Less constraints
from EWPT.

Littlest Higgs
with T-parity SU(5)→ SO(5) (SU(2)× U(1))2

Minimal field con-
tent, very few
constraints from
EWPT.

SU(3) simple
group

(SU(3)× U(1))2 →
(SU(2)× U(1))2 SU(3)× U(1)

Two Higgs multi-
plets. One physical
Higgs doublet.

Simple
gauge
group
models

SU(4) simple
group

(SU(4)× U(1))4 →
(SU(3)× U(1))4 SU(4)× U(1)

Two Higgs dou-
blets, large quartic.

SU(9) →
SU(8) simple
group

SU(9)→ SU(8) SU(3)× U(1)
Two Higgs dou-
blets, large quartic.
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Each link breaks a global SU(N)2 symmetry to the diagonal SU(N). This results in the
presence of NGBs. The gauge symmetry explicitly breaks the large global symmetry group.
However, no single gauge coupling alone breaks enough symmetry to give the NGBs a mass.

In the Figure 3.1 we show the theory space of the “minimal moose”, the most simple
little Higgs of this type. The kinetic term for the link fields is given by:

4∑
j=1

| DµΣj |2, (3.5)

with

DµΣj = ∂µΣj + iA1Σj − iΣjA2, (3.6)

where T a are the generators of SU(3). The global symmetry group is SU(3)4
L × SU(3)4

R

broken down to the diagonal SU(3)4
D, resulting in 4 × 8 = 32 NGBs. The spontaneous

breaking of the global group also breaks the SU(2)L × U(1)L × SU(3)R gauge symmetry
down to the diagonal SU(2)L×U(1)Y subgroup, which eats 8 NGBs leaving 24 pseudo-NGBs.
The gauge group also explicitly breaks the global symmetry and the 24 pseudo-NGBs will
get a potential generated by gauge interactions. Note that if only the SU(3) gauge coupling
is nonzero, there is an exact SU(3)4

L × SU(3)R global symmetry broken to the diagonal
SU(3). In this case there would be 32 NGBs, 8 of which would be eaten, leaving 24 exact
NGBs. This tells us that we need the gauge couplings of both sites to generate any potential
for the 24 pseudo-NGBs. The potential is in fact parametrically of the form:

g2
1g

2
2

16π2

(
c1f

2Φ2 + c2Φ
4 + . . .

)
, (3.7)

where c1 and c2 are coefficients of order one and Φ represents the various pseudo-NGBs. We
need to generate a large quartic coupling for φ and this can be achieved with “plaquette”
interactions of the form

λTr
[
Σ1Σ†2Σ3Σ†4

]
. (3.8)

These interactions do not respect the collective breaking principle for all the pseudo-NGBs,
and they therefore give mass of order f to 8 of them. But still, each of these interactions
respects enough global symmetries to protect the mass of the remaining 16 pseudo-NGBs,
which consist of two Higgs doublets, two triplets and two singlets. The important feature
of the plaquette terms is that, at tree level, they give no mass to the Higgs doublets, but
they do give them an O(1) quartic coupling. The variety of little Higgs models that can be
built from theory space is infinite.
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3.3.2 Product gauge group models

The majority of LH models are product group models. The product group models have the
following generic features:

• All the models contain a set of SU(2) NGBs at the TeV scale, obtained from the
diagonal breaking of two or more gauge groups down to SU(2)L, and thus contain free
parameters in the gauge sector from the independent gauge couplings.

• Since the collective symmetry breaking in the gauge sector is achieved by multiple
gauged subgroups of the global symmetry, models can be built in which the SM Higgs
doublet is embedded within a single non linear σ-model field; many product group
models make this simple choice.

• The fermion sector of this class of models can usually be chosen to be very simple,
involving only a single new vector-like quark.

The simplest incarnation of the product group class is the so called Littlest Higgs model
[81]. In these models, the gauge groups are subgroups of a single global symmetry. The
global group structure is SU(5)→ SO(5). This generates 24− 10 = 14 NGBs that can be
parametrized by the following nonlinear σ-model:

Σ = eiΠΣ0e
iΠT ; Σ0 =

0 0 1
0 1 0
1 0 0

 , (3.9)

Π =

 0 η φ
η† 0 ηT

φ† η∗ 0

 , (3.10)

where 1 is the 2× 2 identity matrix, φ is an SU(2) triplet and η is an SU(2) doublet.
Two SU(2)× U(1) subgroups of SU(5) are gauged with the following generators:

Q1a =

σa 0 0
0 0 0
0 0 0

 ; Q1a =

0 0 0
0 0 0
0 0 σ∗a

 , (3.11)

Y1 =
1

10


2 0 0 0 0
0 2 0 0 0
0 0 −3 0 0
0 0 0 −3 0
0 0 0 0 −3

 ; Y2 =
1

10


3 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 −2 0
0 0 0 0 −2

 . (3.12)

The diagonal subgroup belongs to SO(5) and is unbroken by the Σ vev. The gauging
explicitly breaks the SU(5) and generates a potential for the NGBs. Out of the 14 original
NGBs, 4 are eaten by the gauge bosons that become massive. There are 10 left. If only one
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SU(2)× U(1) gauge coupling constant is turned on, the global symmetry breaking pattern
is (SU(3)× SU(2))→ (SO(3)× U(1)). This leaves 7 exact NGBs, three of which are eaten,
and four of which remain massless. These massless NGBs are the Higgs bosons, whose mass
is protected by collective symmetry breaking.

An interesting feature of the littlest Higgs models (see Table 3.1) is that gauge boson
loops generate the following operators:

f 4
(
c1g

2
1TrΣQ1aΣ

∗Q∗1a + c2g
2
2TrΣQ2aΣ

∗Q∗2a
)
. (3.13)

These operators give a mass of order f for the EW triplet Φ, and generate a quartic coupling
of order one for the Higgs. Therefore we do not need to add a plaquette term “by hand”.
There are many possible variations on the Littlest Higgs theme.

3.3.3 Simple gauge group models

The simple group models share two features that distinguish them from the product group
models:

• All simple group models contain an SU(N) × U(1) gauge symmetry that is broken
down to SU(2)L × U(1)Y , yielding a set of TeV scale gauge bosons. The two gauge
couplings of the SU(N) × U(1) are fixed in terms of the two SM SU(2)L × U(1)Y
gauge couplings, leaving no free parameters in the gauge sector once the symmetry
breaking scale is fixed.

• In order to implement the collective symmetry breaking, simple group models require
at least two σ-model multiplets [93]. The SM Higgs doublet is embedded as a linear
combination of the NGBs from these multiplets. This introduces at least one addi-
tional model parameter, which can be chosen as the ratio of the vevs of the σ-model
multiplets. Moreover, due to the enlarged SU(N) gauge symmetry, all SM fermion
representations have to be extended to transform as fundamental (or antifundamental)
representations of SU(N), giving rise to additional heavy fermions in all three gen-
erations. The existence of multiple σ-model multiplets generically results in a more
complicated structure for the fermion couplings to scalars. On the other hand, the
existence of heavy fermion states in all three generations as required by the enlarged
gauge symmetry provides extra experimental observables that in principle allow one
to disentangle this more complicated structure. The “simplest” structure of the simple
group class is the SU(3) simple group model [100], that we briefly review now and we
will develop in the Section (3.4).

In the previous models we could obtain the desired low energy gauge couplings in a way
that respects the collective symmetry breaking by using a product of gauge groups. When
one gauge coupling of the product was set to zero, the Higgs was exactly massless and that
is how collective symmetry breaking was achieved. Each field alone “thinks” that it is the
one breaking the symmetry and getting absorbed by the massive gauge bosons, and the
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couplings of both fields are needed to generate a potential for the uneaten pseudo-NGBs.
The simplest model [100] of this type is an SU(3) × U(1) gauge theory broken down to
SU(2)× U(1) by the vev of two different SU(3) fundamentals:

〈Φ1〉 =

 0
0
f1

 ; 〈Φ2〉 =

 0
0
f2

 . (3.14)

The pseudo-NGBs can be parameterized by fluctuations around the vacuum:

Φ1(x) = e
iTaπa1
f1

 0
0
f1

 ; Φ2(x) = e
iTaπa2
f2

 0
0
f2

 . (3.15)

The gauge couplings explicitly break the global symmetry, but couplings to both Φ1 and Φ2

are needed to generate a potential for the pseudo-NGBs. The Higgs mass is then suppressed
relative to the f scale; however, the Higgs quartic coupling could be large.

An extra “plaquette” operator that breaks the (SU(3)×U(1))2 global symmetry must be
added to give a large enough quartic coupling. Alternately, a large quartic can be produced
if the theory is enlarged to an SU(4) gauge theory with four fundamentals breaking it to
SU(2) [101].

Another model, consisting of a SU(9) → SU(8) global symmetry with SU(3) × U(1)
gauged, contains two light Higgs doublets and also generates a large enough quartic [102].

Before we only needed an extra fermion in the top sector to cancel the one loop quadratic
divergence of the SM top quark. Here, because of the extended gauge group, extra fermions
for all generations of the SM are needed. Finally, because of the two vevs f1, f2, there is no
simple relationship between the mass of the heavy vector bosons and the mass of the heavy
top. As we will see next, this helps in avoiding constraints from EWPT.

3.3.4 Constraints

In the Littlest Higgs model, exchange of the new gauge bosons, as well as a vev for the
heavy triplet, can all cause trouble. In product group models and theory space models, the
couplings of the new gauge bosons can be written solely in terms of SM currents. In general,
none of the dangerous couplings that give large contributions to these parameters are tied to
the couplings that ensure the cancellation of the Higgs mass quadratic divergences, therefore
it is in general possible to find regions of parameter space where the constraints are satisfied
with reasonable fine tuning in the Higgs mass (∼ 10%). However, the allowed region is in
general quite small.

Since the top loop quadratic divergence is the largest, the heavy top quark partner
cannot be too heavy without reintroducing fine-tuning, and this tends to push the models
into a small corner of parameter space. In particular, in simple gauge group models the
EWPT typically give strong constraints on

√
f 2

1 + f 2
2 , while the heavy top quark partner

mass is not directly tied to this combination, and can be made relatively light.
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Several models have been built with the specific intention of satisfying more naturally
the constraints of EWPT. T-parity tries to avoid tree-level exchange of the heavy states by
making them odd under a new parity, while all the SM particles are even. This has the
additional advantage of ensuring the presence of a stable heavy particle which could play
the role of dark matter. The main drawback of this approach is that it requires the addition
of one new TeV scale fermion for each of the fermions of the Standard Model. This in turns
raises flavor questions similar to those in the MSSM. T-parity has been introduced in theory
space models, where the parity has a nice geometric interpretation, and in product group
models, but not in simple group models.

One can also analyze the scattering of all possible pairs of NGBs in LH models to find
where unitarity is violated. The violation of unitarity at some scale indicates that the theory
is not valid above that scale, or that perturbation theory has broken down. Due to the large
number of NGBs in LH models, this unitarity analysis generically predicts an upper cutoff
Λ ' (3− 4) f depending on the model, which is somewhat less than the Λ ' (10− 30) TeV
usually quoted using NDA. There are also constraints on the scale f , for large f � 1 TeV,
the Higgs mass is pulled up toward the scale f , destroying the desired hierarchy.

Therefore the desired hierarchy v � f � Λ can be preserved, but the separation between
each of these scales may only be a factor between 3 and 5 instead of 4π.

Because LH models have a cutoff at a relatively low scale Λ ' 10 TeV, the issues of
dark matter, neutrino masses, and the baryon asymmetry of the universe can be deferred to
energy scales above the cutoff. However, there have been some attempts to incorporate this
physics within LH models themselves. Dark matter appears naturally as the lightest T-odd
particle in LH models with T-parity [103]. Even without T-parity, theory space models
often contain discrete symmetries, some part of which can remain unbroken even after EW
symmetry breaking; the dark matter could then consist of a nonlinear σ-model field made
stable by this accidental exact global symmetry [104].

There have been two main approaches to neutrino mass generation in LH models:

• Some models (such as the Littlest Higgs) contain a scalar triplet with a nonzero vev.
This triplet can be used to generate neutrino Majorana masses through a lepton
number violating coupling to two left-handed SM neutrinos [105].

• Simple group models naturally contain a pair of extra SM right gauge singlets N , NC

at the f scale due to the expansion of the lepton doublets into fundamentals of the
enlarged gauge group. If lepton number is broken at a small scaleM ∼KeV, generating
a small Majorana mass for NC , then the SM neutrinos can get a radiatively generated
Majorana mass [106] of the correct size through their mixing with N , without requiring
extremely tiny Yukawa couplings.

3.4 Simplest Little Higgs model

The SM Higgs mass has quadratically quantum corrections which destabilize EW symmetry
breaking, this means that we need a fine tuning to calculate theoretically the Higgs mass.



3.4. Simplest Little Higgs model 41

Because the W and Z masses are around 100 GeV, any natural extension of the SM must
contain new physics at or below ∼ 1 TeV in order to produce the physical standard masses
1.

Cheng and Low [108] pointed out that LH models can be constructed with a symmetry
(T-parity) that forbids all tree level contributions from the new physics to EW observables
while still allowing the loops necessary to calculate the Higgs mass. T parity is analogous
to R parity in SUSY models.

The SU(3) LH proposed by Kaplan and Schmaltz [101] allows a natural solution of the
little hierarchy problem without T-parity. The model has regions of parameter space for
which TeV scale particles only couple very weakly to SM fields in tree level interactions.
This allows them to hide from EWPT while still conserve the Higgs mass. New fermion and
gauge boson masses as low as 1 TeV could be consistent with the data.

In the original SU(3) model [100] anomalies are not canceled in the low energy theory,
thus requiring new structure at the cut-off. An anomaly free choice of fermion representa-
tions [109], which requires no spectators, provides a better fit to precision EWPT.

But first of all we have to explain the model, that consists in the extension of the SM
SU(2)L × U(1)Y gauge group to SU(3)L × U(1)X in a minimal way. This entails enlarging
SU(2) doublets of the SM to SU(3) triplets, adding SU(3) gauge bosons, and writing SU(3)
invariant interactions which reproduce all the SM couplings when restricted to SM fields.
Explicitly, a SM generation is embedded in (SU(3)C , SU(3)L)U(1)X

representations

Q = (3, 3) 1
3
, L = (1, 3)− 1

3
,

dR = (3, 1)− 1
3
, lR = (1, 1)−1,

uR = (3, 1) 2
3
, UR =(3, 1) 2

3
, NR = (1, 1)0,

(3.16)

where there are two up quark singlet fields, one is the SM right handed up-type quark, the
other obtains a large mass with the third components of the triplet Q. Similarly, the singlet
NR is the Dirac partner of the third component of L.

The symmetry breaking, SU(3)L × U(1)X → SU(2)L × U(1)Y , is achieved with aligned
vevs for two complex triplet scalar fields

Φ1;Φ2 = (1, 3)− 1
3
. (3.17)

The gauge interactions of the model are uniquely determined by gauge invariance.

3.4.1 Scalar and Gauge sector

We will write the covariant derivative for this gauge group in the following form:

Dµ = ∂µ − igAaµTa + igxyxB
x
µ ; gx =

gtw√
1− t2w

3

, (3.18)

1The best EWPT coming from LHC data for the SLH is in [107].
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with tw the tangent of the weak angle and yx the hypercharge. Writing the SU(3) generators
Ta in the fundamental representation (3), the SU(3) part works out as follows:

AaTa =
A3

2

1 0 0
0 −1 0
0 0 0

+
A8

2
√

3

1 0 0
0 1 0
0 0 −2

+
1√
2

 0 W+ Y 0

W− 0 W ′−

Y 0† W ′+ 0

 . (3.19)

Here we have introduced the definitions of the gauge bosons A3, A8, Bx, W±, W ′±, Y 0 and
Y 0†. The value of the gauge coupling gx is set by the requirement that the photon couples
with the electric charge.

The scalar sector of the SLH is a non linear σ-model. The two scalar multiplets (3.17)
transform as (3,1) and (1,3) under SU(3)1 × SU(3)2, respectively that include the SM
Higgs doublets as well as new NGBs. They can be expressed as follows:

Φ1 = exp

(
iΘ′

f

)
exp

(
itβΘ

f

) 0
0
fcβ

 , (3.20)

Φ2 = exp

(
iΘ′

f

)
exp

(
− iΘ
tβf

) 0
0
fsβ

 , (3.21)

where

Θ =

 0 0 h0

0 0 −φ−

h0† −φ+ 0

+
η√
2

κ 0 0
0 κ 0
0 0 1

 , (3.22)

Θ′ =

 0 0 y0

0 0 x−

y0† x+ 0

+
z′√
2

κ′ 0 0
0 κ′ 0
0 0 1

 , (3.23)

with tβ = tan β the ratio of the vevs of the two Higgs triplets. To introduce EW symmetry
breaking we will substitute h0 = (v+H)√

2
− iχ. The structure of the Θ and Θ′ matrices is

determined by the broken generators of the gauge symmetry 2 .
The two scalar triplets Φ1,2 which are responsible for SU(3)L×U(1)X → SU(2)L×U(1)Y

breaking contain 10 real degrees of freedom 3 , five of them are eaten by the SU(3) gauge
2One can set the first 2 elements of the diagonal matrices independently from the third element (κ, κ′).
3

[SU(3)× U(1)]
2 ⇒ 2[(32 − 1) + 1] = 18

[SU(2)× U(1)]
2 ⇒ 2[(22 − 1) + 1] = 8

(3.24)

so we have 18− 8 = 10 NGBs
{
y0, y0

†
, x+, x−, η, z′, χ, χ†, φ+, φ−

}
that aren’t physical particles.
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bosons with TeV scale masses, four form the SM Higgs doublet
(
h0

−φ−
)
and one is a real scalar

field η.
We want to work in the Unitary Gauge like in Section 1.2.1 so our multiplets will have

only physical particles:

Φ1 = exp

(
itβΘ

f

) 0
0
fcβ

 , (3.25)

Φ2 = exp

(
− iΘ
tβf

) 0
0
fsβ

 , (3.26)

with

Θ =

 0 0 v+H√
2

0 0 0
v+H√

2
0 0

 . (3.27)

Since we did not include an operator which gives a quartic coupling for the Higgs, this must
be generated dynamically. Explicitly, the radiative corrections should produce the standard
model Higgs potential

V = m2H2 + λH4. (3.28)

Above the scale f , the SU(3) gauge symmetry is unbroken and the potential is best described
in terms of the SU(3) multiplets Φi, and it is easy to see that the most general potential
is a function of the only gauge invariant term which depends on the Higgs, Φ†1Φ2. At the
scale f , the SU(3) partners of fermions and gauge bosons obtain masses, and the theory
matches onto the SM. Below f , the Higgs potential receives the usual radiative corrections
from top quark and gauge loops. We first discuss the potential generated above the scale
f . The top Yukawa couplings and gauge couplings preserve a U(1) symmetry under which
Φ1 and Φ2 have opposite charges. Therefore the lowest dimensional operator which can be
radiatively induced is |Φ†1Φ2|2. This operator is already generated at one loop but only with
a logarithmic divergence. The symmetry forbids any quadratically divergent contributions
from gauge or Yukawa couplings. The radiatively generated potential alone generates a
Higgs “soft mass squared” which is somewhat too large. Therefore we also include a tree
level “µ” term (see (3.31)) which will partially cancel the Higgs mass. It explicitly breaks
the spontaneously broken global U(1) symmetry and gives a mass to the would be NGB η
that must be near the weak scale MW . The corrections to the potential (3.28) include a
mass squared δm2 and a quartic δλ contributions [101]
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δm2 = − 3

8π2

[
λ2
Tm

2
T log

(
Λ2

m2
T

)
− g2

4
M2

W ′ log

(
Λ2

M2
W ′

)
− g2

8

(
1 + t2w

)
M2

Z′ log

(
Λ2

M2
Z′

)]
,

(3.29)

δλ =
|δm2|

3f 2c2
βs

2
β

+
3

16π2

[
λ4
t log

(
m2
T

m2
t

)
− g4

8
log

(
M2

W ′

M2
W

)
− g6

16

(
1 + t2w

)2
log

(
M2

Z′

M2
Z

)]
. (3.30)

Assuming that there are no large direct contributions to the potential from physics at the
cutoff we have

Vtotal =

(
µ2 1

f 2s2
βc

2
β

+ δm2

)
H2 +

(
− µ2

f 2s3
βc

3
β

+ δλ

)
H4. (3.31)

Note that the radiative contribution to the Higgs mass from the top loop is negative while
the contribution to the quartic is positive. Thus we have radiative EW symmetry breaking
and stability of the Higgs potential.

From the gauge invariant Lagrangian

LΦ = |Dµφ1|2 + |Dµφ2|2. (3.32)

we can readily obtain the charged gauge boson mass terms. As a first approximation we
keep terms up to order v2

f2 . To this order the charged boson sector is diagonal,

LΦ ∝M2
WW

+
µ W

−µ +M2
W ′W

′+
µW

′−µ. (3.33)

This level of precision is sufficient everywhere except when obtaining the correct O
(
v2

f2

)
couplings for NGBs. We need to go up to order v4

f4 to obtain the corrections to the MW

and higher order corrections to the gauge boson eigenstates for these couplings. Taking our
expansion up to order four we must rotate the original fields to obtain the physical states:

W± → W± ± iv3

3
√

2f 3

(
c3
β

sβ
−
s3
β

cβ

)
W ′±, (3.34)

W ′± → W ′± ± iv3

3
√

2f 3

(
c3
β

sβ
−
s3
β

cβ

)
W±. (3.35)

Note that the physical states W and W ′ differ from the interaction states only by a term of
order v3

f3 . This difference is irrelevant almost everywhere in our calculation, but is important
in determining the NGB states. The interaction fields W and W ′ will be considered equal
to the physical fields elsewhere. The masses of the physical fields read:
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MW =
gv

2

[
1− v2

12f 2

(
c4
β

s2
β

+
s4
β

c2
β

)]
, (3.36)

M ′
W =

gf√
2

[
1− v2

4f 2
+

v4

24f 4

(
c4
β

s2
β

+
s4
β

c2
β

)]
' gf√

2

(
1− v2

4f 2

)
. (3.37)

The neutral sector is already non-diagonal at order O
(
v2

f2

)
and requires some more work:

LΦ ∝M2
Y Y

0µY 0†
µ +

(
A3 A8 Bx

)
M0

A3

A8

Bx

 , (3.38)

M0 = f 2


g2v2

8f2
g2v2

8
√

3f2

ggxv2

12f2

g2v2

8
√

3f2

g2

3
− g2v2

8f2 − ggx
3
√

3
+ ggxv2

4
√

3f2

ggxv2

12f2 − ggx
3
√

3
+ ggxv2

4
√

3f2

g2
x

9

 . (3.39)

Diagonalizing this matrix, the masses at order O
(
v2

f2

)
are:

LΦ ∝M2
Z′Z

′
µZ
′µ +M2

ZZµZ
µ +M2

Y Y
0
µ Y

0µ, (3.40)

MZ =
gv

2cW
, (3.41)

MZ′ =

√
2gf√

3− t2W

(
1− 3− t2W

c2
W

v2

16f 2

)
, (3.42)

MY =
gf√

2
, (3.43)

where the first order mixing matrix for gauge bosons is:

A3

A8

Bx

 =


0 cW −sW

−
√

3−t2W
3

s2W√
3cW

sW√
3

tW√
3

sW

√
3−t2W

3
cW

√
3−t2W

3


Z ′Z
A

 . (3.44)

Additionally, the physical Z and Z ′ states also require the replacements:

Z ′ → Z ′ + δZZ ; Z → Z − δZZ ′, (3.45)

where

δZ =
(1− t2W )

√
3− t2W

8cW

v2

f 2
. (3.46)
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We don’t need to find the Goldstone eigenvalues because in the Unitary Gauge we work
only with physical particles. And finally we can develop the field strength tensors La-
grangian:

L = −1

2
Tr {FµνF µν} − 1

4
BµνBµν , (3.47)

where

Fµν =
i

g
[Dµ, Dν ] ; Bµν = ∂µBν − ∂νBµ, (3.48)

from where we can find the couplings scalar-vector (that we don’t have in the Unitary
Gauge) and purely vectorial (see Appendix F).

3.4.2 Fermion sector

To build the fermion sector of the model, the SM fermions have to be included in represen-
tations of the larger SLH gauge group. The simplest way to do this is to embed the SM
fermions into SU(3) triplets.

Then each lepton family consists of an SU(3) left-handed triplet 3 and two right handed
singlets 1. There is no right-handed light neutrino:

LTi =
(
νL lL iNL

)
i

, liR, NiR, i = {1; 2; 3}. (3.49)

The structure of the quark fields depends on the embedding we select:

• Universal embedding:

All three generations carry identical gauge quantum numbers and the SU(3)L×U(1)X
gauge group is anomalous. The SM down type Yukawa matrix is equal to the matrix
λd

f
Λ
. The up-type Yukawa matrices are more interesting as there are 6 quarks of

charge 2
3
which mix with each other. In general this leads to flavor changing neutral

currents and is dangerous. Each quark family consists of an SU(3) left-handed triplet
3 and three right handed singlets 1:

QTi =
(
uL dL UL

)
i

; uiR, diR, UiR. (3.50)

• Anomaly free embedding:

In the second configuration we cancel the SU(3)L anomaly by taking different charge
assignments for the different generations of quark triplets (see Table 3.2).

QT1 =
(
dL −uL iDL

)
; dR, uR, DR, (3.51)
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Table 3.2: Quantum numbers in the diferent embeddings.

Universal embedding
Fermion Q1,2 Q3 uiR, UiR diR Li NiR eiR
Q charge 1

3
1
3

2
3

−1
3

−1
3

0 -1
SU(3) 3 3 1 1 3 1 1

Anomaly free embedding
Fermion Q1,2 Q3 uiR, TiR diR, DiR, SiR Li NiR eiR
Q charge 0 1

3
2
3

−1
3

−1
3

0 -1
SU(3) 3̄ 3 1 1 3 1 1

QT2 =
(
sL −cL iSL

)
; sR, cR, SR, (3.52)

QT3 =
(
tL bL iTL

)
; tR, bR, TR. (3.53)

With this new charge assignment all anomalies cancel [109] which makes this model
easier to complete in the ultraviolet regime [110].

In order to avoid FCNC the mass matrix of heavy partners needs to be sufficiently well
aligned with the quark mass matrices. Note that in both embeddings the mixing of light
fermions with their partners generates a coupling of the W and W ′ gauge bosons to a single
SM fermion and his heavy partner. This opens the interesting possibility of single U , D
production from fusion of weak gauge bosons with SM quarks (d + W → U , u + Z → U)
and produces significant contributions in the box diagrams.

The last part that we need for the complete description of the lepton interactions is:

LF = iψ̄m��Dψm ; ψm =

 Lm
lRm
NRm

 . (3.54)

The full mixing structure of the quark sector is much more complex than that of the lepton
sector and, in general, all light quarks mix with other heavy and light quarks from every
family.

Lepton masses follow from the Yukawa Lagrangian:

LY ∝ iλmNN̄RmΦ
†
2Lm +

iλmnl
Λ

l̄RmεijkΦ
i
1Φ

j
2L

k
n + h.c., (3.55)

where the quartic term preserves the global symmetry (Lm transforms as (1,3) under
SU(3)1 × SU(3)2) and λN can be taken diagonal after a proper field redefinition.

Firstly we need to determine the actual physical states of the leptons. Keeping only the
mass terms to order O

(
v2

f2

)
we have the following Lagrangian:

LY ∝ −fsβλmN
[(

1− δ2
ν

2

)
N̄RmNLm − δνN̄RmνLm

]
+ ζβ

fv√
2Λ
λmnl l̄RmlLn + h.c., (3.56)
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where

δν = − v√
2ftβ

; ζβ =

[
1− v2

4f 2
− v2

12f 2

(
s4
β

c2
β

+
c4
β

s2
β

)]
. (3.57)

The matrices λN and λl are not necessarily aligned. Thus, in the basis where the former is
diagonal, the latter mixes different light lepton flavors. Denoting the eigenvalues of λl as yil ,
the light lepton masses are given by

mli = −ζβ
fv√
2Λ
yil , (3.58)

whereas the left-handed components of the light physical fields are obtained by the replace-
ment:

lLm → (VllL)m = V mi
l lLi. (3.59)

Furthermore, according to (3.56) each heavy neutrino is mixed just with the light neutrino
of the same family. To separate them, we rotate only the left handed sector. To order
O
(
v2

f2

)
, the physical states for the neutrinos are given by:(

νL
NL

)
m

→

[(
1− δ2

ν

2
−δν

δν 1− δ2
ν

2

)(
VlνL
Nl

)]
m

. (3.60)

Since one can safely consider the SM neutrinos as massless, we have chosen to rotate them
in the same way as the light charged leptons. Finally, the heavy neutrino masses are:

mNi = fsβλ
i
N . (3.61)

Corrections of order v2

f2 to vertices are only needed for particles involved in triangle
diagrams and, since quarks only appear in box diagrams, v

f
precision is sufficient.

For the anomaly free embedding, the basic Yukawa Lagrangian reads:

LY ∝λt1ū1
R3Φ

†
1Q3 + iλt2ū

2
R3Φ

†
2Q3 + i

λmb
Λ
d̄RmεijkΦ

i
1Φ

j
2Q

k
3

+ iλdn1 d̄
1
RnQ

T
nΦ1 + iλdn2 d̄

2
RnQ

T
nΦ2 + i

λmnu
Λ

ūRmεijkΦ
∗i
1 Φ
∗j
2 Q

k
n,

(3.62)

where n = 1, 2; i, j, k = 1, 2, 3 are SU(3) indices; dRm runs over (dR, sR, bR, DR, SR) and
uRm runs over (uR, cR, tR, TR); u1

R3 and u2
R3 are linear combinations of tR and TR; dnR1 and

dmR2 are linear combinations of dR and DR for n = 1 and of sR and SR for n = 2:
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TR =
λt1cβu

1
R3 + λt2sβu

2
R3√

(λt1)2 c2
β + (λt2)2 s2

β

, tR =
−λt2sβu1

R3 + λt1cβu
2
R3√

(λt1)2 c2
β + (λt2)2 s2

β

, (3.63)

DR =
λd1

1 cβd
1
R1 + λd1

2 sβd
2
R1√(

λd1
1

)2
c2
β +

(
λd1

2

)2
s2
β

, dR =
−λd1

2 sβd
1
R1 + λd1

1 cβd
2
R1√(

λd1
1

)2
c2
β +

(
λd1

2

)2
s2
β

, (3.64)

SR =
λd2

1 cβd
1
R2 + λd2

2 sβd
2
R2√(

λd2
1

)2
c2
β +

(
λd2

2

)2
s2
β

, sR =
−λd2

2 sβd
1
R2 + λd2

1 cβd
2
R2√(

λd2
1

)2
c2
β +

(
λd2

2

)2
s2
β

, (3.65)

We require the collective structure with different right handed quarks entering the Φ1 and
Φ2 quartic Yukawa couplings. By a proper field redefinition, λd1 can be taken diagonal in
general and, for simplicity and to avoid large quark flavor changing effects, we also assume
λd2 to be diagonal [92].

Since we are interested in LFV we will assume no flavor mixing in the quark sector,
which might otherwise dilute some of the effects we wish to highlight. We essentially set
all the λmb and λmnu that mix different families or heavy and light quarks to zero and all
others are fixed by the light quark masses. Only the heavy-light mixing within each family
remains. We neglect terms proportional to v2

f2 and rotate the left-handed fields to obtain
the physical quark states (heavy quark masses get corrections at this order that will be
neglected as well):

TL → TL + δttL, (3.66)

tL → tL − δtTL, (3.67)

DL → DL + δddL, (3.68)

dL → dL − δdDL, (3.69)

SL → SL + δssL, (3.70)

sL → sL − δsSL, (3.71)

where

δt =
v√
2f

sβcβ

[
(λt1)

2 − (λt2)
2
]

(λt1)2 c2
β + (λt2)2 s2

β

, (3.72)

δd = − v√
2f

sβcβ

[(
λd1

1

)2 −
(
λd1

2

)2
]

(
λd1

1

)2
c2
β +

(
λd1

2

)2
s2
β

, (3.73)

δs = − v√
2f

sβcβ

[(
λd2

1

)2 −
(
λd2

2

)2
]

(
λd2

1

)2
c2
β +

(
λd2

2

)2
s2
β

, (3.74)
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are complex in general.
Taking all this into account we get the SM quark masses:

mu = − v√
2

f

Λ
λ11
u ,

mc = − v√
2

f

Λ
λ22
u ,

mb = − v√
2

f

Λ
λ3
b ,

mt =
v√
2

λt1λ
t
2√

(λt1)2 c2
β + (λt2)2 s2

β

,

md = − v√
2

λd1
1 λ

d1
2√(

λd1
1

)2
c2
β +

(
λd1

2

)2
s2
β

,

ms = − v√
2

λd2
1 λ

d2
2√(

λd2
1

)2
c2
β +

(
λd2

2

)2
s2
β

.

(3.75)

The δd,s,t can be expressed in terms of the quark masses:

δq = ± v

2
√

2f 2

1

cβsβ

(
s2
β − c2

β + ε

√
1−

8c2
βs

2
βf

2m2
q

v2m2
Q

)
, (3.76)

where the +(−) sign stands for q = t(d, s) and ε = ±1 depending on the corresponding
values of λ1 and λ2.

Like for the lepton sector we need the quark-gauge lagrangian to complete the review of
the quark couplings, in the anomaly free embedding we have

LF = Q̄m��DL
mQm + ūRmi��D

uuRm + d̄Rmi��D
ddRm + T̄Ri��D

uTR + D̄Ri��D
dDR + S̄Ri��D

dSR. (3.77)

Remembering that the first two families are in the anti-fundamental representation:

DL
{1,2}µ = ∂µ + igAaµT

∗
a ,

DL
3µ = ∂µ − igAaµTa + igx

Bx
µ

3
,

Du
µ = ∂µ + igx

2Bx
µ

3
,

Dd
µ = ∂µ − igx

Bx
µ

3
.

(3.78)
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Chapter 4

Lepton Flavor Violating Tau decays into
one and two Pseudoscalars

4.1 Background

Precise measurements of the lepton properties provide stringent tests of the SM and accurate
determinations of its parameters. Moreover the hadronic τ decay modes constitute an ideal
tool for studying low energy effects of the strong interaction in very clean conditions. The
large mass of the τ opens the possibility to study many kinematically allowed exclusive
decay modes and extract relevant dynamical information. Violations of flavour and CP
conservation laws can also be searched for with τ decays. Being one of the fermions most
strongly coupled to the scalar sector, the τ lepton is playing now a very important role at
the LHC as a tool to test the Higgs properties and search for new physics at higher scales,
for this reason we study the possibility of LFV in the hadronic decays of the τ beyond the
SM. We use the Composite Higgs models frame where the Higgs is a composite particle and
a NGB of the spontaneous breaking of a higher symmetry.

In particular, we consider the case of the SLH, where the initial group of symmetry is
SU(3)L × U(1)X , and LFV only happens through perturbative processes at one-loop with
the assumption of the existence of a multiplet of heavy neutrinos. We study the decays
τ −→ µ {P, V, PP}, where P (V ) stands for a pseudoscalar (vector) meson. We use the
Unitary Gauge.

In the case of SLH these processes take place through various penguin diagrams τ → µγ,
τ → µZ, τ → µZ ′ (not τ → µY 0 because Y 0 do not couples with the light quarks currents
q̄q but only with heavy quarks Q̄Q). In [111] one sees that the divergence cancellation
of FCNC, for physical processes in the Unitary Gauge, happens between penguins (see
Sections 4.2, 4.3) and box diagrams (see Section 4.4). Therefore, we will have to cancel the
penguin divergences with those from box diagrams, an example of this cancellation is given
in Appendix C. The final hadrons will be one {π0, η, η′}, and two

{
π+π−, K+K−, K0K̄0

}
pseudoscalar mesons, and {ρ, φ} vector mesons.

Bounds on branching ratios from B-factories will provide information on the cut-off scale
of the SLH model.

53
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ALFV ∝
∑
i

V iτ
l V

iµ
l F [Q2;M2

Ni
;
v

f
]. (4.1)

We consider the phenomenology up to the SLH cut-off in order to provide a reasonable
framework for TeV discovery at LHC or precision physics at the B-factories.

The SLH model extends the SM group, SU(2)L × U(1)Y , to a gauge group SU(3)L ×
U(1)X , that requires to enlarge the SU(2) doublets of the SM into SU(3) triplets, adding
also other SU(3) gauge bosons. Then the SU(3)L × U(1)X gauge symmetry breaks down
spontaneously to the SM EW group by two complex scalar fields Φ1,2 (see equations (3.20),
(3.21)), triplets under SU(3) (see Section 3.4).

LFV decays in the SLH model arise at one loop level and they are driven by the presence
of the heavy neutrinos Ni in connivance with the rotation of light lepton fields V ij

` . There
are two generic topologies participating in this amplitude:

• Penguin diagrams, namely τ → µ {γ, Z, Z ′}, followed by {γ, Z, Z ′} → qq,

• Box diagrams.

In principle there should be also a penguin contribution with a Higgs boson τ → µH.
However the coupling of the Higgs to the light quarks, H → qq, has an intrinsic suppression
due to the mass of the quarks and, therefore, we do not take this into account. In fact we
will assume that light quarks are massless along all our calculation, and we will also neglect
the muon mass.

As there is no contribution from the SLH model to our processes at tree level, the
calculation, at one loop, has to be finite. In the following:

• τ(q)→ µ(p′) + . . .

• 〈Φ1〉 = fcβ, 〈Φ2〉 = fsβ, f ∼ 1 TeV,

• We calculate our amplitudes as an expansion, until the second order, of the parameter
x = v

f
,

• p′2 = m2
µ = 0,

• q2 = m2
τ ,

• The energy of the hadrons p2 finite (where q = p+ p′).

In the Unitary Gauge only physical states appear in the calculation. Our reasoning
to understand which are the physical states goes as follows:

• In the Section (3.4.1) we have put Θ′ = 0. Fields in Θ′ are the NGBs that, through
the spontaneous breaking of the SU(3) × U(1) → SU(2) × U(1) give masses to the
Y 0, Y 0†, W ′± and Z ′ gauge bosons.
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• At higher energies the scalar fields in the Θ matrix are physical, however after the
spontaneous breaking of the EW symmetry SU(2)L × U(1)Y → U(1) , only the field
H is physical. Charged Higgs φ± and the pseudoscalar χ are the NGBs that give
mass to the EW gauge bosons, therefore they are also not physical after the EW
spontaneous symmetry breaking.

The price to pay is that now we have to use the unitary propagator for the gauge
vector bosons (see Appendix F) and the calculation looks more divergent. Therefore the
cancellation of divergences is more subtle.

The general decomposition of the matrix element for a vector current Vα, can be written
as:

〈µ (p′) |Vα|τ (q)〉 = ūµ (p′)
[
p2γαF1

(
p2
)

+ F2

(
p2
)
imτσανp

ν + F3

(
p2
)
pα
]
uτ (q) , (4.2)

or

〈µ (p′) |Vα|τ (q)〉 = ūµ (p′)
[
mτG1

(
p2
)
γα +G2

(
p2
)
p′α +G3

(
p2
)
pα
]
uτ (q) , (4.3)

where these two Lorentz structures are related through Gordon Identities (see Appendix
D.2). Al the Fi, Gi form factors decompose in left and right parts that multiplicate PL = 1−γ5

2

and PR = 1+γ5

2
respectively 1.

4.2 τ → µ γ∗

We study the penguins of the tau decay through off shell photons, but for now we can
estimate only the first part of the process. The hadronization is treated in the Section 4.5.
All channels require the heavy neutrinos to produce the Flavour Violation.

We consider τ(q) → µ(p′) γ∗(p) where q is the momentum of the tau, p′ of the muon
and p is the momentum of photon, so we consider:

p′2 = 0,

q2 = m2
τ ,

(4.4)

We have approximated all the integrations until the order O(x2) and then we neglect the
ratios

m2
τ

M2
N

' m2
τ

M2
W

' m2
τ

M2
W ′
' 0. (4.5)

1If we assume that the light quarks have negligible masses with respect to the energy and the masses of
the bosons we can exclude the contribution of pα, the form factors F3, G3 see Appendix B.4.
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Figure 4.1: Penguin diagrams for τ → µγ∗ in the SLH model.

In the Unitary Gauge all divergent contributions, coming from the integrals Am and
B0 (see Appendix E.1.1, E.1.2), nullify when we sum the penguin amplitudes of photon, Z
and Z ′ with the boxes (see Appendix C). In the LFV case many contributions are multiplied
by: ∑

j

Vl1jV
∗
l2j

= 0, (4.6)

those who remain are those that multiply:∑
j

Vl1jV
∗
l2j
F
(
MNj

)
6= 0. (4.7)

The diagrams contributing to the photon penguin are those in Figure 4.1 and the result is
given by 2 :

M (γ) =
e2

Q2

v2

f 2

∑
j

VτjV
∗
µjψ(p′)

[
p2γλ

(
F j
LPL + F j

RPR
)

+ imτσλνp
ν
(
Gj
LPL +Gj

RPR
)]
ψ(q,mτ )×

× ψ(p2)Qqγ
λPLψ(p1),

(4.8)
2Where we applied the trasformation of the Lorentz structure like in Appendix D.2.1.



4.3. τ → µ Z,Z ′ 57

where Qq is the electric charge matrix of the quarks

Qq =
1

3

 2 0 0
0 −1 0
0 0 −1

 , (4.9)

and:

F j
L =

αw
4π

1

16M2
W

[(
χ3
j

(
χ2
j − 8χj + 13

)
(χj − 1)4 − 4δ2

ν

M2
W ′

M2
W

)
lnχj+

+
4χ5

j − 19χ4
j + 29χ3

j + 5χ2
j − 95χj + 40

6 (χj − 1)3

]
,

Gj
R =

αw
4π

1

8M2
W

[(
χ3
j (2χj + 1)

(χj − 1)4
+ 2δ2

ν

M2
W ′

M2
W

)
lnχj+

+
6χ5

j − 15χ4
j − 35χ3

j + 72χ2
j − 66χj + 20

6(χj − 1)3

]
,

(4.10)

where αw = e2

4πs2w
and:

χi =
M2

Ni

M2
W ′
∝ x0 ; ω =

M2
W

M2
W ′
∝ x2. (4.11)

4.3 τ → µ Z,Z ′

We consider τ(q) → µ(p′) Z,Z ′(p) so, like in the previous section, q is the momentum of
the tau, p′ of the muon and p is the momentum of the bosons Z and Z ′; so we take:

p′2 = 0,

q2 = m2
τ .

(4.12)

In this case we used the same integrations of the photons and the same approximations
for the tau mass:

m2
τ

M2
N

' m2
τ

M2
W

' m2
τ

MW ′
2 '

m2
τ

M2
Z

' m2
τ

MZ′
2 ' 0, (4.13)

also we ignore the SM neutrino masses:

mνi = 0, (4.14)
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Figure 4.2: Penguin diagrams for τ → µZ,Z ′ in the SLH model.

and finally we did additional approximations for p2:

p2

M2
N

' p2

M2
W

' p2

MW ′
2 '

p2

M2
Z

' p2

MZ′
2 ' 0. (4.15)

All we said in the calculation of photon penguins remains valid but we have to distinguish
the order until which we calculate the contributions to the amplitudes of

M (Z) ∝ O(x2),

M (Z ′) ∝ O(x0),
(4.16)

because the Z boson has a standard propagador like the photon, of the order O(x0) and
the Z ′ haves a propagator of order O(x2) that is an overall factor of the penguin amplitude.
The penguin diagrams with Z and Z ′ are given in Figure 4.2.They give the following results:
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M (Z) =
g

M2
Z

∑
j

VτjV
∗
µjψ(p′)

[
γλ
(
Hj
LPL +Hj

RPR
)]
ψ(q,mτ )×

×ψ(p2)
[
γλ (ZLPL + ZRPR)

]
ψ(p1),

M (Z ′) =
g

M2
Z′

∑
j

VτjV
∗
µjψ(p′)

[
γλ

(
Hj
L

′
PL +Hj

R

′
PR

)]
ψ(q,mτ )×

×ψ(p2)
[
γλ (Z ′LPL + Z ′RPR)

]
ψ(p1),

(4.17)

where now:
ZL =

g

cw

(
T q3 − s2

wQq

)
,

ZR = − g

cw
s2
wQq,

Z ′L =
g

6

√
3− t2w1,

Z ′R = − gt2w√
3− t2w

Qq,

(4.18)

being:

T q3 =
1

2

 1 0 0
0 −1 0
0 0 −1

 . (4.19)

Hj
R and Hj

R

′
in (4.17) are, again, O

(
m2
τ

M2
Z

)
and we disregard them. For the left handed form

factors we find:

Hj
L =

αw
32π

{
δz

c2
w

√
3− t2w

[ (
3χj(χj − 2)− 2c2

w(7χ2
j − 14χj + 4)

) χj lnχj
(χj − 1)2

+

+
−5χ2

j + 5χj + 6 + 6c2
w

(
3χ2

j − χj − 4
)

2(χj − 1)

]
−

− δ2
ν

2χ2
j − 5χj + 3

cw(χj − 1)

}
,

Hj
L

′
=

αw
32π

1

c2
w

√
3− t2w

[ (
3χj(χj − 2)− 2c2

w(7χ2
j − 14χj + 4)

) χj lnχj
(χj − 1)2

+

+
−5χ2

j + 5χj + 6 + 6c2
w

(
3χ2

j − χj − 4
)

2(χj − 1)

]
.

(4.20)

As we supposed in (4.16) the Hj
L

′
corresponding to the Z ′ contributions, and that is very

similar to the result for Hj
L, is O(x2). This is due to the fact that the definitions of Hj

L and
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Hj
L

′
in (4.17) carry a factor of the inverse squared mass of the corresponding gauge boson

in the penguin. Then theM (Z ′) amplitude conveys the leading suppression factor in this
term.

4.4 Boxes
Finally we turn to evaluate the box diagrams in Figure 4.3. We proceed following the same
approaches as in the case of the penguin diagrams. In addition we consider that the external
momenta vanish.

Figure 4.3: Box diagrams for τ → µqq in the SLH model. The internal quark states are
(u, u)→ {d,D}, (d, d)→ {u}, (s, s)→ {c}.

We did not consider the flavor mixing of quarks because we do not want to consider the
CKM effect in these channels, even remembering that we want only final light quarks, the
quark currents are:

u −→ d −→ ū

u −→ D −→ ū

d −→ u −→ d̄

s −→ c −→ s̄.

(4.21)

In these diagrams we have approximated external null momenta like in Appendix E.4. The
result is given by:

Mbox =g2

u,d,s∑
q

∑
j

VτjV
∗
µjB

j
qψ(p′)γµPLψ(q,mτ )ψ(p2)γµPLψ(p1), (4.22)

where
Bj
q =

αw
64π

[
αjq lnχj + βjq ln δ + γjq

]
, (4.23)
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the remaining terms are given by:

αju =
1

M2
W (χj − δ)

{
3χjδδν(δ

∗
d + δd)

(χj − 1)
− δ2δν(δ

∗
d + δd) +

χj(6− 13χj)

(χj − 1)2

M2
W

M2
W ′

+

+ (δ2 − 6δ)
M2

W

M2
W ′

+ δ2δ2
dδ

2
ν

M2
W ′

M2
W

}
,

αjd =
3δν

M2
W (χj − 1)

(δ∗d + δd) ,

αjs =
3δν

M2
W (χj − 1)

(δ∗s + δs) ,

βju =
δ2

M2
W (δ − χj)

{
δ2
dδ

2
ν

M2
W ′

M2
W

+
δ(δ − 8)

(δ − 1)2

M2
W

M2
W ′
− δν(δ∗d + δd)

δ2 − 5δ + 4

(δ − 1)2

}
,

βjd =βjs = 0,

γju =− 1

2M2
W

{
3δ2
νδ

2
dχj

M2
W ′

M2
W

+
δ(3χ2

j − 16χj + 13)− 3χ2
j + 13χj + 4

(δ − 1)(χj − 1)

M2
W

M2
W ′

}
,

γjd =
3

2M2
W

δν(δ
∗
d + δd)χj,

γjs =
3

2M2
W

δν(δ
∗
s + δs)χj.

(4.24)

where:

δ =
m2
D

M2
W ′
∝ x0. (4.25)

The contribution of the box amplitudes is relevant in the Unitary Gauge not only for
the handling of the divergences but also for their contribution to the convergent part of the
processes. We will come back to this issue in Section 4.6.

4.5 Hadronization

In this work we study the LFV semileptonic τ decays:

• τ → µPP with PP = π+π−, π0π0, K+K−, K0K0.

• τ → µP with P = π0, η, η′.

• τ → µV with V = ρ0, φ.
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We will analyze the importance of the various contributions, the γ, Z, Z ′, and W , W ′ in
the boxes. The hadronisation of quark bilinears is performed within the chiral framework.
Semileptonic decays of the τ lepton are a relatively clean scenario from the strong interaction
point of view. Hadrons in the final state stem from the hadronization of quark bilinears,
namely ΨΓΨ, where Ψ is a vector in the SU(3) flavour space and Γ is, in general, a matrix
both in the spinor and the flavour space. An appropriate framework to handle the procedure
of hadronisation is provided by the large-NC expansion of SU(NC)QCD [112], being NC the
number of colours. In short it states that in the NC →∞ limit any Green function is given
by meromorphic expressions provided by the tree level diagrams of a Lagrangian theory
with an infinite spectrum of zero-width states.

A suitable tool to realise the 1
NC

expansion is provided by chiral Lagrangians. In those
processes where hadron resonances do not play a dynamical role, χPT [113],[114] is the
appropriate scheme to describe the strong interaction of NGBs (π, K and η). This is the
case, for instance, of τ → µP (being P short for a pseudoscalar meson). When resonances
participate in the dynamics of the process, as in τ → µPP , it is necessary to include
them as active degrees of freedom into the Lagrangian as it is properly done in the RχT
frame [115]. Hence we will make use of RχT , that naturally includes χPT , to hadronise the
relevant currents that appear in the processes under study here. We consider bilinear light
quark operators coupled to external sources and added to the massles QCD Lagrangian :

LQCD = L0
QCD + q̄ [γµ (vµ + γ5a

µ)− (s− ipγ5)] q, (4.26)

where vector vµ, axial-vector aµ, scalar s and pseudoscalar p fields are matrices in the flavour
space, and L0

QCD is the massless QCD Lagrangian. This Lagrangian density gives the QCD
generating functional ZQCD[v, a, s, p] as:

eiZQCD[v,a,s,p] =

∫
[DGµ] [Dq] [Dq̄] ei

∫
d4xLQCD[q,q̄,G,v,a,s,p] (4.27)

In order to construct the corresponding Lagrangian theory in terms of the lightest hadron
modes we need to specify them. The lightest U(3) nonet of pseudoscalar mesons:

φ(x) =


π0
√

2
+ η8√

6
+ η0√

3
π+ K+

π− − π0
√

2
+ η8√

6
+ η0√

3
K0

K− K̄0 −2η8√
6

+ η0√
3

 (4.28)

is realised nonlinearly into the unitary matrix in the flavour space:

u(ϕ) = e
iΦ√
2F . (4.29)

Hence the leading O(p2) χPT SU(3)L × SU(3)R chiral Lagrangian is:
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Lχ =
F 2

4
〈uµuµ + χ+〉, (4.30)

where

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
,

χ+ = u†χu† + uχ†u,

χ = 2B0(s+ ip),

(4.31)

and 〈. . . 〉 is short for a trace in the flavour space. Interactions with EW NGBs can be
accommodated through the vector vµ = rµ+lµ

2
and axial vector aµ = rµ−lµ

2
external fields.

The scalar field s incorporates explicit chiral symmetry breaking through the quark masses
s = M+. . . and, finally, Fπ ' 92.4 MeV is the pion decay constant and B0F

2
π = −〈0|ψ̄ψ|0〉0

in the chiral limit. The chiral tensor χ provides masses to the NGBs through the external
scalar field, as can be seen in (4.31). Indeed in the isospin limit we have:

χ = 2B0M+ · · · =

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

+ · · · (4.32)

Hence we identify:

B0mu = B0md =
m2
π

2
,

B0ms = m2
K −

m2
π

2
.

(4.33)

In the simplest approximation, mass eigenstates η and η′ are defined from the octet η8 and
singlet η0 states through the rotation:(

η

η′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
η8

η0

)
, (4.34)

where θ ' −18◦.
The hadronisation of a final state of two pseudoscalars is driven by vector and scalar

resonances though the latter, because their higher masses, play a lesser role. We will intro-
duce the vector resonances in the antisymmetric formalism; hence the nonet of resonance
fields Vµν (see [115]) is defined by analogy with (4.28) with the same flavour structure. By
demanding the chiral symmetry invariance the resonance Lagrangian reads:

LV = LVkin + LV(2), (4.35)

where
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LVkin = −1

2
〈∇λVλµ∇νV

νµ〉+
M2

V

4
〈VµνV µν〉,

LV(2) =
FV

2
√

2
〈Vµνfµν+ 〉+ i

GV√
2
〈Vµνuµuν〉,

(4.36)

and in the latter the subscript (2) indicates the chiral order of the tensor accompanying Vµν .
In (4.36) we have used the definitions:

∇µX ≡ ∂µX + [Γµ, X] ,

Γµ =
1

2

[
u† (∂µ − irµ)u+ u (∂µ − ilµ)u†

]
,

fµν+ = uF µν
L u† + u†F µν

R u,

(4.37)

being F µν
L,R the field strength tensors associated with the external right and left fields. The

couplings FV and GV are real. Accordingly our RχT framework is provided by:

LRχT = L(2)
χ + LV , (4.38)

and the contribution of the low modes to the QCD functional is formally given by:

eiZQCD[v,a,s,p]|low modes =

∫
[Du] [DV ] ei

∫
d4xLRχT [u,V,v,a,s,p]. (4.39)

With this identification we can already carry out the hadronization of the bilinear quark
currents included in (4.26) by taking the appropriate partial derivatives, with respect to the
external auxiliary fields, of the functional action,

V i
µ = q̄γµ

λi

2
q =

∂LRχT
∂vµi

|j=0,

Aiµ = q̄γµγ5
λi

2
q =

∂LRχT
∂aµi

|j=0,

Si = −q̄λiq =
∂LRχT
∂si

|j=0,

P i = q̄iγ5λ
iq =

∂LRχT
∂pi

|j=0,

(4.40)

where j = 0 indicates that all external currents are set to zero. This gives (see [116]):
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V i
µ =

F 2
π

4
〈λi
(
uuµu

† − u†uµu
)
〉 − FV

2
√

2
〈λi∂ν

(
u†Vµνu+ uVµνu

†)〉,
Aiµ =

F 2
π

4
〈λi
(
uuµu

† + u†uµu
)
〉,

Si =
B0F

2
π

2
〈λi
(
u†u† + uu

)
〉,

P i =
iB0F

2
π

2
〈λi
(
u†u† − uu

)
〉.

(4.41)

With these expressions we are able to hadronise the final states in τ → µPP , τ → µP and
τ → µV processes.

4.5.1 τ(q)→ µ(p′) P (p)

Only the axial-vector current contributes and that means that Mγ does not participate.
The axial-vector current is determined from the leading O(p2) chiral Lagrangian and we
get, for P = {π0, η, η′}:

TZ(P ) =− i g
2

2cw

Fπ
M2

Z

Z(P )
∑
j

V jµ∗V jτψ(p′)
[
6 p
(
Hj
LPL +Hj

RPR
)]
ψ(p),

TZ′(P ) =i
g2

4
√

9− 3t2w

Fπ
M2

Z′
Z ′(P )

∑
j

V jµ∗V jτψ(p′)
[
6 p
(
Hj
L

′
PL +Hj

R

′
PR

)]
ψ(p).

(4.42)

Here Fπ is the decay constant of the pion and the Z(P ), Z ′(P ) factors are given in Table
4.1. Finally:

Tbox(P ) = −ig2Fπ
∑
j

V jµ∗V jτBj(P )ψ(p′) [6 pPL]ψ(p). (4.43)

where Bj(P ) factors are given in Table 4.1.
The width of these processes, with T (P ) = TZ(P ) + TZ′(P ) + Tbox(P ), is given by [116]:

B (τ → µP ) =
1

4π

√
λ(m2

τ ,m
2
µ,m

2
P )

m2
τΓτ

1

2

∑
i,f

|T (P )|2, (4.44)

where

λ(x, y, z) = (x+ y − z)2 − 4xy, (4.45)

and
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P = π0 P = η P = η′

Z(P ) 1 1√
6

(
sin θη +

√
2 cos θη

)
1√
6

(√
2 sin θη − cos θη

)

Z ′(P )
√

3t2w cos θηt
2
w −
√

2 sin θη (3− t2w) sin θηt
2
w +
√

2 cos θη (3− t2w)

Bj(P ) 1
2

(
Bj
d −Bj

u

)
1

2
√

3

[(√
2 sin θη − cos θη

)
Bj
u

1
2
√

3

[(
sin θη − 2

√
2 cos θη

)
Bj
d

+
(
2
√

2 sin θη + cos θη
)
Bj
d

]
−
(
sin θη +

√
2 cos θη

)
Bj
u

]
Table 4.1: Factors appearing in (4.42), (4.43). The mixing between the octet (η8) and the
singlet (η0) components of the nonet of pseudoscalar mesons is parameterized by the angle
θη ' −18◦. The functions Bj

q are given in (4.23).

∑
i,f

|T (P )|2 =
1

2mτ

∑
k,l

[
(m2

τ +m2
µ −m2

P )
(
akPa

l∗
P + bkP b

l∗
P

)
+ 2mµmτ

(
akPa

l∗
P − bkP bl∗P

)]
,

(4.46)

with k, l = Z,Z ′, B. Defining ∆τµ = mτ −mµ, Στµ = mτ +mµ we have :

aZP =− g2Fπ
4cWM2

Z

∆τµZ(P )
∑
j

V jµ∗V jτ
(
Hj
R +Hj

L

)
,

aZ
′

P =
g2Fπ

8
√

9− 3t2WM
2
Z′

∆τµZ
′(P )

∑
j

V jµ∗V jτ
(
Hj
R

′
+Hj

L

′
)
,

aBP =− g2Fπ
2

∆τµ

∑
j

V jµ∗V jτBj(P ),

bZP =
g2Fπ

4cWM2
Z

ΣτµZ(P )
∑
j

V jµ∗V jτ
(
Hj
R −H

j
L

)
,

bZ
′

P =− g2Fπ

8
√

9− 3t2WM
2
Z′

ΣτµZ
′(P )

∑
j

V jµ∗V jτ
(
Hj
R

′ −Hj
L

′
)
,

bBP =− g2Fπ
2

Στµ

∑
j

V jµ∗V jτBj(P ).

(4.47)
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4.5.2 τ(q)→ µ(p′) {P (p+)P (p−);V (p)}
The semileptonic τ → µ {PP ;V } channels can be mediated by a photon, Z and Z ′. The
{Z,Z ′}-mediated contributions are expected to be much smaller than the γ-mediated contri-
bution due to the suppression of the boson masses in the propagators. This has been shown
to happen in the leptonic channels like τ → 3µ, where the Z-mediated contribution to its
branching ratio has been estimated to be a factor 10−3 − 10−5 smaller than the γ-mediated
contribution [117].

The photon that decays into two pseudoscalars mesons is driven by the electromagnetic
current:

V em
µ =

u,d,s∑
q

Qq q̄γµq = V 3
µ +

V 8
µ√
3
, (4.48)

the electromagnetic form factor is then defined as:

〈P+(p+)P−(p−)|V em
µ |0〉 = (p+ − p−)µF

PP
V (p2) (4.49)

where k = p+ + p− with p± is the momentum of the P± meson and F PP
V (s) is steered by

both I = 1 and I = 0 vector resonances, in particular the ρ(770) that is the lightest of
hadron resonance. Due to the p2 = 0 pole of the photon propagator this is, by far, the
dominant contribution to this hadronic final state. Hence the result is more sensitive to
the construction of this form factor. The authors of [116] have elaborated a more complete
expression than the one provided by the vector current in (4.41) though it reduces to this
one in the NC → ∞ limit, including only one multiplet of resonances and at p2 � Mρ. A
proper construction of F PP

V (p2) is given in Appendix B of [116],
After the hadronization we find:

Tγ(P ) =
e2

p2

v2

f 2
F PP
V (p2)

∑
j

V jµ∗V jτψ(p′)

[
p2(6 p+− 6 p−)

(
F j
LPL + F j

RPR
)

+

+ 2imτp
λ
+σλνp

ν
−
(
Gj
LPL +Gj

RPR
)]
ψ(p),

TZ(P ) =g2 2s2
w − 1

2cwM2
Z

F PP
V (p2)

∑
j

V jµ∗V jτψ(p′)(6 p+− 6 p−)
(
Hj
LPL +Hj

RPR
)
ψ(p),

TZ′(P ) =− g2 t2w
4M2

Z′

√
3− t2w

F PP
V (p2)

∑
j

V jµ∗V jτψ(p′)(6 p+− 6 p−)
(
Hj
L

′
PL +Hj

R

′
PR

)
ψ(p),

Tbox(P ) =
g2

2
F PP
V (p2)

∑
j

V jµ∗V jτ
(
Bj
u −B

j
d

)
ψ(p′)(6 p+− 6 p−)PLψ(p).

(4.50)
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The branching ratio for the process is:

B (τ → µPP ) =
kPP

64π3m2
τΓτ

∫ p2
max

p2
min

ds

∫ tmax

tmin

dt
1

2

∑
i,f

|T (P )|2, (4.51)

where kPP is 1 for PP = π+π−, K+K−, K0K̄0 and 1
2
for PP = π0π0. In addition:

tmaxmin =
(m2

τ −m2
µ)2 −

(√
λ(p2,m2

P ,m
2
P )∓

√
λ(m2

τ , p
2,m2

µ)
)2

4p2
,

p2
min = 4m2

P ,

p2
max = (mτ −mµ)2.

(4.52)

With the (4.51) we could plot the results in the Figures 4.4, 4.6, 4.5, 4.7, 4.8, 4.9, 4.10, 4.11.
We would like to consider also the decays into a vector resonance, namely V = ρ, φ. From

a quantum field theory point of view, a resonance is not an asymptotic state and, indeed, a
vector decays strongly into a pair of pseudoscalar mesons. When an experiment measures
a final state with a vector resonance, in fact what is measuring is a pair of pseudoscalar
mesons with a squared total mass approaching m2

V . Hence the definition of a resonance
from an experimental point of view is uncertain. Actually the chiral nature of the lightest
pseudoscalar mesons relies on this occurrence and two pions into a J = I = 1 state are
indistinguishable from a ρ(770) meson, for instance. As a consequence the channels τ → µV
are related with τ → µPP that we discussed above. We follow the proposal of reference
[116].

The outcome of this circumstance is that the branching ratio of τ → µV is obtained
from that of the τ → µPP by trying to implement the experimental procedure, that is,
focusing in two pseudoscalar mesons on the mass (and width) of the resonance. That is:

B(τ → µρ) =B(τ → µπ+π−)
∣∣∣
ρ
,

B(τ → µφ) =B(τ → µK+K−)
∣∣∣
φ

+B(τ → µK0K0)
∣∣∣
φ
,

(4.53)

where the two pseudoscalars branching ratio is the one given by (4.51) but where the pmaxmin

limits of integration are now specified by:

pmaxmin = M2
ρ ±

1

2
MρΓρ(M

2
ρ ), (4.54)

and

pmaxmin = M2
φ ±

1

2
MφΓφ(M2

φ), (4.55)
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respectively. Here the full widths of ρ and φ are taken from [118]. We think that this defini-
tion of the branching ratios into vector mesons approaches the experimental interpretation
and provides a reasonable estimate of them.

4.6 Numerical Results
The provision of numerical estimates for our LFV branching ratios, from our results in the
previous section, requires an all inclusive discussion of the parameters of the SLH model
that we have employed:

• Scale of compositeness f . As commented in the Introduction almost everyone expects
some new physics around 1 TeV, and going up. We could fix the scale of compositeness
in the SLH model as that f ∼ 1 TeV. However analyses of the model from Higgs data
and EW Observables [107], [119] seem to indicate that, at 95 % C.L., values of f . 3.5
TeV should be excluded for our model. That, of course, also delays the appearance
of a strongly coupled region. For definiteness we choose a range 2 < f < 10 TeV in
order to furnish our results.

• Heavy neutrinos. “Little” neutrinos drive the dynamics of LFV lepton decays. Inher-
ited from the SM setting we have three different heavy neutrinos that appear in the
amplitudes that we can write, generically, as:

M =
∑
j

V jµ∗
` V jτ

` A (χj) , (4.56)

with j adding over the three families and A(χj) a generic function of χj = M2
Nj
/M2

W ′ .
We do not have any information on the mixing matrix elements V ik

` and we have to
keep at least two non degenerated families in order to have a non-vanishing result;
as a consequence we will give our numerical results assuming only two families and,
accordingly, one mixing angle. Hence we will have:

M = sin θ cos θ [A(χ1)− A(χ2)] . (4.57)

In [48] it can be observed that, from LFV tau decays into leptons within the SLH model
and for f ' 1 TeV, experimental bounds require sin 2θ = 2 sin θ cos θ < 0.05 and even
smaller from muon-electron conversion in nuclei. As we propose higher values for the
scale of compositeness we will take, for the numerical determinations sin 2θ ' 0.25,
though we will also study the variation of the branching ratios in function of this
parameter.

“Little” neutrino masses are also unknown. Experimental bounds on these masses are
rather loose and very much model dependent. However, we will take into account the



70 Chapter 4. Lepton Flavor Violating Tau decays into one and two Pseudoscalars

results in [48] pointing to χ1χ2 . 0.01 and
√

χ1

χ2
−
√

χ2

χ1
. 0.05. Given our larger

values for f we will use (χ2 > χ1 is assumed, our spectrum cannot be degenerated)
0 ≤ χ1 ≤ 0.25 and 1.1χ1 ≤ χ2 ≤ 10χ1, where the latter limits of χ2 correspond to the
nearly degenerate and large mass splitting cases, respectively.

• tan β = f1

f2
. The ratio of the two vevs from the spontaneous breaking of the upper

symmetry is also an unknown parameter in our model. The mixing between a “little”
and a light neutrino, parameterized by δν , can give us a hint. Phenomenological
analyses indicate that δν < 0.05 [48], [120], [121]. Therefore from (3.57) we obtain
that |ftβ| & 3.5 TeV. We will take, as a value of reference, tβ = 5 and will explore the
range 1 < tβ < 10.

• Quark parameters. As commented above we do not consider flavour-mixing in the
quark sector. The redefinition of fields that diagonalizes the mixing between “little”
and light quarks is parameterized by the δp parameters that appear in the box ampli-
tude, (4.24), for p = d, s. We follow the proposal of [92] and assume that the mixing
effects in the down quark sector are suppressed in the tβ > 1 regime. This is analogous
to what happens in the neutrino case. It implies:

δd ' δs ' −δν . (4.58)

Finally, in the box diagrams also appears the ratio δ =
m2
D

M2
W ′

that involves the mass of
the “little” down quark D. In all the numerical evaluations we take δ = 1.

The input of SM parameters and masses is taken from the PDG [118]. In particular
we will take sin2 θw = 0.23, Fπ = 0.0922 GeV and θη = −18◦. Although we will present
our results for LFV tau decays into a muon and hadrons, the results on the decay to an
electron should be essentially the same because we have expanded the mass of the outgoing
charged lepton over heavy masses in our calculation. Hence the only difference between both
channels is, essentially, one of phase space that would turn out to be tiny in any case due
to the relative high mass of the tau lepton, and the lepton flavour mixing matrix elements.
Provided that the latter are of the same order of magnitude, we consider our results to be
valid for both decays: τ → `hadrons for ` = e, µ.

The present upper bounds on the LFV hadron tau decays branching ratios are collected
in Table 4.2. All these bounds originate in the excellent work carried out by both BaBar
and Belle experiments in the last ten years. It can be seen that present limits stand at
the 10−8 level. Super B Factories, like the SuperKEKB/Belle II project [122] will give the
next step. Hadron decays of the tau lepton are almost background free, although efficiencies
are different from channel to channel. All in all, expected sensitivities are in the range of
B(τ → ` hadrons) ∼ (2− 6)× 10−10.
In Figure 4.4 we show the dependence on the scale of compositeness f of the branching ratios
(normalized to the upper bounds in Table 4.2) in the LFV hadron decays under study. We
use χ1 = 0.25, χ2 = 10χ1, tβ = 5 and sin 2θ = 0.25. The plotted range for the scale of
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Process B × 108 (90 % C.L.) [118]
` = µ ` = e

τ → ` γ < 4.4 < 3.3
τ → ` π0 < 11.0 < 8.0
τ → ` η < 6.5 < 9.2
τ → ` η′ < 13.0 < 16.0

τ → ` π+π− < 2.1 < 2.3
τ → `K+K− < 4.4 < 3.4

τ → `KSKS < 8.0 < 7.1
τ → ` ρ0 < 1.2 < 1.8
τ → ` φ < 8.4 < 3.1

Table 4.2: Experimental upper bounds, at 90% C.L., on the branching ratios of the LFV
decays τ → `(P, V, PP ) for ` = µ, e, studied in this article. We quote them from the PDG
[118].

compositeness seems the most natural in these models, however a higher value of f might
also make sense. In any case Figure 4.4 indicates clearly the trend of the prediction. It can
be seen that, in the most optimistic case, for low values of f , our results imply branching
ratios at least four orders of magnitude smaller than present limits.

Figure 4.4: Dependence of the scale of compositeness f for the branching ratios of LFV tau
decays into hadrons in the SLH model. They are normalized to the present upper bounds in
Table 4.2, i.e. a value of 1 in the y-axis indicates the present upper limit. The input parameters
are: tβ = 5 ; χ1 =

MN1
MW ′

= 0.25 ; χ2 = 5χ1 ; sin (2θ) = 0.25.
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The dependence on the “little” neutrino masses is collected in Figure 4.6 and Figure
4.5. In Figure 4.5 we assume the cases of a small splitting: χ2 = 1.1χ1 and a large one
χ2 = 10χ1. In the Figure 4.6 we can see the effect produced by the large splitting in heavy
neutrino masses when the second neutrino reaches and goes over the mass of the heavy
gauge boson W ′. Naturally a small splitting produces branching ratios much smaller due to
the unitarity of the lepton mixing matrix (see (4.57)).

Figure 4.5: Dependence of the LFV branching ratios on MN1 . We assume a small splitting of
the heavy neutrino spectrum: χ2 = 1.1χ1. We input tβ = 5, sin 2θ = 0.25 and f = 6 TeV.
Normalization as in Figure 4.4.

In the Figures 4.7, 4.8 we show the dependence of the branching ratios respectively on
the parameters tan β and sin 2θ. It can be seen that the dependence on tβ is rather mild for
tβ & 3.

Correlations between different branching ratios are shown in the Figures 4.9, 4.10, 4.11.
The branching ratio of τ → µγ has been obtained from the SLH prediction for µ → eγ in
Ref. [48]. In these figures we have not normalized the branching ratios to the upper bounds
as we did in previous figures. In the Figures 4.9 and 4.10 we show B(τ → µπ+π−) and
B(τ → µπ0) versus B(τ → µγ) and the vertical red line indicates the measured present
upper bound for the later decay. That would leave hadron branching ratios, at the most, of
O(10−12)−O(10−14) as we already commented in the previous discussion. In the Figure 4.11
we plot B(τ → µπ0) versus B(τ → µπ+π−) and it is shown that both are highly correlated
(we turn to this point later).

We would like to turn now to comment a property of our calculation in the SLH model.
This is related with the relative weight of the different contributions. Supersymmetric
scenarios seem to indicate that, in the ’t Hooft-Feynman gauge, box diagrams provide
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Figure 4.6: Dependence of the LFV branching ratios on MN1 . We assume a large splitting:
χ1 = 10χ2. We input tβ = 5, sin 2θ = 0.25 and f = 6 TeV. Normalization as in Figure 4.4.

Figure 4.7: Dependence of the LFV branching ratios on tanβ. We input (f, sin 2θ) =
(6TeV, 0.25), χ1 = 0.25, χ2 = 10χ1. Normalization as in Figure 4.4.

negligible contributions in comparison with photon-penguin diagrams in leptonic processes
[123], [117]. However it has been pointed out that this might not be the case in other
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Figure 4.8: Dependence of the LFV branching ratios on sin 2θ. We input (f, tβ) = (6TeV, 5),
χ1 = 0.25, χ2 = 10χ1. Normalization as in Figure 4.4.

Figure 4.9: Scattered plot that show correlation between different branching ratios:
B (τ → µπ+π−) versus B (τ → µγ). We vary 2 < f < 10 TeV; 0 < sin (2θ) < 0.25; 1 < tβ < 10;
0 < χ1 < 0.25 and χ2 = aχ1 for 1.1 < a < 10. Red line indicate the present upper bound for
B (τ → µγ) at 90% C.L..



4.6. Numerical Results 75

Figure 4.10: Scattered plot that show correlation between different branching ratios:
B
(
τ → µπ0

)
versus B (τ → µγ). We vary 2 < f < 10 TeV; 0 < sin (2θ) < 0.25; 1 < tβ < 10;

0 < χ1 < 0.25 and χ2 = aχ1 for 1.1 < a < 10. Red line indicate the present upper bound for
B (τ → µγ) at 90% C.L..

models. For instance, in the Littlest Higgs model with T-parity both contributions are of
the same order in µ→ eee [47] and the same happens in the same purely leptonic processes
within the SLH model [48]. Notwithstanding in LFV hadron decays of the tau lepton
within this later model, that we have studied in this article, we do not reach the same
conclusion, at least in the Unitary Gauge. In Figure 4.12 we show the dependence on f for
the different contributions for τ → µπ+π−. It can be seen that in hadron decays photon-
penguin diagrams dominate over the rest of contributions. Box diagrams give a small input
although one can see that they interfere destructively with the photon ones. Meanwhile the
Z- and Z ′-penguin diagrams are negligible. In Figure 4.13 we plot the analogous comparison
for τ → µπ0 where, obviously, there are not photon-penguin diagrams contributing. Then
box diagrams give the bulk of the branching ratio though with a non negligible positive
interference of the Z penguin contribution. In Figure 4.11 we noticed the high correlation
between both τ → µπ+π− and τ → µπ0 decays. This seems eye catching because, as
we have seen, both processes are dominated by different contributions: the first by the
photon-penguin diagrams and the second by the boxes.

As commented at the beginning of this chapter we did not include Higgs penguin contri-
bution on the basis that their couplings to light quarks are suppressed by their masses. In
[124], [125] it was pointed out that a Higgs could couple, through a one loop of heavy quarks
to two gluons able to hadronize into one or two pseudoscalars and, at least in the latter
case, give a relevant contribution comparable with the one of the photon penguin amplitude.
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Figure 4.11: Scattered plot that show correlation between different branching ratios:
B
(
τ → µπ0

)
versus B (τ → µπ+π−). We vary 2 < f < 10 TeV; 0 < sin (2θ) < 0.25;

1 < tβ < 10; 0 < χ1 < 0.25 and χ2 = aχ1 for 1.1 < a < 10.

Figure 4.12: Contributions to B (τ → µπ+π−) of the different penguins with final bosons
γ;Z;Z ′, of the boxes and their sum. Normalization as in Figure 4.4.

This is indeed a two loop calculation in our framework and we have not considered to sum



4.6. Numerical Results 77

Figure 4.13: Contributions to B
(
τ → µπ0

)
of the different penguins with final bosons Z;Z ′,

of the boxes and their sum. Normalization as in Figure 4.4.

this addition. In our opinion this could change our results by a factor not larger than O(1)
and therefore it would not change our main conclusions.

In [48] it was indicated that, at least in LFV decays of the muon into leptons and muon
conversion in nuclei, the behaviour of the SLH model is very similar to the Littlest Higgs
with T-parity. If that assertion could be extended to the hadron decays of the tau lepton,
as it seems rather sensible, we would definitely conclude that Little Higgs models predict a
high suppression for these channels. It is now the turn of the flavour factories to clarify this
issue.
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Chapter 5

H → ``′ in the Simplest Little Higgs
Model

5.1 Background

Both ATLAS and CMS have announced the discovery of a Higgs-like resonance with a mass
of 125 GeV [65], [126], further supported by combined Tevatron data [127]. An interesting
question is whether the properties of this resonance are consistent with the SM Higgs boson.
Deviations from the SM predictions could point to the existence of a secondary mechanism
of EW symmetry breaking or to other types of new physics not too far above the EW
scale. While there is a large ongoing experimental effort to measure precisely the decay
rates into the channels that dominate for the SM Higgs, it is equally important to search
for Higgs decays into channels that are subdominant or absent in the SM. For instance,
since the couplings of the Higgs boson to quarks of the first two generations and to leptons
are suppressed by small Yukawa couplings in the SM, new physics contributions can easily
dominate over the SM predictions.

The indirect constraints on many flavor violating Higgs decays are rather weak. In
particular, the branching ratios B (H → τµ) and B (H → τe) can reach up to 10% [128],
[129]. For the channels H → τµ and H → τe the LHC is placing limits that are comparable
to or even stronger than those from rare τ decays. CMS provides the best fit branching
fraction of H → τµ [130]. We emphasize that large deviations from the SM do not require
very exotic flavor structures. A branching ratio B (H → τµ) comparable to the one for
B (H → ττ) , or a B (H → µµ) a few times larger than in the SM can arise in many models
of flavor [128], [129], [131], [132], [133], [134], [135], [136], [137], in this thesis we also
computed LFV Higgs decays within the SLH model.

In fact, there may already be experimental hints that the Higgs couplings to fermions
may not be SM like. For instance, the BaBar collaboration recently announced a 3.4 σ
indication of flavor universality violation in b→ cτν transitions [79], which can be explained
for instance by an extended Higgs sector with nontrivial flavor structure [138].

The presence of LFV couplings would allow µ → e, τ → µ and τ → e transitions
to proceed via a virtual Higgs boson [139], [140]. The experimental limits on these have
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recently been translated into constraints on the branching fractions B(H → µe, τµ, τe)
[141], [128]. The µ→ e transition is strongly constrained by null search results for µ→ eγ
[118], B(H → µe) < 10−8. However, the constraints on τ → µ and τ → e are much less
stringent. Especially the last reinterpretation of the ATLAS H → ττ search results in terms
of LFV decays by an independent group has been used to set limits at the 95% confidence
level (CL) of B(H → τµ) < 13%, B(H → τe) < 13% [141].

5.2 H → τ µ

We studied the diagrams reported in Figure 5.1, where q is the momentum of the Higgs, p′
of the muon and p is the momentum of the tau. We consider:

p′2 = 0,

p2 = m2
τ ,

q2 = M2
H ,

(5.1)

In this case we used the same integrations of the Chapter 4, in the limit mτ
M
→ 0, also we

ignored the SM neutrino masses mνi = 0.
In these LFV Higgs decays there is at least a lepton which can be considered massless

and, thus, with fixed helicity. Then, the matrix element for the H → τ` decays can be
written as:

MH = −
ie2
∑

j VτjV
∗
µjmτ

s2
w16π2M2

W

(
O(χj) log

(χj
ω

)
+ P (χj)

)
ψ(p′)PRψ(q,mτ ), (5.2)

where:

O(χj) =
δν

16M2
W

√
χj

[
e2vδν

√
χj

sw

(
M2

H − 13M2
W

)
+ 2
√

2λNjMW ′M
2
W cβ

(
δ2
νχj − 3ω

)]
(5.3)

and

P (χj) = δν

(
P1(χj)−

ve2

sw
P2(χj)

)
(5.4)

with:
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Figure 5.1: Feynman diagrams for H → τµ decays in the SLH model.

P1(χj) =λNjcβ
δ2
ν (χj − 1)M2

N + 2
(
χ2
j − χj + 2

)
M2

W − 14 (χj − 1)M2
H

8
√

2 (χj − 1)MN

P2(χj) = cot (2β)
M2

H

(
3χ3

j − 9χ2
j + 8χj − 2

)
+M2

Wχj
(
12χ2

j − 23χj + 10
)

8MW ′MWχj (χj − 1)
+

+
δν

192M6
W sin2 (2β)

{
2M6

H + 14M4
HM

2
W +M2

HM
4
W (29− 40χj)− cos (4β)

[
2M6

H+

+ 14M4
HM

2
W +M2

HM
4
W (24χj + 29) + 8M6

W (7− 12χj)
]

+ 8M6
W (20χj + 7)

}
+

+
ω
(
2χ4

j + 20χ3
j − 74χ2

j + 35χj − 1
)

48 (χj − 1)2

(5.5)

then we can calculate the branching ratio like in the Chapter 4:
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B (H → τµ) =
(M2

H −m2
τ )

2α2m2
τ

256π3M3
HΓHM4

W s
4
w

(
sin2θ

2

)2
[
O(χ1) log

(χ1

ω

)
−O(χ2) log

(χ2

ω

)
+

+ P (χ1)− P (χ2)

]2

.

(5.6)

where α = e2

4π
.

In our computation we kept terms of subleading order (v3/f 3) and checked for accidental
numerical enhancements of these before neglecting them. After checking its irrelevance, we
omitted one such a term in O(χj) and another one in P (χj). With these simplifications,
equation (5.2) reads:

MH = −
ivα2δνmτ

∑
j VτjV

∗
µj

s3
wM

2
W

[O logχj − P (χj)] ψ̄(p′)PRψ(q,mτ ) , (5.7)

where:

O =
δν
16

(
M2

H − 13M2
W

)
(5.8)

and

P (χj) = cot (2β)
M2

H

(
3χ3

j − 9χ2
j + 8χj − 2

)
+M2

Wχj
(
12χ2

j − 23χj + 10
)

8MW ′MWχj (χj − 1)
+

+
ω
(
2χ4

j + 20χ3
j − 74χ2

j + 35χj − 1
)

48 (χj − 1)2 +

+
δνχj

24M2
W sin2 (2β)

[
−5M2

H + 3 cos (4β)
(
4M2

W −M2
H

)]
.

(5.9)

The corresponding branching ratio is:

B (H → τµ) =
(M2

H −m2
τ )

2α4v2δ2
νm

2
τ

16πM3
HΓHM4

W s
6
w

(
sin2θ

2

)2
[
O log

(
χ1

χ2

)
+ P (χ2)−

− P (χ1)

]2

.

(5.10)
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5.3 Numerical results

LFV Higgs decays arise at one-loop level in the SLH model and are possible because the
heavy neutrinos Nk couple to either charged lepton, `i, irrespective of its flavor. In the
considered H → ``′ decays all the topologies sketched in Figure 5.1 contribute.

Since the Higgs boson couples not only to a pair of W (′) but also to WW ′, the first
topology gives rise to four different diagrams 1. Then, there are 12 different diagrams at
this order working in the Unitary Gauge, where only physical degrees of freedom appear
and the number of diagrams is reduced.

The contributions of self-energy type (second and third diagrams) are proportional to m`

and will thus be neglected for ` = e, µ. For definiteness we include our results for theH → τ`
decay. There is an overall dependence on the heaviest final-state lepton mass, which shows
that the decay rate H → ``′ vanishes in the limit of massless decay products. Therefore,
and in absence of a mechanism of lepton universality violation in the SLH model, we will
have B(H → τµ) = B(H → τe) = m2

τ

m2
µ
B(H → µe), which suppresses the latter decay rate

by a factor ' 283. Given this trivial proportionality, we will only be plotting B(H → τ`)
in Figures 5.2, 5.3, 5.4 and 5.5.

Within this setting, there are two different mass scales in the problem: those of O(v)

(MW andMH) and those ofO(f) (MN andMW ′). In Chapter 4 we used ω =
M2
W

M2
W ′
' v2

f2 << 1

to characterize the ratio between two separated scales and χj =
M2
Nj

M2
W ′
' O(1) for that of two

high scales. Since there were only three mass scales in the study of semileptonic LFV tau
decays within this model, all mass ratios could be expressed in terms of ω and χj (unless
there is a very strong hierarchy between the different heavy neutrino flavors). In the present
study, there is MH , as well. This entails the appearance of four small ratios between a light
and a heavy particle mass: M2

H

M2
Nj

' M2
W

M2
Nj

' M2
H

M2
W ′
' M2

W

M2
W ′

= ω ' v2

f2 << 1 (we recall that

δν ' v
f
as well) and two involving particles with similar masses: M2

W

M2
H
'

M2
Nj

M2
W ′

= χj ' O(1).
Our analytical expressions of the section 5.2 are simplified in the limit of only two heavy

neutrinos that we followed in Chapter 4. In the numerical analysis we have to stick to the
choices argued in our previous work in Chapter 4, that we recall in the following:

• We have varied the scale of compositeness between 2 and 10 TeVs. Lower values are
in tension with electroweak precision observables and larger figures enter the region
where a UV completion of the SLH model (that would become strongly coupled) starts
to be expected.

• The LFV processes are possible in the SLH model because of the presence of the heavy
neutrinos. The dependence of the amplitude on their contribution is

1We point out that exchanging W ↔ W ′ in the diagrams built with the HWW ′ vertex yields two
different results, as can easily be shown.
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M =
∑
j

V jµ∗
` V jτ

` A (χj) . (5.11)

Assuming two families and one mixing angle, this can be written:

M = sin θ cos θ [A(χ1)− A(χ2)] . (5.12)

We used this simplification to write the equations (5.7), (5.8), (5.9), (5.10). Partic-
ularly, since the terms with log(ω) are independent on χj, they do not contribute
and are not quoted in our results. This, by the way, prevents the appearance of a
moderately large log(χj/ω). In the numerics, we used the limits 0 ≤ χ1 ≤ 0.25 and
1.1χ1 ≤ χ2 ≤ 10χ1 and sin 2θ ≤ 0.25, consistent with current data.

• Finally, the ratio of the two vevs in the model, tan β, is also a free parameter of the
SLH model. We took the range 1 < tan β < 10 for it.

We have performed a scan of the parameter space limited by the above restrictions and
plotted B(H → τ`) as a function of one parameter in turn (f , MN1 , tan β and sin 2θ) in
Figures 5.2, 5.3, 5.4 and 5.5.

Figure 5.2: Dependence of the scale of compositeness, f , of the branching ratio of the H → τ`
decays in the SLH model. The red line shows the 95% CL upper bound by CMS.

The general trend is that the SLH model produces H → τ` decay widths which are eight
to ten orders of magnitude smaller than the B ' O(%) hinted by CMS. As expected, if
the SLH model is to satisfy the bounds on H → µe set by µ → eγ (B(H → µe) . 10−8

[129]) as it does, it must fall way too short to explain the CMS signal, as a consequence
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Figure 5.3: Dependence on the ratio of the two vevs, tanβ, of the branching ratio of the
H → τ` decays in the SLH model. The red line shows the 95% CL upper bound by CMS.

Figure 5.4: Dependence on the mixing angle between the two heavy leptons, sin 2θ, of the
branching ratio of the H → τ` decays in the SLH model. The red line shows the 95% CL
upper bound by CMS.

of its lepton universality. Besides this, very mild variations are appreciated in Figures 5.2,
5.3, 5.4 and 5.5 with respect to the independent variables. Decay probabilities are slightly
larger for smaller f and MN1 and for larger tan β and sin 2θ.
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Figure 5.5: Dependence on the largest mass of the heavy neutrinos, MN1 , of the branching
ratio of the H → τ` decays in the SLH model. The red line shows the 95% CL upper bound
by CMS.
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Chapter 6

Conclusions

In this thesis I tried to review briefly the SM (Part I, Chapter 1) and his frontiers with
particular attention to processes involving flavour violation of charged lepton (Chapter 2)
then I summarized one of the options for physics beyond the SM, the LH models in the
Chapter 3.

Lepton Flavour Violating decays are, due to their high suppression in the SM, an excel-
lent benchmark where to look for new physics. Though present upper bounds are very tight
both in µ→ eγ and other muonic decays into leptons where one could expect that LFV, if
any, will be first observed, tau physics provide the unique property of being the only lep-
ton decaying into hadrons and, consequently, offer a new scenario that, moreover, has been
thoroughly explored in B-factories like Babar and Belle. Present upper limits on branching
ratios of the studied processes are of O(10−8) and future flavour factories, like Belle II, could
lower those up to two orders of magnitude. Therefore the study of LFV hadron decays of
the tau lepton is all important in order to face the near future experimental status.

In Chapter 4 I have analysed LFV decays of the tau lepton into one pseudoscalar, one
vector or two pseudoscalar mesons in the SLH, characterized as a composite Higgs model
with a simple group SU(3)L × U(1)X and with a scale of compositeness f ∼ 1 TeV were
a feature of collective symmetry breaking [142] occurs providing a light Higgs boson. This
model has interesting features like a reduced extension of the spectrum of gauge bosons and
fermions over the SM ones and a small number of unknown parameters. In contrast the
model has no custodial symmetry [143], [144], though its lack does not bring large unwanted
corrections. For the inclusion of the quark sector I use the anomaly free embedding that
does not need the role of an ultraviolet completion in order to cancel a gauge anomaly in
the extended sector. The model has already been confronted with LHC data [119], [107]
and keeps its strength waiting for more precise determinations.

I have considered the study of several hadron decays of the tau lepton, i.e. τ →
µ(P, V, PP ) decays where P is short for a pseudoscalar meson and V for a vector one.
The leading amplitude for these decays, in the SLH model, is given by a one loop contribu-
tion dynamically driven by the mixing of the light charged leptons, τ and µ with the heavy
“little” neutrinos of the model. I have carried out the calculation at leading order in the v

f

expansion and our results are O
(
v2

f2

)
. For the numerical determination of the branching
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ratios I have considered previous constraints on the input constants of the model, although
I have allowed their variation rather prodigally in order to convey the generic pattern of the
predictions. Hence I have studied the dependence of the branching ratios on the relevant
parameters of the model.

I conclude that the predictions of the SLH model for theses processes are, typically,
between 5 and 8 orders of magnitude smaller than present upper bounds and, therefore, out
of reach for the foreseen next flavour factories. An observation of any of these decays by
Belle II not only would signal new physics but also would falsify the SLH model.

In Chapter 5 I calculated H → ``′ always in the framework of SLH. LFV although
extremely suppressed in the SM extended with right handed neutrinos, it may appear at
measurable rates in several well-motivated new physics models. On the other hand, the
discovery of the Higgs boson at the LHC has brought a new scenario to search for LFV in
the decays of this scalar. An elegant solution to the hierarchy problem on the Higgs mass
is provided by the LH models. In Chapter 5 we have considered the SLH model (one of the
simplest realizations of these ideas) against the ATLAS and CMS limits on B(H → τµ), of
order percent. Given the couplings of the Higgs to the leptons in the SLH, is not surprising
that the SLH cannot simultaneously account for the tiny rate at which the H → µe decays
must proceed and also for a measurable signal at LHC. We have found that a B(H → µe)
as low as 10−12 is obtained naturally, with B(H → τ`) only enhanced by a factor of order
300. Thus, the confirmation of the CMS hint would rule out the SLH model, as it will do a
measurement at Belle-II of semileptonic LFV tau decays [145].



Appendix A

Dirac Matrices

A.1 Clifford algebra
{γµ, γν} = γµγν + γνγµ = 2gµν ,

γ0 = β ; ~γ = β~α,

γ5 = γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγ

µγνγργσ =

= −iγ0γ1γ2γ3 = iγ3γ2γ1γ0 = γ5
+,

γ5
2 = I,

{γ5, γµ} = 0,

σµν =
i

2
[γµ, γν ]⇒ γµγν = gµν − iσµν ,

[γ5, σµν ] = 0⇒ γ5σµν =
i

2
εµνρσσρσ,

γ5γ
0~γ = ~Σ ≡ Σi ≡ 1

2
εijkσ

jk.

A.2 Hermitian conjugated

γ0γµγ0 = γµ
+

,

γ0γ5γ
0 = −γ5

+ = −γ5,

γ0(γ5γ
µ)γ0 = (γ5γ

µ)+,

γ0σµνγ0 = (σµν)+,

If ψi is a spinor and Γ is a 4× 4 matrix:

(ψ̄1Γψ2)† = ψ̄2(γ0Γ†γ0)ψ1.
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A.3 Charge conjugation

CγµC
−1 = −γµT ,

Cγ5C
−1 = γ5

T

CσµνC
−1 = −σµνT ,

C(γ5γµ)C−1 = (γ5γµ)T .

A.4 Representations

Dirac representation:

γ0 = β = σ3 ⊗ I =

(
I 0
0 −I

)
,

~α = σ1 ⊗ ~σ =

(
0 ~σ
~σ 0

)
,

~γ = β~α = iσ2 ⊗ ~σ =

(
0 ~σ
−~σ 0

)
,

γ5 = γ5 =

(
0 I
I 0

)
= σ1 ⊗ I,

γ5γ0 = −iσ2 ⊗ I =

(
0 −I
I 0

)
,

γ5~γ = −σ3 ⊗ ~σ =

(
−~σ 0
0 ~σ

)
,

γ5γ0~γ = ~Σ = I ⊗ ~σ =

(
~σ 0
0 ~σ

)
,

σ0i = iσ1 ⊗ σi = iαi = i

(
0 σi

σi 0

)
,

σij = εijkI ⊗ σk = εijkΣ
k = εijk

(
σk 0
0 σk

)
,

C = iγ2γ0 = −iσ1 ⊗ σ2 =

(
0 −iσ2

−iσ2 0

)
.

Majorana representation:

γ0 = β = σ1 ⊗ σ2 =

(
0 σ2

σ2 0

)
,
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α1 = −σ1 ⊗ σ1 =

(
0 −σ1

−σ1 0

)
,

α2 = σ3 ⊗ I =

(
I 0
0 −I

)
,

α3 = −σ1 ⊗ σ3 =

(
0 −σ3

−σ3 0

)
,

γ1 = iI ⊗ σ3 =

(
iσ3 0
0 iσ3

)
,

γ2 = −iσ2 ⊗ σ2 =

(
0 −σ2

σ2 0

)
,

γ3 = −iI ⊗ σ1 =

(
−iσ1 0

0 −iσ1

)
,

γ5 = γ5 = σ3 ⊗ σ2 =

(
σ2 0
0 −σ2

)
,

C = −iσ1 ⊗ σ2 =

(
0 −iσ2

−iσ2 0

)
.

Correlation between the representations of Dirac and Majorana:

γµMajorana = UγµDiracU
† / U = U † =

1√
2

(
I σ2

σ2 −I

)
.

Chiral representation:

γ0 = β = −σ1 ⊗ I =

(
0 −I
−I 0

)
,

~α = σ3 ⊗ ~σ =

(
~σ 0
0 −~σ

)
,

~γ = iσ2 ⊗ ~σ =

(
0 ~σ
−~σ 0

)
,

γ5 = γ5 =

(
I 0
0 −I

)
,

C = −iσ3 ⊗ σ2 =

(
−iσ2 0

0 iσ2

)
,

σ0i = i

(
σi 0
0 −σi

)
,

σij = εijk

(
σk 0
0 σk

)
.
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Correlation between the chiral representation and Dirac representation:

γµchirale = UγµDiracU
† / U =

1√
2

(1 + γ5γ0) =
1√
2

(
I −I
I I

)
,

All the representations satisfy:

CT = C† = −C, CC† = C†C = I, C2 = −I.

A.5 Indices contractions
D dimensions:

�a��b = a · b− iσµνaµbν ,
γλγλ = 4,

γλγµγλ = (2−D) γµ,

γλγµγνγλ = 4gµν + (D − 4) γµγν ,

γλγµγνγργλ = −2γργνγµ + (4−D) γµγνγρ,

γλσµνγλ = 0,

4 dimensions:

tr(γ5γµ) = 0,

tr(γµγν) = 4gµν ,

tr(σµν) = 0,

tr(γµγνγ5) = 0,

tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ),

tr(γ5γµγνγργσ) = −4iεµνρσ = 4iεµνρσ,

tr(�a1�a2 · · ·�a2n) = tr(�a2n · · ·�a2�a1),
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Others Matrices and Algebraic relations

B.1 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

B.2 Gell-Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 .

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

B.3 Levi-Civita tensor

εµνρσ =


+1 if {µ, ν, ρ, σ} is a even permutation of {0, 1, 2, 3}
−1 if is a odd permutation
0 all the other permutations

,

εµνρσ = −εµνρσ,
εµνρσεµ‘ν‘ρ‘σ‘ = − det(gαα

′
) / α = µ, ν, ρ, σ, α′ = µ′, ν ′, ρ′, σ′,

εµνρσεµ
ν‘ρ‘σ‘ = − det(gαα

′
) / α = ν, ρ, σ, α′ = ν ′, ρ′, σ′,

εµνρσεµν
ρ‘σ‘ = −2(gρρ

′
gσσ

′ − gρσ′gρ′σ),

εµνρσεµνρ
σ‘ = −6gσσ

′
,

εµνρσεµνρσ = −24,

,

in 3 dimensions:
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εijk = εijk = 1 if i,j,k is even permutation of 1,2,3.

B.4 Contribution of pα
When we assume that the light quarks have negligible masses, respect the energy and the
masses of the bosons, we can exclude the contribution of pα, the form factors F3,G3, because:

Mτ→µ+V ∝
[
a3

(
p2
)
PL + b3

(
p2
)
PR
]
pα

MV→q̄q = ūq
[
a
(
p2
)
PL + b

(
p2
)
PR
]
γβuq

, (B.1)

so if we add the vector propagator (the photon case is simpler but the final result is the
same) and remembering that we are interested only to the contribution of “p”, schematically:

Mτ→µ+V

(
−i
gαβ − pαpβ

M2
V

p2 −M2
V

)
MV→q̄q →Mτ→µ+V+q̄q ∝

∝ ūq (c1 + c2γ5) �puq =

= c1ūq (mq −mq)uq + c2ūqγ5 (�pq̄ + �pq)uq =

= c2ūq (−mqγ5 − γ5mq)uq =

= −2mqc2ūqγ5uq '
' 0,

(B.2)

because we supposed mq = {mu,md,ms} negligible.
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Cancellation of divergences in the
Unitary Gauge

We study the channel:

τ− (q)→ µ (p′) e+ (p2) e− (p1) ,

in the Unitary Gauge, with the convention:

p = q − p′ = p1 + p2,

so for simplicity we define:

ū (p1) γµv (p2) = [L (e) +R (e)]µ ,

ū (p1) γµPL (p2) = L (e)µ ,

ū (p1) γµPR (p2) = R (e)µ ,

ū (p′) γµPL (q) = L (2)µ .

(C.1)

For the LFV we have the global factor:

F =
∑
i

VτiV
∗
iµM

2
ni
δ2
νe

4,

if we calculate the divergent contributions, multiplying λ∞ (E.1) of the penguins with “x”
virtual boson Dx, we find:
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Dγ =
F

8s2
wM

4
W

(L (e) +R (e))µ · L
µ (2) ,

DZ =
F

16s2
wM

4
W

[
L (e)µ · L

µ (2)− 2 (L (e) +R (e))µ · L
µ (2)

]
,

DZ′ =
F

p2 −M2
Z′

κ

2c2
w (3− t2w)

(
2s2

wR (e)µ · L (2)µ − cos (2θw)L (e)µ · L (2)µ
)
,

(C.2)

where:

κ =
1

s4
wM

2
Z′

{
M2

Z′ − p2

8M2
W

[
2t2β −

(
1− t2w

)]
+

3

8

cos (2θw)

c4
w

− 1

3− t2w
− ct2β

}
. (C.3)

Now we write the results for the divergent parts of the boxes formed with A and B bosons
and C and D fermions, D (ABCD):

D (WWNν) = − F

16s4
wM

4
W

L (e)µ · L
µ (2) ,

D (W ′W ′Nν) = − F

16s4
wM

4
W ′
L (e)µ · L

µ (2) ,

D (WWNN) = − F

8s4
wM

4
W

δ2
νL (e)µ · L

µ (2) ,

D (W ′W ′NN) = − F

8s4
wM

4
W ′
L (e)µ · L

µ (2) ,

D (WW ′Nν) = − F

16s4
wM

2
WM

2
W ′
L (e)µ · L

µ (2) ,

D (W ′WNν) = D (WW ′Nν) ,

D (WW ′NN) = − F

8s4
wM

2
WM

2
W ′
L (e)µ · L

µ (2) ,

D (W ′WNN) = D (WW ′NN) .

(C.4)

We can see that keeping the leading order in the v
f
expansion, only the divergenceD (W ′WNν)

remains, so:

Dγ +DZ +D (WWNν) = 0 +O
(
x3
)

(C.5)
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Dirac Equation

The Dirac equation is [146]: (
iγµ

∂

∂xµ
−m

)
ψ(x) = 0

where:

particle wave: ψ(+)
p,s =

u(p, s)√
2p0V

exp(−ipµxµ)

antiparticle wave: ψ(−)
p,s =

v(p, s)√
2p0V

exp(ipµx
µ)

(D.1)

(
here s is the polarization of the particle, s = ±1

2

)
then the Dirac equation in the center of mass become:

(�p−m)u(p, s) = 0

(�p+m)v(p, s) = 0
/ γµpµ = γ0p0 − ~γ· ~p = �p

and finally we have the solutions of Dirac equation
(
p0 = Ep ≡

√
m2 + ~p2

)
:

u(p, s) =
√
p0 +m

(
χs

σi·~p
p0+m
·χs

)

v(p, s) =
√
p0 +m

(
~σ·~p
p0+m
·χs

χs

) / χ+ 1
2

=

(
1
0

)
χ− 1

2
=

(
0
1

)
(D.2)

the normalization of (D.1) allow to stay only one particle in the volume V:

∫
V

d3xψ
(ε′)†
~p′s′ (x)ψ

(ε)
~ps (x) =

{
1 ⇔ {~p′ = ~p, s′ = s, ε′ = ε}
0

u†(p, s)u(p, s) = v†(p, s)v(p, s) = 2p0
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The adjoint spinors:

ψ̄(x) = ψ†(x)γ0

ū(p, s) = u†(p, s)γ0

ū(p, s)(�p−m) = 0

v̄(p, s) = v(p, s)†γ0

v̄(p, s)(�p+m) = 0

Normalizations of the polarizations:

ūα(p, s)uβ(p, s) = ū(α)(p)u(β)(p) = δα,β

v̄α(p, s)vβ(p, s) = v̄(α)(p)v(β)(p) = −δα,β

v̄α(p, s)uβ(p, s) = v̄(α)(p)u(β)(p) = ū(α)(p)v(β)(p) = 0

The density:

ū(α)(p)γ0u(β)(p) = u†(α)(p)u(β)(p) = ū(α)(p̃)u(β)(p) =
Ep
m
σαβ

v̄(α)(p)γ0v(β)(p) = v†(α)(p)v(β)(p) = −v̄(α)(p̃)v(β)(p) =
Ep
m
σαβ

p̃ = (p0,−~p)

D.1 Projectors on the energy states

Λ+(p) =
∑
s

uα(p, s)ūβ(p, s) = (�p+m)αβ

Λ−(p) =
∑
s

vα(p, s)v̄β(p, s) = (�p−m)αβ

(uū = u⊗ ū ūu = ū·u)

(D.3)

uα(p, s)ūβ(p, s) =
1

2
[(�p+m)(1 + γ5

�s)]αβ

vα(p, s)v̄β(p, s) =
1

2
[(�p−m)(1 + γ5

�s)]αβ

D.2 Gordon identities

ū(α)(p)γµu(β)(q) =
1

2m
ū(α)(p)[(p+ q)µ + iσµν(p− q)ν ]u(β)(q)

ū(α)(p)γµγ5u(β)(q) =
1

2m
ū(α)(p)[(p− q)µγ5 + iσµν(p+ q)νγ

5]u(β)(q)
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where:

ū(α)(p)�qu
(β)(q) = δαβ

pq

m
u(α)†(p) = ~αu(β)(p) = δαβ

~p

m
(D.4)

D.2.1 Change of Lorentz structure

ū(p′)σµνp
νu(q) = −iū(p′) (gµν − γµγν) pνu(q)

= −iū(p′)
[
(q − p′)µ − γµ

(
�q −��p

′)]u(q)

= −iū(p′)
[
(q − p′)µ − γµmτ + 2p′µ −��p

′γµ

]
u(q)

= −iū(p′)
[
(q + p′)µ − γµ (mτ +mµ)

]
u(q)

(D.5)

ū(p′)σµνp
νγ5u(q) = −iū(p′)

[
(q − p′)µ − γµ

(
−mτ −��p

′)] γ5u(q)

= −iū(p′)
[
(q + p′)µ − γµ (−mτ +mµ)

]
γ5u(q)

(D.6)

if we define

PL =
1− γ5

2
; PR =

1 + γ5

2
,

rewrite

p′ =
q + p′

2
− q − p′

2
=
q + p′

2
− p

2

and using (D.5), (D.6):

ū(p′)p′µPLu(q) =
1

2
ū(p′)

[(
q + p′

2
− p

2

)
(1− γ5)

]
u(q)

=
1

4
ū(p′){[iσµνpν + γµ (mτ +mµ)]− [iσµνp

ν + γµ (mµ −mτ )] γ5−

− pµ(1− γ5)}u(q)

=
1

2
ū(p′) {iσµνpνPL + γµmτPR + γµmµPL − pµPL}u(q)

(D.7)

ū(p′)p′µPRu(q) =
1

2
ū(p′)

[(
q + p′

2
− p

2

)
(1 + γ5)

]
u(q)

=
1

2
ū(p′) {iσµνpνPR + γµmτPL + γµmµPR − pµPR}u(q)

(D.8)



102 Appendix D. Dirac Equation

D.3 Fierz Identities
If we take the spinors ā e b of 2 different particles, we can construct 16 bilinear terms [147],
these terms can be combined in 5 different Lorentz covariant modes:

Covariant quantities Components
āb scalar (S) 1
āγαb vector (V) 4√

1
2
āσαβb tensor (T) 6

āγ5γαb axial vector (A) 4
āγ5b pseudoscalar (P) 1

Using 4 bispinors ā, b, c̄ and d we have 5 Lorentz scalars:

(āb)(c̄d) S − variant
(āγαb)(c̄γ

αd) V − variant
1

2
(āσαβb)(c̄σ

αβd) T − variant

(āγαγ5b)(c̄γ
αγ5d) A− variant

(āγ5b)(c̄γ
5d) P − variant

Each one of these variants (Ok = 1, γα,
σαβ√

2
, γ5γα, γ5) can be expressed like

(āOib)(c̄O
id) =

∑
k

cik(āOkd)(c̄Okb)

where cik are:

S V T A P
S 1

4
1
4

-1
4

-1
4

1
4

V 1 -1
2

0 -1
2

-1
T -3

2
0 -1

2
0 -3

2

A -1 -1
2

0 -1
2

1
P 1

4
-1

4
-1

4
1
4

1
4

The 5 amplitudes aren’t orthogonal 1. More in general the Fierz Matrix is the same
for pseudoscalars, this is very important for the weak processes because we can use the
identities:

āγα(1− γ5)b· c̄γα(1− γ5)d = −āγα(1− γ5)d· c̄γα(1− γ5)b

āγα(1− γ5)b· c̄γα(1 + γ5)d = 2ā(1 + γ5)d· c̄(1− γ5)b
(D.9)

1The permutation b↔ d have 2 symmetric combinations: 3(S+P)-T ; 2(S-P)+V+A, and 3 antisymmetric
combinations: V-A ; S+P+T ; 2(S-P)-(V+A).
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Passarino-Veltman Integrals

The divergent part of the integrals is (in our case we used D = 4− 2ε):

λ∞ =
1

ε
+ γ + ln 4π − 1 + ln ν2. (E.1)

To calculate our integrals we expanded on the squared transfer momenta over the squared
heavy masses:

(k − p)2 −M2 = (k2 −M2)

[
1 +

p2 − 2k · p
k2 −M2

]
⇒

⇒ 1

(k − p)2 −M2
u

1

k2 −M2

[
1− p2 − 2k · p

k2 −M2
+

(p2 − 2k · p)2

(k2 −M2)2

]
,

(E.2)

(k − p′)2 −M2 = (k2 −M2)

[
1 +

p′2 − 2k · p′

k2 −M2

]
u (k2 −M2)

[
1 +
−2k · p′

k2 −M2

]
⇒

⇒ 1

(k − p′)2 −M2
u

1

k2 −M2

[
1 +

2k · p′

k2 −M2
+ 4

(2k · p′)2

(k2 −M2)2

]
u

u
1

k2 −M2

[
1 +

2k · p′

k2 −M2

]
,

(E.3)

In the sections E.1.1, E.1.2, E.1.3, E.2 and E.4 we assume q = p+ p′ and p′2 = m2
µ ≈ 0.

E.1 Scalar Integrals

E.1.1 One point function integrals

An[m2] =

∫
dDk

(2π)D
1

(k2 −m2)n
(E.4)
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A0[m2] = 0,

A1[m2] =
−i

16π2
m2

[
λ∞ + ln

m2

ν2

]
,

A2[m2] =
−i

16π2

[
λ∞ + 1 + ln

m2

ν2

]
,

A3[m2] =
−i

16π2

1

2m2
,

A4[m2] =
i

16π2

1

6m4
,

A5[m2] =
−i

16π2

1

12m6
,

An[m2] =
1

n− 1

dAn−1

dm2
; n ≥ 2.

(E.5)

E.1.2 Two point function integrals

Using (E.2) approximation:

B0[p2,m2
0,m

2
1] =

∫
dDk

(2π)D
1

[(k + p)2 −m2
0] (k2 −m2

1)
u

u
∫

dDk

(2π)D
1

(k2 −m2
0)(k2 −m2

1)

[
1− p2 − 2k · p

k2 −M2
+

(p2 − 2k · p)2

(k2 −M2)2

]
=

=
16π4

(m2
0 −m2

1)

[
−p2(2m2

1 + p2)A3[m2
1]+

+
m2

0B0[0,m2
0,m

2
0] ((m2

0 −m2
1)2 +m2

1p
2 + p4)

(m2
0 −m2

1)2
−

− B0[0,m2
1,m

2
1] ((m3

1 −m2
0m1)2 +m2

0m
2
1p

2 +m2
0p

4)

(m2
0 −m2

1)2
+

+
−p2(m2

0 − 3m2
1) + 2(m2

0 −m2
1)2 + 2p4

2(m2
0 −m2

1)

]
,

(E.6)

and:

B0[p2,m2,m2] =

∫
dDk

(2π)D
1

(k2 −m2)2
− p2

(k2 −m2)3
+

p4

(k2 −m2)4
+ 4

(p · k)2

(k2 −m2)4
=

=A2[m2] + p2(m2 + p2)A4[m2],

(E.7)

where:
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B0[0,m2
0,m

2
1] =

−i
16π2

[
λ∞ +

m2
0 ln

m2
0

ν2 −m2
1 ln

m2
1

ν2

m2
0 −m2

1

]
, (E.8)

B0[0,m2,m2] = A2[m2]. (E.9)

E.1.3 Three point function integrals

Using (E.2), (E.3) approximations:

C0[p′2, q2, p2,m2
a,m

2
b ,m

2
a] =

∫
dDk

(2π)D
1

(k2 −m2
b) [(k − p′)2 −m2

a] [(k − q)2 −m2
a]

u

u
16π4

12m4
a

(
m2
b

m2
a
− 1
)4

{(
m2
b

m2
a

− 1

)[
(12m2

a

(
m2
b

m2
a

− 1

)2

+

+ 3q2

(
1 + 5

m2
b

m2
a

)
+ p2

(
1− 5

m2
b

m2
a

− 2
m4
b

m4
a

)]
−

− 6
m2
b

m2
a

ln
m2
b

m2
a

[
2m2

a

(
m2
b

m2
a

− 1

)2

− p2m
2
b

m2
a

+ q2

(
2 +

m2
b

m2
a

)]}
,

(E.10)

C0[p′2, q2, p2, 0,m2
b ,m

2
c ] =

∫
dDk

(2π)D
1

(k2 −m2
b)(k − p′)2 [(k − q)2 −m2

c ]
=

=− 16π4

2m
4
c

m4
b

(
m2
c

m2
b
− 1
)4

m6
b

{(
m2
c

m2
b

− 1

){
p4 +

m2
c

m2
b

p2
(
m2
b − 5p2+

+ q2
)

+
m6
c

m6
b

m2
b

(
p2 + 2q2

)
− m4

c

m4
b

[
2p4 − 5p2q2 + 2m2

b

(
p2+

+ q2
)]}
− m4

c

m4
b

ln
m2
c

m2
b

{
2

(
m2
c

m2
b

− 1

)3

m4
b+

+

(
m2
c

m2
b

− 1

)
m2
b

[(
m2
c

m2
b

− 1

)
p2 +

(
1 +

m2
c

m2
b

)
q2

]
+

+ 2p2

[
−3p2 +

(
2 +

m2
c

m2
b

)
q2

]}}

,

(E.11)
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C0[p′2, q2, p2,m2
a,m

2
b , 0] =

= C0[p′2, q2, p2,m2
a, 0,m

2
b ] =

∫
dDk

(2π)D
1

(k2 −m2
b) [(k − p′)2 −m2

a] (k − q)2
=

=− 16π4

2
m4
b

m4
a

(
m2
b

m2
a
− 1
)5

m10
a

{(
m2
b

m2
a

− 1

){
m10
b

m10
a

m4
ap

2
(
m2
a + p2

)
+

+
(
m4
a +m2

ap
2 + p4

)
q4 − m8

b

m8
a

[
6m4

ap
4 −m2

ap
4q2+

+m6
a

(
3p2 + q2

)]
− m2

b

m2
a

q2
[
−m6

a + 6m4
aq

2 + 7p4q2 +m2
a

(
p4+

+ 9p2q2
)]

+
m6
b

m6
a

[
p4q4 + 3m6

a

(
p2 + q2

)
−m2

ap
2q2
(
9p2 + q2

)
+

+m4
a

(
3p4 + +2q4

)]
− m4

b

m4
a

[
7p4q4 + 27m2

ap
2q2
(
p2 + q2

)
+

+m6
a

(
p2 + 3q2

)
−m4

a

(
2p4 + 3q4

)]}
+

+
m4
b

m4
a

ln
m2
b

m2
a

{
2

(
m2
b

m2
a

− 1

)4

m8
a + 12p4q4−

−
(
m2
b

m2
a

− 1

)3

m6
a

(
p2 − q2

)
+ 12m2

ap
2q2

[(
1 + 2

m2
b

m2
a

)
p2+

+

(
2 +

m2
b

m2
a

)
q2

]
+ 6m4

a

[
m4
b

m4
a

p4 + q4 − m2
b

m2
a

(
p4 + q4

)]}}

.

(E.12)

E.2 Vector Integrals

Using (E.2) approximation:

B1[p2,m2
0,m

2
1] =

∫
dDk

(2π)D
kµ

(k2 −m2
0) [(k − p)2 −m2

1]
=

=iπ2pµ
[
B0[p2,m2

0,m
2
1]

2
+

+
m2

0 −m2
1

2p2

(
B0[p2,m2

0,m
2
1]−B0[0,m2

0,m
2
1]
)]
,

(E.13)
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I2 =

∫
dDk

(2π)D
kµ

(k2 −m2
1) [(k ± a)2 −m2

2] [(k ± q)2 −m2
3]

=

=Aaµ +Bqµ ⇒
(
A

B

)
=

1

a2q2 − (a · q)2

(
q2 −a · q
−a · q a2

)(
aµI2

qµI2

)
,

(E.14)

where:

aµI2 =

∫
dDk

(2π)D
k · a

(k2 −m2
1) [(k ± a)2 −m2

2] [(k ± q)2 −m2
3]

=

=± 1

2
B0[q2,m2

1,m
2
3]−B0[b2,m2

2,m
2
3] + (m2

2 − a2 −m2
1)C0[a2, q2, b2,m2

2,m
2
1,m

2
3],

qµI2 =

∫
dDk

(2π)D
k · q

(k2 −m2
1) [(k ± a)2 −m2

2] [(k ± q)2 −m2
3]

=

=± 1

2
B0[a2,m2

1,m
2
2]−B0[b2,m2

2,m
2
3] + (m2

3 − q2 −m2
1)C0[a2, q2, b2,m2

2,m
2
1,m

2
3].

(E.15)

E.3 Tensor Integrals

If q = a+ b:

IT =

∫
dDk

(2π)D
kµkν

(k2 −m2
1) [(k ± a)2 −m2

2] [(k ± q)2 −m2
3]

=

=A′gµν +B′aµaν + C ′qµqν +D′(aµqν + aνqµ)⇒

⇒


1 = gµνIT = DA′ + a2B′ + q2C ′ + 2a · qD′

2 = aµaνIT = a2A′ + a4B′ + (a · q)2C ′ + 2a2a · qD′

3 = qµqνIT = q2A′ + (a · q)2B′ + q4C ′ + 2q2a · qD′

4 = aµqνIT = a · qA′ + a2a · qB′ + q2a · qC ′ + [a2q2 + (a · q)2]D′

(E.16)

where:
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1 =

∫
dDk

(2π)D
k2

(k2 −m2
1) [(k ± a)2 −m2

2] [(k ± q)2 −m2
3]

=

=B0[b2,m2
2,m

2
3] +m2

1C0[a2, q2, b2,m2
2,m

2
1,m

2
3],

2 =

∫
dDk

(2π)D
k · a

(k2 −m2
1) [(k ± a)2 −m2

2] [(k ± q)2 −m2
3]

=

=
1

2

[
−a · qB1[q2,m2

1,m
2
3] + a · bB1[b2,m2

2,m
2
3] + a2B0[b2,m2

2,m
2
3] + (m2

2 − a2 −m2
1)aµI2

]
,

3 =

∫
dDk

(2π)D
k · q

(k2 −m2
1) [(k ± a)2 −m2

2] [(k ± q)2 −m2
3]

=

=
1

2

[
−a · qB1[a2,m2

1,m
2
2] + q · bB1[b2,m2

2,m
2
3] + a · qB0[b2,m2

2,m
2
3] + (m2

3 − q2 −m2
1)qµI2

]
,

4 =

∫
dDk

(2π)D
(k · a)(k · q)

(k2 −m2
1) [(k ± a)2 −m2

2] [(k ± q)2 −m2
3]

=

=
1

2

[
−a2B1[a2,m2

1,m
2
2] + a · bB1[b2,m2

2,m
2
3] + a2B0[b2,m2

2,m
2
3] + (m2

3 − q2 −m2
1)aµI2

]
,

(E.17)

where:

A′ =
− 2 q2 + a2(− 3 + q2 1 ) + 2 4 a · q − 1 (a · q)2

(D − 2)(a2q2 − (a · q)2)

B′ =− (D − 1) 2 q4 + a2q2( 3 − q2 1 )− 2(D − 1)q2 4 a · q + ((D − 2) 3 + q2 1 )(a · q)2

(D − 2)(a2q2 − (a · q)2)2

C ′ =− a2 2 q2 + a4((D − 1) 3 − q2 1 )− 2a2(D − 1) 4 a · q + ((D − 2) 2 + a2 1 )(a · q)2

(D − 2)(a2q2 − (a · q)2)2

D′ =− a2(D − 2)q2 4 + ((1−D) 2 q2 + a2((1−D) 3 + q2 1 ))a · q +D 4 (a · q)2 − 1 (a · q)3

(D − 2)(a2q2 − (a · q)2)2

(E.18)

E.4 Integrals for boxes
When the integral converges we can approximate:

p2
1 = m2

q ' 0

p2
2 = m2

q ' 0

p′2 = m2
µ ' 0, pα1 ≈ 0

pα2 ≈ 0

p′α ≈ 0

(E.19)
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so:

Ibox1 =

∫
dDk

(2π)D
k2

(k2 −M2
N) [(k − q)2 −M2

V 1] [(k − p′)2 −M2
V 2]
[
(k − p′ − p2)2 −m2

q

] '
'
∫

dDk

(2π)D
k2

(k2 −M2
N) [k2 −M2

V 1] [k2 −M2
V 2]
[
k2 −m2

q

] =

= C0[0, 0, 0,M2
V 1,M

2
V 2,m

2
q] +M2

ND0[0, 0, 0,M2
N ,M

2
V 1,M

2
V 2,m

2
q]

(E.20)

Ibox2 =

∫
dDk

(2π)D
kαkβ

(k2 −M2
N) [(k − q)2 −M2

V 1] [(k − p′)2 −M2
V 2]
[
(k − p′ − p2)2 −m2

q

] '
' gαβ

D
Ibox1

(E.21)

Ibox3 =

∫
dDk

(2π)D
kαkβ(

k2 −m2
q

)
(k2 −M2

V 1) (k2 −M2
V 2)

=

=
gαβ
D

(
B0[0,m2

q,M
2
V 2] +M2

V 1C0[0, 0, 0,m2
q,M

2
V 1,M

2
V 2]
)
⇒

⇒ Idivbox3 =
gαβ
D
B0[0,m2

q,M
2
V 2]

(E.22)

Ibox4 =

∫
dDk

(2π)D
kαkβk2

(k2 −M2
N) [(k − q)2 −M2

V 1] [(k − p′)2 −M2
V 2]
[
(k − p′ − p2)2 −m2

q

] '
'
∫

dDk

(2π)D
kαkβ

[(k − q)2 −M2
V 1] [(k − p′)2 −M2

V 2]
[
(k − p′ − p2)2 −m2

q

]+
+M2

N

kαkβ

(k2 −M2
N) [(k − q)2 −M2

V 1] [(k − p′)2 −M2
V 2]
[
(k − p′ − p2)2 −m2

q

] =

=

∫
dk′

2πD
(k′α + p′α + pα2 )(k′β + p′β + pβ2 )

[(k′ − p1)2 −M2
V 1] [(k′ + p2)2 −M2

V 2]
(
k′2 −m2

q

) +M2
NIbox2 '

' Ibox3 +M2
NIbox2

(E.23)
and if Ibox4 multiplied by pi = {p1, p2, p

′}:

Ibox4 · pαi = Idivbox3 · pαi (E.24)
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Ibox5 =

∫
dDk

(2π)D
kαkβkηkρ(

k2 −m2
q

)
(k2 −M2

V 1) (k2 −M2
V 2)

=

=
gηρgαβ + gηαgρβ + gηβgαρ

D(D + 2)

(
B0[0,m2

q,M
2
V 2] + 2M2

V 2C0[0, 0, 0,m2
q,M

2
V 1,M

2
V 2]+

+M4
V 2D0[0, 0, 0,m2

q,M
2
V 1,M

2
V 2]
)

(E.25)

Ibox6 =

∫
dDk

(2π)D
kαkβkηk2

(k2 −M2
N) [(k − q)2 −M2

V 1] [(k − p′)2 −M2
V 2]
[
(k − p′ − p2)2 −m2

q

] '
' 2 Ibox5|MV 1↔MV 2

+ Idivbox3 · (p
η
2gαβ + p′ηgαβ + pα2 + p′α + gαβp2 · p′),

(E.26)

also in this case, if Ibox6 multiplied by pi = {p1, p2, p
′}

Ibox6 · pαi = 2 Idivbox5

∣∣
MV 1↔MV 2

pαi + Idivbox3 · (p
η
2p
β
i + p′ηpβi + p2 · pi + p′ · pi + p2 · p′pβi ), (E.27)

Ibox7 =

∫
dDk

(2π)D
kαkβ

(k2 −m2
q) (k2 −M2

V 2)
=
gαβ
D

(
A0[m2

q] +M2
V 2B0[0,m2

q,M
2
V 2]
)

(E.28)

Ibox8 =

∫
dDk

(2π)D
kαkβk4

(k2 −M2
N) [(k − q)2 −M2

V 1] [(k − p′)2 −M2
V 2]
[
(k − p′ − p2)2 −m2

q

] '
'

{[
M2

V 1 +
4

D
(p1 · p′) +

(
2− 4

D

)
(p2 · p′)

]
+

(
2 +

2

D

)
(p2 + p′)·

· (p1 + p′)

}
Ibox3 + Ibox7 + (pα2 + p′α)(pβ2 + p′β)B0[0,m2

q,M
2
V 2] +M2

NIbox4,

(E.29)

also in this case, if Ibox8 multiplied by pi = {p1, p2, p
′}, then {Ibox4, Ibox3} → Idivbox3.



Appendix F

Feynman rules of the SLH model in the
Unitary Gauge

Fermion propagator:

(
i

��k −m

)
βα

=

(
i
��k +m

k2 −m2

)
βα

(F.1)

Vector propagator:

− i
gαβ − kαkβ

m2

k2 −m2
(F.2)

Scalar propagator:

i

k2 −m2
(F.3)
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F.1 Vertices

Table F.1: Couplings fermion-fermion-vector in the FCC case.

L1L2 V = W V = W ′

l−i νi i e√
2sw

(
1− δ2

ν

2

)
ν̄iγµPLli

e√
2sw

δν ν̄iγµPLli

l−i Nj −i e√
2sw

δνVijN̄jγµPLli
e√
2sw

(
1− δ2

ν

2

)
VijN̄jγµPLli

du i e√
2sw

ūγµPLd −δd e√
2sw

ūγµPLd

ud i e√
2sw

d̄γµPLu δd
e√
2sw

d̄γµPLu

Du −iδd e√
2sw

ūγµPLD − e√
2sw

ūγµPLD

uD −iδd e√
2sw

D̄γµPLu
e√
2sw

D̄γµPLu

cs i e√
2sw

s̄γµPLc δs
e√
2sw

s̄γµPLc

sc i e√
2sw

c̄γµPLs −δs e√
2sw

c̄γµPLs

Table F.2: Couplings fermion-fermion-γµ in the FNC case.

L1L2 V = γµ
νiNi 0
NiNj 0
lili iel̄iγµPLli
uu −i2e

3
ūγµPLu

dd i e
3
d̄γµPLd

ss i e
3
s̄γµPLs
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Table F.3: Couplings fermion-fermion-Zµ in the FNC case.

L1L2 V = Zµ
νiNi −i e

2swcw
δνVijN̄iγµPLνi

NiNj i e
sw

(
δ2
ν

2cw
+ δZ√

3−t2w

)
N̄jγµPLNi

lili ie
(
ALl̄iγµPLli + AR l̄iγµPRli

)
uu ie

(
3−t2w
6tw

ūγµPLu− 2tw
3
ūγµPRu

)
dd ie

(
−3+t2w

6tw
d̄γµPLd+ tw

3
d̄γµPRd

)
ss −ie3+t2w

6tw
s̄γµPLs

Table F.4: Couplings fermion-fermion-Z ′µ in the FNC case.

L1L2 V = Z ′µ
νiNi i e

2sw

√
3− t2wδνVijN̄iγµPLνi

NiNj i e
2sw

2−δ2
ν(3−t2w)√
3−t2w

N̄jγµPLNi

lili ie
(
BLl̄iγµPLli +BR l̄iγµPRli

)
uu ie

(√
3−t2w
6sw

ūγµPLu− 2tw

3cw
√

3−t2w
ūγµPRu

)
dd ie

(√
3−t2w
6sw

d̄γµPLd+ tw

3cw
√

3−t2w
d̄γµPRd

)
ss ie

√
3−t2w
6sw

s̄γµPLs

where:

AL =
2s2

w − 1

2swcw
− δZ

2swc2
w

1− 2s2
w√

3− t2w
,

AR = tw +
δZsw

c2
w

√
3− t2w

,

BL =
2s2

w − 1

2swc2
w

√
3− t2w

+
δZ (1− 2s2

w)

2swcw
,

BR =
sw

c2
w

√
3− t2w

− δZtw.

(F.4)
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Vµνρ = ieC
[
(p+ k)ρ gµν + (q − p)ν gµρ − (k + q)µ gνρ

]
(F.5)

Table F.5: Couplings vector-vector-vector.

Vµνρ C

AW+W− -1
ZW+W− cw

sw

Z ′W+W− −δZ cwsw
AW ′+W ′− -1

ZW ′+W ′− c2w−s2w+cwδZ
√

3−t2w
2cwsw

Z ′W ′+W ′− cw
√

3−t2w−δZ(c2w−s2w)
2cwsw

where we are using the definitions (3.46), (3.57):

δZ =
(1− t2W )

√
3− t2W

8cW
x2 ; δν = − x√

2tβ
; x ≡ v

f
(F.6)



Part IV

Bibliography

115





Bibliography

[1] B. T. Cleveland, Timothy Daily, Raymond Davis, Jr., James R. Distel, Kenneth
Lande, C. K. Lee, Paul S. Wildenhain, and Jack Ullman. Measurement of the solar
electron neutrino flux with the Homestake chlorine detector. Astrophys. J., 496:505–
526, 1998. doi: 10.1086/305343.

[2] P. Anselmann et al. Status report on the GALLEX experiment. Nuovo Cim., C15:
917–929, 1992. doi: 10.1007/BF02506685.

[3] J. N. Abdurashitov et al. Solar neutrino flux measurements by the Soviet-American
Gallium Experiment (SAGE) for half the 22 year solar cycle. J. Exp. Theor. Phys.,
95:181–193, 2002. doi: 10.1134/1.1506424. [Zh. Eksp. Teor. Fiz.122,211(2002)].

[4] M. Altmann et al. Complete results for five years of GNO solar neutrino observations.
Phys. Lett., B616:174–190, 2005. doi: 10.1016/j.physletb.2005.04.068.

[5] Samoil M. Bilenky and B. Pontecorvo. Lepton Mixing and Neutrino Oscillations.
Phys. Rept., 41:225–261, 1978. doi: 10.1016/0370-1573(78)90095-9.

[6] Q. R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral
current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett., 89:011301,
2002. doi: 10.1103/PhysRevLett.89.011301.

[7] J. Beringer et al. Review of Particle Physics (RPP). Phys. Rev., D86:010001, 2012.
doi: 10.1103/PhysRevD.86.010001.

[8] E. O. Iltan and I. Turan. Lepton flavor violating Z → l+l− decay in the general Higgs
doublet model. Phys. Rev., D65:013001, 2002. doi: 10.1103/PhysRevD.65.013001.

[9] Bernard Aubert et al. Searches for Lepton Flavor Violation in the Decays τ± → e±γ
and τ± → µ±γ. Phys. Rev. Lett., 104:021802, 2010. doi: 10.1103/PhysRevLett.104.
021802.

[10] K. Hayasaka et al. New search for τ → µγ and τ → eγ decays at Belle. Phys. Lett.,
B666:16–22, 2008. doi: 10.1016/j.physletb.2008.06.056.

[11] et al. Adam. New constraint on the existence of the µ+ → e+γ decay. Phys. Rev.
Lett., 110:201801, May 2013. doi: 10.1103/PhysRevLett.110.201801. URL http:
//link.aps.org/doi/10.1103/PhysRevLett.110.201801.

117

http://link.aps.org/doi/10.1103/PhysRevLett.110.201801
http://link.aps.org/doi/10.1103/PhysRevLett.110.201801


118 Bibliography

[12] K. Hayasaka et al. Search for Lepton Flavor Violating Tau Decays into Three Leptons
with 719 Million Produced Tau+Tau- Pairs. Phys. Lett., B687:139–143, 2010. doi:
10.1016/j.physletb.2010.03.037.

[13] U. Bellgardt et al. Search for the Decay µ+ → e+e+e−. Nucl. Phys., B299:1, 1988.
doi: 10.1016/0550-3213(88)90462-2.

[14] Mark Srednicki. Quantum Field Theory. Cambridge Univ. Press, Cambridge, 2007.
URL https://cds.cern.ch/record/1019751.

[15] W.N. Cottingham and D.A. Greenwood. Introduction to the Standard Model. Cam-
bridge Univ. Press, Cambridge, 2007.

[16] M.E. Peskin and Schroeder. An Introduction to Quantum Field Theory. Westview
Press, 1995.

[17] G. Naber. Topology, Geometry, and Gauge fields interactions. Springer, 2000.

[18] R. Gilmore. Lie Groups, Lie Algebras and Some of Their Applications. Dover, 2006.

[19] R. Gilmore. Lie Groups, Physics, and Geometry. Cambridge Univ. Press, Cambridge,
2008.

[20] Makoto Kobayashi and Toshihide Maskawa. CP Violation in the Renormalizable
Theory of Weak Interaction. Prog. Theor. Phys., 49:652–657, 1973. doi: 10.1143/
PTP.49.652.

[21] E. P. Hincks and B. Pontecorvo. The absorption of charged particles from the 2.2-
mu-sec meson decay. Phys. Rev., 74:697–698, 1948. doi: 10.1103/PhysRev.74.697.

[22] Frank F. Deppisch. Lepton Flavour Violation and Flavour Symmetries. Fortsch. Phys.,
61:622–644, 2013. doi: 10.1002/prop.201200126.

[23] A. A. Gvozdev, A. V. Kuznetsov, N. V. Mikheev, and L. A. Vasilevskaya. Three
types of fermion mixing and possible manifestations of a Pati-Salam leptoquark
in the low-energy processes. In ’95 electroweak interactions, unified theories. Pro-
ceedings, Leptonic Session of the 30th Rencontre de Moriond, Moriond Particle
Physics Meetings, Les Arcs, France, March 11-18, 1995, pages 321–326, 1995. URL
https://inspirehep.net/record/394779/files/C95-03-11-1_321-326.pdf.

[24] et al. Aktas. Tau lepton production in ep collisions at hera. 48(3):699–714, 2006.
ISSN 1434-6044. URL http://dx.doi.org/10.1140/epjc/s10052-006-0028-2.

[25] B. Foster. Lectures on HERA physics. In Corfu Summer Institute on Elementary
Particle Physics (Corfu 2001) Corfu, Greece, August 31-September 20, 2001, 2002.
URL http://alice.cern.ch/format/showfull?sysnb=2315307.

https://cds.cern.ch/record/1019751
https://inspirehep.net/record/394779/files/C95-03-11-1_321-326.pdf
http://dx.doi.org/10.1140/epjc/s10052-006-0028-2
http://alice.cern.ch/format/showfull?sysnb=2315307


Bibliography 119

[26] Ana M. Teixeira, Asmaa Abada, Antonio J. R. Figueiredo, and Jorge C. Romao.
Phenomenology of LFV at low-energies and at the LHC: strategies to probe the SUSY
seesaw. Nucl. Phys. Proc. Suppl., 218:50–55, 2011. doi: 10.1016/j.nuclphysbps.2011.
06.010.

[27] Murray Gell-Mann, Pierre Ramond, and Richard Slansky. Complex Spinors and Uni-
fied Theories. Conf. Proc., C790927:315–321, 1979.

[28] Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett.,
81:1562–1567, 1998. doi: 10.1103/PhysRevLett.81.1562.

[29] Q. R. Ahmad et al. Measurement of day and night neutrino energy spectra at SNO
and constraints on neutrino mixing parameters. Phys. Rev. Lett., 89:011302, 2002.
doi: 10.1103/PhysRevLett.89.011302.

[30] Riccardo Barbieri, John R. Ellis, and Mary K. Gaillard. Neutrino Masses and Oscil-
lations in SU(5). Phys. Lett., B90:249, 1980. doi: 10.1016/0370-2693(80)90734-0.

[31] P. H. Frampton, S. L. Glashow, and T. Yanagida. Cosmological sign of neutrino CP
violation. Phys. Lett., B548:119–121, 2002. doi: 10.1016/S0370-2693(02)02853-8.

[32] T. Endoh, S. Kaneko, S. K. Kang, T. Morozumi, and M. Tanimoto. CP violation in
neutrino oscillation and leptogenesis. Phys. Rev. Lett., 89:231601, 2002. doi: 10.1103/
PhysRevLett.89.231601.

[33] John Ellis, S. Kelley, and D.V. Nanopoulos. Precision lep data, supersymmet-
ric guts and string unification. Physics Letters B, 249(3):441 – 448, 1990. ISSN
0370-2693. doi: http://dx.doi.org/10.1016/0370-2693(90)91013-2. URL http://www.
sciencedirect.com/science/article/pii/0370269390910132.

[34] John R. Ellis, M. E. Gomez, G. K. Leontaris, S. Lola, and Dimitri V. Nanopoulos.
Charged lepton flavor violation in the light of the Super-Kamiokande data. Eur. Phys.
J., C14:319–334, 2000. doi: 10.1007/s100520000357.

[35] Jonathan Richard Ellis, Mary Katherin Gaillard, and Dimitri V Nanopoulos. Left-
handed currents and CP violation. Nucl. Phys. B.

[36] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model of
elementary particles. Prog. Theor. Phys., 28:870–880, 1962. doi: 10.1143/PTP.28.870.

[37] John R. Ellis, Junji Hisano, Martti Raidal, and Yasuhiro Shimizu. Lepton electric
dipole moments in nondegenerate supersymmetric seesaw models. Phys. Lett., B528:
86–96, 2002. doi: 10.1016/S0370-2693(02)01197-8.

[38] M. Fukugita and T. Yanagida. Baryogenesis Without Grand Unification. Phys. Lett.,
B174:45, 1986. doi: 10.1016/0370-2693(86)91126-3.

http://www.sciencedirect.com/science/article/pii/0370269390910132
http://www.sciencedirect.com/science/article/pii/0370269390910132


120 Bibliography

[39] Sacha Davidson and Alejandro Ibarra. Determining seesaw parameters from weak
scale measurements? JHEP, 09:013, 2001. doi: 10.1088/1126-6708/2001/09/013.

[40] John R. Ellis, Junji Hisano, Martti Raidal, and Yasuhiro Shimizu. A New parametriza-
tion of the seesaw mechanism and applications in supersymmetric models. Phys. Rev.,
D66:115013, 2002. doi: 10.1103/PhysRevD.66.115013.

[41] Andre de Gouvea and Petr Vogel. Lepton Flavor and Number Conservation, and
Physics Beyond the Standard Model. Prog. Part. Nucl. Phys., 71:75–92, 2013. doi:
10.1016/j.ppnp.2013.03.006.

[42] Vincenzo Cirigliano, Ryuichiro Kitano, Yasuhiro Okada, and Paula Tuzon. On the
model discriminating power of µ → e conversion in nuclei. Phys. Rev., D80:013002,
2009. doi: 10.1103/PhysRevD.80.013002.

[43] F. P. An et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys.
Rev. Lett., 108:171803, 2012. doi: 10.1103/PhysRevLett.108.171803.

[44] L Michel. Interaction between four half-spin particles and the decay of the Î¼-
meson. Proceedings of the Physical Society. Section A, 63(12):1371, 1950. URL
http://stacks.iop.org/0370-1298/63/i=12/a=512.

[45] A Blondel, A Bravar, M Pohl, S Bachmann, N Berger, A Schöning, D Wiedner,
P Fischer, I Perić, M Hildebrandt, et al. Letter of intent for an experiment to search
for the decay µâ eee, 2012.

[46] Monika Blanke, Andrzej J. Buras, Bjoern Duling, Anton Poschenrieder, and Cecilia
Tarantino. Charged Lepton Flavour Violation and (g − 2)(µ) in the Littlest Higgs
Model with T-Parity: A Clear Distinction from Supersymmetry. JHEP, 05:013, 2007.
doi: 10.1088/1126-6708/2007/05/013.

[47] F. del Aguila, J. de Blas, and M. Perez-Victoria. Effects of new leptons in Electroweak
Precision Data. Phys. Rev., D78:013010, 2008. doi: 10.1103/PhysRevD.78.013010.

[48] Francisco del Aguila, Jose I. Illana, and Mark D. Jenkins. Lepton flavor violation in
the Simplest Little Higgs model. JHEP, 03:080, 2011. doi: 10.1007/JHEP03(2011)080.

[49] Yoshitaka Kuno and Yasuhiro Okada. Muon decay and physics beyond the standard
model. Rev. Mod. Phys., 73:151–202, 2001. doi: 10.1103/RevModPhys.73.151.

[50] Nima Arkani-Hamed, Christopher D. Carone, Lawrence J. Hall, and Hitoshi Mu-
rayama. Supersymmetric framework for a dynamical fermion mass hierarchy. Phys.
Rev., D54:7032–7050, 1996. doi: 10.1103/PhysRevD.54.7032.

[51] S Dimopoulos and Gian Francesco Giudice. Naturalness constraints in supersymmetric
theories with non-universal soft terms. Physics Letters B, 357(4):573–578, 1995.

http://stacks.iop.org/0370-1298/63/i=12/a=512


Bibliography 121

[52] Ryuichiro Kitano, Masafumi Koike, and Yasuhiro Okada. Erratum: Detailed cal-
culation of lepton flavor violating muon-electron conversion rate for various nuclei
[phys. rev. d 66 , 096002 (2002)]. Phys. Rev. D, 76:059902, Sep 2007. doi: 10.
1103/PhysRevD.76.059902. URL http://link.aps.org/doi/10.1103/PhysRevD.
76.059902.

[53] Laurence S. Littenberg and Robert Shrock. Implications of improved upper bounds
on |∆L| = 2 processes. Phys. Lett., B491:285–290, 2000. doi: 10.1016/S0370-2693(00)
01041-8.

[54] Yoshitaka Kuno. Future lfv experiments. In Proceedings of Flavor Physics and CP
Violation 2010. May 25-29, 2010. Turin, Italy. Published online at http://pos. sissa.
it/cgi-bin/reader/conf. cgi? confid= 116, id. 49, volume 1, page 49, 2010.

[55] Boyang Liu. Muonium-antimuonium oscillations in an extended minimal supersym-
metric standard model with right-handed neutrinos. Physical Review D, 79(1):015001,
2009.

[56] Antonio Pich. The Standard model of electroweak interactions. In High-energy physics.
Proceedings, European School, Aronsborg, Sweden, June 18-July 1, 2006, 2007. URL
http://doc.cern.ch/yellowrep/2007/2007-005/cern-2007-005.pdf.

[57] Antonio Pich. Selected topics on tau physics. Acta Phys. Polon., B38:3449–3458,
2007.

[58] Y. Amhis et al. Averages of b-hadron, c-hadron, and τ -lepton properties as of summer
2014. 2014.

[59] Fundamental Physics at the Intensity Frontier, 2012. doi: 10.2172/1042577. URL
http://inspirehep.net/record/1114323/files/arXiv:1205.2671.pdf.

[60] Antonio Pich. Precision tau physics. Progress in Particle and Nuclear Physics, 75:
41–85, 2014.

[61] Andrea Brignole and Anna Rossi. Anatomy and phenomenology of mu-tau lepton
flavor violation in the MSSM. Nucl. Phys., B701:3–53, 2004. doi: 10.1016/j.nuclphysb.
2004.08.037.

[62] A Vicente. Lepton flavor violation beyond the mssm. Advances in High Energy
Physics, 2015:686572, 2015.

[63] Daiji Kimura, Kang Young Lee, and Takuya Morozumi. The Form factors of
τ → Kπ(η)ν and the predictions for CP violation beyond the standard model.
PTEP, 2013:053B03, 2013. doi: 10.1093/ptep/ptu107,10.1093/ptep/ptt013. [Erra-
tum: PTEP2014,no.8,089202(2014)].

http://link.aps.org/doi/10.1103/PhysRevD.76.059902
http://link.aps.org/doi/10.1103/PhysRevD.76.059902
http://doc.cern.ch/yellowrep/2007/2007-005/cern-2007-005.pdf
http://inspirehep.net/record/1114323/files/arXiv:1205.2671.pdf


122 Bibliography

[64] Ken Kiers, Kevin Little, Alakabha Datta, David London, Makiko Nagashima, and
Alejandro Szynkman. CP violation in τ → Kππν(τ). Phys. Rev., D78:113008, 2008.
doi: 10.1103/PhysRevD.78.113008.

[65] Georges Aad et al. Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC. Phys. Lett., B716:1–29, 2012. doi:
10.1016/j.physletb.2012.08.020.

[66] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC. Phys. Lett., B716:30–61, 2012. doi: 10.1016/j.physletb.
2012.08.021.

[67] S. Dittmaier et al. Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables.
2011. doi: 10.5170/CERN-2011-002.

[68] Georges Aad et al. Search for the Standard Model Higgs boson in the H to τ+τ−

decay mode in
√
s = 7 TeV pp collisions with ATLAS. JHEP, 09:070, 2012. doi:

10.1007/JHEP09(2012)070.

[69] Search for the Standard Model Higgs boson in H-&gt; tau tau decays in proton-proton
collisions with the ATLAS detector. 2012.

[70] Serguei Chatrchyan et al. Search for neutral Higgs bosons decaying to tau pairs in
pp collisions at

√
s = 7 TeV. Phys. Lett., B713:68–90, 2012. doi: 10.1016/j.physletb.

2012.05.028.

[71] Search for the standard model Higgs boson decaying to tau pairs produced in associ-
ation with a W or Z boson with the CMS experiment in pp collisions at p s = 7 and
8 TeV. 2013.

[72] Georges Aad et al. Search for neutral Higgs bosons of the minimal supersymmetric
standard model in pp collisions at

√
s = 8 TeV with the ATLAS detector. JHEP, 11:

056, 2014. doi: 10.1007/JHEP11(2014)056.

[73] Georges Aad et al. Search for charged Higgs bosons decaying via H+ → τν in top
quark pair events using pp collision data at

√
s = 7 TeV with the ATLAS detector.

JHEP, 06:039, 2012. doi: 10.1007/JHEP06(2012)039.

[74] Georges Aad et al. Search for charged Higgs bosons through the violation of lepton
universality in tt̄ events using pp collision data at

√
s = 7 TeV with the ATLAS

experiment. JHEP, 03:076, 2013. doi: 10.1007/JHEP03(2013)076.

[75] Vardan Khachatryan et al. Search for neutral MSSM Higgs bosons decaying to a pair
of tau leptons in pp collisions. JHEP, 10:160, 2014. doi: 10.1007/JHEP10(2014)160.

[76] Serguei Chatrchyan et al. Search for a light charged Higgs boson in top quark decays
in pp collisions at

√
s = 7 TeV. JHEP, 07:143, 2012. doi: 10.1007/JHEP07(2012)143.



Bibliography 123

[77] P. S. Bhupal Dev, A. Djouadi, R. M. Godbole, M. M. Muhlleitner, and S. D. Rindani.
Determining the CP properties of the Higgs boson. Phys. Rev. Lett., 100:051801, 2008.
doi: 10.1103/PhysRevLett.100.051801.

[78] T. Pierzchala, E. Richter-Was, Z. Was, and M. Worek. Spin effects in tau lepton pair
production at LHC. Acta Phys. Polon., B32:1277–1296, 2001.

[79] J. P. Lees et al. Evidence for an excess of B̄ → D(∗)τ−ν̄τ decays. Phys. Rev. Lett.,
109:101802, 2012. doi: 10.1103/PhysRevLett.109.101802.

[80] Nima Arkani-Hamed, Andrew G. Cohen, and Howard Georgi. Electroweak symmetry
breaking from dimensional deconstruction. Phys. Lett., B513:232–240, 2001. doi:
10.1016/S0370-2693(01)00741-9.

[81] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson. The Littlest Higgs. JHEP,
07:034, 2002. doi: 10.1088/1126-6708/2002/07/034.

[82] Claudio A. Scrucca, Marco Serone, and Luca Silvestrini. Electroweak symmetry break-
ing and fermion masses from extra dimensions. Nucl. Phys., B669:128–158, 2003. doi:
10.1016/j.nuclphysb.2003.07.013.

[83] Csaba Csaki, Christophe Grojean, Luigi Pilo, and John Terning. Towards a realistic
model of Higgsless electroweak symmetry breaking. Phys. Rev. Lett., 92:101802, 2004.
doi: 10.1103/PhysRevLett.92.101802.

[84] Roberto Contino, Yasunori Nomura, and Alex Pomarol. Higgs as a holographic pseu-
doGoldstone boson. Nucl. Phys., B671:148–174, 2003. doi: 10.1016/j.nuclphysb.2003.
08.027.

[85] Kaustubh Agashe, Roberto Contino, and Alex Pomarol. The Minimal composite Higgs
model. Nucl. Phys., B719:165–187, 2005. doi: 10.1016/j.nuclphysb.2005.04.035.

[86] David B Kaplan and Howard Georgi. su(2)×u(1) breaking by vacuum misalignment.
Physics Letters B, 136(3):183–186, 1984.

[87] Savas Dimopoulos and John Preskill. Massless composites with massive constituents.
Nuclear Physics B, 199(2):206–222, 1982.

[88] Kaustubh Agashe, Antonio Delgado, Michael J. May, and Raman Sundrum. RS1,
custodial isospin and precision tests. JHEP, 08:050, 2003. doi: 10.1088/1126-6708/
2003/08/050.

[89] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi. The Strongly-Interacting
Light Higgs. JHEP, 06:045, 2007. doi: 10.1088/1126-6708/2007/06/045.

[90] Aneesh Manohar and Howard Georgi. Chiral quarks and the non-relativistic quark
model. Nuclear Physics B, 234(1):189–212, 1984.



124 Bibliography

[91] Maxim Perelstein. Little Higgs models and T parity. Pramana, 67:813–820, 2006. doi:
10.1007/s12043-006-0094-x.

[92] Tao Han, Heather E. Logan, and Lian-Tao Wang. Smoking-gun signatures of little
Higgs models. JHEP, 01:099, 2006. doi: 10.1088/1126-6708/2006/01/099.

[93] Workshop on CP Studies and Non-Standard Higgs Physics, 2006. URL http:
//weblib.cern.ch/abstract?CERN-2006-009.

[94] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, T. Gregoire, and Jay G.
Wacker. The Minimal moose for a little Higgs. JHEP, 08:021, 2002. doi: 10.1088/
1126-6708/2002/08/021.

[95] Hsin-Chia Cheng and Ian Low. TeV symmetry and the little hierarchy problem. JHEP,
09:051, 2003. doi: 10.1088/1126-6708/2003/09/051.

[96] Nima Arkani-Hamed, Andrew G. Cohen, Thomas Gregoire, and Jay G. Wacker. Phe-
nomenology of electroweak symmetry breaking from theory space. JHEP, 08:020,
2002.

[97] Nima Arkani-Hamed, Andrew G. Cohen, and Howard Georgi. (De)constructing di-
mensions. Phys. Rev. Lett., 86:4757–4761, 2001. doi: 10.1103/PhysRevLett.86.4757.

[98] Christopher T. Hill, Stefan Pokorski, and Jing Wang. Gauge invariant effective La-
grangian for Kaluza-Klein modes. Phys. Rev., D64:105005, 2001. doi: 10.1103/
PhysRevD.64.105005.

[99] Hsin-Chia Cheng, Christopher T. Hill, Stefan Pokorski, and Jing Wang. The Standard
model in the latticized bulk. Phys. Rev., D64:065007, 2001. doi: 10.1103/PhysRevD.
64.065007.

[100] Martin Schmaltz. The Simplest little Higgs. JHEP, 08:056, 2004. doi: 10.1088/
1126-6708/2004/08/056.

[101] David E. Kaplan and Martin Schmaltz. The Little Higgs from a simple group. JHEP,
10:039, 2003. doi: 10.1088/1126-6708/2003/10/039.

[102] Witold Skiba and John Terning. A Simple model of two little Higgses. Phys. Rev.,
D68:075001, 2003. doi: 10.1103/PhysRevD.68.075001.

[103] Jay Hubisz and Patrick Meade. Phenomenology of the littlest Higgs with T-parity.
Phys. Rev., D71:035016, 2005. doi: 10.1103/PhysRevD.71.035016.

[104] Andreas Birkedal-Hansen and Jay G. Wacker. Scalar dark matter from theory space.
Phys. Rev., D69:065022, 2004. doi: 10.1103/PhysRevD.69.065022.

[105] W. Kilian and J. Reuter. The Low-energy structure of little Higgs models. Phys. Rev.,
D70:015004, 2004. doi: 10.1103/PhysRevD.70.015004.

http://weblib.cern.ch/abstract?CERN-2006-009
http://weblib.cern.ch/abstract?CERN-2006-009


Bibliography 125

[106] F. del Aguila, M. Masip, and J. L. Padilla. A Little Higgs model of neutrino masses.
Phys. Lett., B627:131–136, 2005. doi: 10.1016/j.physletb.2005.08.115.

[107] JÃ¼rgen Reuter, Marco Tonini, and Maikel de Vries. Little Higgs Model Limits from
LHC - Input for Snowmass 2013. In Snowmass 2013: Workshop on Energy Frontier
Seattle, USA, June 30-July 3, 2013, 2013. URL http://inspirehep.net/record/
1243423/files/arXiv:1307.5010.pdf.

[108] Hsin-Chia Cheng and Ian Low. Little hierarchy, little Higgses, and a little symmetry.
JHEP, 08:061, 2004. doi: 10.1088/1126-6708/2004/08/061.

[109] Otto C. W. Kong. A Completed chiral fermionic sector model with little Higgs. 2003.

[110] David E. Kaplan, Martin Schmaltz, and Witold Skiba. Little Higgses and turtles.
Phys. Rev., D70:075009, 2004. doi: 10.1103/PhysRevD.70.075009.

[111] Xiao-Gang He, Jusak Tandean, and G. Valencia. Penguin and Box Diagrams in Uni-
tary Gauge. Eur. Phys. J., C64:681–687, 2009. doi: 10.1140/epjc/s10052-009-1162-4.

[112] Edward Witten. Current algebra theorems for the u(1) "goldstone boson". Nuclear
Physics B, 156(2):269–283, 1979.

[113] Juerg Gasser and Heinrich Leutwyler. Chiral perturbation theory to one loop. Annals
of Physics, 158(1):142–210, 1984.

[114] J. Gasser and H. Leutwyler. Chiral Perturbation Theory: Expansions in the Mass of
the Strange Quark. Nucl. Phys., B250:465, 1985. doi: 10.1016/0550-3213(85)90492-4.

[115] John F Donoghue, Carlos Ramirez, and German Valencia. Spectrum of qcd and chiral
lagrangians of the strong and weak interactions. Physical Review D, 39(7):1947, 1989.

[116] E. Arganda, M. J. Herrero, and J. Portoles. Lepton flavour violating semileptonic tau
decays in constrained MSSM-seesaw scenarios. JHEP, 06:079, 2008. doi: 10.1088/
1126-6708/2008/06/079.

[117] Ernesto Arganda and Maria J. Herrero. Testing supersymmetry with lepton flavor
violating tau and mu decays. Phys. Rev., D73:055003, 2006. doi: 10.1103/PhysRevD.
73.055003.

[118] K. A. Olive et al. Review of Particle Physics. Chin. Phys., C38:090001, 2014. doi:
10.1088/1674-1137/38/9/090001.

[119] J. Reuter and M. Tonini. Can the 125 GeV Higgs be the Little Higgs? JHEP, 02:077,
2013. doi: 10.1007/JHEP02(2013)077.

[120] J. de Blas. Electroweak limits on physics beyond the Standard Model. EPJ Web
Conf., 60:19008, 2013. doi: 10.1051/epjconf/20136019008.

http://inspirehep.net/record/1243423/files/arXiv:1307.5010.pdf
http://inspirehep.net/record/1243423/files/arXiv:1307.5010.pdf


126 Bibliography

[121] Frank F. Deppisch, P. S. Bhupal Dev, and Apostolos Pilaftsis. Neutrinos and Collider
Physics. New J. Phys., 17(7):075019, 2015. doi: 10.1088/1367-2630/17/7/075019.

[122] B. A. Shwartz. The Belle II Experiment. Nucl. Part. Phys. Proc., 260:233–237, 2015.
doi: 10.1016/j.nuclphysbps.2015.02.049.

[123] J. Hisano, T. Moroi, K. Tobe, and Masahiro Yamaguchi. Lepton flavor violation via
right-handed neutrino Yukawa couplings in supersymmetric standard model. Phys.
Rev., D53:2442–2459, 1996. doi: 10.1103/PhysRevD.53.2442.

[124] Alejandro Celis, Vincenzo Cirigliano, and Emilie Passemar. Lepton flavor violation
in the Higgs sector and the role of hadronic τ -lepton decays. Phys. Rev., D89:013008,
2014. doi: 10.1103/PhysRevD.89.013008.

[125] Alejandro Celis, Vincenzo Cirigliano, and Emilie Passemar. Model-discriminating
power of lepton flavor violating τ decays. Phys. Rev., D89(9):095014, 2014. doi:
10.1103/PhysRevD.89.095014.

[126] Serguei Chatrchyan et al. Observation of a new boson with mass near 125 GeV in pp
collisions at

√
s = 7 and 8 TeV. JHEP, 06:081, 2013. doi: 10.1007/JHEP06(2013)081.

[127] T. Aaltonen et al. Search for the standard model Higgs boson decaying to a bb pair
in events with two oppositely-charged leptons using the full CDF data set. Phys. Rev.
Lett., 109:111803, 2012. doi: 10.1103/PhysRevLett.109.111803.

[128] Gianluca Blankenburg, John Ellis, and Gino Isidori. Flavour-Changing Decays of a
125 GeV Higgs-like Particle. Phys. Lett., B712:386–390, 2012. doi: 10.1016/j.physletb.
2012.05.007.

[129] Alejandro Celis, Vincenzo Cirigliano, and Emilie Passemar. Lepton flavor violation in
the higgs sector and the role of hadronic τ -lepton decays. Physical Review D, 89(1):
013008, 2014.

[130] Vardan Khachatryan et al. Search for Lepton-Flavour-Violating Decays of the Higgs
Boson. Phys. Lett., B749:337–362, 2015. doi: 10.1016/j.physletb.2015.07.053.

[131] J. G. Körner, A. Pilaftsis, and K. Schilcher. Leptonic CP asymmetries in flavor-
changing H0 decays. Phys. Rev. D, 47:1080–1086, Feb 1993. doi: 10.1103/PhysRevD.
47.1080. URL http://link.aps.org/doi/10.1103/PhysRevD.47.1080.

[132] J Lorenzo Diaz-Cruz and JJ Toscano. Lepton flavor violating decays of higgs bosons
beyond the standard model. Physical Review D, 62(11):116005, 2000.

[133] Tao Han and Danny Marfatia. h→ µτ at hadron colliders. Physical review letters, 86
(8):1442, 2001.

[134] J Lorenzo Diaz-Cruz. A more flavored higgs boson in supersymmetric models. Journal
of High Energy Physics, 2003(05):036, 2003.

http://link.aps.org/doi/10.1103/PhysRevD.47.1080


Bibliography 127

[135] Andrea Brignole and Anna Rossi. Lepton flavour violating decays of supersymmetric
higgs bosons. Physics Letters B, 566(3):217–225, 2003.

[136] Ernesto Arganda, Ana M Curiel, María J Herrero, and David Temes. Lepton flavor
violating higgs boson decays from massive seesaw neutrinos. Physical Review D, 71
(3):035011, 2005.

[137] James D Bjorken and Steven Weinberg. Mechanism for nonconservation of muon
number. Physical Review Letters, 38(12):622, 1977.

[138] Svjetlana Fajfer, Jernej F. Kamenik, Ivan Nisandzic, and Jure Zupan. Implications
of Lepton Flavor Universality Violations in B Decays. Phys. Rev. Lett., 109:161801,
2012. doi: 10.1103/PhysRevLett.109.161801.

[139] L F Li. Properties of Higgs particles. 1980. URL https://cds.cern.ch/record/
123371.

[140] O Shanker. Flavour violation, scalar particles and leptoquarks. Nuclear Physics B,
206(2):253–272, 1982.

[141] Roni Harnik, Joachim Kopp, and Jure Zupan. Flavor Violating Higgs Decays. JHEP,
03:026, 2013. doi: 10.1007/JHEP03(2013)026.

[142] Brando Bellazzini, Csaba Csáki, and Javi Serra. Composite Higgses. Eur. Phys. J.,
C74(5):2766, 2014. doi: 10.1140/epjc/s10052-014-2766-x.

[143] Spencer Chang and Jay G Wacker. Little higgs models and custodial su (2). Physical
Review D, 69(3):035002, 2004.

[144] Spencer Chang. A ’Littlest Higgs’ model with custodial SU(2) symmetry. JHEP, 12:
057, 2003. doi: 10.1088/1126-6708/2003/12/057.

[145] A. Lami, J. Portoles, and P. Roig. Lepton flavor violation in hadronic decays of the
tau lepton in the simplest little Higgs model. Phys. Rev., D93(7):076008, 2016. doi:
10.1103/PhysRevD.93.076008.

[146] C Itzykson and JB Zuber. Quantum field theory, mcgraw-hillbook company, 1980.

[147] LB Okun. Leptons and quarks north, 1982.

https://cds.cern.ch/record/123371
https://cds.cern.ch/record/123371

	Resumen de la tesis
	Introduction
	Publications
	I The Standard Model and its extensions
	The Standard Model
	Background
	The Standard Model
	The Gauge and Higgs Sector
	The Lepton Sector and the origin of mass
	The Quark Sector


	Flavor violation of charged leptons
	Background
	Neutrino masses and mixing in the Seesaw Model
	Flavor violation in charged leptonic processes
	e and 3e
	Flavor violation in nuclei processes

	Flavor violation in the tau physics framework

	Little Higgs models
	Background
	Strongly Interacting Light Higgs couplings
	Little Higgs Models
	Theory space models
	Product gauge group models
	Simple gauge group models
	Constraints

	Simplest Little Higgs model
	Scalar and Gauge sector
	Fermion sector



	II Scientific Research
	Lepton Flavor Violating Tau decays into one and two Pseudoscalars
	Background
	 *
	 Z,Z'
	Boxes
	Hadronization
	(q)(p') P(p)
	(q)(p') {P(p+)P(p-);V(p)}

	Numerical Results

	H' in the Simplest Little Higgs Model
	Background
	H 
	Numerical results


	III Conclusions and Appendices
	Conclusions
	Dirac Matrices
	Clifford algebra
	Hermitian conjugated
	Charge conjugation
	Representations
	Indices contractions

	Others Matrices and Algebraic relations
	Pauli matrices
	Gell-Mann matrices
	Levi-Civita tensor
	Contribution of p

	Cancellation of divergences in the Unitary Gauge
	Dirac Equation
	Projectors on the energy states
	Gordon identities
	Change of Lorentz structure

	Fierz Identities

	Passarino-Veltman Integrals
	Scalar Integrals
	One point function integrals
	Two point function integrals
	Three point function integrals

	Vector Integrals
	Tensor Integrals
	Integrals for boxes

	Feynman rules of the SLH model in the Unitary Gauge
	Vertices


	IV Bibliography

