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Abstract

In this work we consider a model based on the Standard Model supplemented by a scalar having
the SU(3)C ⊗ SU(2)L ⊗U(1)Y quantum numbers (8,2)1/2 which was proposed by A. V. Manohar
and M. B. Wise [1]. As we show here, this model is consistent with the principle of minimal
flavour violation and custodial SU(2)L+R symmetry can be implemented. We find its interactions
with the SM particles and study the phenomenological implications of the existence of these new
scalars. Constraints of the parameters are find studying the Higgs signal strengths, the oblique
parameter S and the running of the strong coupling. Using the values of the Higgs signal strengths
we perform a χ2 test and also study specific limits that each Higgs signal strengths produces.
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1 Introduction

The discovery of the Higgs boson on July of 2012 by the LHC has been one of the most important
milestones of the decade in particle physics. This scalar particle was the last remnant of the
Standard Model (SM) of particle physics and its discovery is the confirmation of the existence of
a particle already predicted in the 60s [2–4]. The importance of this particle is that it solves the
problem of generating the masses of the particles of the SM.

The “minimum” Higgs mechanism, which considers the existence of just one scalar, is not the
only possibility for generating the masses of the SM. The discovery of the Higgs, therefore, can be
understood not just like the confirmation of the mechanism needed to generate masses in the SM
but like the discovery of the first element of a possible more extended scalar sector.

The SM, although has been extremely successful on many situations, has, as well, some lacks.
This model is not able to explain the asymmetry between matter and antimatter, the origin of
dark matter, how the masses of the neutrinos are generated or how the scales of the masses are
produced. These lacks can be solved through extensions of the SM where more particles of higher
energy are considered. For example, the problem of the neutrino masses could be solved considering
the existence of new particles at higher scales which generate these masses through the so called
seesaw mechanism [5].

In this work we focus on the extensions of the scalar sector of the SM. We consider the model
of A. V. Manohar and M. B. Wise [1] which is based on the existence of a new scalar doublet, like
the one of the SM, but with other quantum number, the colour, like the gluons responsible of the
strong interaction. This model has additional imaginary parameters to the one of the SM. These
are sources of CP violation which are needed for solving the problem of the asymmetry between
matter and antimatter.

The aim of this work is to review this model developing its Lagrangian and calculating the
interaction between the new scalars and the particles of the SM. Nowadays we have a huge among
of data coming from the LHC which can be used to constrain the parameters of many models
of new physics. In this work we also try to update the phenomenological analysis with the data
coming from this powerful machine.

The work is organised as follows. In §2 we make a brief review of the SM developing its
Lagrangian from gauge invariance and explaining how this symmetry is spontaneously broken by
the vacuum. Furthermore, we explain how this spontaneous symmetry breaking can lead to the
generation of the masses of the particles of the SM trough the Higgs mechanism. In §3 we explain
the model of A. V. Manohar and M. B. Wise. We show the new particles that appear in this
model, we calculate their masses and their interactions with the particles of the SM. Moreover,
we show how these particles can be integrated out condensing their properties on operators of
higher dimension. In §4 we analyse the phenomenological implications of this model. We present
the constraints on the masses found by Ref. [6], we analyse the constraints that are generated by
the Higgs signal strengths and by the oblique parameter S. We also study how the running of
the strong coupling gets modified by the presence of these new scalars which can be used to find
additional constraints on the masses. Finally in §5 we conclude the work. The Feynman rules of
some interesting processes can be found in appendix A and some calculations at loop-level can be
found developed step-by-step in appendix B.
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2 The Standard Model

The Standard Model is a quantum field theory that explains the strong, weak and electromagnetic
interactions combining special relativity and quantum mechanics. This theory is a gauge theory
based on the symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y .1 This means that imposing invariance
to the Lagrangian under a local SU(3)C ⊗ SU(2)L ⊗ U(1)Y transformation the interaction terms
appear naturally in the theory, i.e., they are needed to preserve this symmetry. The first theory of
this kind was Quantum Electrodynamics (QED) which was completed at the end of the 40s [7–10]
by S. Tomonaga, J. Schwinger and R. Feynman, who were awarded with the Nobel prize in 1965
for this work. This gauge theory was based on the group U(1)Q and was able to explain the
electromagnetic interactions with an accuracy never seen before. Actually, nowadays QED gives
the most precise prediction of an observable, the anomalous magnetic moment of the electron [11],
with an agreement between the theoretical prediction and the experiment measurement of 0.67
parts in a billion [12].

As a consequence of the success of the QED many physicists tried to develop gauge theories for
the other interactions. The next gauge theory that was developed was the Yang-Mills theory in
1954 [13] based on the isospin SU(2) symmetry, a non-abelian gauge theory. Although this theory
did not explain correctly the strong interaction this work was the foundation for the following gauge
theories. Its importance is such that both the strong and the weak interactions were explained with
Yang-Mills theories.2 The former interaction was explained by Quantum Chromodynamics (QCD)
in 1973 [14], a Yang-Mills theory based on the symmetry group SU(3)C developed by Murray Gell-
Mann, Harald Fritzsch and Heinrich Leutwyler. The latter by the electroweak theory that unifies
the description of the weak and the electromagnetic interaction and is based on the SU(2)L⊗U(1)Y
group. This theory was built in the 60s starting in 1961 with a paper of Glashow [15] where it
was firstly proposed a SU(2)⊗ U(1) model to describe the weak and electromagnetic interactions
(also independently proposed by Salam and Ward [16] in 1964). The problem of these theories
was that the symmetry breaking that gave mass to the gauge bosons responsible for the weak
interaction was inserted by hand [17]. The solution to this problem was to generate the masses
through a spontaneous symmetry breaking (SSB) of the gauge symmetry. However, the Goldstone
theorem [18] apparently demonstrates that the SSB implies the generation of massless spin-zero
bosons (the Nambu-Goldstone bosons) that had not been observed. This problem was solved
when independently three different groups (Englert and Brout [2]; Higgs [3]; Guralnik, Hagen and
Kibble [4]) showed that the Goldstone theorem does not apply on gauge theories. Finally in 1967
Weinberg [19] proposed what we know nowadays as electroweak theory.

2.1 Quantum Electrodynamics

To obtain the QED Lagrangian we start with the Lagrangian for a free Dirac fermion:

L0 = iψ(x)γµ∂µψ(x)−mψ(x)ψ(x). (2.1)

This Lagrangian is clearly invariant under a global U(1)Q transformation

1Here subscripts C, L and Y refer respectively to colour, left part of the spinors and hypercharge (Y = 2(Q+I3),
where Q is the electric charge and I3 the third component of the isospin).

2As the theory of C. N. Yang and R. Mills was the first non-abelian gauge theory the term of Yang-Mills theory
is used to describe such theories though they are based on a non-abelian group different than the one proposed by
Yang and Mills.
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ψ(x)→ ψ′(x) = exp(iQθ)ψ(x), (2.2)

where θ is a real constant and Q will be interpreted as the electric charge of the excitations of this
field (in units of the elementary charge, e).

This Lagrangian is not invariant under a local gauge transformation though:

ψ(x)→ ψ′(x) = exp(iQθ(x))(∂µ + iQ∂µθ(x))ψ(x). (2.3)

This means that the phase can change without changing the physics but this change must be
the same in the whole Universe, i.e., the parameter θ cannot depend on the space-time. This fact
seems very unnatural and one would expect a total independence of the Lagrangian with the phase
because this is not physical.

In order to obtain a local gauge invariant Lagrangian we have to add an extra piece which
transforms properly to cancel the non-invariant terms of the Lagrangian, i.e., the term proportional
to ∂µθ(x) of Eq. (2.3). Since ∂µθ(x) has a Lorentz index we need to introduce a new spin-1 field,
Aµ(x) which transforms as:

Aµ(x)→ A′µ(x) = Aµ(x)− 1

e
∂µθ. (2.4)

So adding the term −eQAµ(x)ψ(x)γµψ(x) to the Lagrangian of Eq. (2.1) we obtain a local
gauge invariant Lagrangian. Due to the geometrical significance of the local gauge invariance it is
convenient to interpret this term as part of a covariant derivative in such a way that our Lagrangian
becomes:

L = iψ(x)γµDµψ(x)−mψ(x)ψ(x), (2.5)

where Dµψ(x) = [∂µ + ieQAµ(x)]ψ(x). This covariant derivative transforms under local gauge
transformation like the derivative does under global gauge transformations:

Dµψ(x)→ ψ′(x) = exp(iQθ(x))Dµψ(x). (2.6)

Finally, we would need to add the kinetic term of the gauge field if we want this to be a true
propagating field:

LKin = −1

4
Fµν(x)F µν(x), (2.7)

where Fµν(x) = ∂µAν − ∂νAµ is the usual electromagnetic strength, clearly invariant under local
gauge transformations.

Therefore, interpreting the gauge field found here as the electromagnetic field we find the proper
interaction between the fermion and the electromagnetic field. Note that this interaction arises
naturally by imposing local gauge symmetry and it is not added by hand. This is the power of
the gauge principle. Besides, gauge invariance forbids mass terms for the gauge field (1

2
m2AµAµ),

providing a natural explanation of the fact that the photon is massless.
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2.2 Quantum Chromodynamics

In the 1960s the abundance of baryonic and mesonic states suggested the existence of a deeper level
of elementary constituents of matter, the quarks. This new particles were proposed in 1964 [20,21]
independently by Gell-Mann and Zweig in order to explain the Eightfold Way. Remember that the
Eightfold Way was a classification of the baryons and mesons that Gell-Mann himself introduced
in 1961 [22]. The Eightfold Way arranged the known mesons in octets and the known baryons in
an octet of particles with spin 1/2 and a decuplet3 of particles of spin 3/2.

The way in which the quark model explained the Eightfold Way is by considering that the
baryons were composed of three fermions of spin 1/2, three quarks, and the mesons of a quark and
an antiquark. Furthermore they consider that three different types (flavours) of quarks existed
(u, d and s type).4 With three different quarks they obtained nine instead of eight mesons, the
missing meson was later discovered, and ten baryons for a given spin. Obtaining the baryon octet
is a bit trickier and we refer the interested reader to Ref. [24].

The problem of this model was that it violated the Pauli exclusion principle, there were baryons
constituted by three equal quarks. In order to avoid the violation of this principle O. W. Greenberg
proposed that the quarks had another quantum number [25], the colour, such that each quark can
have three different colours. Baryons and mesons are described by colour-singlet combinations:

B =
1√
6
εαβγ|qαqβqγ〉, M =

1√
3
δαβ|qαqβ〉. (2.8)

As states with colour have not been observed it is assumed that the states of nature are
colourless. This assumption is known as confinement hypothesis.

The existence of this new quantum number characteristic of the particles that feel the strong
interactions suggested that colour plays the same role in the strong interactions as the electric
charge in QED. Finally, in 1973, Murray Gell-Mann, Harald Fritzsch and Heinrich Leutwyler
developed a gauge theory based on SU(3)Colour [14], the quantum chromodynamics theory (QCD),
that explained the strong interactions.

In order to find the Lagrangian of QCD we start with the free Lagrangian of the fermions, as
we did for QED:

L0 =
∑
f

qf (iγ
µ∂µ −mf )qf , (2.9)

where the subscript f refers to flavour and we have adopted a vector notation in colour space,
qTf = (q1f , q

2
f , q

3
f ).

This Lagrangian is clearly invariant under global SU(3)C transformations:

qαf → (qαf )′ = Uα
β q

β
f , UU † = U †U = 1 detU = 1. (2.10)

These SU(3) matrices can be expressed in terms of the generators of the fundamental repre-
sentation 1

2
λa (a =1,2,...,8):

U = exp
{
i
λa

2
θa

}
. (2.11)

3Actually one of the particles was missing so he proposed the existence of this new particle that was discovered
in 1964 [23].

4Nowadays we know that there are actually six flavours (u, d, s, c, b and t type).
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where θa are arbitrary constants and the 1
2
λa matrices are traceless and form a Lie algebra:[λa

2
,
λb

2

]
= ifabc

λc

2
, (2.12)

where fabc are the SU(3)C structure constants, which are real and totally antisymmetric.
Like we did in the case of QED we impose local SU(3)C invariance in our Lagrangian. For

doing so we add eight independent gauge parameters in our Lagrangian, the gluons, as we have
eight independent generators. The covariant derivative will be in this case of the form:

Dµqf =
[
∂µ + igs

λa

2
Gµ
a(x)

]
qf = [∂µ + igsG

µ(x)]qf . (2.13)

This covariant derivative transforms under local SU(3)C transformations in the same way that
a standard derivative does under global SU(3)C transformations, thanks to the specific transfor-
mation of the gauge fields:

Dµ → (Dµ)′ = UDµU †, Gµ = UGµU † +
i

gs
(∂µU)U †. (2.14)

Finally, we have to add the kinetic term for the gluon field. The field strengths is the one
corresponding to a non-Abelian field

Gµν(x) = − i

gs
[Dµ, Dν ] = ∂µGν − ∂νGµ + igs[G

µ, Gν ] =
λa

2
Gµν
a (x), (2.15)

which transforms under SU(3)C transformation like:

Gµν → (Gµν)′ = UGµνU †, (2.16)

so the colour trace Tr(GµνGµν) = 1
2
Gµν
a G

a
µν remains invariant. Therefore, the total Lagrangian

will be:

L = −1

4
Gµν
a G

a
µν +

∑
f

qf (iγ
µDµ −mf )qf . (2.17)

2.3 Electroweak Unification

As mentioned above, the weak interactions were explained by the Electroweak theory, a non-
Abelian gauge theory based on the symmetry group SU(2)L ⊗ U(1)Y . This theory unifies the
description of the weak and electromagnetic interactions.

To understand properly this theory we have to take into account that the weak interactions do
not conserve parity. This means that the spinors of our Lagrangian have to be split in their left
and right part5 because the left and right parts feel different interactions.

It is also important to identify the particle content of our theory. As mention in the previous
section, there are six different types of quarks (six flavours) and each of which can be in one of
the three different colour states. However, in this section, we can forget about colour because

5Note that the spinors are not an irreducible representation of the Poincaré group. This means that we can
express the Lagrangian in terms of the decomposition of this reducible representation, the left and the right part
of the spinors, which are the irreducible representation.
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the electromagnetic and weak interactions are blind to it. With respect to the flavour, they are
organised in three families in such a way that the left parts of two of the flavours form a doublet:(

u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

, (2.18)

so we have the family of the up and down quarks, the family of the charm and strange quarks and
the family of the top and bottom quarks.

For the leptons we have as well three families where the left parts of them are also organised
in doublets: (

νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

. (2.19)

In order to simplify the calculation we will consider just one family,

L0 = iu(x)γµ∂µu(x) + id(x)γµ∂µd(x) =
3∑
j=1

iψj(x)γµ∂µψj(x), (2.20)

where we have introduced the notation

ψ1(x) =

(
u
d

)
L

, ψ2(x) = uR, ψ3(x) = dR. (2.21)

This Lagrangian is invariant under global SU(2)L ⊗ U(1)Y

ψ1(x)→ ψ′1 = exp{iy1β}exp
{
i
σj
2
αj
}
ψi(x),

ψ2(x)→ ψ′2 = exp{iy2β}ψ2(x), (2.22)

ψ2(x)→ ψ′3 = exp{iy2β}ψ3(x),

where σj (j = 1, 2, 3) are the the Pauli matrices, generators of the fundamental representation of
the SU(2) group. Clearly the right parts of the fields are singlets under SU(2)L transformations,
so this transformation do not affect them. The parameters yi are the hypercharges which will have
to be set to a particular value to find the proper electromagnetic interaction.

As we did in QED and in QCD we require the Lagrangian to be invariant under local SU(2)L⊗
U(1)Y transformations. We need therefore to introduce four new fields that change the standard
derivatives by covariant derivatives:

Dµψ1(x) =
[
∂µ + ig

σj
2
W j
µ(x) + ig′y1Bµ(x)

]
ψ1(x),

Dµψ2(x) =
[
∂µ + ig′y2Bµ(x)

]
ψ2(x), (2.23)

Dµψ3(x) =
[
∂µ + ig′y3Bµ(x)

]
ψ3(x).

This covariant derivatives have to transform under local SU(2)L ⊗ U(1)Y transformations in
the same way that the usual derivative does under global SU(2)L ⊗ U(1)Y transfomations. This
fixes the transformation of the gauge fields:

9
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Bµ(x)→ B′µ(x) = Bµ(x)− 1

g′
∂µβ(x), (2.24)

W̃µ(x)→ W̃ ′
µ(x) = UL(x)W̃µU

†
L(x) +

i

g
∂µUL(x)U †L, (2.25)

where we have used the notation W̃µ(x) =
σj
2
W j
µ(x) and UL(x) = exp{iσj

2
αj(x)}.

Besides of changing the usual derivative to this covariant derivative, we have to add the kinetic
terms of the new fields if we want them to be true propagating fields. This kinetic terms are, like
in QED and QCD, constructed from the corresponding field strengths:

Bµν = ∂µBν − ∂νBµ, (2.26)

W̃ µν(x) = − i
g

[(∂µ + igW̃ µ), (∂ν + igW̃ ν)] = ∂µW̃ ν − ∂νW̃ µ + igs[W̃
µ, W̃ ν ] =

σj

2
W̃ µν
j (x). (2.27)

Once we have defined the field strengths we can construct the kinetic parts that will be like in
QED for the Bµ field and like in QCD for the W̃µ field. The total Lagrangian becomes:

L = iψj(x)γµDµψ
j(x)− 1

4
BµνB

µν − 1

4
W i
µνW

µν
i , (2.28)

where the sum over repeated indices is implicit.
Note that, as in the previous theories, gauge invariance forbids the existence of mass terms for

the gauge bosons but in this case the mass terms for the fermions are also forbidden. Remember
that such terms are of the form mψψ = m(uRuL + uLuR) and these terms are not invariant under
SU(2)L transformations. In the next section we will show how the Higgs mechanism solves this
problem introducing the Spontaneous Symmetry Breaking but first, let us develop this Lagrangian
to find the theory of QED.

Let us look at the interaction of theWµ bosons with the fermionic field, i.e., the term−gψ1γ
µ σj

2
W j
µψ1.

Writing explicitly the Pauli matrices we obtain:

σj
2
W j
µ =

1

2

(
W 3
µ

√
2W †

µ√
2Wµ −W 3

µ

)
, (2.29)

where we have defined Wµ = (W 1
µ + iW 2

µ)/
√

2. We therefore construct a complex field (Wµ) with
the two independent real gauge fields W 1

µ and W 2
µ . The excitations of this field give rise to two

charged bosons, W+ and W−, and its interaction with the fermions is given by:

LCC = − g√
2

{
W †
µ[uLγ

µdL + νLeγ
µeL] + h. c.

}
.

= − g

2
√

2

{
W †
µ[uγµ(1− γ5)d+ νeγ

µ(1− γ5)e] + h. c.
}
. (2.30)

In order to analyse the terms of the Bµ field, −g′Bµ

∑3
j=1 yjψjγ

µψj, we have to take into
account that this gauge field cannot be the electromagnetic field, because the photons conserve
parity. Therefore we have to find a linear combination of the Bµ and W 3

µ fields, both neutral fields,
in order to find the electromagnetic interaction:

10
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(
W 3
µ

Bµ

)
=

(
cosθW sinθW
−sinθW cosθW

)(
Zµ
Aµ

)
. (2.31)

The interaction of these new fields, Zµ and Aµ, with the fermions is:

LNC = −
3∑
j=1

ψjγ
µ
{
Aµ

[
g
σ3
2

sinθW + g′yjcosθW

]
+ Zµ

[
g
σ3
2

cosθW − g′yjsinθW
]}
ψj. (2.32)

But in order to find the QED Lagrangian a precise relation have to be satisfied:

g sin θW = g′ cos θW = e, Y = Q− T3, (2.33)

where6 T3 = σ3/2 and Q is the electromagnetic charge operator:

Q1 =

(
Qu/ν 0

0 Qd/e

)
, Q2 = Qu/ν , Q3 = Qd/e. (2.34)

The second equality of Eq. (2.33) provides the definition of the hypercharge in order to repro-
duce the QED theory, as we announced previously.

2.4 Spontaneous Symmetry Breaking

As we have seen before the SU(2)L⊗U(1)Y symmetry of the Electroweak theory forbids the mass
terms for the gauge bosons and the fermions. To generate the masses for the fermions and the
Z and W± bosons we need to break the gauge symmetry but we want to break it in a natural
way without imposing it by hand. Moreover, it is crucial to have a gauge invariant Lagrangian
to have a renormalisable theory. The most natural way for doing it is breaking the symmetry
spontaneously by the vacuum. This is generated when we have an invariant Lagrangian under a
group transformation, G, but the vacuum is degenerated, in such a way that the vacuum states
are related through a transformation under the group G. All the vacuum states are equally
provable but the Nature chooses one breaking the symmetry. This is what happens when we cool
a ferromagnet under the Curie temperature, the magnetisation can be acquired in one direction
or the reverse but one is chosen spontaneously.

One of the difficulties of applying spontaneous symmetry breaking on the electroweak theory
was that it seemed to imply the appearance of massless spin-0 particles that have not been observed,
this is the so called Goldstone theorem.

2.4.1 Goldstone Theorem

The Goldstone Theorem states that: “In any field theory satisfying locality, Lorentz invariance
and positive definite norm, if an exact continuous symmetry of the Lagrangian is not a symmetry
of the physical vacuum, the theory must contain a massless spin zero particle(s) whose quantum
numbers are those of the broken group generator(s).”

Proof:

6Note that, in general, T3 is the third generator of the fundamental representation of the SU(2) group but, as
we have chosen the Pauli matrices as our basis, T3 = σ3/2

11
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Consider that we have a set of n real fields φi with a potential V (φi). Now consider that the
Lagrangian is invariant under a group, G, that transforms the fields like:

φi → φ′i = φi + δφi = φi + iεaT aijφj, (2.35)

where T a are the generators of the group G.
The potential V (φi) is also invariant:

δV (φi) = i
∂V

∂φi
εaT aijφj = 0 ⇒ ∂V

∂φi
T aijφj = 0. (2.36)

Let us consider that the potential is minimised by φi = vi(∂V
∂φi

)
φi=vi

= 0. (2.37)

Deriving again on Eq. (2.36) we get

∂2V

∂φi∂φk
T aijφj +

∂V

∂φi
T aik = 0. (2.38)

Evaluating Eq. (2.38) in the minimum and using Eq. (2.37) we obtain

∂2V

∂φi∂φk

∣∣∣∣∣
φj=vj

T aijφj = 0 ⇒ M2
ijT

a
ijvj = 0. (2.39)

Then, if the generator T a is broken by the vacuum, T aijvj 6= 0, Eq. (2.39) implies the existence
of a zero eigenvalue on the mass matrix, i.e., the existence of a particle of zero mass. If there is
a subgroup H ⊂ G that leaves the vacuum invariant the mass matrix has (dimG − dimH) zero
eigenvalues, one for each broken generator.

2.4.2 The Higgs Mechanism

Let us show how, in theories with a local gauge symmetry, the Goldstone theorem can be avoided,
interpreting the Goldstone bosons merely as non-physical objects that can be eliminated of our
Lagrangian thanks to the local gauge invariance. For doing so let us consider the Electroweak
theory with an SU(2)L doublet of complex scalar fields,

φ(x) =

(
φ(+)(x)
φ(0)(x)

)
. (2.40)

The potential of this term would be:

V (φ) = µ2φ†φ+ λ(φ†φ)2, (2.41)

with λ > 0 to have a potential bounded from below and with µ2 < 0 to have a degenerated vacuum.
The minimum of this potential is localised at

∂V (φ)

∂|φ| = |φ|(2µ2 + 4λ|φ|2) = 0⇒ |φ| =
√
−µ2

2λ
=

v√
2
, (2.42)

where we have defined our v =
√
−µ2
λ

.
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The states whose vacuum expectation value (vev) satisfy Eq. (2.42) will be the states of
minimum energy of the Lagrangian. As the electric charge must be conserved, the φ(+)(x) field
cannot acquire a vev, so the only possibility is that

|〈0|φ(0)|0〉| = v√
2
. (2.43)

When one of these vacuum states is chosen, 〈0|φ(0)|0〉 = v√
2

for instance, the SU(2)L ⊗ U(1)Y
is broken to the electromagnetic subgroup U(1)Q:

T1〈0|φ(0)|0〉 =
σ1
2

(
0
v√
2

)
=

( v
2
√
2

0

)
6= 0, T2〈0|φ(0)|0〉 =

σ2
2

(
0
v√
2

)
=

( −i v
2
√
2

0

)
6= 0,

T3〈0|φ(0)|0〉 =
σ3
2

(
0
v√
2

)
=

(
0
− v

2
√
2

)
6= 0, Y 〈0|φ(0)|0〉 =

I

2

(
0
v√
2

)
=

(
0
v

2
√
2

)
6= 0,

Q〈0|φ(0)|0〉 = (Y + T3)

(
0
v√
2

)
=

(
0
0

)
.

(2.44)

In Eq. (2.44) can be seen how the generators of the SU(2)L⊗U(1)Y are broken by the vacuum
while the generator of the U(1)Q is not broken. The Goldstone Theorem would then imply the
existence of three massless particles, three Goldstone bosons. Note, however, that if we parametrise
the scalar doublet like:

φ(x) = exp
(
i
σi
2
θi(x)

) 1√
2

(
0

v +H(x)

)
, (2.45)

the local gauge invariance allows us to rotate the field in such a way that the three Goldstone
bosons, θi(x) disappear. This means that these particles are not physical in the context of local
gauge theories, the Goldstone theorem does not apply exactly in the same way as before. The
remaining three degrees of freedom become the longitudinal degree of freedom of the massive gauge
bosons W± and Z, which acquire mass. This mass term appears in the kinetic term of the complex
scalar field:

LφKin = (Dµφ)†Dµφ = ((∂µ + igW̃µ +
1

2
ig′Bµ)φ)†(∂µ + igW̃ µ +

1

2
ig′Bµ)φ =

=
1

2
∂µH∂

µH + (v +H)2
{g2

4
W †
µW

µ +
g2

8cos2θW
ZµZ

µ
}
, (2.46)

where we have already eliminated the Goldstone bosons through a gauge transformation. This
gauge where we do not have Goldstone bosons is called unitary gauge.

Therefore, through this mechanism the gauge bosons W± and Z become massive with a mass
of

MZ cosθW = MW =
1

2
vg. (2.47)

As the degrees of freedom of the three Goldstone bosons have been eliminated and three gauge
bosons have acquired a new degree of freedom, the longitudinal mode, it is often said that the
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Goldstone bosons have been “eaten” by the gauge bosons. In this way we end with three massive
gauge bosons and without any Goldstone boson so the Goldstone theorem is avoided.7

2.4.3 Fermion Masses

In the Electroweak theory the fermion mass terms were also forbidden by the SU(2)L symmetry
because these terms mix the left and the right part of the fermions (L = −m(ψLψR + ψRψL)).
However, we can generate these masses through the SSB adding in our Lagrangian Yukawa terms
that generate interactions between our fermions and the scalar doublet, terms that also preserve
the gauge symmetry:

LY = −
3∑

i,j=1

[
lLi
Y e
ijeRj

φ+QLi
Y d
ijdRj

φ+QLi
Y u
ijuRj

φ̃+ h. c.
]

(2.48)

where the sum is over the three families and we have used the following notation:

lLi
=

(
νi
e−i

)
L

, QLi
=

(
ui
di

)
L

, φ =

(
φ(+)

φ0

)
, φ̃ =

(
φ0∗

−φ(−)

)
, (2.49)

where φ̃ is the charge conjugate of the scalar field in such a way that the term QLi
Y u
ijuRj

φ̃ is

invariant under the U(1)Y transformations (the sum of the hypercharge of QL, uR and φ̃ is 0).
Note that in this case we have considered the Lagrangian for the three families while in section

2.3, for simplicity, we only considered the Lagrangian for only one family. This is because the only
terms that mix the families are the Yukawa terms so the generalisation of the Lagrangian of Eq.
(2.28) is trivial.8

If we move to the unitary gauge, Eq. (2.48) becomes:

LY = −
3∑

i,j=1

[
eLi
M e

ijeRj
+ dLi

Md
ijdRj

+ uLi
Mu

ijuRj

](
1 +

H

2

)
, (2.50)

with

M e
ij =

v√
2
Y e
ij, Md

ij =
v√
2
Y d
ij , Mu

ij =
v√
2
Y u
ij . (2.51)

The mass matrices (M e, Md and Mu) are non-diagonal and complex. This means that, in
principle, we have introduced 54 new parameters to our Lagrangian. However, we can use the
symmetries of our Lagrangian to show that most of these parameters are redundant and that
finally we end up with just 13 new parameters. In order to show this we will change from the
interaction basis to the mass one, where the mass matrices become diagonal. This is also interesting
because the particles that propagate are the particles with a definite mass, the eigenvectors of the
mass matrices.

As mentioned before, the only term that mixes flavours is the one of Eq. (2.50), this means that
the other parts of the Lagrangian are invariant under U(3)QL

⊗U(3)uR⊗U(3)dR⊗U(3)lL⊗U(3)eR

7Note that, as said before, this does not mean that the Goldstone theorem is wrong, just that it cannot be
applied in such theories [4].

8It is enough considering that the u, d, ν and e fields are 3× 3 diagonal matrices in the flavour space.

14



Vı́ctor Miralles Aznar Universitat de València

flavour transformations. This kind of transformations are often called Weak Basis Transformations
(WBT). Performing this kind of transformations we can diagonalise M e and Mu and make Md

Hermitian:

QL → Q′L = UQQL, uR → u′R = UuuR, dR → d′R = UddR,

lL → l′L = UllL, eR → e′R = UeeR ⇒

⇒M e → U †lM
eUe = De =

 me 0 0
0 mµ 0
0 0 mτ

 , Mu → U †QM
uUu = Du =

 mu 0 0
0 mc 0
0 0 mt

 ,

Md → U †QM
dUd = M ′d = M ′d† (2.52)

Now we need to diagonalise the M ′d matrix. As this is a Hermitian matrix, we can diagonalise
it through a unitary matrix, V . For doing it we introduce again a transformation but in this case
a transformation that only affects the down part:

dL → V dL, dR → V dR ⇒ M ′d → V †M ′dV = Dd =

 md 0 0
0 ms 0
0 0 mb

 . (2.53)

With this final transformation we get a fully diagonal Yukawa part

LY = −
[
eLD

eeR + dLD
ddR + uLD

uuR

](
1 +

H

2

)
, (2.54)

but this transformation is not a WTB transformation, i.e., the other parts of our Lagrangian are
not invariant under this transformation.

The Charged Currents sector of the Lagrangian, Eq. (2.30), mixes the up and the down
chiralities of the fields, so this sector will be clearly modified by this transformation:

LCC = − g√
2

{
W †
µ[uLγ

µV dL + νLeγ
µeL] + h. c.

}
, (2.55)

while the sector of the Neutral Currents, Eq. (2.32), does not mix the left and the right chiralites
so this sector is invariant under this transformation. It is for this reason why we do not have
Flavour Changing Neutral Currents (FCNC) at tree-level in the Standard Model.

Let us look now to the free parameters introduced by the V matrix, called Cabibbo-Kobayashi-
Maskawa (CKM) matrix. Any unitary matrix can be expressed like V = exp(iH), where H
is a Hermitian matrix. The Hermitian matrices have N + N2−N

2
real parameters, where N is the

dimension of the matrix (N×N), and N2−N
2

imaginary parameters. Therefore, the V matrix would

have, in principle, N + N2−N
2

imaginary parameters and N2−N
2

real ones, because the imaginary
become real and the real become imaginary due to the factor i. However, all the pieces of the
Lagrangian but the one containing the CKM matrix are invariant under rephasing of the quark
fields:

d→ Kdd =

 eiφd 0 0
0 eiφs 0
0 0 eiφb

 d, u→ Kuu =

 eiφu 0 0
0 eiφc 0
0 0 eiφt

u. (2.56)
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Therefore we can apply these matrices to the CKM matrix

V → Ku†V Kd, (2.57)

which allows to eliminate 2N − 1 phases, and the total number of free imaginary parameters of
the CKM matrix will be N + N2−N

2
− (2N − 1) = (N−1)(N−2)

2
. As we have three generations the

CKM matrix will have one imaginary parameter and three real parameters. In addition we have
the nine masses so in total 13 parameters, as mentioned before.

2.4.4 Gauge Fixing

In section 2.4.2 we saw how we could eliminate the Goldstone bosons using a particular gauge, the
unitary gauge, but this is not the only possibility. In many situations, this particular gauge is not
the most convenient in order to perform calculations, so it is interesting to introduce other gauges.
Let us write the scalar doublet in the following way

φ(x) =

(
G+(x)

1√
2
(v +H(x) + iG0(x))

)
, (2.58)

where the G± and G0 represent the three Goldstone bosons that we eliminated in the unitary
gauge.

If we now calculate the covariant derivative of the doublet we obtain

Dµφ(x) =

(
∂µG

+ + ig
2
W+
µ (v +H + iG0) + ie(Zµ cot 2θW + Aµ)G+

1√
2
∂µ(v +H + iG0) + ig√

2
W−
µ G

+ − ig

2
√
2 cos θW

Zµ(v +H + iG0)

)
. (2.59)

From this we can calculate the kinetic term with the Goldstone bosons

(Dµφ)†Dµφ =
1

2
(∂µH∂

µH + ∂µG
0∂µG0) + ∂µG

−∂µG+ + ie(Zµ cot 2θW + Aµ)G+←→∂µ G−

+
(g2

4
W−
µ W

+µ +
g2

8 cos2 θW
ZµZ

µ
)(

(v +H)2 +G02
)

+
(
e2(Aµ + Zµ cot 2θW )2 +

g2

2
W−
µ W

+µ
)
G+G−

+
ig

2
W−
µ G

+←→∂µ (v +H − iG0) +
ig

2
W+
µ (v +H + iG0)

←→
∂µ G− +

g

2 cos θW
ZµG

0←→∂µ (v +H)+

ge

2

(
Aµ − tan θWZµ

)(
G+W−µ(v +H − iG0) +G−W+µ(v +H + iG0)

)
, (2.60)

where we have used the relation A
←→
∂µ B = A∂µB − (∂µA)B.

Note that we have quadratic interactions between the Goldstone bosons and the gauge fields,

iMWW
+
µ ∂

µG− − iMW∂
µG+W−

µ −MZ∂
µG0Zµ. (2.61)

Since we need to fix the gauge in order to properly quantise the theory, we can remove these
terms through an appropriate choice of the gauge-fixing term. For doing so we use the so called
Rξ gauges where the gauge-fixing term that we introduce is

L = −1

ξ

∣∣∂µW+
µ + iξMWG

+
∣∣2 − 1

2ξ
(∂µZµ + ξMZG

0)2 − 1

2ξ
(∂µAµ)2. (2.62)
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Note that this term can be added because our Lagrangian is gauge invariant. With this we
eliminate the quadratic terms and, furthermore, we guarantee to have an invertible kinetic term,
so we have a well defined propagator [26].

The unitary gauge is recovered in the limit ξ → ∞ but we have other possibilities, like the
Feynman-’t-Hooft gauge (ξ = 1) or the Landau gauge (ξ → 0). As mentioned before the unitary
gauge is not the most convenient in some cases so, as the result must be gauge invariant, sometimes
it is convenient to use a different gauge.

2.4.5 Custodial Symmetry

The Custodial Symmetry is an approximate symmetry of the scalar Lagrangian that becomes
exact on this part when g′ → 0 [27, 28]. Let us recover the scalar Lagrangian that was developed
in section 2.4.3, but this time it is convenient to write it in terms of

Σ =
1√
2

(φ̃, φ) =
1√
2

(
φ0∗ φ(+)

−φ(−) φ0

)
, (2.63)

Lφ = Tr
[
(DµΣ)†DµΣ

]
− µ2 Tr

[
Σ†Σ

]
+ λTr

[
Σ†Σ

]
, (2.64)

where the covariant derivative is written as

DµΣ = ∂µΣ +
i

2
W a
µσ

aΣ +
i

2
g′BµΣσ3. (2.65)

This Lagrangian, before the symmetry breaking, is invariant under SU(2)L transformations,
Σ → LΣ , as we have showed before. Furthermore, it is almost invariant under SU(2)R trans-
formations where Σ → ΣR† thanks to the trace. The only term that is not invariant under this
transformation is the one that goes with the hypercharge (and g′), because φ̃ and φ have different
hypercharges:

Tr
[
∂µΣ†BµΣσ3

]
→ Tr

[
∂µΣ†BµΣR†σ3R

]
⇒ R†σ3R 6= σ3. (2.66)

Therefore, the scalar part of our Lagrangian is invariant under SU(2)L ⊗ SU(2)R transforma-
tions in the limit in which g′ → 0 and before the SSB. Let us consider that we are on this limit
and our Lagrangian gets spontaneously broken. In this situation the scalar field acquires a vev

〈0|Σ|0〉 =
1

2

(
v 0
0 v

)
, (2.67)

so the scalar field is no longer invariant under SU(2)L ⊗ SU(2)R:

L〈0|Σ|0〉R† 6= 〈0|Σ|0〉. (2.68)

However, the vev is still invariant under simultaneous SU(2)L and SU(2)R transformations with
L = R, this is under the SU(2)L+R subgroup. This remaining symmetry is the so called custodial
symmetry.

Therefore the vev breaks the SU(2)L ⊗ SU(2)R symmetry made of six generators into its
SU(2)L+R subgroup made of three generators. Thus, in total we will have three broken generators
which produce Goldstone boson that will be “eaten” by the three gauge bosons (W1, W2 and W3)
through the Higgs mechanism. This produces a degeneration on the masses of these bosons. This
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degeneration will also be satisfied at tree level even if the symmetry is broken by other terms of
the Lagrangian, because it is this term the one that generates the masses at tree level. This result
is a famous prediction of the SM and it is referred to it with the value of the ratio:

ρtree ≡
m2
W

m2
W3

≡ m2
W

m2
Z cos2 θW

= 1, (2.69)

where mZ is the mass of the Z boson and θW the mixing angle, cos2 θW = g2

g2+g′2
, which gives the

separation from g′ = 0.
Then, the fact of having a ρ parameter equal to one is a direct consequence of the custodial

symmetry and this implies that the radiative corrections to this parameter will be proportional
to the couplings of the terms that break this symmetry. Apart of the term proportional to g′,
the Yukawa Lagrangian also breaks this symmetry because the up-type quarks have a different
mass than the down-type quarks. However, in the approximation of mu = md = m the Yukawa
Lagrangian can be written like

LY = −m
v

(ūL, d̄L)
√

2Σ

(
uR
dR

)
+ h. c., (2.70)

clearly invariant under custodial symmetry after the SSB. This implies that the radiative correc-
tions to the ρ parameter due to massive fermions must disappear in this limit, and this is in fact
the case [27]. In conclusion, this symmetry protects the ρ parameter to have a value different from
1 and hence its name.

Experimentally the value of this parameter has been precisely measured and has a value com-
patible with the prediction of the SM (ρexp = 1.00037± 0.00023 [29]). It is interesting to analyse
how this prediction changes in the framework of new physics. The introduction of one scalar
doublet is not the only possibility in order to generate the masses of the particles and we can
consider the situation in which other scalar particles are added. This parameter is the one that
mostly constrains the possibility of having an exotic Higgs sector [30] and for this reason it is
interesting to study the predictions of other models, i.e., the conditions that have to satisfy the
scalar extensions in order to satisfy the Custodial Symmetry.

If we have a scalar sector containing N multiplets φi (i = 1, ..., N) belonging to different
SU(2)L ⊗ U(1)Y representations (Ti, Yi), each Higgs multiplet can be expressed as [31]

Φi =
[
ΦQ=Yi+Ti
i , . . . ,Φ+

i ,Φ
0
i ,Φ

−
i , . . .Φ

Q=Yi−Ti
i

]T
,

with Φ0
i =

1√
2ci

(H0
i + vi + iz0i ) for Yi 6= 0 fields, Φ0

i =
1√
2ci

(H0
i + vi) for Yi = 0 fields, (2.71)

where vi is the vev of the Φi multiplet and ci = 1(1/2) for a complex (real) scalar field.
In order to find an expression for the ρtree parameter we need to find the values of the W and Z

vector boson masses. These masses are generated as a consequence of the vev, as we saw in section
2.4.2 . If we write the kinetic term of these scalars, like in Eq. (2.46), in terms of the generators:

Lkin =
∑
i

ci|Dµ
i Φi|2, with Dµ

i = ∂µ − ig
√

2(T+
i W

+µ + T−i W
−µ)

− i g

cosθW
(T 3

i − sin2θWQi)Zµ − ieQiA
µ, (2.72)

18



Vı́ctor Miralles Aznar Universitat de València

with T±i the SU(2)L ladder operators and T 3
i the third component of the isospin operator, we

trivially find that:

m2
W =

g2

4
v2, m2

Z =
g2

c2W

∑
i

v2i Y
2
i , with v2 = 2

∑
i

[Ti(Ti + 1)− Y 2
i ]v2i = (246 GeV)2. (2.73)

Once we have the masses of these bosons we can get an expression for the electroweak ρ
parameter:

ρ ≡ m2
W

m2
ZcosθW

=

∑
i v

2
i [Ti(Ti + 1)− Y 2

i ]

2
∑

i v
2
i Y

2
i

. (2.74)

So from here, and taking into account that ρ has to be equal to one, we find that any scalar
extension for the SM should satisfy:

Ti =
1

2

(
−1 +

√
1 + 12Y 2

i

)
, (2.75)

unless some fine-tuned cancellations were produced among the different multiplets, in which case
this relation does not need to be satisfied.

This condition is trivially satisfied by singlets with zero hypercharge and doublets with Y = 1
2
,

what makes these models the favoured candidates for an alternative to the minimal Higgs model.

3 Colour Octet Model

In this work we will focus on a model with an additional doublet of SU(2)L which will also be an
octet of SU(3)C and will have hypercharge 1/2, i.e., a (8,2)1/2 scalar. So our scalar sector will be

φ =

(
φ(+)

φ0

)
, SA =

(
S+A

S0A

)
, (3.1)

where the superscript A = 1 . . . 8 is the adjoint colour index.
Note that the scalar colour octet cannot acquire a vev because this would mean that the vacuum

is not a singlet of colour, so colour would not be conserved. A similar thing happens in the SM
with the charged scalars, they cannot have a vev because the electric charge has to be conserved.
So the vev will be the same that in the SM

〈0|φ|0〉 =

(
0

1√
2
veiθ

)
, 〈0|SA|0〉 =

(
0
0

)
. (3.2)

This vev will minimise the most general potential build with these two scalars which takes the
form

V =
λ

4

(
φ†iφi −

v2

2

)2

+ 2m2
S TrS†iSi + λ1φ

†iφi TrS†jSj + λ2φ
†iφj TrS†jSi + [λ3φ

†iφ†j TrSiSj

+ λ4φ
†i TrS†jSjSi + λ5φ

†i TrS†jSiSj + h. c.] + λ6 TrS†iSiS
†jSj + λ7 TrS†iSjS

†jSi

+ λ8 TrS†iSi TrS†jSj + λ9 TrS†iSj TrS†jSi + λ10 TrSiSj TrS†iS†j + λ11 TrSiSj TrS†jS†i,
(3.3)
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where i and j are SU(2) indices, the traces are in colour space and we have used the notation
S = SATA, with TA the generators of the SU(3) group. All the parameters are real except λ3, λ4
and λ5 but we can choose λ3 real performing a phase rotation of the S fields. So we finally end
with two complex parameters which will be a source of CP violation.

This potential is clearly minimised by the vev of Eq. (3.2) and does not have quadratic terms
that mix the two scalars, because they are not singlets of SU(3)C , so it is already written in the
mass basis. We can now choose a particular vev and consider the excitations of the vacuum

φ(x) =

(
G+(x)

1√
2
(v +H(x) + iG0(x))

)
, SA(x) =

(
S+A

(x)
1√
2
(S0A

R (x) + iS0A

I (x))

)
, (3.4)

where, like in the SM, the G± and G0 are the Goldstone bosons that can be eliminated if we choose
the unitary gauge and we have separated the neutral complex octets into a real CP-even scalar
(S0A

R ) and a real CP-odd scalar (S0A

I ). In fact, the masses of these fields are split by the vev. Let us
look at the first five terms of the potential which will be the responsible of producing the masses:

V ⊃ λ

4

(
(v +H)2

2
− v2

2

)2

+ TF

(
2m2

S + λ1
(v +H)2

2

)
S−

A

S+A

+
TF
2

(
2m2

S+

(λ1 + λ2 + 2λ3)
(v +H)2

2

)
S0A

R S0A

R +
TF
2

(
2m2

S + (λ1 + λ2 − 2λ3)
(v +H)2

2

)
S0A

I S0A

I , (3.5)

where TF = 1/2 is the index of the representation and we have used the unitary gauge. From this
we trivially can get the masses

m2
H =

λ

2
v2H2, m2

S0A
R

= m2
S + (λ1 + λ2 + 2λ3)

v2

4
,

m2
S± = m2

S + λ1
v2

4
, m2

S0A
I

= m2
S + (λ1 + λ2 − 2λ3)

v2

4
. (3.6)

3.1 Kinetic Term

The kinetic term of the φ scalar will be the same than in the SM (§2.4.2), as well as the gauge
fixing term (§2.4.4) because our fields are totally decoupled. The kinetic term of our new scalars
will be

LSKin = 2 Tr
[
(DµS)†DµS

]
with DµS = ∂µS + igs[Gµ, S] + igW̃µS + iySg

′BµS, (3.7)

where the factor two in front generates the correct normalisation, the hypercharge will be yS = 1/2,
as mentioned before, and the trace is performed in the colour space.

Note that in this case in the covariant derivative we have a commutator between our scalar
field and the gluon field. This term is needed in order to have a covariant derivative transforming
like in Eq. (2.14) under SU(3)C transformations. This is trivial to see taking into account that
our new scalar field belongs to the adjoint representation and therefore this will transform under
the SU(3)C group as S → USU †. The terms going with the W̃µ and the Bµ are the same that
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for the SM scalar field φ but, in this case, we will have scalar charged particles (S±) and CP-odd
neutral scalars (S0A

I ) that couple to the photons and the W± and Z gauge bosons that cannot be
eliminated in any gauge.

If we expand this kinetic term we find

LSKin = 2TF (∂µS
A† − gsfABCGB

µ S
C† − igσi

2
W i
µS

A† − iySg′BµS
A†)

× (∂µSA − gsfADEGD
µ S

E + ig
σi
2
W i
µS

A + iySg
′BµS

A) = ∂µS
A†∂µSA + LSG + LSEW , (3.8)

where in the last step the Lagrangian LSG refers to the coupling of our scalar particles with the
gluons and the LSEW to the coupling with the electroweak bosons. Now we can write LSG in terms
of the S±

A
and S0A

R,I fields

LSG = −gsfABCGB
µ (S−

C←→
∂µS+A

+
1

2
(S0C

R

←→
∂µS0A

R + S0C

I

←→
∂µS0A

I ))

+ g2sf
ABCfADEGB

µG
D
µ (S−

C

S+E

+
1

2
(S0C

R S0E

R + S0C

I S0E

I )). (3.9)

We can also expand the LSEW term which will be, as mention before, like the one of the φ field
without eliminating the Goldstone bosons, i.e., the one of Eq. (2.60),

LSEW = ie(Zµ cot 2θW + Aµ)S+A←→
∂µ S−

A

+
(g2

4
W−
µ W

+µ +
g2

8 cos2 θW
ZµZ

µ
)(

(S0A

R )2 + (S0A

I )2
)

+
(
e2(Aµ + Zµ cot 2θW )2 +

g2

2
W−
µ W

+µ
)
S+A

S−
A

+
ig

2
W−
µ S

+A←→
∂µ (S0A

R − iS0A

I )

+
ig

2
W+
µ (S0A

R + iS0A

I )
←→
∂µ S−

A

+
g

2 cos θW
ZµS

0A

I

←→
∂µ S0A

R

+
ge

2

(
Aµ − tan θWZµ

)(
S+A

W−µ(S0A

R − iS0A

I ) + S−
A

W+µ(S0A

R + iS0A

I )
)
. (3.10)

3.2 Yukawa Sector

The interaction of this additional doublet with the quark sector cannot be arbitrary because this,
in general, will generate FCNC at tree-level while experimentally the processes that involve these
currents are extremely suppressed. In the SM, as we showed before, there are no FCNC at tree-
level because the Yukawa couplings of the scalar sector and the mass matrices are proportional. So
if the two Yukawa couplings matrices of the (8,2)1/2 scalar are proportional to the ones of the SM
there will not be FCNC. This condition is usually called Minimal Flavour Violation (MFV). Note
that MFV is not a necessary condition to avoid the tree-level FCNC because we could have two
non-proportional matrices that are diagonal in the same basis but it is a sufficient condition [1].

Imposing MFV, the Yukawa Lagrangian of the coloured scalars can be written, in the interaction
basis, like

LSY = −
3∑

i,j=1

[
ηUY

d
ijQLi

SdRj
+ ηDY

u
ijQLi

S̃uRj
+ h. c.

]
, (3.11)
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where ηU and ηD are complex constants.
In the mass basis this becomes

LSY = −
(
ηU
mi
u

v
uRiT

AuiL(S0A

R + iS0A

I ) + h. c.
)

+
(√

2ηU
mi
u

v
uiRVijT

AdjLS
+A

+ h. c.
)

−
(
ηD
mi
d

v
dRiT

AdiL(S0A

R − iS0A

I ) + h. c.
)
−
(√

2ηD
mi
d

v
d
i

RV
†
ijT

AujLS
−A

+ h. c.
)
. (3.12)

From this Lagrangian we can see clearly that our new scalars can decay to quarks. Using the
Feynman rules of appendix A we can calculate the decay width of these decays

Γ(S+ → tb) =
|ηU |2

16πm3
S

(mt

v

)2
|Vtb|2(m2

S −m2
t )

2, (3.13)

Γ(S0
R → tt) =

mS

16π

(mt

v

)2 [
|Re ηU |2

(
1− 4m2

t

m2
S

)3/2

+ | Im ηU |2
(

1− 4m2
t

m2
S

)1/2
]
, (3.14)

Γ(S0
I → tt) =

mS

16π

(mt

v

)2 [
|Re ηU |2

(
1− 4m2

t

m2
S

)1/2

+ | Im ηU |2
(

1− 4m2
t

m2
S

)3/2
]
. (3.15)

3.3 Custodial Symmetry

In section 2.4.5 we showed how having a Lagrangian invariant under the custodial symmetry
implies that the electroweak ρ parameter is equal to one. In this model the prediction at tree-level
is still one but if we have terms in our Lagrangian that break this symmetry we can have radiative
correction to this value. It is interesting to show under which conditions the potential of Eq. (3.3)
remains invariant under the SU(2)L+R symmetry:

2λ3 = λ2, 2λ6 = 2λ7 = λ11, λ9 = λ10, λ4 = λ∗5. (3.16)

Under these conditions we easily can write the potential in terms of the bi-doublets,

Σ =
1√
2

(φ̃, φ) =
1√
2

(
φ0∗ φ(+)

−φ(−) φ0

)
SA =

1√
2

(S̃A, SA) =
1√
2

(
S0A∗ S+A

−S−A
S0A

)
, (3.17)

in order to make clear the invariance under custodial symmetry [32]:

V =
λ

4

[
Tr
(
Σ†Σ

)
− v2

]2
+ 2m2

S Tr
(
S†ASA

)
+ λ1 Tr

(
TATB

)
Tr
(
Σ†Σ

)
Tr
(
S†ASB

)
+ 4λ3 Tr

(
TATB

)
Tr
(
S†AΣ

)
Tr
(
S†BΣ

)
+ 4 Tr

(
TATBTC

)[
Im(λ4)iTr

(
Σ†SAS†BSC

)
+ h. c.

]
+ 4 Re(λ4) Tr

(
TATBTC

)
Tr
(
S†ASC

)
Tr
(
S†BΣ

)
+ 4λ6 Tr

(
TATBTCTD

)
Tr
(
S†ASB

)
Tr
(
S†CSD

)
+ λ8 Tr

(
TATB

)
Tr
(
TCTD

)
Tr
(
S†ASB

)
Tr
(
S†CSD

)
+ 2λ9 Tr

(
TATB

)
Tr
(
TCTD

)
Tr
(
S†ASC

)
Tr
(
S†BSD

)
.

(3.18)
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The contribution of the colour octet scalars to the ρ parameter was calculated in Ref. [1] for
arbitrary values of the scalar-potential parameters (λi), obtaining

∆ρ =
α

4π sin2 θWM2
W

[
f(mS± ,mS0

R
) + f(mS± ,mS0

I
)− f(mS0

R
,mS0

I
)
]
, (3.19)

with

f(m1,m2) = m2
1 +m2

2 −
2m2

1m
2
2

m2
1 −m2

2

log
m2

1

m2
2

, (3.20)

which is equal to 0 when the first condition of Eq. (3.16) is imposed, as expected.

3.4 Effective Field Theory

Taking into account the constraints on the masses of these particles that have been obtained [6],
it seems reasonable to integrate out the (8,2)1/2 scalars and work in the framework of an Effective
Field Theory (EFT) [33].9

In this framework the physics of the new particles is captured in dimension six operators so
we need to find the relation between the coefficients of the dimension six operators (the Wilson
coefficients) and the parameters of our beyond SM theory. Once we have done this we can work
with the Lagrangian of the dimensional six operators instead of working with the Lagrangian of
our scalars which is useful because the calculations are easier. As phenomenologically the most
interesting processes are σ(gg → h), Γ(H → γγ) and Γ(H → Zγ) we will only consider the
dimension six operators that contribute to these processes

δL = −cGg
2
s

2Λ2
H†HGA

µνG
Aµν − cW

2Λ2
g2H†HW a

µνW
aµν

− cB
2Λ2

g′2H†HBµνB
µν − cWB

2Λ2
gg′H†σaHBµνW

aµν . (3.21)

In order to obtain the relation between the Wilson coefficients and the parameters of our theory
we can consider a particular process in such a way that calculating it in both theories we find this
relation.

Let us first consider the process of gluon fusion, in which two gluons interact and produce a
SM Higgs boson. In the SM this process is forbidden at tree-level and the first contribution is
the one mediated by quarks. As it is proportional to the mass of the quarks the most important
contribution will be the one that is mediated by the top quarks (Fig. 24). If we add the (8,2)1/2
particles this process is still forbidden at tree-level but at one-loop-level we will have additional
diagrams that are shown in Fig. 23. The amplitude of these diagrams in the limit of infinite mass
has been calculated in the appendix B.1, Eq. (B.33). What we want, therefore, is to capture this
contribution in the EFT in which this process in produced at tree-level. For doing so we just need
to find the relation between the parameters of both theories. The only term that will contribute
to this process in the EFT will be the one proportional to cG:

δL ⊃ −cGg
2
s

2Λ2

(v +H)2

2
(∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν )(∂µGνA − ∂νGµA − gsfAB

′C′GµB′GνC′)

⊃ −cGg
2
s

2Λ2
vH(∂µG

A
ν − ∂νGA

µ )(∂µGνA − ∂νGµA), (3.22)

9A detailed analysis of how these constraints were obtained is made in section 4.1.
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where we move to the unitary gauge. The Feynman rule of this last term is shown in Fig. 1. From
this we can trivially find the relation between the Wilson coefficient cG and the parameters of our
theory

cG = −2λ1 + λ2
64π2m2

S

. (3.23)

Ga
µ(~p1)

Gb
ν(~p2)

H(~p3) i
cGg

2
s

Λ2
m2
Hvδab

(
gµν − 2

m2
H

pν1p
µ
2

)
(3.24)

Figure 1: Gluon fusion generated by dimension-six operators.

Another interesting process is the decaying of the Higgs boson into two photons. The contri-
bution of the colour octet scalars to this process, in the limit of infinity mass, have been calculated
in appendix B.3, Eq. (B.40). In the EFT the contribution will come from

δL ⊃ − cW
2Λ2

g2
(v +H)2

2
W 3
µνW

3µν − cB
2Λ2

g′2
(v +H)2

2
BµνB

µν +
cWB

2Λ2
gg′

(v +H)2

2
BµνW

3µν

⊃ −ecW + cB − cWB

2Λ2
vHAµνA

µν = −ecW + cB − cWB

2Λ2
vH(∂µAν − ∂νAµ)(∂µAν − ∂νAµ). (3.25)

The Feynman rule is shown in Fig. 2 from which trivially we obtain:

cγγ
Λ2

=
(cW + cB − cWB)

Λ2
= − λ1

24π2m2
S

. (3.26)

γ(~p2),µ

γ(~p3),ν

H(~p1) i
(cW + cB − cWB)e2

Λ2
m2
Hv

(
gµν − 2

m2
H

pν2p
µ
3

)
(3.27)

Figure 2: SM Higgs going to two photons generated by dimension-six operators.

Similarly we can find the relation between the Wilson coefficients cG, cW and cB:

cG
Λ2

=
3

2

cW
Λ2

=
3

2

cB
Λ2

= −2λ1 + λ2
64π2m2

S

. (3.28)

Finally combining Eq. (3.26) and Eq. (3.28) we find the expression for cWB

cWB

Λ2
= − λ2

48π2m2
S

. (3.29)

4 Phenomenological Analysis

In this section we will analyse the phenomenology of our model. The fact of having an extension
of the scalar sector makes this model richer than the SM, in such a way that the new particles can
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interact with the SM particles and generate contributions to many processes, as we have seen in the
previous section. Of course any extension of the SM has to reproduce its successful predictions and
has to be compatible with the available data. Nowadays, the LHC is the most powerful machine
available to measure observables and, therefore, in this section we will compare the predictions of
our theory with the LHC data. Performing this comparison we will be able to find constraints on
the parameters of our theory.

4.1 Colour Octet Production

Ga
µ(~p1)

Gb
ν(~p2)

Sc(~p3, ~p4)

Sd(~p4, ~p3)

(a)

Ga
µ(~p1)

Gb
ν(~p2)

Sc(~p3)

Sd(~p4)

(b)

Ga
µ(~p1)

Gb
ν(~p2)

Sc(~p3)

Sd(~p4)

(c)

Figure 3: Pair production of colour octet scalars through gluon fusion.

Here we summarise the work made by Ref. [6] analysing the limits on the colour octet masses
obtained from the analysis of the colour octet production. These scalars can be produced by pairs
at tree-level through gluon fusion. The diagrams that contribute to this process are the ones
showed on Fig. 3 and its cross section has been calculated in Ref. [1]:

σ(gg → SS) =
3πα2

s

4s2

{
β

[
3(4m2

S + s) +
1

2
(10m2

S − s)
]
− 12m2

S

s

[
m2
S + (s−m2

S) log

(
1 + β

1− β

)]}
,

(4.1)
where

β =

√
1− 4m2

S

s
. (4.2)

This result is valid for charged scalars, for neutral scalars we have to add a factor 1/2 because the
final state is formed of two identical particles.

The neutral scalars can also be produced in a single production mechanism through the dia-
grams of Fig. 4. For CP-even scalars the contribution of the diagrams 4b and 4c are proportional
to Re(λ4) + Re(λ5) and for CP-odd scalars they are proportional to Im(λ4) + Im(λ5). Therefore,
if we consider that the CP nonconservation is small, i.e. λ4 ≈ Re(λ4) and λ5 ≈ Re(λ5), the only
diagram that contributes to the single S0

I production is the one of Fig. 4a. The decay width of
the neutral colour scalars decaying to gluons was calculated in Ref. [34]
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Figure 4: Single production of colour octet scalars through gluon fusion. In addition we will have the diagrams (a)
and (b) with the internal propagators going anticlockwise.

Γ(S0
R → gg) =

m3
Sα

2
s

211π3v2

(
40

3
η2U

∣∣∣∣I (m2
t

m2
S

)∣∣∣∣2 − 60ηU(λ4 + λ5)
v2

m2
S

(
π2

9
− 1

)
Re

(
I

(
m2
t

m2
S

))

+
135

2
(λ4 + λ5)

2 v
2

m2
S

(
π2

9
− 1

)2
)
, (4.3)

Γ(S0
I → gg) =

5

3

α2
sm

4
t

210π3mSv2
η2U

∣∣∣∣I (m2
t

m2
S

)∣∣∣∣ , (4.4)

where
I(z) = 2z + z(4z − 1)F(z), (4.5)

with F(z) defined on Eq. (B.29).
With this we can trivially obtain the cross section:

σ(gg → S0
R) =

π2

8
δ(s−m2

S0
R

)Γ(S0
R → gg), σ(gg → S0

I ) =
π2

8
δ(s−m2

S0
I
)Γ(S0

I → gg). (4.6)

These cross sections do not have physical meaning until we integrate them using the parton
distribution functions (PDF) because we never have free gluons, they are confined in the protons.
The PDF gives us the probability that a gluon of a proton carries a momentum xp if the proton
carries a momentum p (0 ≤ x ≤ 1) and it is a function of the factorisation scale µ. In order to
perform this integration it is interesting to relate the invariant mass of the two gluons (s) system
and the one of the two proton system (S)

s = (pg1 + pg2)
2 = (x1pp1 + x2pp2)

2 = 2x1x2 p1 · p2 = x1x2S, (4.7)

where we have considered that the mass of the protons is much smaller than the invariant mass of
the two proton system.

Furthermore, we can write the delta function of Eq. (4.6) in terms of x1 and x2

δ(s−m2
S0) = δ(x1x2S −m2

S0) =
1

x1S
δ

(
x2 −

m2
S

x1S

)
. (4.8)
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The single colour octet scalar proton-proton cross section then becomes

σ(pp→ S0
R,I) =

π2

8

∫ 1

0

dx1

∫ 1

0

dx2g(x1, µ)g(x2, µ)δ(s−m2
S0
R,I

)Γ(S0
R,I → gg)

=
π2

8S

∫ 1

m2
SR,I

S

dx1
x1

g(x1, µ)g

(
x2,

m2
S

x1S

)
Γ(S0

R,I → gg), (4.9)

with g(x, µ) the PDF.

0.5 1 1.5 2 2.5 3
mS HTeVL
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100

Σ HfbL �!!!
s = 14 TeV

Figure 5: Figure taken from Ref. [34] where it is shown the dependence on the cross section for pp → S0
R,IS

0
R,I

(solid line), pp→ S0
R (dashed line) and pp→ S0

I (red dotted line). The values of the parameters where ηU = 1 and
λ4,5 ∼ 1, in such a way that the only important contribution to the single cross section is Fig. 4a.
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Figure 6: Production of single octet scalars (S0
R) and decay to dijets compared with CMS data at 13 TeV taken

from Ref. [6].

27



Vı́ctor Miralles Aznar Universitat de València
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Figure 7: Production of single octet scalars (S0
R) and decay to tt−pair compared with ATLAS data at 8 TeV taken

from Ref. [6].
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Figure 8: Production of pair octet scalars (S0
RS

0
R) and decay to a pair of dijets compared with ATLAS data at 13

TeV taken from Ref. [6].

Similarly we obtain the proton-proton cross section for the pair production. It is interesting to
notice that, although the single production is generated through loops, this becomes the dominant
channel for masses of the scalars higher than 1 TeV , as can be seen in Fig. 5.

Once these particles are produced through gluon fusion they decay to other particles which
are detected on the LHC. The decay channels of the single production analysed on Ref. [6] are to
dijets and to a tt−pair.

The decay to dijets will be the dominant channel when the decay to a tt−pair and the process
S0
R,I → S±W∓j are suppressed. The former has zero contribution when ηU = 0 which is easy to

see looking at Eqs. (3.14) and (3.15). The latter will be kinematically suppressed when the mass of
the neutral scalar is smaller than the mass of the charged scalar plus the mass of the W± bosons.
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Figure 9: Production of pair octet scalars (S0
RS

0
R) and decay to four bottoms quarks compared with ATLAS data

at 13 TeV taken from Ref. [6].
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Figure 10: Production of pair octet scalars (S0
RS

0
R) and decay to four tops quarks compared with ATLAS data at

8 TeV taken from Ref. [6].

Imposing custodial symmetry implies mS0
I

= mS± and choosing λ2 < 0 we get mS0
R
< mS± , in

Ref. [6] was chosen λ2 = −5.
The dominant channel that produces dijets is the decay to a bb−pair for values of ηD > 10 and

for smaller values of ηD the decay to gg starts to become relevant. On Fig. 6 we can see how the
mS0

R
is constrained around 650 GeV for values of λ4 around −20, for positive values of λ4 almost

the same result is obtained.
Analysing the tt−pair production the limits that are obtained are mS > 500 GeV as can be

seen in Fig. 7.
For pair production the relevant decay channels will be the dijet pairs and the four top produc-
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tion with the same conditions than before. The constrains obtained from the pair dijet are shown
on Fig. 8. In this figure we see that mS > 500 GeV for ηD ∼ 1 and |λ4| > 10. For higher values
of ηD there are not constraints because the relevant channel starts to be to four bottoms quarks.
The constraints for the four bottoms are shown in Fig. 9 where masses smaller than 1 TeV are
forbidden for values of ηD > 5 and λ4 ∼ −30.

Finally, the constraints obtained for four top quarks production are shown in Fig. 10. With
this we also see that the masses are constrained to be higher than 700-800 GeV with values of
|λ4| < 20.

4.2 Higgs Signal Strengths

H

q q

q q

(a)

H

g t

g t

(b)

Z,W

q

q

Z,W

H

(c)

Figure 11: Production of SM Higgs through vector boson fusion (a), associated production with a tt (b) and
associated production with a vector boson (c).

The LHC data for the Higgs physics is given in terms of the so called Higgs signal strengths.
These are the measured cross section of the Higgs production times the branching ratio of the Higgs
decay in units of the prediction of the SM. These strengths are measured for any production and
decaying channel. At the LHC, the relevant production channels are gluon fusion (Fig. 24), vector
boson fusion (Fig. 11a), associated production with a tt (Fig. 11b) and associated production
with a vector boson (Fig. 11c). The relevant Higgs decay modes are the decay to two photons,
the decay to two weak gauge bosons (one real and one virtual), the decay to two τ leptons and the
decay to a bb pair. So, for instance, the Higgs signal strength for the Higgs production through
gluon fusion and decaying to photons will be

µγγF =
σ(pp→ H)Br(H → γγ)

σ(pp→ H)SMBr(H → γγ)SM
. (4.10)

Now we can think about the processes that are modified by the introduction of the colour octet
scalars. In the previous section we saw that the new scalars modify the Higgs production through
gluon fusion and the Higgs decay into two photons. The amplitude for the contributions of these
particles to these processes has been calculated in the appendix B. Clearly the other production
channels are not modified at tree-level by the scalars, neither the other decay modes. Furthermore,
if we take into account that, analysing the available data, Ref. [6] found that the masses of these
particles must be heavier than 500 GeV , we deduce that the Higgs cannot decay to these particles.
Therefore, the total decay width of the Higgs boson remains almost invariant, we will neglect the
contribution of the new scalars to the total decay width.
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Now let us calculate the Higgs signal strengths of the Higgs being produced by any process but
gluon fusion and decaying to two photons. For these cases the cross section of the Higgs production
in our model is the same than in the SM and the only modification will come from the decay

µγγ =
σ(pp→ H)Br(H → γγ)

σ(pp→ H)SMBr(H → γγ)SM
=

Br(H → γγ)

Br(H → γγ)SM
=

Γ(H → γγ)

Γ(H → γγ)SM
=
|Mγγ|2
|Mγγ|2SM

. (4.11)

The value for the SM amplitude was taken form Ref. [35] and adding our contribution we find

|Mγγ|2 =
α2

256π3
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the SM prediction is the same doing λ1 = 0.
As the mass of our scalars is much bigger than the Higgs mass we can proceed like in section

3.4 and expand the function F
(
m2

S

m2
H

)
around infinity

16λ1v
2TF

m2
H

(
1 + 2

m2
S

m2
H

F
(
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))
= −4v2TF

3

λ1
m2
S

, (4.13)

in such a way that this function just depends on λ1/m
2
S.

Now we can calculate the strength of the Higgs being produced by gluon fusion and decaying
to anything but two photons

µF =
σ(pp→ H)

σ(pp→ H)SM
=
|MggF |2
|MggF |2SM

. (4.14)

Combining the results of appendix B we obtain

|MggF |2 =
(αs
π
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where again expand F
(
m2

S

m2
H

)
around infinity

3(2λ1 + λ2)
2v2
(
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H

F
(
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S

m2
H

))
= −v

2

4

(2λ1 + λ2)

m2
S

, (4.16)

in such a way that we have just dependence on two variables λ1/m
2
S and λ2/m

2
S.

Finally the strength of the Higgs produced by gluon fusion and decaying to two photons will
be simply the product of these two

µγγF = µFµ
γγ. (4.17)

Once we have calculated the theoretical predictions on our model we can compare them with
the experimental data, the data that we used came from Ref. [36] and it is shown in Tab. 1.
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The first thing we can do is to find constraints on λ1/m
2
S. For doing so we calculate the range

in which λ1/m
2
S can vary in order to reproduce the experimental value of the µγγV BF at a 95%

confidence level. We took this strength because it is the best measured of the ones that just
depend on λ1/m

2
S. The result was that λ1/m

2
S must be constrained between −102 TeV −2 and 120

TeV −2.
Once we have calculated the allowed region for λ1/m

2
S we can use the result for constraining

the λ2/m
2
S parameter using other strengths. As the other strengths depend on both parameters

we cannot find a general region in which λ2/m
2
S can vary, but the range of λ2/m

2
S will depend on

the value that λ1/m
2
S takes. In Fig. 12 can be seen the allowed region for both parameters using

the data for µZZF , µWW
F and µγγF , which are the three best measured. Furthermore, this figure also

shows the superposition of the allowed regions for µWW
F and µγγF .10 Looking at Fig. 12d we can

see that the lower allowed value for λ1/m
2
S is −60 TeV −2 which is a harder constraint than the

obtained using the µγγV BF Higgs signal strength. The upper allowed value using µγγV BF is still better
so we can conclude that λ1/m

2
S ∈ [−60, 120] TeV −2 at a 95% CL.

Production/Decay H → γγ H → ZZ H → WW H → ττ H → bb
ggF 1.1+0.23

−0.22 1.13+0.34
−0.31 0.84+0.17

−0.17 1.0+0.6
−0.6 −

V BF 1.3+0.5
−0.5 0.1+1.1

−0.6 1.2+0.4
−0.4 1.3+0.4

−0.4 −
WH 0.5+1.3

−1.2 − 1.6+1.2
−1.0 −1.4+1.4

−1.4 1.0+0.5
−0.5

ZH 0.5+3.0
−2.5 − 5.9+2.6

−2.2 2.2+2.2
−1.8 0.4+0.4

−0.4
tt 2.2+1.6

−1.3 − 5+1.8
−1.7 −1.9+3.7

−3.3 1.1+1.0
−1.0

Table 1: Experimental values for the Higgs signal strengths obtained from Ref. [36].

The next step is to use all the data of Tab. 1 to find the values of our parameters that best
fit these experimental data. In order to do this we will do a similar analysis than the one that
Ref. [37] made for the A2HDM model. First of all we need to minimise the χ2 function:

χ2 =
∑
k

(µk − µ̂k)2
σ2
k

, (4.18)

where σk is the standard deviation of the experimental measurement µ̂k and µk is the theoretical
prediction. If the errors are not symmetric, as they are similar, we symmetrise them

δµ̂k =

√
(δµ̂+)2 + (δµ̂−)2

2
. (4.19)

Performing this minimisation we obtain that the minimum is χ2
min = 19.27 which normalised

by the degrees of freedom

d.o.f. = #µ+ #parameters− 1 = 17, (4.20)

gives χ2/d.o.f. = 1.13 which is an acceptable value.
For calculating the allowed region of the parameters we used the ∆χ2 values shown in Tab. 2,

extracted from Ref. [38]. In this table we present how much can the χ2 function vary in terms of

10Note that the contribution of our particles to µZZF and µWW
F is exactly the same because they do not contribute

to the decay. However, the contribution to µγγF is not exactly the same because they do contribute to the decay to
two photons, this is why this combined plot is interesting. The fact of using µWW

F for this combination is because
it has less error.
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Figure 12: Constraints of the λ1/m
2
S and λ2/m

2
S parameters using the data from the Higgs signal strengths. Figures

(a), (b) and (c) shows the constraints of these parameters using the µZZF , µWW
F and µγγF Higgs signal strengths,

respectively, at a 95% CL. The last one (d) shows the superposition of the constraints obtained by (b) and (c).

the degrees of freedom and the confidence level. As we have two degrees of freedom we should use
the second column of this table and the result is showed in Fig. 13 for 68.3% and 90% of CL. The
SM is reproduced when these parameters are 0, the red cross in this figure represents these values.
Clearly we can see that the SM is compatible with the data at one sigma. However, the values of
these parameters that minimise the χ2 are not 0 but the ones of the green cross in the figure. If
we consider that one of the two parameters that we have is set at the value of the minimum and
we consider then that we have just one degree of freedom we can calculate the error of the other.
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CL/d. o. f. 1 2 3 4 5 6
68.3% 1.00 2.30 3.53 4.72 5.89 7.04
90% 2.71 4.61 6.25 7.78 9.24 10.6
99% 6.63 9.21 11.3 13.3 15.1 16.8

99.73% 9.00 11.8 14.2 16.3 18.2 20.1
99.99% 15.1 18.4 21.1 23.5 25.7 27.8

Table 2: ∆χ2 as a function of confidence level and degrees of freedom.

Doing so we can give the values for the best fit with an uncertainty

λ1
m2
S

= 22.8+2.7
−1.4 TeV −2

λ2
m2
S

= −50.5+2.7
−2.8 TeV −2. (4.21)

It is important to emphasise that in Eq. 4.21 the uncertainties have been calculated fixing one of
the parameters to the best fit value and considering just one degree of freedom but in reality we
have two degrees of freedom, so the real allowed values are the ones showed in Fig. 13, this equation
is just added for completeness. The fact that in this equation the values of these parameters that
reproduce the SM are discarded does not mean that they are not allowed because they are allowed,
as can be see in the figure.
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Figure 13: Best fit for λ1/m
2
S and λ2/m

2
S using Higgs signal strengths. The yellow region corresponds to the values

obtained at a 68.3% of CL and the blue region at a 90% of CL. The red cross is the value of the parameters that
represent the SM, both at 0, and the green cross the point with the lowest value of χ2.

4.3 Wilson Coefficients

The Wilson coefficient cWB is related to the oblique parameter S [1]
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cWB

Λ2
= − 1

8πv2
S. (4.22)

This oblique parameter is associated with the contribution of new physics to the difference
between the Z self-energy at the scale of M2

Z and 0:

α(MZ)

4 sin θW cos θW
S =

Πnew
ZZ (M2

Z)− Πnew
ZZ (0)

M2
Z

, (4.23)

where the fine structure constant and the electroweak mixing angle are expressed in the MS
scheme.

Using Eq. (4.22) and the experimental value of this parameter coming from Ref. [29] we could
find constraints on the value of λ2/m

2
S. The experimental value is S = 0.05 ± 0.10 and this

constrains λ2/m
2
S ∈ [−45, 77] TeV −2 at a 95% of confidence level.

The other Wilson coefficients are not constrained by precision electroweak physics so we cannot
use them in order to constrain the parameters of our theory.

4.4 Running Gauge Coupling

g g

S

S

(a)

S

gg

(b)

Figure 14: Contributions of our scalars to the gluon self-energy.

The fact of having new colour octet scalars affects to the gluon self energy which changes the
running of the strong coupling. The new diagrams are shown in Fig. 14 and their divergent part
in the MS scheme is

∆Πµν
ab = ∆ΠSδab(q

µqν − q2gµν) = −4

3
g2s

µ2ε

(4π)2
1

ε̂
δab(q

µqν − q2gµν), (4.24)

where q is the momentum of the gluon and 1/ε̂ = 1/ε+ γE − log 4π.
Using the value of the SM for the other processes that contribute to the gluon self energy we

obtain that the total divergent part is

∆Π = g2s
µ2ε

(4π)2

((
5

6
− 1

2
ξ

)
CA −

4

3
TFnF

)
1

ε̂
. (4.25)

Using this and the SM values for the divergent parts of the vertex corrections we obtain easily
the β−function:
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µ

αs(µ)

d

dµ
αs(µ) =

αs
π
β1 + · · · = αs

π

[
2

3
nFTF −

7

6
CA

]
+ . . . (4.26)

Now we can integrate this equation in order to find the running of the strong coupling constant
in this theory

αs(Q
2) =

αs(Q
2
0)

1− β1 αs(Q2
0)

2π
log
(
Q2

Q2
0

) . (4.27)

Using this equation and having an initial experimental input we can find the values for the
strong coupling constant at any energy. The values of this constant have been measured at different
scales, as can be seen in Fig. 15, and our theory must produce a running compatible with such
measurements. The best measurement of this constant that has been performed is the one at the
scale of the Z boson mass, αs(MZ) = 0.1181± 0.0011. We can take this value like the input and
predict with it the values for the other energies. For doing so we have to take into account that
the contribution of these particles will start at the scale of its mass because at a smaller scale they
can be integrated out.11 Therefore, at the MZ scale we should use the β1 function predicted by
the SM,

βSM1 =
2

3
TFnF −

11

6
CA, (4.28)

and with just 5 flavours until we get the scale of the top quark mass.

Figure 15: Summary of the measurements of αs and the predictions of the SM taken from Ref. [29].

Taking this into account we can plot the running of αs considering that our new scalars have a
mass around 500 GeV and compare it with the experimental data taken form Ref. [39]. If we look
at the last experimental value of Fig. 16 we see that scalars with a mass smaller than 500 GeV are

11Actually, if we could solve this theory exactly, without a perturbative development, the result at low scale
should be the same for both theories.
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forbidden up to 2σ. It is important to remark that this calculation have been performed at leading
order (LO). We have just calculated the running of αs at LO and for consistency we have used the
matching condition at LO, αSMs (mS) = αnew

s (mS). This has a strong dependence on the matching
point so we should take this result carefully. In order to obtain a solid result we should go further
to the next order, and calculate carefully the matching conditions, where the dependence on the
matching point will not be so strong.
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Figure 16: Experimental values of αs and its running at LO for the SM and for the SM extended with colour octet
scalars of 500 GeV .

5 Conclusions

In this work we have made a brief review of the SM, developing its Lagrangian from the principle
of gauge invariance. We have showed that this symmetry brings to particles without mass and
that this problem could be solved considering that this symmetry is spontaneously broken by
the vacuum. We also explained that this SSB, in principle, leaded to the existence of massless
particles, the Goldstone bosons, which had not been observed. This problem, as explained before,
was definitely solved by Ref. [2–4] who showed that these particles are not physical in gauge
theories.

Once the SM was understood properly we studied a escalar extension of this model, the model
of A. V. Manohar and M. B. Wise [1]. In this model an additional SU(2)L doublet and SU(3)C
octet is added to the SM. So, we have two new charged scalars S±

a
, one new CP-even neutral

scalar S0a

R and one new CP-odd neutral scalar S0a

I which can appear with any of the eight possible
adjoint colours.

The fact of having new scalars with colour produces a total decoupling between these new
scalars and the Higgs doublet. These scalars have different quantum numbers than the Higgs
doublet so they cannot mix with this doublet like in other extensions as the 2HDM or Higgs triplet
models. Furthermore, as a consequence of the conservation of the colour the colour scalars cannot
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adquiere a vev and, therefore, the vev of the SM must be produced entirely by the SM Higgs
doublet.

The colour makes also this model richer because new interactions appear. In this work we have
shown that the covariant derivative leads, apart of coupling to the electroweak bosons like in the
2HDM, to couplings with the gluons. In the Yukawa sector we have considered MFV in such a
way that the Yukawa matrices of the new scalars were equal to the ones of the SM except for
some complex proportionality constants. With this we avoid the existence of FCNC at tree-level,
extremely suppressed experimentally.

Taking into account the actual limits on the masses of these scalars, we found that these
particles have a high mass compared to the electroweak scale. This fact allowed us to integrate
out these particles, condensing their physics in operators of dimension six. In particular we only
considered the operators that are related to Higgs physics, extremely important for the processes
of the LHC.

In this work a phenomenological analysis have also been performed. We analysed the limits
on the masses found by Ref. [6] and we studied the Higgs signal strengths. The allowed range
for the parameters studied is still wide for values of the masses around 500 GeV . With masses
of this order the constraints to the parameters are outside their perturbative region but around
this region, although these are worse for higher masses. However, the Higgs signal strengths have
considerable errors and when these reduce, thanks to the increase of luminosity of the LHC, better
constraints will be obtained. The oblique parameter S produces interesting constraints when the
mass of these scalars is around 500 GeV which are inside the perturbative region of the constrained
parameters.

Finally, we studied the contributions of the scalars to the running of αs. We made an initial
study at LO where we found interesting bounds for the mass of these scalars although for conclusive
results it is necessary to go beyond LO. At this order the dependence with the matching point
is strong and it is, therefore, necessary to make the calculation at higher orders to reduce this
dependence. We leave this for a future study. Anyway, if we look at Fig. 16 the trend seem to be
that light masses are forbidden but we have to be careful with this statement.

A Feynman Rules

Sa+(~p1)

ui,α(~p2)

dj,β(~p3)

i

√
2

2v
ηUmuiVijλ

a
αβPL − i

√
2

2v
η∗DmdjVjiλ

a
βαPR (A.1)

Figure 17: Charged colour octet decaying to quarks.

Sa0R,I(~p1)

ui,α(~p2)

ui,β(~p3)

Even Scalar: − i 1

2v
muiλ

a
αβ(ηUPL + η∗UPR) (A.2)

Odd Scalar:
1

2v
muiλ

a
αβ(ηUPL − η∗UPR) (A.3)

Figure 18: Neutral colour octet decaying to up-type quarks
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Sa0R,I(~p1)

di,α(~p2)

di,β(~p3)

Even Scalar: − i 1

2v
mdiλ

a
αβ(ηDPL + η∗DPR) (A.4)

Odd Scalar:
1

2v
mdiλ

a
αβ(η∗DPR − ηDPL) (A.5)

Figure 19: Neutral colour octet decaying to down-type quarks

Sa(~p1)

Sb(~p2)

H(~p3)
Charged: − iTFvλ1 (A.6)

Even Scalar: − i

2
TFv(λ1 + λ2 + 2λ3) (A.7)

Odd Scalar: − i

2
TFv(λ1 + λ2 − 2λ3) (A.8)

Figure 20: Colour octet particles to SM Higgs

Ga
µ(~p1)

Sb(~p2)

Sc(~p3)

− gsfabc(pµ2 − pµ3) (A.9)

Figure 21: Gluon decaying to any of the three colour octet scalars (S+b

S−c

, S0b

R S
0c

R and S0b

I S
0c

I ). The momenta
are incoming.

Ga
µ(~p1)

Gb
ν(~p2)

Sc(~p3)

Sd(~p4)

2ig2sf
acef bdegµν (A.10)

Figure 22: Vertex of two gluons going to any of the three colour octet scalars (S+b

S−c

, S0b

R S
0c

R and S0b

I S
0c

I ).

B Explicit Calculations

B.1 Gluon Fusion Mediated By Colour Octet Scalars

Let us calculate the contribution of the colour octet scalars to the Higgs production through gluon
fusion, Fig. 23. The calculation of this process is almost the same if the internal propagators are
charged colour octets, even neutral colour octets or odd neutral colour octets, the only difference
will be the coupling between the scalars and the Higgs, Fig. 20, and the mass. Therefore we will
do the calculation for the case of charged colour octets and we will generalise this result afterwards
for the other two cases.

Let us start with the amplitude for the first diagram, Fig. 23b:
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Figure 23: Production of SM Higgs through gluon fusion mediated by colour scalars.

iMa=iTFλ1vg
2
sf

acdf bcdεaµ(p1)ε
b
ν(p2)

∫
d4k

(2π)4
(2kµ+ pµ1)(2kν− pν2)

i

(k+p1)2−m2
S

i

(k−p2)2−m2
S

i

k2−m2
S

.

(B.1)
As the gluons have transversal polarisation, εaµ(p1)p

µ
1 = 0, we can eliminate some terms:

iMa = 4TFλ1vg
2
sf

acdf bcdεaµ(p1)ε
b
ν(p2)

∫
d4k

(2π)4
kµkν

((k + p1)2 −m2
S)((k − p2)2 −m2

S)(k2 −m2
S)
. (B.2)

Let us now focus on the integral, in order to calculate it we will use the Feynman parametri-
sation:

1

ABC
=

∫ 1

0

dx

∫ 1−x

0

dy
Γ(3)

[Ax+By + C(1− x− y)]3
, (B.3)

using this our integral becomes:

∫
d4k

(2π)4
kµkν

((k + p1)2 −m2
S)((k − p2)2 −m2

S)(k2 −m2
S)

=

∫ 1

0

dx

∫ 1−x

0

dy

∫
d4k

(2π)4
Γ(3)kµkν

[(k − p2y + p1x)2 − a2]3 ,
(B.4)

where
a2 = m2

S − 2p1 · p2xy. (B.5)

Now we use dimensional regularisation to perform the integral on k:
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∫
dDk

(2π)D
kµkν

[(k − p2y + p1x)2 − a2]3 =

∫
dDk

(2π)D
(k + p2y − p1x)µ(k + p2y − p1x)ν

[k2 − a2]3 ⇒

⇒
∫

dDk

(2π)D
kµkν − pµ2pν1xy

[k2 − a2]3 , (B.6)

where we have changed variables, from (k − p2y + p1x)µ to kµ. Moreover, in the last step we
have used the transversality to remove terms that afterwards will not contribute and we have
eliminated also the terms with an odd number of kµ in the numerator, which are 0 in dimensional
regularisation.

Now in order to solve this integral we will use the following identity of dimensional regularisa-
tion:

J (D,α, β, a2) =

∫
dDk

(2π)D
(k2)α

[k2 − a2 + iε]β
=

i

(4π)D/2
(a2)D/2(−a2)α−βΓ(β − α−D/2)Γ(α +D/2)

Γ(β)Γ(D/2)
,

(B.7)
and ∫

dDk

(2π)D
(k2)α

[k2 − a2 + iε]β
kµkν =

gµν

D
J (D,α + 1, β, a2). (B.8)

This last identity is easy to obtain if we notice that the integral is odd over a change of sign of the
components of the momentum kµ when µ 6= ν because this implies that, in this case, the integral
is equal to minus itself so it must be 0. However, if µ = ν we change twice the sign so the integral
becomes even over a change of sign in the components of the momentum. With this we find that
gµν is the only dirac structure that can be constructed and the proportionality is trivially find
taking the trace on both sides. Similarly we can also see why the integrals with an odd number of
kµ in the numerator are zero, these terms have been already removed, as mentioned before.

Therefore to solve the integral of Eq. (B.6) we can split it in two integrals, the one proportional
to kµkν and the other, let us perform the first one:

Iµν =

∫
dDk

(2π)D
kµkν

[k2 − a2]3 =
gµν

D
J (D, 1, 3, a2) =

gµν

4 + 2ε

i

(4π)2
µ2ε

(
a2

4πµ2

)ε
Γ(−ε)
Γ(3)

Γ(3 + ε)

Γ(2 + ε)
, (B.9)

where we have used D = 4 + 2ε. Now we expand for ε going to zero:

Iµν=
gµν

2(2 + ε)

i

2(4π)2
µ2ε
(

1 + ε log
( a2

4πµ2

))(
− 1

ε
− γE

)
(2 + ε) = −gµν i

4(4π)2
µ2ε

(
1

ε̂
+ log

(
a2

µ2

))
,

(B.10)
with 1/ε̂ = 1/ε+ γE − log(4π) and where γE is the Euler constant.

The second integral is performed in a similar way but is simpler because there are no singular-
ities: ∫

dDk

(2π)D
pµ2p

ν
1xy

[k2 − a2]3 = pµ2p
ν
1xyJ (4 + 2ε, 0, 3, a2) = − i

2(4π)2a2
pµ2p

ν
1xy. (B.11)
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So the amplitude becomes:

Ma= Cµν
{

1

2
gµνµ2ε

[1

ε̂
+ 2

∫ 1

0

dx

∫ 1−x

0

dy log

(
a2

µ2

)]
− 2pµ2p

ν
1

∫ 1

0

dx

∫ 1−x

0

dy
xy

a2

}
(B.12)

with

Cµν = − 2TF
(4π)2

λ1vg
2
sf

acdf bcdεaµ(p1)ε
b
ν(p2) (B.13)

The amplitude of the second diagram, Fig. 23a, is clearly the same than the one of the first so
we will have twice this contribution. Now we can calculate the third one, Fig. 23c:

iMc = −iTFλ1v2ig2sf
acdf bcdεaµ(p1)ε

b
ν(p2)g

µν

∫
d4k

(2π)4
i

k2 −m2
S

i

(k − p1 − p2)2 −m2
S

. (B.14)

The integral can be performed in a similar way than the other one using the following Feynman
parametrisation:

1

AB
=

∫ 1

0

dx
1

[Ax+B(1− x)]2
. (B.15)

Then the integral becomes:∫
d4k

(2π)4
1

k2 −m2
S

1

(k − p1 − p2)2 −m2
S

=

∫ 1

0

dx

∫
d4k

(2π)4
1

[(k − x(p1 + p2))2 − b2]2
=

∫ 1

0

dx

∫
d4k

(2π)4
1

[k2 − b2] ,
(B.16)

where we have changed of variables form kµ to kµ + x(pµ1 + pµ2) and b2 = 2p1 · p2(x− 1)x+m2
S.

Now we perform the integral on k using dimensional regularisation:∫
dDk

(2π)D
1

[k2 − b2] = J (D, 0, 2, b2) =
−i

(4π)2
µ2ε

(
1

ε̂
+ log

(
b2

µ2

))
, (B.17)

where, like before, we set D = 4 + 2ε.
The amplitude becomes, therefore,

Mc = −Cµνgµνµ2ε

(
1

ε̂
+

∫ 1

0

dx log

(
b2

µ2

))
. (B.18)

Now we can calculate the total amplitude:

2Ma +Mc = Cµν
{
gµνµ2ε

[
2

∫ 1

0

dx

∫ 1−x

0

dy log

(
a2

µ2

)
−
∫ 1

0

dx log

(
b2

µ2

)]
− 4pµ2p

ν
1

∫ 1

0

dx

∫ 1−x

0

dy
xy

a2

}
.

(B.19)

Note that, as expected, the divergences cancel. This is necessary in order to have a renormalisable
theory because we do not have any other structure in our Lagrangian that could cancel this
divergence. Furthermore, thanks to the Ward identities we know that this amplitude must be
proportional to (p1 · p2gµν − pµ1pν2). Let us simplify this equation in order to show it:
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2

∫ 1

0

dx

∫ 1−x

0

dy log

(
a2

µ2

)
−
∫ 1

0

dx log

(
b2

µ2

)
= 2

∫ 1

0

dx

∫ 1−x

0

dy
[
�
��

�
��

��

log

(
2p1 · p2
µ2

)
+ log(n− xy)

]
+

−
∫ 1

0

dx
[
��
�
��

�
��

log

(
2p1 · p2
µ2

)
+ log(n− x(1− x))

]
= 2

∫ 1

0

dx

∫ x(1−x)

0

du
log(n− u)

x
−
∫ 1

0

dx log(n− x(1− x)) =

= 2

∫ 1

0

dx
[
− n

x
log

(
1− x(1− x)

n

)
+ (x− 1) +

((((
((((

(((
((

(1− x) log(n− x(1− x))
]
−
��

���
���

���
�∫ 1

0

dx log(n− x(1− x)) ,

(B.20)

where n = mS

2p1·p2 . The other integral becomes:

−4

∫ 1

0

dx

∫ 1−x

0

dy
xy

a2
=
−4

2p1 · p2

∫ 1

0

dx

∫ x(1−x)

0

du
1

x

u

n− u =
4

2p1 · p2

∫ 1

0

dx
[
(1− x) +

n

x
log

(
1− x(1− x)

n

)]
,

(B.21)

in such a way that the total amplitude is, indeed, proportional to (p1 · p2gµν − pµ1pν2).
In order to calculate the last integral,

I =

∫ 1

0

dx
1

x
log

(
1− x(1− x)

n

)
, (B.22)

is convenient to define ξ = 1/n. This integral will have poles when ξ > 4 so first we will calculate
it for ξ < 4. This integral can be performed derivating and integrating with respect to ξ

dI

dξ
=

∫ 1

0

dx
x− 1

1− ξx(1− x)
=

−2√
ξ(4− ξ)

arcsin

(√
ξ

2

)
⇒ I = −2 arcsin2(

√
ξ/2) (B.23)

Now let us perform the integral for ξ > 4. As this has poles we should recover the factor iε of
the propagator, basically where we have a mass square we have to add a term −iε. We will do the
integration by parts first of all to obtain:

I = ξ

∫ 1

0

dx
1− 2x

1− ξx(1− x)− iε log x =

∫ 1

0

dx
1− 2x

(x− x− + iε)(x− x+ − iε)
log x =

=

∫ 1

0

dx
1− 2x

β
log x

(
1

x− x+ − iε
− 1

x− x− + iε

)
= P

(∫ 1

0

dx
1− 2x

β
log x

( 1

x− x+
− 1

x− x−

))
+
iπ

β

∫ 1

0

dx(δ(x− x+) + δ(x− x−))(1− 2x) log x = P
(
I
)
− iπ

β
log

(
1 + β

1− β

)
, (B.24)

where we have used the Sokhotski-Plemelj theorem,

lim
ε→0+

∫
f(x)

x± iεdx = P
(∫

f(x)

x
dx

)
∓ iπ

∫
f(x)δ(x)dx, (B.25)

and

x± =
1

2
(1±

√
1− 4/ξ) =

1

2
(1± β). (B.26)
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Finally we solve the last remaining integral in a similar way than for the case without poles:

P
(dI

dξ

)
= P

(∫ 1

0

dx
x− 1

1− ξx(1− x)

)
= P

(
−1

2βξ

∫ 1

0

dx

(
1

x− x+
− 1

x− x−

))
=

1

βξ
log

(
1 + β

1− β

)
⇒

⇒ I =

∫
dβ
ξ2β

2

1

βξ
log

(
1 + β

1− β

)
=

1

2
log2

(
1 + β

1− β

)
− 1

2
π2, (B.27)

where we have set the integration constant to −1
2
π2 in order to have a continuous function.

With this the total amplitude becomes:

2Ma +Mc = Cµν(1 + 2nF(n))

(
−gµν +

1

p1 · p2
pµ2p

ν
1

)
, (B.28)

with

F(n) =

{
1
2

[
log
(

1+
√
1−4n

1−√1−4n

)
− iπ

]2
n < 1/4

−2 arcsin2(1/
√

4n) n > 1/4
. (B.29)

Remember that we have to add the contributions for the neutral scalar colour octets. If we
consider that the scalar particles have the same mass we obtain

2Ma +Mc = − 2TF
(4π)2

(2λ1 +λ2)vg
2
sCAδabε

a
µ(p1)ε

b
ν(p2)(1 + 2nF(n))

(
−gµν +

1

p1 · p2
pµ2p

ν
1

)
. (B.30)

The cross section will be:

σ =

∫
dQ1

∑ |M|2
2
√
λ(s, 0, 0)

=
π
∑ |M|2
s

δ(s−m2
h) =

π
∑ |M|2
256s

δ(s−m2
h) (B.31)

with

|2Ma +Mc|2 =
T 2
F

2

(αs
π

)2
(2λ1 + λ2)

2v2C2
A(N2 − 1)|1 + 2nF(n)|2. (B.32)

If we make the approximation for scalars with a very high mass with respect to the Higgs mass,
i. e. we expand the function F(n) in n→∞, and we move to the centre of mass frame we get:

2Ma +Mc ≈ −
2TF

(4π)2
(2λ1 + λ2)vg

2
sCAδabε

a
µ(p1)ε

b
ν(p2)

m2
H

12m2
S

(
gµν − 2

m2
H

pµ2p
ν
1

)
. (B.33)

B.2 Gluon Fusion Mediated By Top-Quark

The amplitude of the first diagram will be

Ma = −ig2s
mt

v
εaµ(p1)ε

b
ν(p2)T

a
αβT

b
βα

∫
d4k

(2π)4

Tr
[
γµ(/k + /p1 +mt)(/k − /p2 +mt)γ

ν(/k +mt)
]

[k2 −m2
t ][(k

2 + p1)2 −m2
t ][(k − p2)2 −m2

t ]
, (B.34)

where we can expand the trace in order to obtain
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t(~k+~p1)
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g(~p1),µ,a
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(a)
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H(~p3)

(b)

Figure 24: Production of SM Higgs through gluon fusion mediated by top quarks.

Tr
[
γµ(/k + /p1 +mt)(/k − /p2 +mt)γ

ν(/k +mt)
]

=

= 4mt(p
µ
2p

ν
1 + 4kµkν − 2kµpν2 + 2pµ1k

ν − pµ1pν2 + gµν(m2
t − p1 · p2)− gµνk2)⇒

⇒ 4mt(p
µ
2p

ν
1 + 4kµkν + gµν(m2

t − p1 · p2)− gµνk2), (B.35)

where in the last step we have eliminated the terms that will vanish due to the transversality of
the gluons εaµ(p1)p

µ
1 = 0. With this the amplitude becomes

Ma = −ig2s
mt

v
εaµ(p1)ε

b
ν(p2)TF δab

∫
d4k

(2π)4
4mt(p

µ
2p

ν
1 + 4kµkν + gµν(m2

t − p1 · p2)− gµνk2)
[k2 −m2

t ][(k
2 + p1)2 −m2

t ][(k − p2)2 −m2
t ]

. (B.36)

In order to perform these integrals we proceeded like in the previous section: first we use the
Feynman parametrisation and after that we use dimensional regularisation. Using this and taking
into account that the second diagram is equal to the first one we obtain

M =
g2s

4vπ2
εaµε

b
νδabnt(−2 + (1− 4nt)F(nt))(p

µ
2p

ν
1 − gµνp1 · p2) (B.37)

with nt =
m2

t

2p1·p2 , in the CM:

|M|2 =
4m4

t

v2

(αs
π

)2
| − 2 + (1− 4nt)F(nt)|2 (B.38)

B.3 Higgs Decaying to Two Photons

Now let us calculate the contributions of our particles to the process of the Higgs boson decaying to
two photons. As we can see in Fig. 25 the diagrams are extremely similar to the ones of the gluon
fusion mediated by the colour octet scalars, although this time only the charged scalar contributes
to the process. The result will be, therefore, very similar, the only difference is that this time
we do not have the SU(3) structure constants (fabc), we just have a delta in colour space, and
instead of having the strong coupling (gs) we have the electromagnetic coupling (e). Therefore
regarding the couplings the only difference is a factor (N2 − 1)/CA because we change δabCA by
δaa = N2 − 1 = 8:

M = − 16TF
(4π)2

λ1ve
2εµ(p2)εν(p3)

(
1 + 2nF(n)

)(
−gµν +

1

p2 · p3
pµ3p

ν
2

)
, (B.39)
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S+e
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Figure 25: Higgs decaying to two photons.

where again n = mS

2p1·p2 .
Like in section B.1 we can make the approximation for scalars heavy compared to the Higgs

boson and we get

M≈ − 16TF
(4π)2

λ1ve
2εµ(p1)εν(p2)

m2
H

12m2
S

(
gµν − 2

m2
H

pµ2p
ν
1

)
. (B.40)

And the decay width will be

Γ =
1

2

√
λ(m2

H , 0, 0)

64π2m3
H

4π|M|2 =
T 2
Fλ

2
1v

2α2

π3mH

|1 + 2nF(n)|2. (B.41)
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