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1 Introduction
The spontaneous breaking of gauge symmetry is an essential feature of particle physics, in

that it brings mass to the gauge bosons W ±
and Z and fermions and more broadly holds a very

important place in our understanding of the Universe. The existence of a Higgs sector to explain it

has been considered almost as early on as the inception of the Standard Model. It is very successful

in explaining the experimental results. However, in 2000, the LEP experiment closed and no Higgs

had yet been discovered. Scientists thus started to investigate new sectors that could break the

electroweak symmetry and substitute for the Higgs physics.

One of the possibilities was the existence of a new strong sector that, through the non-linear

sigma model, would spontaneously break the chiral symmetry SU(2)L ¢ SU(2)R æ SU(2)L+R,

with the electroweak symmetry being gauged. The experimentally-observed gauge bosons would

receive mass with that mechanism [1, 2]. Actually, when an e�ective field theory is built for this

model, one obtains the Chiral Perturbation Theory (ChPT) lagrangian, with the Goldstone bosons

given by the spontaneous chiral symmetry breaking instead of the pions, and a change of scale and

of Low Energy Constants (LECs). This theory is named the E�ective Chiral Electroweak Theory

(EChET), and as ChPT, it is a low-energy theory perturbative in momentum p, that is renormalizable

order by order in its expansion. Moreover, so as to reproduce the physics of the Higgs sector, the

constant v = 1ÔÔ
2 GF

ƒ 246 GeV, which is the vacuum expectation value of the Higgs, was introdu-

ced. EChET is a theory only valid at low energies compared to the theory scale �EW = 4 fi v ƒ 3 TeV.

However, since the Higgs was discovered at the LHC in 2012, it has to be included in every

model at energies E Ø 0.1 TeV ƒ MH . The e�ective theory based on the non-linear sigma model

can be modified so as to include the Higgs field. Despite the existence of this boson, we have no

reason to exclude the possibility of a strong interacting sector at E ≥ 1 TeV.

Furthermore, this strong sector predicts the existence of resonances, which the CMS and

ATLAS experiments are currently searching evidence on. In e�ective theories such as EChET,

the information on heavier resonances is found in the coupling constants. The main objective

of this study is to investigate the spin 1 resonances at E ≥ 1 TeV by analyzing the order four

EChET scattering amplitude of WLZL æ WLZL. However, we know that the e�ective electroweak

theory may not be valid at energies of the order of the TeV. Therefore, in order to use it to

search for resonances, we have to employ a method to increase its validity range. Several of them

exist, but we choose to take advantage of the smoothness of the zero contour of the EChET

amplitudes. This method is only valid for resonances of spin J Ø 1, as we will explain in section 2.2.2.

Additionally, we decided to first test our method by searching for the fl(770) resonance using

the ChPT amplitude of the fi≠fi0 æ fi≠fi0
scattering. The validity range of ChPT consists of

energies up to E π 4 fiffi ƒ 1.16 GeV, so the framework would not normally su�ce in order to

find the fl(770) resonance. That is where our Legendre zeros method can help. This particular

resonance is already known, and the chiral theory has already been studied abundantly. We know

that the coupling constants involved in our amplitude are saturated by vector resonances, and they

have been measured. We will show that the result obtained with our technique indeed matches

the fl(770) resonance. This validates its e�ciency in finding vector resonances using low-energy

theories. Moreover, the zeros method will provide us with a unitarization procedure for the scattering.

Then, we will apply the technique to the much less known electroweak case, where we assume

that the coupling constants are also saturated by the vector resonances. The LECs have not yet

been measured, neither has any resonance at these energies, so any information that our method

can unveil is welcome. We will look for resonances that are involved in the WLZL æ WLZL
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scattering. Two theoretical points will make our calculation of the amplitude possible. First, the

equivalence theorem, that relates the WLZL æ WLZL amplitude with the scattering one of the

corresponding Goldstone bosons from this electroweak strong sector. This theorem is only valid

at energies E ∫ MW ≥ 0.1 TeV, and was originally intended for an intermediate study of our

targeted scattering amplitude with a very heavy Higgs. The second point is the link that exists

between ChPT and EChET. That will make our calculation of the Goldstone boson amplitude

considerably easier, as we can thus use the existing work done on the fi≠fi0 æ fi≠fi0
chiral

amplitude (fi being the pion here). Then, we will apply our Legendre zeros method to the e�ective

electroweak amplitude so as to extend the validity range of the theory. Finally will come the de-

duction of the minimum allowed resonance mass as a function of the LECs involved in the amplitude.

The outline of this study is the following. First, section 2.1 reviews the main points of the Chiral

Perturbation Theory. The following section develops the Legendre zeros method using the example

of the pion pion scattering fi≠fi0 æ fi≠fi0
. The resonance mass will be derived, and so will a

unitarization procedure of the amplitude based on the zero contour. Section 2.3 comments on the

change in our results with the addition of the O(p6) corrections (as all the previous calculations were

done at O(p4)). Then, section 3.1 focuses on the equivalence theorem, which enables us to calculate

our scattering amplitude A(WLZL æ WLZL) using the electroweak e�ective theory. The following

section will introduce the lagrangian LEChET of this e�ective theory, and section 3.3 calculates the

O(p4) amplitude of the WLZL æ WLZL scattering using the results from the two previous sections.

Ultimately, section 3.4 focuses on applying the zeros method to this case and on deriving two figures

of the minimum allowed resonance mass as a function of the coupling constants. The Higgsless case

will be considered as well as the one including the Higgs field, for comparison. We will end with a

brief review of other methods developed to search for vector resonances at E ≥ 1 TeV, and we will

comment on the latest experimental results on the matter.

2 Pions case : Study of fi≠fi0 æ fi≠fi0

2.1 The Chiral Perturbation Theory framework
2.1.1 Spontaneous Chiral Symmetry Breaking

In the absence of external currents and neglecting the quark masses, the theory of strong inter-

actions is commonly described by the following lagrangian [3] :

L0
QCD = ≠1

4Ga
µ‹Gµ‹

a + iqL“µDµqL + +iqR“µDµqR. (1)

This lagrangian is invariant in flavour space under the group G © SU(Nf )L ¢ SU(Nf )R =
SU(Nf )L+R=V ¢ SU(Nf )R≠L=A. This is called Chiral Symmetry, and it is a global one. We will

consider in this subsection Nf = 3 flavours for the quarks : u,d and s. This symmetry defines

two sets of Noether currents Jaµ
X = 1

2qX“µ⁄aqX , where X = L, R and the ⁄a
are the Gell-Mann

matrices. There are also two conserved charges Qa
L and Qa

R, with Qa
X =

s
d3xJa0

X (x). Using the

vector and axial vector notations, it gives us Qa
V = Qa

L + Qa
R and Qa

A = Qa
R ≠ Qa

L.

However, at low energies, the running QCD coupling constant –s becomes large. The quarks are

thus not the appropriate degrees of freedom to be working with then, the hadrons are. Although

some of the hadrons observed can be classified in SU(3)V , none can be found to be axial vector.

Moreover, there are 8 very light pseudoscalar mesons observed in nature which can be explained

theoretically as Goldstone bosons. That indicates that the 8 generators of SU(3)A are spontaneously

broken when changing the degrees of freedom from the quarks to the hadrons in the lagrangian. We

can also express that using the conserved charges and the hadronic vacuum |0Í :
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’a, Qa
V |0Í = 0 and Qa

A|0Í ”= 0. (2)

Having Qa
A|0Í ”= 0 makes it possible for an operator Oa

to exist such that È0|[Qa
A, Oa]|OÍ ”= 0.

And indeed, with Oa = q“5⁄aq , we have :

È0|[Qa
A, Oa]|OÍ = ≠1

2È0|q{⁄a, ⁄a}q|0Í = ≠2
3È0|qq|0Í ”= 0. (3)

According to Goldstone’s theorem (1961), there is thus one massless Goldstone boson |GaÍ for

each broken generator Qa
A of SU(3)A, which means that we have just introduced 8 massless Goldstone

bosons into the theory. As we explained, these were identified with the octet of pseudoscalar particles

(fi≠, fi0, fi+, K≠, K+, K0, K0, ÷), which are the lightest mesons. As È0|[Qa
A, Oa]|OÍ has the

quantum numbers of the vacuum, it is a scalar. Strong interactions conserve parity, so [Qa
A, Oa] has

to be a scalar as well. Since parity transforms Qa
A into ≠Qa

A, we can deduce that the Oa
have to be

pseudoscalar operators, and that the |GaÍ indeed result in being pseudoscalar particles, as expected

by the experiment. In the end, the eight pseudoscalar mesons do have a small mass given by the

quark-mass matrix which when added, breaks explicitly chiral symmetry.

2.1.2 Building an e�ective field theory

2.1.2.1 The reasons. At high energies, asymptotic freedom is observed and the running QCD

coupling constant –s is small. The spectrum of particles observed is thus composed of quarks, and

perturbation theory can be applied with good results. At low energies however, the running QCD

coupling constant is very large, and the situation is di�erent. As the interactions between quarks and

gluons are strong, these are confined and not observed as such. The spectrum is instead made of

hadrons. It would therefore be more accurate to make a theoretical description of the interactions in

terms of these hadrons, but the task is enormous due to the immense variety of them. We thus find

ourselves in a sort of impasse. However, an important simplification of the situation can be made at

very low energies : there is a mass gap between the above-mentionned pseudoscalar octet of mesons,

and the following particles on a mass scale, the fl(770) resonance being the lightest one of them

1
:

Mfi ƒ 140 MeV and MK,÷ Æ 550 MeV, whereas Mfl ƒ 770 MeV. (4)

Therefore, an e�ective field theory can be built, using as only degrees of freedom the eight light

pseudoscalar mesons, and taking into account the chiral symmetry that our QCD lagrangian in Eq.(1)

displays. This theory will understandably only be accurate under a certain energy scale �. It is called

the Chiral Perturbation Theory. Actually, the heavier degrees of freedom that nature has to o�er were

integrated out of the action in order to obtain this low-energy formulation. However, the information

corresponding to them was not lost. It remains contained in the often undetermined constants of the

e�ective lagrangian. This new theory will not only make calculations considerably easier and faster,

but it will also enable us to compute scattering amplitudes in a systematic and rigorous way, with

each higher order a smaller correction to the lower ones.

2.1.2.2 The principles. Firstly, as we said, the Goldstone bosons should be the only degrees of

freedom of this theory. Thus, we need a way to parametrize them. We will work with Nf = 2
flavours from here on. Chiral symmetry is spontaneously broken in the hadronic spectrum. Therefore,

in order to implement it at the Goldstone bosons level, we have to consider a non-linear representation

of these particles :

U(„) = exp
C

i

Ô
2

f
�

D

, where � = ·a

Ô
2

. „a =
A 1Ô

2fi0 fi+

fi≠ ≠ 1Ô
2fi0

B

(5)

1. The mass gap is a lot bigger (and a more accurate concept) in SU(2), where the K and ÷ are not considered.
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where ·a, a = 1, 2, 3 are the Pauli matrices. U(„) transforms under the chiral group G ©
SU(2)L ¢ SU(2)R in the following way :

U(„) G≠≠≠≠≠æ gR U(„) g†
L , where (gL , gR) œ G . (6)

As we are working at low energies, it is particularly interesting to arrange the e�ective lagrangian

in terms of increasing powers of momentum pµ, or which is the same, in terms having an increasing

number of derivatives ˆµ. Then, we will be able to treat calculations perturbatively, and the terms

that have the lowest number of derivatives will dominate.

Building the e�ective lagrangian consists in finding the most general lagrangian there is which

would also be invariant under chiral symmetry and parity transformations. Indeed, as strong inter-

actions conserve parity, any e�ective theory of them will also conserve it. We know that parity P

transforms pµ = (p0, p̨) P≠≠≠≠≠æ (p0, ≠p̨). Hence, we conclude that for our lagrangian to be

invariant under parity transformations and Lorentz invariance, it has to contain only even powers of

momenta, which also means only even numbers of derivatives. We will write LChP T = q
n L2n.

2.1.3 Chiral Perturbation Theory at lowest order

We will set out to investigate the e�ective lagrangian at lowest order (in momentum). Since

UU † = I, there is no non-trivial zero-order lagrangian. Indeed, to be chirally invariant, L0 can only

display ÈUU †Í (where È..Í denotes the trace in the flavour space of the matrix inside). The second

order is thus the lowest one in our study. The most general chiral invariant lagrangian at O(p2) has

the following expression [3] :

L2 = f2

4 ÈˆµU † ˆµUÍ. (7)

Performing calculations at O(p2) in Chiral Perturbation Theory consists in accounting only for

the order-two chiral lagrangian at tree level. It is possible, using Eq.(5), to develop L2 into a power

series of �. Then, we observe a kinetic term in �, as well as an infinite number of interactions,

between increasing numbers of Goldstone bosons. It is the requirement that this kinetic term be

properly normalized that fixes the coupling constant of L2 to

f2

4 . It is now thus possible to calculate

scattering amplitudes of processes involving any number of Goldstone bosons, at lowest order in

momentum and with just one coupling constant f .

Moreover, there also exists an extended lagrangian of QCD, involving couplings of the mesons

fields to external classical fields vµ (vector), aµ (axial vector), s (scalar) and p (pseudo-scalar) :

LQCD = L0
QCD + q “µ(vµ + “5aµ) q ≠ q (s ≠ i“5p) q. (8)

One of the assets of this new extended QCD lagrangian is that it enables us to introduce the

electromagnetic and weak interactions, and the explicit breaking of chiral symmetry into LQCD. In

order to do that, we would take :

rµ © vµ + aµ = e QAµ

and lµ © vµ ≠ aµ = e QAµ + eÔ
2 sin◊W

(W †
µ T+ + h.c.), (9)

where Q is the quark-charge matrix Q =
A

2
3 0
0 ≠1

3

B

and T+ =
A

0 Vud

0 0

B

displays the

appropriate coe�cients of the CKM matrix.
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The symmetry conserved here is broader than the global chiral one that we used to have in

Eq.(1). Thanks to the new external fields, our extended QCD lagrangian can be invariant under local
chiral transformations :

qL ≠æ gLqL , lµ ≠æ gL lµ g†
L + i gL (ˆµ g†

L) ,

qR ≠æ gRqR , rµ ≠æ gR rµ g†
R + i gR (ˆµ g†

R) ,

and s + ip ≠æ gR(s + ip)g†
L .

(10)

where (gL, gR) œ GÕ © SU(3)L ¢ SU(3)R.

We are now naturally interested in building an e�ective field theory out of the extended QCD

lagrangian of Eq.(8). In this case, the degrees of freedom of the theory are not only the Goldstone

bosons, with their non-linear representation U(„), but also the external classical fields vµ, aµ, s + ip
and s ≠ ip. The symmetry that our e�ective lagrangian has to conserve now is the local chiral

symmetry, as well as parity. It can be shown that the most general lagrangian fulfilling these conditions

is the following one :

L2 = f2

4 È(DµU)† (DµU) + U †‰ + ‰†UÍ, (11)

where DµU = ˆµU ≠ i rµU + i U lµ ,

‰ = 2 B0 (s + ip).
(12)

We see that B0 is another coupling constant of our theory. The masses of the Goldstone bosons

can be introduced through the scalar external field by taking :

s = M + ... , where M is the quark-mass matrix M =
A

mu 0
0 md

B

, (13)

so then ‰ = 2 B0 M + ... ƒ
A

M2
fi 0

0 M2
fi

B

in the isospin limit. (14)

Moreover, if we develop the second and third terms of Eq.(11) as a power series of the Goldstone

bosons fields using as s the quark-mass matrix as suggested after Eq.(8), and taking p = 0 (as done

in Eq.(15)), we can give mass to the Goldstone bosons. Their masses will naturally be expressed as

functions of the quark masses, and that will give us a correspondence between them.

f2

4 ÈU †‰ + ‰†UÍ = f2

4 2B0 ÈM(U + U †)Í = B0

A

≠ÈM�2Í + O(�4

f2 )
B

. (15)

This is interesting, since as at low energies, no quarks can be observed, and that makes it rather

di�cult for us to measure their masses. On the other hand, our Goldstone bosons are perfectly

observable at a range of energies attainable, so it is considerably easier for us to know their masses.

Having a relation between the masses of the two enables us to derive information on the masses of

quarks.

It is possible to calculate the Noether currents of the local chiral symmetry. From there, we can

deduce the axial current Jµ
A = Jµ

L ≠ Jµ
R in terms of the Goldstone bosons fields, and relate that

expression to the definition of the pion decay constant :

È0| (Jµ
A)12 |fi+Í = i

Ô
2 ffi pµ. (16)
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Ultimately, we see that the coupling constant f of the order-two lagrangians of Eq.(7) and Eq.(11)

is actually the pion decay constant : f = ffi ƒ 92.4 MeV. With a similar reasoning, it is also possible

to express the coupling constant B0 as a function of the quark condensate :

È0| q̄jqi |0Í = ≠ f2B0 ”ij . (17)

2.1.4 Chiral Perturbation Theory at O(p4)

In order to use Chiral Perturbation Theory at order four, three elements should be taken into

account. First, all graphs based on L4 at tree level. Second, all graphs based on L2 at one-loop

level, and finally, adding the chiral anomaly, which we will not discuss here.

L4 is the most general lagrangian of order four conserving all the same symmetries as QCD,

which we mentioned earlier in this work. Its detailed expression can be found in [4], and the part of

it that we will use in this study is :

L4 = l1
4 È(DµU)† (DµU)Í2 + l2

4 È(DµU)† (D‹U)Í È(DµU)† (D‹U)Í + ... . (18)

It has 7 coupling constants li, which are accessible by measurement, and three more named

hi that are not directly measurable because they accompany terms that do not involve Goldstone

bosons fields.

It is worth mentioning that it is possible to renormalize the divergent loops from L2 with

L4. Indeed, if a regularization maintaining the symmetries of the lagrangian is chosen, then the

counter-terms for the L2 loops would have to conserve the same symmetries, and thus already be

"included" in L4 (as it has the most general expression possible). Then, we see the renormalized

coupling constants of L4 (the lri ’s) appear.

We can also deduce the Chiral Perturbation Theory scale. With each loop comes a factor of

E2

(4fiffi)2 . An inherent concept to the low-energy expansion theory that is ChPT is that diagrams with

loops, adding two additional powers of momentum, do not prevail compared to tree-level diagrams.

In order for it to be consistent with the loop factor that we have just introduced, the energies we are

working with should be E π �ChP T = 4fiffi ƒ 1.2 GeV.

2.2 Uncovering resonances : Legendre zeros method
2.2.1 General principle

To start with, we are already familiar with the concept of deriving from a lagrangian LR

describing the coupling of resonances to our pseudoscalar fields an estimate of the chiral coupling

constants li [5]. These expressions will be functions of the coupling constants of LR and of the

resonances masses. We will investigate whether the opposite method is also successful : we will

study whether values of li obtained phenomenologically can accurately predict the mass of the

resonance involved in the process under study.

However, the theory which enables us to perform calculations regarding our scattering process is

the Chiral Perturbation one, and its validity range ends around 500 MeV. This value is well below

the mass of the resonance that we know we have involved in the fi≠fi0 æ fi≠fi0
elastic scattering :

the fl (770). There are di�erent methods available to extend the validity region of results obtained

with ChPT, some of which being resummation techniques such as Padé approximants, the N/D

construction or also the inverse amplitude method [6, 7, 8].
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The method that we study here is the Legendre zeros method [9]. We will derive the amplitude

F (s, t) of our process using ChPT. Then, we will study its zeros, because it was proven phenomeno-

logically that its zero contour is smooth. This means that the relation obtained through F (s, t) = 0
will have a validity range beyond the 500 MeV of ChPT. It actually holds up to 900 MeV [10], which

enables us to verify whether it predicts our resonance at 770 MeV. This relation, being obtained

from F (s, t), will contain information about the resonance through the coupling constants, which is

exactly what we want.

The general idea behind this first section focusing on the fi≠fi0 æ fi≠fi0
scattering is to test the

Legendre zeros method in a case already partly known (as we already know that the vector fl (770)
is the only resonance involved in this process at such low energies). Then, we will apply the method

to a case with a similar dynamics but which cannot be as "easily" investigated experimentally, in

order to try to derive some information about it as well.

2.2.2 Legendre polynomials and partial waves

The scattering under study is fi≠(p1) fi0(p2) æ fi≠(p3) fi0(p4). We will work here with the

Mandelstam variables s, t and u. Their relations to the momenta of the particles are the following :

s = (p1 + p2)2 and t = (p1 ≠ p3)2 = ≠1
2 (s ≠ 4M2

fi) (1 ≠ z) . (19)

where we have written z © cos ◊, ◊ being the angle between p̨1 and p̨3, and where Mfi is the

mass of the pions. We will work with the on-shell relation s + t + u = 4M2
fi , and considering all

Mandelstam variables to be complex ones.

We will call F (s, z) the scattering amplitude of our process. Using the isospin symmetry and

Clebsch-Gordan coe�cients, it can be shown that (F I(s, z) being the isospin defined amplitude) :

F (s, z) = 1
2 [ F 1(s, z) + F 2(s, z) ]. (20)

A core step of our method is the decomposition of the isospin amplitudes into Legendre polyno-

mials, in the s-channel :

F I(s, z) = 32fi
Œÿ

l=0
(2l + 1) f I

l (s) Pl (z). (21)

This decomposition is meant to isolate one of the two variables s or t into the partial waves f I
l (s),

and of course to introduce the Legendre polynomials Pl (z). In addition, we will neglect the partial

waves of angular momentum l Ø 2, as they give smaller contributions to the scattering amplitude

than the lower-order f I
l (s) functions. It can be shown that for :

• I = 1 : only the l = 1 contribution (the P-wave) exists.

• I = 2 : only the l = 0 contribution (the S-wave) exists.

From phenomenology, we conclude that the isovector P-wave part dominates the amplitude, and

that the exotic S-wave is significantly smaller.

Taking all of this into account and developing Eq. (20), we obtain :

F (s, z) = 16fi
1

f2
0 (s) + 3 z f1

1 (s)
2

, as P0(z) = 1 and P1(z) = z . (22)
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Moreover, we know that there is a vector resonance fl (770), whose mass we write Mfl, that plays

a role in the fi≠fi0
elastic scattering. Therefore, at s ≥ M2

fl , f1
1 (s) is saturated by that resonance,

and Eq.(22) thus becomes :

F (s, z) = 16fi

A

f2
0 (s) + 3

‡

Mfl �fl(s)
M2

fl ≠ s ≠ iMfl �fl(s) z

B

, where ‡ =

Û

1 ≠ 4M2
fi

s
. (23)

Furthermore, we will use a formulation of the partial waves ensuring unitarity :

f I
l (s) = 1

‡
ei ”I

l sin ”I
l , (24)

where the ”I
l (s) are the phase shifts of the partial waves.

As we explained, we are interested in the zeros of the scattering amplitude. From Eqs.(23) and

(24), we calculate that :

F (s, z) = 16fi

‡

A

ei ”2
0 sin ”2

0 + 3 Mfl �fl(s)
M2

fl ≠ s ≠ iMfl �fl(s) z

B

= 0 .

… 3 Mfl �fl(s)
M2

fl ≠ s ≠ iMfl �fl(s) z = ≠ ei ”2
0 sin ”2

0 . (25)

… z = ≠ ei ”2
0 sin ”2

0
3 Mfl �fl(s)

1
M2

fl ≠ s ≠ iMfl �fl(s)
2

© z0(s) .

Then,

Re (z0(s)) = ≠ cos ”2
0 sin ”2

0
3 Mfl �fl(s)

1
M2

fl ≠ s
2

≠ sin2 ”2
0

3 Mfl �fl(s) Mfl �fl(s) .

= ≠ sin 2”2
0

6 Mfl �fl(s)
1
M2

fl ≠ s
2

≠ 1
3 sin2 ”2

0 .

(26)

The I = 2, l = 0 partial wave is exotic i.e. there is no resonance contributing to that partial

wave. Since the imaginary part of the partial wave corresponds to the on-shell, observed part, and

that there is nothing to observe for the I = 2, l = 0 wave, |Im f2
0 (s)| π |Re f2

0 (s)|. Therefore, using

Eq.(24), we know that :

|sin ”2
0 | π |cos ”2

0 | Æ 1 . (27)

From the previous relationships, we get :

| Re (z0(M2
fl )) | = 1

3 sin2 ”2
0 π 1

3 . (28)

We can thus conclude that when we have a single vector resonance saturating the P-wave and

no particle in the S-wave, the resonance mass can be obtained as the solution of :

Re (z0(M2
R)) ƒ 0 . (29)
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We also notice that imposing F (s, z) = 0 did not fix s nor z. Instead, it gave us a relation between

the two variables : z = z0(s), z0(s) being a function of s. As we said so, s is still complex at that

point. Once we have obtained the function z0(s), we define the zero contour as Re (z0(s)). Actually,

what we do when we look for zeros of F (s, z) as a function of the Legendre polynomials and around a

resonance mass, is approximately look for the zeros of the Legendre polynomials themselves. Indeed,

at that energy, minus the small contributions from the other partial waves,

F (s, z) Ã (2l0 + 1) f I0
l0

(s) Pl0 (z), (30)

I0 and l0 being the isospin and angular momentum of the resonance. The f I0
l0

(s) shows

a bump at the resonance, and the zeros of Pl0 (z) create a dip in F (s, z). A property of Le-

gendre polynomials is that the number of zeros they have in the physical region z œ [≠1, 1] is

the value of l. Therefore, the number of dips (near-zeros) of F (s, z) gives us the spin of the resonance.

Furthermore, it should be noticed that this Legendre zeros method only works for resonances of

l Ø 1. It cannot be applied to scalar resonances as P0 (z) = 1. Indeed, there would not be any z in

the dominant term of the amplitude, so no z = z0(s)-type relationship to derive. Since that relation

is the central element of the method, we see that it cannot work in that case.

2.2.3 Obtaining MR in practice

The amplitude at O(p4) of our scattering process was calculated in [4]. It is :

A (t, s, u) = t ≠ M2
fi

f2
fi

+ 1
6 f4

fi

5
3 (t2 ≠ M4

fi) J̄(t) + [ s(s ≠ u) ≠ 2 M2
fi s + 4 M2

fi u ≠ 2 M4
fi ] J̄(s)

+[ u(u ≠ s) ≠ 2 M2
fi u + 4 M2

fi s ≠ 2 M4
fi ] J̄(u)

6

+ 1
96 fi2f4

fi

5
2

3
l1 ≠ 4

3

4
(t ≠ 2 M2

fi)2 +
3

l2 ≠ 5
6

4
(t2 + (s ≠ u)2) ≠ 12 M2

fi t + 15 M4
fi

6
,

(31)

where ffi ƒ 92.4 MeV is the pion decay constant,
Mfi ƒ 138 MeV is the mass of the pion,

J̄(x) = 1
16 fi2

3
‡ ln

5
‡ ≠ 1
‡ + 1

6
+ 2

4

and ‡(x) =

Û

1 ≠ 4M2
fi

x
.

(32)

It can be noticed that A(s, t, u) is symmetrical in its last two variables, so that

A (t, s, u) = A (t, u, s).

The li are connected to the renormalized O(p4) coupling constants through the following relations,

where µ is the renormalization scale :

lr1(µ) = 1
96 fi2

A

l1 + ln M2
fi

µ2

B

,

lr2(µ) = 1
48 fi2

A

l2 + ln M2
fi

µ2

B

.

(33)
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However, it has been proven that the lri are saturated by the lightest multiplet of vector resonances

[5]. It is commonly accepted that consequently, the resonance contributions (once they have been

integrated out from LR) describe accurately the lri (µ) for µ ƒ M2
R. These resonance contributions

give :

lr1(µ) = ≠ G2
V

M2
V

≠ ‹K

24 ,

lr2(µ) = G2
V

M2
V

≠ ‹K

12 .

(34)

where MV ƒ Mfl is the mass of the lightest nonet of vector resonances, GV is a coupling constant

of the e�ective chiral resonance lagrangian LR, and ‹K = 1
32 fi2

3
ln M2

K
µ2 + 1

4
. Measurements teach

us that GV ƒ 45 MeV [11, 12]. From Eqs. (33) and (34), we compute :

l1 = ≠ ln M2
fi

µ2 + 96 fi2
A

≠ G2
V

M2
V

≠ 1
768 fi2

C

ln M2
K

µ2 + 1
DB

,

l2 = ≠ ln M2
fi

µ2 + 48 fi2
A

+ G2
V

M2
V

≠ 1
384 fi2

C

ln M2
K

µ2 + 1
DB

.

(35)

Therefore, taking µ = 0.77 GeV, we calculate l1 and l2. We obtain :

l1 = 0.25 and l2 = 5.03 . (36)

With these values, we can compute Mfl using the expression of A(t, s, u) in Eq.(31), where we

change u into a function of s and t using the on-shell relation, and then switching from the variables

(s, t) to (s, z) with Eq.(19). Finally, we use the condition in Eq.(29) to calculate the resonance mass.

The calculation was carried out with Mathematica. We obtained the function z0(s) using FindRoot.
To derive the resonance mass, we also used FindRoot, but successively and on small intervals

comprised between

Ô
s Ø 0.2 GeV (as the resonance has to be heavier than the pseudoscalars) andÔ

s Æ 1.16 GeV (because above the chiral scale �ChP T , even the relation obtained via the zero

contour is not valid anymore).

We found Mfl = 0.75 GeV, which is consistent with the knowledge we had of Mfl = 0.77 GeV.

This validates our method for vector resonances saturating the isovector P-wave in the absence of

an exotic S-wave.

2.2.4 A unitarization procedure

As we mentioned, Eq.(24) ensures unitarity in our theory. However, as long as the phase shifts

”I
l (s) are not properly defined, we cannot yet say that unitarity is satisfied. In this section, we will

find an expression for ”1
1(s) and use a parametrization for ”2

0(s) developed by A. Schenk.

First, from Eqs.(22) and (24), we can calculate that :

| F (s, z) |2 = sin2”2
0 + 9

Ë
(Re z)2 + (Im z)2

È
sin2”1

1 + 6 sin ”2
0 sin ”1

1
Ë

(Re z) cos ”2
0 cos ”1

1

≠ (Im z) cos ”2
0 sin ”1

1 + (Im z) sin ”2
0 cos ”1

1 + (Re z) sin ”2
0 sin ”1

1
È

.
(37)
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As previously, our interest lies in studying the Legendre zeros of the amplitude. Since they are

also automatically minima of |F (s, z)|, they fulfill the relation :

ˆ |F (s, z)|2
ˆ Re z

= 0 . (38)

Going back to the task at hand, we notice that Eq.(38) can lead to an expression of the phase

shift ”1
1(s) :

ˆ |F (s, z)|2
ˆ Re z

= 0 … 3 (Re z) sin2”1
1 + sin ”2

0 sin ”1
1 cos ”2

0 cos ”1
1 + sin2”2

0 sin2”1
1 = 0

and z = z0(s) .

… 3 (Re z0(s)) tan ”1
1 + sin2”2

0 . tan ”1
1 = ≠ 1

2 sin 2 ”2
0 .

(39)

… tan ”1
1 =

≠ 1
2 sin 2 ”2

0
3 (Re z0(s)) + sin2”2

0
. (40)

Therefore, we see that the Legendre zeros also provides us with a unitarization procedure, because

it enables us to determine ”1
1(s), so that f1

1 (s) is completely defined in Eq.(24). Actually, ”1
1(s)

depends on ”2
0(s) in Eq.(38). However, that is not a problem, as A. Schenk parametrized the exotic

S-wave phase shift in [13] for our energy range :

tan ”2
0 (s) =

Û
s ≠ 4 M2

fi

s

C

a2
0 + Âb2

0

A
s ≠ 4 M2

fi

4 M2
fi

B

+ c2
0

A
s ≠ 4 M2

fi

4 M2
fi

B2 D A
4 M2

fi ≠ s2
0

s ≠ s2
0

B

, (41)

where Âb2
0 = b2

0 ≠ a2
0

4 M2
fi

s2
0 ≠ 4 M2

fi

+ (a2
0)3,

a2
0 = ≠ 0.042 ,

b2
0 = ≠ 0.075 ,

c2
0 = 0 ,

s2
0 = ≠ (685)2 MeV.

(42)

Moreover, as Eq.(27) showed, |sin ”2
0 | π 1. Hence, we see on Eq.(40) that when :

Re
#
z0(s)

$
≠æ 0 … s ≠æ M2

fl (cf. Eq.(29)) , (43)

then, tan ”1
1(s) ≠æ Œ … ”1

1(s) ≠æ fi

2 + n fi , n œ Z .

(44)

We plotted the graph of ”1
1(s) of Eq.(40) as a function of

Ô
s using two di�erent methods to

look for the zero contour Re z0(s).

Method A : We calculated the isospin amplitudes F 1(s, z) and F 2(s, z) using Eq.(18.1) of [4]

and Eq.(31) for the expression of the function A(t, s, u) :
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F 1(s, t) = A(t, s, u) ≠ A(u, s, t) ,

F 2(s, t) = A(t, u, s) + A(u, s, t) .
(45)

As the A(t, s, u) is symmetrical in its last two indices, the F (s, z) in Eq.(20) is given by :

F (s, z) = A(t, s, u) (46)

Secondly, we used the inverse relation of Eq.(21) to calculate f1
1 (s) and f2

0 (s) :

f I
l (s) = 1

64 fi

⁄ 1

≠1
dz Pl (z) F I(s, z) , (47)

using NIntegrate on Mathematica to compute that integral numerically.

Then, we could calculate the function z0(s) using the formula obtained from Eq.(22) :

z0 (s) = ≠ f2
0 (s)

3 f1
1 (s) . (48)

Eventually, we plotted the graph of ”1
1(s) using Eq.(48) for z0 (s) and Eq.(41) for ”2

0(s).

Method B : We calculated z0 (s) simply by searching for the expression of z making F (s, z)
null. The Mathematica function we used is FindRoot.

One can see on Figures 1 and 2 the graphs of ”1
1(s) obtained respectively with Method A and

Method B. We added to the graphs three sets of experimental data for ”1
1(s) taken from [14, 15, 16].

Moreover, the expression for ”1
1(s) when it is obtained from O(p4) ChPT is the following [17] :

”1
1(s) = ‡(s) Re f1

1 (s) , (49)

where the function ‡(s) is the same one as the ‡(x) defined for Eq.(31). We included the graph

of this expression of ”1
1(s) in Figures 1 and 2 so as to compare it with the plots obtained with the

zeros method.

Observing the two figures, we notice a few things. Firstly, in the two plots, the results of the

zeros method globally concur with the experimental data. That is another confirmation of the

validity of the Legendre zeros method to study P-wave saturating vector resonances in the absence

of a S-wave. In addition, we see that Method B gives better results than Method A, as they fit the

experimental data more closely. That is understandable. Indeed, in that first method, we neglected

the partial waves of order l Ø 2, whereas we did not neglect anything, albeit small, in Method B.

We also see that, as expected, the result for the ”1
1(s) from O(p4) ChPT is not valid at energies

of the order of the mass of the fl(770) or beyond. It does however naturally seem correct at energies

below 500 MeV, as it coincides there with the zeros method result which is here phenomenologically

confirmed.

We notice that the graph of ”1
1(s) from the zeros method (we will take here the one from Method

B as it is the best one) passes through

fi
2 . From Eq.(44), we know that the value of s for which

”1
1(s) = fi

2 is s = M2
fl . We can thus read on the graph the value of the resonance mass. We find

Mfl = 0.77 GeV, which is consistent with both the expected value and the value previously found

for Mfl in this work.
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Figure 1. ”1
1 (s) obtained with Method A, experimental ”1

1 (s) [14, 15, 16] and O(p4) ChPT for

”1
1 (s) are also plotted.

Figure 2. ”1
1 (s) obtained with Method B, experimental ”1

1 (s) [14, 15, 16] and O(p4) ChPT for

”1
1 (s) are also plotted.
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2.3 Changes at O(p6)
We can also comment on the changes that were reported when working at O(p6), the next

order. Article [18] studied the subject in the case of the fi≠fi0 æ fi≠fi0
scattering, and we will give

a brief review of their findings.

Firstly, [19] computed the O(p6) amplitude of that process, which was written in terms of the

low-energy couplings ri(µ), i = 1, .., 6. These couplings were assumed to be saturated by vector

resonances, so ri(µ) ≥ rV
i , and were calculated and measured in [19] (similarly to how we explained

the lri (µ) were obtained in section 2.2.3).

The zero contour was drawn in [18] as a band, so it would contain the contours for values of

µ comprised in µ œ [0.6, 0.9] GeV, since we know that the vector resonance contribution saturates

the lri and the ri for a µ ƒ Mfl . At O(p4), the contour-band gave (with the help of Eq.(29))

MR œ [0.69, 0.91] GeV. At O(p6), the depth of the interval, linked to the uncertainty about the

value of µ, was almost divided by four : the result was MR œ [0.80, 0.86] GeV. We see thus that

apart from reducing the interval, adding the order 6 to the study does not modify our results a great

deal.

We can however notice that the possible values for MR at O(p6) do not include 0.77 GeV, which

is the value we know it to be. As it was noticed in [18], if we were to change the sign of rV
4 , the

interval for the resonance mass would transform into MR œ [0.78, 0.82] GeV, which brings us closer

to the expected value. Updating the calculation of the constant in order to verify it might thus be

an interesting approach before carrying out more calculation at this order.

From the results that we have introduced here, we can see that the order four already provides

us with an accurate estimate of the zeros and the resonance mass, and that these are not modified

exceedingly by the next order.

2.4 Conclusion
As a conclusion for this section 2, we can say that the Legendre zeros method is successful in :

• finding the resonance mass knowing the phenomenological values of the coupling constants,

• providing a unitarization procedure,

from a scattering amplitude given by Chiral Perturbation Theory, for a P-wave saturating vector

resonance and in the absence of a S-wave. This was not trivial since, as we explained, the validity

range of ChPT ends considerably below the mass of the vector resonance. Using the smoothness of

the zero contour of the amplitude however, we succeeded in obtaining the correct results. It seems

thus that the contour manages to retrieve from the chiral amplitude the information relevant at

E ƒ Mfl , which is enclosed in the coupling constants of the e�ective theory.

We used our knowledge of the fi≠fi0 æ fi≠fi0
process and of the existence of the fl-resonance

several times, while applying the zeros method in this section. Indeed, we knew that the fl(770)
intervened in the process and that it was the only vector resonance involved at such energies. That

justified the fact that it saturated the P-wave around E ƒ Mfl in Eq.(23). Moreover, we knew that

the S-wave did not represent any particle, and that it was therefore a tenuous contribution to the

amplitude, as we said so to obtain Eq.(27). We also used our phenomenological knowledge of l1 and

l2 to compute the resonance mass and find the graphs in sections 2.2.3 and 2.2.4. Finally, knowing

what we should obtain, we were able to confirm the accuracy of the method.
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In the following section, we will apply the same method to the scattering of WLZL æ WLZL.

This is a process that has a dynamics similar to the one of fi≠fi0 æ fi≠fi0
, but that cannot yet be

recreated experimentally, so we know very little about it. We thus hope that this Legendre zeros

method will give us some new information concerning it. Additionally, as we cannot set this process

up experimentally, the coupling constants of the corresponding e�ective theory are unknown to us,

so every result obtained will be a function of them.

3 Electroweak case : Study of WLZL æ WLZL

3.1 The equivalence theorem
There is a relation between the Goldstone bosons fia

, that give mass to the gauge bosons W ±

and Z, and their longitudinal components, the W ±
L and ZL. The equivalence theorem gives us the

link between their scattering amplitudes [2, 20] :

A (V a
L V b

L æ V c
L V d

L ) = A (fia fib æ fic fid) + O
3

MV

E

4
. (50)

where MV is the mass of the gauge bosons and V a
L are the longitudinally polarized gauge

bosons. a, b, c and d are the isospin or electric charge indices.

With the help of an electroweak theory implementing the spontaneous gauge symmetry breaking,

we can thus calculate our scattering amplitude A (WLZL æ WLZL). As we will see in section 3.2,

we will consider an e�ective theory of that electroweak one, and its validity range will be confined

to energies E π �EW = 4fiv. However, the O
1

MV
E

2
in the previous theorem (50) indicates that it

is only valid at high energies E ∫ MV , whereas our e�ective electroweak theory only works at low

ones. In order to be able to use the relation between the Goldstone bosons and the gauge bosons

scattering amplitudes depicted in the previous theorem with our e�ective electroweak theory, we have

to restrict it somewhat [21] :

A(4) (V a
L V b

L æ V c
L V d

L ) = A(4) (fia fib æ fic fid) + O
3

MV

E

4
+ O(g, gÕ) + O

A
E5

�5
EW

B

, (51)

where A(4)(V a
L V b

L æ V c
L V d

L ) is the gauge bosons scattering amplitude at O(p4), and

A(4)(fia fib æ fic fid) is the Goldstone bosons scattering amplitude at O(p4) and at O(g0, gÕ0).

3.2 The electroweak chiral lagrangian
There exists an alternative to the Higgs mechanism and the corresponding SM lagrangian

LHiggs = (Dµ�)†(Dµ�) ≠ V (�), with the covariant derivative Dµ introducing the electroweak

gauge bosons using the fields W k
µ and Bµ. It has to reproduce the physics of the Higgs, since

we know that the Higgs model is successful in explaining experiments, and it must be a strong

interacting sector so it reproduces that physics using bound states. The non-linear sigma model

provides us with that alternative. We will not go into much detail about it here, but the main points

are the following.

Firstly, it implements the spontaneous symmetry breaking SU(2)L ¢ U(1)Y æ U(1)em. There-

fore, as three generators are broken here, three Goldstone bosons fia , a = 1, 2, 3 are created. The
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lagrangian can be rewritten so as to make mass terms for the gauge bosons appear and the Gold-

stone bosons disappear. Actually, the fia
do not exactly vanish. They are absorbed into the gauge

bosons which, as they become massive, gain a longitudinal component. The three Goldstone bosons

e�ectively represent the degrees of freedom of these three new longitudinal components W ±
L and

ZL. In this model, the Goldstone bosons are parametrized as such :

U(x) = exp
5

i

v
fia ·a

6
= exp

C

i

Ô
2

v
�

D

, where �(x) =

Q

a
fi0
Ô

2 fi+

fi≠ ≠ fi0
Ô

2

R

b
(52)

and fia are the Goldstone bosons eigenstates in the isospin basis,
fi± and fi0 are the Goldstone bosons eigenstates in the electric charge basis,
·a are the Pauli matrices,

v = 1
ÒÔ

2 GF

ƒ 246 GeV is the vacuum expectation value of the Higgs in the Higgs mechanism.

U transforms under the gauge group SU(2)L ¢ U(1)Y in the following way :

U ≠æ L U R† , where L œ SU(2)L and R œ U(1)Y . (53)

Moreover, there is an equivalence between these symmetries and SSB :

SU(2)L ¢ U(1)Y æ U(1)em … SU(2)L ¢ SU(2)R æ SU(2)L+R . (54)

Therefore, we will use whichever one of the two is more convenient in order to develop our

e�ective field theory.

Furthermore, it has been proven that the relation MW = MZ cos ◊W and the smallness of the

oblique T parameter are theoretically linked to the custodial symmetry SU(2)L+R. These relations

concur with the phenomenology to a high degree of precision, so we want to keep the custodial

symmetry intact to represent them. However, the U(1)Y interactions (of coupling constant gÕ
)

explicitly break the SU(2)L ¢ SU(2)R and more alarmingly the SU(2)L+R symmetries. We will

thus work in the limit of gÕ æ 0 and conserve the custodial symmetry (and the chiral one), and keep

both the relation between the gauge bosons masses and the smallness of the T.

Next, we want to build an e�ective field theory for the non-linear sigma model. The two funda-

mental blocks to create it are the degrees of freedom at low energies and the symmetries it has to

conserve. The three Goldstone bosons fia
and the gauge bosons enclosed in the covariant derivative

are the only degrees of freedom at energies of the order of 1 TeV. Indeed, even though we choose

the chiral symmetry over the gauge one in Eq.(54), the Dµ has to contain W k
µ and Bµ since these

represent the gauge bosons which we know exist. We say that SU(2)L ¢ U(1)Y is gauged. Moreo-

ver, as we said, our electroweak sigma non-linear model is invariant under gauge symmetry, so it

is too under the chiral one (cf. Eq.(54)), and it has to conserve CP. (We will not implement any

CP-violation here, as it is not the point of the study to investigate that, and it would complicate

unnecessarily the problem.) We see thus that we have the same starting blocks as we had for Chiral

Perturbation Theory in section 2.1.2.2. Therefore, our e�ective electroweak theory will be very similar

to the ChPT one, with :

• The Goldstone bosons taking the place of the pions

• A change of the scale : ffi ≠æ v (The formulas for U in ChPT (Eq.(5)) and in this EW

e�ective theory (Eq.(52)) give us the analogy.)
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Sensibly, this theory will be called the E�ective Chiral Electroweak Theory (EChET).

The most general e�ective lagrangian in the limit gÕ æ 0 at order O(p4) has the following

expression [22, 23, 24] :

LEChET = v2

4 È(DµU)† (DµU)Í +
ÿ

i=3,4,5
ai Oi , (55)

where O3 = i g ÈWµ‹ [V µ, V ‹ ]Í,
O4 = ÈVµ V‹Í2,

O5 = ÈVµ V µÍ2,

DµU = ˆµU + i

2 g ·k W k
µ U ≠ i

2 gÕ ·3 U Bµ ,

Vµ = (DµU) U †,

Wµ‹ = 1
2 ·k W k

µ‹ ,

W k
µ‹ and Bµ‹ being the gauge field strength tensors.

(56)

There are also eight other order four operators Oi that do not conserve the custodial symmetry

SU(2)L+R in the limit gÕ æ 0 [8]. We will not consider them in this work.

The O(p2) term of the lagrangian (55) (the first term) provides us with a mass term for the

gauge bosons. Since this kinetic term has to be properly normalized, its constant is fixed to

v2
4 . We

see here again the analogy between Chiral Perturbation Theory and this E�ective Chiral Electroweak

Theory : in Eq.(11) in the ChPT case, the kinetic constant was

f2
fi
4 . This concurs with the ffi Ωæ v

analogy we made in the list before Eq.(55) using the parametrizations of the U .

In addition, the Oi operators in Eq.(55) are of order four. The ai are their coupling constants,

similarly to the li in ChPT with two flavours. The coupling constants contain the information on

the heavier degrees of freedom that have been integrated out from the action in order to create the

e�ective theory. By analogy with ChPT (cf. section 2.1.4), we know that the EChET scale �EW has

this expression :

�ChP T = 4fiffi ƒ 1.2 GeV so �EW = 4fiv ƒ 3 TeV. (57)

As we explained in section 2.1.2.2 in the case of ChPT, it was interesting for us to organize

the lagrangian (55) in terms with an increasing number of covariant derivatives Dµ : since ˆµ is

similar to pµ and we are working at low energies, it enables us to make perturbative calculations.

This organization entails a perturbative expansion of the theory in powers of

p2

�2
EW

and

M2
V

�2
EW

, where

MV is the mass of the gauge bosons.

Furthermore, as we know that the Higgs boson exists, we want to include it in our theory. We

can do so by multiplying every term of the lagrangian (55) by fi(H), an arbitrary polynomial of the

Higgs field H. It thus transforms the EChET lagrangian (55) into :

LEChET = v2

4 È(DµU)† (DµU)Í f0(H) + a4 ÈVµ V‹Í2 f4(H) + a5 ÈVµ V µÍ2 f5(H) , (58)
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where fi(0) = 1. We take f0(H) = 1 + 2H
v so that the O(p2) term of Eq.(58) gives us the

same interaction between the Higgs and the Goldstone bosons as would LSM, Higgs. We also choose

f4(H) = 1 and f5(H) = 1 because the interactional Higgs in this operator does not contribute

to the process we are considering. (The interaction with it would be between at least 4 Goldstone

bosons and one Higgs so it would not intervene in the scattering studied.)

We omitted the O3 operator of the lagrangian (55) in the new (58) one because as we said,

we are considering this e�ective electroweak theory in order to ultimately calculate the amplitude

A (WLZL æ WLZL) via the restricted equivalence theorem (51). Indeed, said theorem implies

working at O(g0, gÕ0), and in this g ≠æ 0 limit, the O3 operator vanishes.

Moreover, we notice that at O(g0, gÕ0), the masses of the gauge bosons are null : MW = MZ = 0.

Indeed, when working in these limits, the covariant derivative Dµ becomes only ˆµ (cf. Eqs.(56)).

Hence, there will be no W k
µ nor Bµ fields in the order two term of lagrangian (58) to create mass

terms for the gauge bosons. These are thus massless in this limit. That is why we will have to work

in the MV a æ 0 limit while computing the scattering amplitude A(4)(fia fib æ fic fid).

There are no mass terms for the fia
in lagrangian (58). We will proceed by analogy with the

ChPT case to explain so. In the chiral theory, the Goldstone bosons were given mass by the last two

terms of lagrangian (11) and the s = M mass matrix of the quarks, as we explained in Eq.(15). In

the electroweak case, there are no such terms in lagrangian (58), and there is no mass matrix either,

which shows us that the Goldstone bosons are massless here : Mfia = 0. In addition, the equivalence

theorem gives the scattering amplitude analogy :

" fia = V a
L ", which entails Mfia = MV a . (59)

Thus, since Mfia = 0, it is consistent with (59) that the equivalence theorem has us working at

O(g0, gÕ0) (where the gauge boson masses MV a
are null).

Additionally, the last terms of Eq.(51) imply that our calculation will only be valid at energies

comprised between MV π E π �EW = 4fiv. First, we saw on Figures 1 and 2 that the O(p4) ChPT

result was valid only up until E ƒ 500 MeV ƒ 2fiffi. By analogy, we conclude that our E�ective

Chiral Electroweak Theory will accurately describe reality only for energies E Æ 2fiv ƒ 1.5 TeV.

Furthermore, we know that when we use the zero contour, the validity range increases considerably.

In ChPT, we saw on Figure 2 that the zero contour result was valid at least until E ƒ 800 MeV,

as it matched the experimental data well at this energy. Therefore, we can expect our electroweak

results obtained with the zeros method to be valid at least until E ƒ 2 TeV.

On the whole, at E π �EW , the electroweak e�ective theory represents the SM with or without

Higgs. At E ∫ �EW , the E�ective Electroweak Chiral Theory is not valid anymore, even while using

the smoothness of the zero contour. Thus, it cannot enable us to accurately find any resonance at

these energies. We see that the study we will carry out will show us the vector resonances that are

involved in our scattering process at energies of the order of 1 TeV.

3.3 The scattering amplitude A(4)(WLZL æ WLZL)
As we said, the equivalence theorem relates A(4)(WLZL æ WLZL) to the corresponding Gold-

stone bosons scattering amplitude A(4)(fi≠fi0 æ fi≠fi0). A(4)(fi≠fi0 æ fi≠fi0) can be calculated

using lagrangian (58). Moreover, this LEChET can be decomposed into two parts :

LEChET = LEChET, Higgsless + LEChET, Higgs , (60)
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where LEChET, Higgsless = v2

4 È(DµU)† (DµU)Í + a4 ÈVµ V‹Í2 + a5 ÈVµ V µÍ2 ,

LEChET, Higgs = v2

4 È(DµU)† (DµU)Í 2H

v
.

(61)

Actually, we can notice that LEChET, Higgsless is identical to LChPT at O(p4) with two flavours

(as the two e�ective theories were obtained with the same starting elements), with two di�erences :

the pions were replaced by the Goldstone bosons, and the constants (ffi, l1, l2) by (v, a5, a4).
Consequently, the Higgsless contribution to the A(4)(fi≠fi0 æ fi≠fi0) required by the equivalence

theorem (51) has the form of A (t, s, u) from Eq.(31), with the appropriate change of constants and,

as we said in the previous section, calculated at MV æ 0. This limit was calculated in [4] and gives :

A(4)(fi≠fi0 æ fi≠fi0)Higgsless = t

v2 + 1
96 fi2 v4

5
3 t2 ln

A
µ2

1
≠t

B

+ s(s ≠ u) ln
A

µ2
2

≠s

B

+ u(u ≠ s) ln
A

µ2
2

≠u

B 6
,

(62)

where the scales µ1 and µ2 are defined as :

ln µ2
1

M2
V

= 2
3 a5 + 1

3 a4 + 5
6 ,

ln µ2
2

M2
V

= a4 + 7
6 .

(63)

and as we are working in the MV æ 0 limit,

u = ≠s ≠ t and t = s

2 (z ≠ 1) . (64)

The two logarithms are the only functions that will keep a dependance in MV ”= 0, so

as for infinities in the amplitude to be avoided. We will take for MV the isospin vector mass

MV = 2MW +MZ
3 ƒ 84 GeV.

Moreover, we define the renormalized coupling constants in the following way in the MS-scheme :

ar
4(µ) = 1

4
1

48 fi2

A

a4 ≠ 1 + ln M2
V

µ2

B

,

ar
5(µ) = 1

4
1

96 fi2

A

a5 ≠ 1 + ln M2
V

µ2

B

.

(65)

We took this definition to be the same as in [25, 26]. This is why it results di�erent from the

lri one in (33). We can also notice that the MV -dependence in (62) is caused by the fact that

A(4)(fi≠fi0 æ fi≠fi0)Higgsless is expressed in terms of a4 and a5, and we see in Eq.(65) that changing

from variables (ar
4(µ) , ar

5(µ)) to (a4 , a5) introduces indeed MV . The natural values of the coupling

constants are a4, 5 ≥ O(1).

In order to have the full Goldstone bosons scattering amplitude, the contribution from

LEChET, Higgs has to be added. In the MV æ 0 limit, the covariant derivative Dµ is just ˆµ.

Therefore,
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LEChET, Higgs = v2

4
2H

v
È(ˆµU)† (ˆµU)Í , where the expression of U can be found in Eq.(52),

= v

2 H(x) 2
v2 Èˆµ

Q

a
fi0
Ô

2 fi+

fi≠ ≠ fi0
Ô

2

R

b ˆµ

Q

a
fi0
Ô

2 fi+

fi≠ ≠ fi0
Ô

2

R

bÍ developing the exp in Eq.(52),

= 1
v

H
5

(ˆµfi0) (ˆµfi0) + 2 (ˆµfi+) (ˆµfi≠)
6

calculating the trace,

(66)

where H and the fia
are the bosons fields.

So,

A(4)(fi≠fi0 æ fi≠fi0)Higgs = ≠ t2

v2
1

t ≠ M2
H

, (67)

where MH ƒ 125 GeV. Here, we only consider the leading tree level Higgs contribution and are

not doing a full calculation at O(p4).

We now know every part of :

A(4)(fi≠fi0 æ fi≠fi0) = A(4)(fi≠fi0 æ fi≠fi0)Higgsless + A(4)(fi≠fi0 æ fi≠fi0)Higgs

ƒ A(4)(WLZL æ WLZL).
(68)

3.4 Legendre zeros method applied to WLZL æ WLZL

3.4.1 Principles

Firstly, as we said, LEChET, Higgsless is identical to the ChPT lagrangian at O(p4) with two

flavours, but for the pions that are replaced by Goldstone bosons, the kinetic constant ffi that we

exchange for v and the order four coupling constants (l1, l2) that become (a5, a4). Therefore, one

can expect to observe a dynamics for WLZL æ WLZL that is similar to the one of fi≠fi0 æ fi≠fi0
,

but only on one condition : the P-wave has to be saturated by a vector resonance at the resonance

mass, leaving the S-wave to be a small additional contribution to the amplitude, just as in the chiral

case. We will neglect the partial waves of l Ø 2 in this electroweak case as we had in the chiral one,

and will assume that the LECs are saturated by the vector resonances. We will then be able to apply

the same Legendre zeros method as we had in sections 2.2.2, 2.2.3, 2.2.4, and use the zeros of the

scattering amplitude to deduce the position of the I = 1 vector resonance.

The method we apply in this electroweak case contains three steps.

• First, we search for the zeros of the function A(s, z) - which is no other than the scattering

amplitude A(4)(WLZL æ WLZL) written in terms of s and z using Eq.(64). This provides us

with a relation between s and z (as it had in the chiral case), that we can express as : z = z0(s).

• Then, we look for the minimum resonance mass for each pair (a4, a5). We do so by using

equation (29), satisfied by P-wave saturating vector resonance masses. The minimal resonance

mass is researched as opposed to the maximum one because we try to rule out regions where

there are no resonances from below, as the experiments always proceed increasing the energy.
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• Finally, we establish a condition designed to check whether the P-wave indeed dominates the

amplitude around the resonance mass. In the cases where the condition is fulfilled, our use of

Eq.(29) to find the mass is validated. In the other cases, it teaches us that there is no vector

resonance there to saturate the P-wave. This is how we obtain our condition :

Using the zeros of the amplitude, we obtain from Eq.(22) that :

f2
0 (s) + 3 z0 (s) f1

1 (s) = 0 . (69)

So at the resonance location, as Re (z0(M2
R)) = 0 (cf. Eq.(29)) :

| z0(M2
R) | = | Im (z0(M2

R)) | =
-----

f2
0 (M2

R)
3 f1

1 (M2
R)

----- . (70)

As a result, calculating | z0(M2
R) | enables us to have an accurate estimate of the S-wave to

P-wave ratio at the resonance mass. The condition we impose for our zeros method to be

applicable is :

| z0(M2
R) | = | Im (z0(M2

R)) | < ⁄ . (71)

Then, we have to choose a value for ⁄ so that the condition successfully manages to rule

out the (a4, a5) that do not really allow for a vector resonance. To start, in the pions

case, we can compute | z0(M2
fl ) | = 0.37. Moreover, we judge that ⁄ = 1

2 is the maximum

value of ⁄ for which we can consider that the exiting partial waves satisfyingly fulfill :

| f2
0 (M2

R) | π | f1
1 (M2

R) | . We will also consider ⁄ = 1
3 to see how the change in ⁄ a�ects

the results.

Furthermore, it can be noticed that Eqs.(22), (24) and (40) from the chiral case are still valid

in EChET. Therefore, the amplitude zeros also provide A(WLZL æ WLZL) with a unitarization

procedure.

As we can also notice, the value that we take for ⁄ has a direct impact on the convergence of

the partial wave expansion of the amplitude. Indeed, as article [18] explained, in the MV æ 0 limit,

the partial wave expansion is convergent as l æ Œ only when z œ [≠1, 1] (which is the physical

region). Therefore, whenever | Im(z) | ”= 0, it will not be convergent. In addition, as showed in [18],

the larger | Im(z0(M2
R)) | is, the more A(M2

R, z0(M2
R)) will diverge as l increases. Thus, limiting

| Im(z) | through ⁄ also enables us to ensure a better convergence of the amplitude expansion.

3.4.2 Obtaining the graphs

First, as the scattering amplitude A(s, z) is analytic, it fulfills the positivity conditions on the

fifi æ fifi scattering amplitude. These imply for a4 and a5 [10, 27] :

a5 + 2 a4 Ø 157
40 and a4 Ø 27

20 . (72)

Then, we can introduce the two graphs, Figures 3 and 4, that constitute the major results of

this study. They display the minimum mass allowed for a vector resonance having a role in the

WLZL elastic scattering, as a function of a4 and a5. Figure 3 is obtained not considering the Higgs

contribution in Eq.(60). The second graph however, on Figure 4, takes the full LEChET into account

and is the valid solution of our study. We actually added the Higgsless plot in order to compare it

with our Figure 4, and determine the influence that adding LEChET, Higgs has on the full lagrangian
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Figure 3. Resonance masses (in TeV) in the (a4, a5) plane for ⁄ = 1
3 in a Higgsless world.

Dashed line : change of contour if ⁄ = 1
2 . Hatched zone : region of the (a4, a5) plane forbidden

by positivity conditions (cf. Eq.(72) ).

LEChET.

Also, as we said, we cannot recreate experimentally the WLZL æ WLZL scattering, and it is

why we do not know the values of a4 and a5. Hence, the resonance masses in Figures 3 and 4 are a

function of these O(p4) coupling constants.

The graphs in Figures 3 and 4 should be understood in the following way. The shaded areas

are the ones allowing for a vector resonance at energies E ≥ 1 TeV. The contour lines separating

the di�erent shades indicate the (a4, a5) pairs that share a same resonance mass belonging to a

range of "significant" values that we chose. The white zones (whether they are below the hatched

one or not) indicate both the regions for which no resonance mass MR was found using the relation

Re (z0(M2
R)) = 0, and the ones for which the condition | z0(M2

R) | < ⁄ is not fulfilled. We considered

⁄ = 1
3 , and added as a dashed line the general contour of the graph with ⁄ = 1

2 . The hatched

zone shows the (a4, a5) that are forbidden by the positivity conditions in (72). Finally, we added to

the graph the scales in terms of the renormalized coupling constants ar
4(µ) and ar

5(µ) with µ = 2
TeV, using Eq.(65). We explain some of the programming that led to Figures 3 and 4 in the Appendix.

We also wondered about the cuts that we can see in Figure 4. They correspond to points that do

not allow for any solution MR to the equation Re (z0(M2
R)) = 0 . Article [18] managed to smooth

them out, but the same method did not work in our case. We do not understand their existence.
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Figure 4. Resonance masses (in TeV) in the (a4, a5) plane for ⁄ = 1
3 , including the SM Higgs in

the analysis (as done in Eqs.(67) and (68) ). Dashed line : change of contour if ⁄ = 1
2 . Hatched

zone : region of the (a4, a5) plane forbidden by positivity conditions (cf. Eq.(72) ).
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3.4.3 Results

Higgsless case : Firstly, we do not observe any resonance for a4 Æ 8 and a5 Æ 22 (with ⁄ = 1
3).

The natural values for the coupling constants rule thus vector resonances out at energies E ≥ 1 TeV.

Moreover, we can notice that although we displayed in Figure 3 resonance masses up to 2.5

TeV, our results in this study cannot be trusted above E ƒ 2 TeV, as we explained at the end of

section 3.2. We also see that the MR Ø 1.6 TeV only take each a small portion of the graph, and

most of the portion they have is forbidden by the positivity conditions. Conversely, the resonance

masses at the other end of the range (MR Æ 0.8 TeV) occupy each a large area in the graph, and

are not a�ected by the positivity constraints. They however only exist for suspiciously large values

of the coupling constants a4, 5, and we can wonder if such values really are plausible.

Case with the SM Higgs : To start with, we see that adding the Higgs contribution to

the lagrangian has a large impact on the graph, in that this one di�ers quite considerably from

the previous, Higgsless one. Moreover, most natural values of the coupling constants (a4 Æ 5
and a5 Æ 16 with ⁄ = 1

3) also exclude vector resonances. Additionally, all the masses we obtain

are inferior to 0.8 TeV. However, the equivalence theorem on Eq.(51) specifically requires us to

work at energies E ∫ MV , and MV ≥ 0.1 TeV. We will thus not consider the MR comprised

between 0.2 TeV and 0.5 TeV as trustworthy information. Therefore, our method proves (with its

assumptions) that there are no vector resonances of mass MR œ [0.8, 2] TeV involved in the elastic

scattering of WLZL. Furthermore, it shows that only a very small part of the (a4, a5) plane allows

for a vector resonance of mass MR œ [0.5, 0.8] TeV, as most of the initial area allocated to those

masses is excluded by the positivity conditions.

Finally, we see with the dashed contour on both Figures 3 and 4 which part of the (a4, a5)

plane was excluded by taking ⁄ = 1
3 instead of

1
2 . The line shows us in which measure would the

graph change if we were to reduce ⁄ some more. Indeed, some global contours of the graph seem

completely independent of the value taken for ⁄. It is because they separate regions which have a

solution MR to the equation Re (z0(M2
R)) = 0, from regions which do not, whatever ⁄ be. However,

we do consider

1
3 to be an accurate value for ⁄, because it limits

-----
f2

0 (M2
R)

3 f1
1 (M2

R)

----- satisfyingly, and it is

close to the value that the ratio has in Chiral Perturbation Theory.

3.4.4 Comparison with other techniques and the experimental results

There are other methods that set out to determine the possible vector resonance masses as a

function of the coupling constants. We will review some of their findings and compare them with

our own results.

The Inverse Amplitude Method (IAM) is one of these methods. It uses the Padé approximants

on the partial waves, and searches for poles of the denominator as indicators of resonances. It is

developed in terms of coupling constants that are, but for small corrections, our ar
4 and a5

r . A

recent publication on the topic [28] reports masses in the following range : MR œ [1.5, 2.5] TeV, for

coupling constants ar
4, 5 œ [≠1, 1] .10≠3

TeV, which approximately correspond to these values of a4
and a5 : a4 œ [5, 10] and a5 œ [0, 10]. We can see that the IAM results are not compatible with our

own : they find some resonance masses in a range that our study ruled out : MR œ [1.5, 2] TeV.

Moreover, the values of a4 and a5 they find do not, in our study, allow for vector resonances. We

could not understand the origin of these discrepancies.
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Additionally, a Resonance Chiral Electroweak Theory can also provide us with bounds on the

minimum allowed mass for a vector resonance. A recent publication in the matter [29] studied the

S and T oblique parameters, and deduced through a phenomenological comparison that the mass

for vector resonances at these energies very likely had to be such that MR > 1.5 TeV. This is in

agreement with our results.

Let us now compare our results for vector resonance masses, which exclude them in the range

of [0.8 TeV, 2 TeV], with the experimental data. First, article [25] reported that no deviation from

the SM was observed at the LHC for a4 Æ 35 and ≠38 < a5 < 45, which is encouraging as to the

validity of our study. Moreover, we looked into the most recent publications from the CMS and

ATLAS experiments. The CMS results exclude resonances with masses below 1.59, 1.73 and 2 TeV

for final states of respectively WW [30], WZ [30] and ZZ [31]. Similarly, the ATLAS experiment

findings reported in [32] to rule out resonances below 3 and 4 TeV when analyzing as final states

respectively ZZ and ZW . We see thus that these experimental results are compatible with the ones

we obtained in this study.

4 Conclusions
To conclude, we have introduced a method to find the possible vector resonances at E ≥ 1 TeV

using EChET. The technique uses the smoothness of the zeros of scattering amplitudes. We also

saw that it provides a unitarization procedure for the amplitude. In addition, the method works as

well for resonances of higher spins. The calculation might just be more cumbersome.

We worked here in the WLZL æ WLZL channel because it only allows for a (P-wave, I = 1)

component and for a (S-wave, I = 2) one, if higher orders (l Ø 2) are neglected (which corresponds

to assuming a vector resonance saturation of the involved coupling constants). Since the S-wave

with isospin I = 2 o�ers a tiny contribution because there is no resonance contributing to that

partial wave, the P-wave dominates the amplitude. That made the development of the technique

considerably easier.

First, we applied the method to the fi≠fi0 æ fi≠fi0
scattering at O(p4) in Chiral Perturbation

Theory, of which the coupling constants have been measured. This enabled us to verify that the

method indeed finds the fl(770) resonance that we know is involved in this process. We concluded

that our technique works satisfyingly well, and even provides us with a unitarization procedure for

the amplitude. We also commented on the small changes that the O(p6) corrections bring to our

results.

Then, we applied this Legendre zeros method to the scattering amplitude of WLZL æ WLZL

at chiral O(p4). For the calculation of this amplitude, we used the equivalence theorem, which

relates it to the corresponding Goldstone bosons scattering one. These Goldstone bosons were

the ones to provide mass to the gauge bosons through the spontaneous chiral symmetry brea-

king. We could then work with the EChET lagrangian to calculate our amplitude. Using the

zeros method, we explored the appropriate range of the (a4, a5) plane and deduced the lightest

resonance mass allowed for each of these points of the plane, assuming the saturation of the

amplitude by the resonance. The result is shown on Figure 4, and excludes such resonances with

masses MR œ [0.8, 2] TeV. The existence of vector resonances of masses MR œ [0.5, 0.8] TeV

is permitted, but confined to a tiny part of the (a4, a5) plane, as shown on the aforementioned graph.

To conclude, this Legendre zeros method gives results in the electroweak sector that are

compatible with the latest experimental data.
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This study could be carried on by investigating the reasons for the discrepancies between our

results and the Inverse Amplitude Method findings. A similar study at order O(p6) could be under-

taken as well, so as to add to the precision of our results. Finally, one could also use this technique

to search for resonances of spin J > 1.
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Appendix - Programming comments
These are the major points of the programming that led to Figures 3 and 4. Our Mathematica

file is composed of three main functions.

The first one computes MR for given a4 and a5, using FindRoot and the characteristic feature

of the resonance mass :

Re (z0 (M2
R, a4, a5)) = 0. (73)

Since the equivalence theorem requires us to work at energies MV π E π �EW , we ask of the

program to look only for resonances in [0.2, 3] TeV. We noticed that we had to impose some limits

for FindRoot to be able to compute the masses. Actually, we divided the mentionned interval into a

hundred smaller ones and searched for a resonance mass in each of them, as it is possible that each

(a4, a5) pair allows for more than one resonance.

The second major function calculates a table that scans a4 œ [≠2.5, 50] and a5 œ [≠50, 50],
and gives for each (a4, a5) pair the possible masses calculated by the previous function.

The last function implements the condition (71) in our data. It keeps of the previous table, for

each (a4, a5), the minimum MR that satifies (71). If no resonance could be found for these coupling

constants, or if none survived condition (71), the function assigns MR = 0 to the pair (a4, a5).

Then, we could plot the graphs with ListContourPlot and using RegionPlot to hatch the area

forbidden by the positivity conditions. Moreover, we noticed that the general contour of the graphs

was very sensitive to the interval taken for the scan of the a4 and a5 ranges. Therefore, we took

some additional points with a smaller interval in those regions. Part of the contour of the top section

of Figure 4 seems slightly uneven compared to the rest of it. That is because we did not have time

to compute all the additional points in that particular region.

In order to draw the dashed contours for ⁄ = 1
2 , we selected the closest points to the shaded

area that have a MR = 0. We could trace the contour as a line with the Mathematica command

Graphics[{ Dashed, Line [...] }].

31 / 33



References

[1] M. J. G. Veltman, Acta Phys. Polon. B8 (1977) 475.

[2] B. W. Lee, C. Quigg, and H. B. Thacker, Phys. Rev. Lett. 38 (1977) 883–885.

[3] A. Pich, Rept. Prog. Phys. 58 (1995) 563–610.

[4] J. Gasser and H. Leutwyler, Annals Phys. 158 (1984) 142.

[5] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B321 (1989) 311–342.

[6] A. Martin and T. Spearman, “Elementary particle theory,” North-Holland Pub. Co.,

Amsterdam, The Netherlands, 1970.

[7] B. R. Martin, D. Morgan, and G. Shaw, Pion-pion interactions in particle physics. 1976.

[8] A. Dobado, A. Gomez-Nicola, A. L. Maroto, and J. R. Pelaez, E�ective lagrangians for the
standard model. 1997.

[9] M. Pennington, AIP Conf. Proc. 13 (1973) 89.

[10] M. R. Pennington and J. Portoles, Phys. Lett. B344 (1995) 399–406.

[11] A. Pich, I. Rosell, and J. J. Sanz-Cillero, JHEP 02 (2011) 109.

[12] D. G. Dumm, P. Roig, A. Pich, and J. Portoles, Phys. Lett. B685 (2010) 158–164.

[13] A. Schenk, Nucl. Phys. B363 (1991) 97–113.

[14] S. D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatte, J. H. Friedman,

T. A. Lasinski, G. R. Lynch, M. S. Rabin, and F. T. Solmitz, Phys. Rev. D7 (1973) 1279.

[15] P. Estabrooks and A. D. Martin, Nucl. Phys. B79 (1974) 301–316.

[16] W. Ochs, Die Bestimmung von fifi-Streuphasen auf Grundlage einer Amplitudenanalyse der
Reaktion fi ≠ pfi ≠ fi + n bei 17 GeV/c Primärimpuls. Phd, University of Munich, Munich,

Germany, 1973.

[17] J. Gasser and U. G. Meissner, Phys. Lett. B258 (1991) 219–224.

[18] A. Filipuzzi, J. Portoles, and P. Ruiz-Femenia, JHEP 08 (2012) 080.

[19] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, and M. E. Sainio, Nucl. Phys. B508 (1997)

263–310. [Erratum : Nucl. Phys.B517,639(1998)].

[20] J. M. Cornwall, D. N. Levin, and G. Tiktopoulos, Phys. Rev. D10 (1974) 1145. [Erratum :

Phys. Rev. D11, 972 (1975)].

[21] A. Dobado and J. R. Peláez, Nucl. Phys. B425 (1994) 110–136. [Erratum : Nucl. Phys. B434,

475 (1995)].

32

http://dx.doi.org/10.1103/PhysRevLett.38.883
http://dx.doi.org/10.1088/0034-4885/58/6/001
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0550-3213(89)90346-5
http://dx.doi.org/10.1016/0370-2693(94)01551-M
http://dx.doi.org/10.1007/JHEP02(2011)109
http://dx.doi.org/10.1016/j.physletb.2010.01.059
http://dx.doi.org/10.1016/0550-3213(91)90236-Q
http://dx.doi.org/10.1103/PhysRevD.7.1279
http://dx.doi.org/10.1016/0550-3213(74)90488-X
http://dx.doi.org/10.1016/0370-2693(91)91235-N
http://dx.doi.org/10.1007/JHEP08(2012)080


Zeros of the WLZL æ WLZL amplitude: vector resonances at the LHC

[22] A. C. Longhitano, Phys. Rev. D22 (1980) 1166.

[23] A. C. Longhitano, Nucl. Phys. B188 (1981) 118–154.

[24] T. Appelquist and G.-H. Wu, Phys. Rev. D48 (1993) 3235–3241.

[25] O. J. P. Eboli, M. C. Gonzalez-Garcia, and J. K. Mizukoshi, Phys. Rev. D74 (2006) 073005.

[26] M. Fabbrichesi and L. Vecchi, Phys. Rev. D76 (2007) 056002.

[27] A. V. Manohar and V. Mateu, Phys. Rev. D77 (2008) 094019.

[28] R. L. Delgado, A. Dobado, D. Espriu, C. Garcia-Garcia, M. J. Herrero, X. Marcano, and J. J.

Sanz-Cillero, arXiv:1707.04580 [hep-ph].

[29] A. Pich, I. Rosell, and J. J. Sanz-Cillero, JHEP 01 (2014) 157.

[30] CMS Collaboration, A. Hinzmann, PoS EPS-HEP2013 (2013) 283.

[31] CMS Collaboration, C. Collaboration.

[32] ATLAS Collaboration, M. Aaboud et al., arXiv:1708.09638 [hep-ex].

[33] A. Filipuzzi, J. Portoles, and P. Ruiz-Femenia, PoS CD12 (2013) 053.

33 / 33

http://dx.doi.org/10.1103/PhysRevD.22.1166
http://dx.doi.org/10.1016/0550-3213(81)90109-7
http://dx.doi.org/10.1103/PhysRevD.48.3235
http://dx.doi.org/10.1103/PhysRevD.74.073005
http://dx.doi.org/10.1103/PhysRevD.76.056002
http://dx.doi.org/10.1103/PhysRevD.77.094019
http://arxiv.org/abs/1707.04580
http://dx.doi.org/10.1007/JHEP01(2014)157
http://arxiv.org/abs/1708.09638

	Title page
	Table of Contents
	1 Introduction
	2 Pions case: Study of - 0 - 0
	2.1 The Chiral Perturbation Theory framework
	2.1.1 Spontaneous Chiral Symmetry Breaking
	2.1.2 Building an effective field theory
	2.1.2.1 The reasons.
	2.1.2.2 The principles.

	2.1.3 Chiral Perturbation Theory at lowest order
	2.1.4 Chiral Perturbation Theory at O(p4)

	2.2 Uncovering resonances: Legendre zeros method
	2.2.1 General principle
	2.2.2 Legendre polynomials and partial waves
	2.2.3 Obtaining MR in practice
	2.2.4 A unitarization procedure

	2.3 Changes at O(p6)
	2.4 Conclusion

	3 Electroweak case: Study of WL ZL WL ZL
	3.1 The equivalence theorem
	3.2 The electroweak chiral lagrangian
	3.3 The scattering amplitude A(4)(WL ZL  WL ZL) 
	3.4 Legendre zeros method applied to WL ZL  WL ZL
	3.4.1 Principles
	3.4.2 Obtaining the graphs
	3.4.3 Results
	3.4.4 Comparison with other techniques and the experimental results


	4 Conclusions
	Acknowledgements
	Appendix - Programming comments
	References

