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Abstract

The existence of a Higgs-like boson with mass around 125 GeV is an undoubted fact supported
by the last LHC data. The most simple model explaining such particle is the widely studied
Standard Model. Despite this great predictive power some features of nature are not well explained
only by the Standard Model. This motivates the study of extensions of the model as done here,
where two enlargements of the scalar sector have been developed, analyzing the available data in
these contexts by performing a χ2 test. The 750 GeV diphoton excess recently observed in LHC
and not explained by the Standard Model is also examined within these extensions.

1 Introduction

The Standard Model (SM) is the best and most simple theory describing strong, weak and electro-
magnetic interactions and giving us an extraordinary precision, which is increased everyday as particle
accelerators and detectors are improved. Depending on their spin, particles of the SM are classified
into fermions and bosons.

Fermions carry spin 1
2 and in turn are divided into quarks and leptons, paired in three doublets cor-

responding to different generations, so that members of different generations carry the same quantum
numbers.

On the other hand, gauge bosons carry spin 1 and act as mediator particles of interactions. These
gauge bosons are the photon, γ, for the electromagnetic interaction, W± and Z for the weak force
and the gluons, g, for the strong interaction. Given that the mass of the g and γ are zero as a result
of gauge invariance, they are long-range interactions, unlike massive gauge bosons, whose interaction
are short-range.

The last, but fundamental ingredient, needed in the SM is the Higgs boson, a particle carrying
0 spin and responsible of giving mass to weak bosons and fermions, in a process known as Spontaneous
Symmetry Breaking (SSB) recently discovered at the LHC with a mass around 125 GeV. A general
overview of the SM and SSB is given in sections 2 and 3.

Despite the great predictive power of the SM, some shortcomings seem to suggest the necessity of
studying extensions of the model which would both include the content of the SM and the missing in-
gredients. Some of these open questions are CP violation, related to the matter-antimatter asymmetry
or the content of dark matter in the Universe.

The Higgs mechanism of the SM is the most simple way of generating the masses of the particles,
but different alternatives would both reproduce these as well as include some new and interesting
ingredients.

Here, two of these models and their phenomenological implications will be studied. In Section 4
the most simple extension of the scalar sector of the SM, in which a real singlet is added, is presented,
describing the SSB, the phenomenological features of the model and the study of its parameters using
the last LHC data and performing a χ2 minimization.

The other model studied in Section 5, is the so called Aligned Two-Higgs Doublet Model (A2HDM),
in which a new doublet, with the same quantum numbers as the SM one is added. As for the Higgs
singlet extension, the basic ingredients of the model are explained, now showing how the alignment in
flavour space of the Yukawa couplings is imposed in order to avoid flavour-changing neutral currents
(FCNC) at tree level. An analysis of the parameters from the last LHC data is performed in the
different possible scenarios.

The last part of the work presented here corresponds to the study of the diphoton excess recently
observed in the RUN2 of LHC, showing hints of a new resonance in the diphoton spectrum corre-
sponding to an invariant mass around 750 GeV, which, if maintained once more data is acquired,
would not be explained just by the SM.

2 The Standard Model

The SM is a gauge theory, based on the symmetry group SU(3)C ⊗ SU(2)L⊗U(1)Y , which describes
the strong, weak and electromagnetic interactions. After a process known as SSB, which will be
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explained in Section 3, this group is broken into SU(3)C ⊗ U(1)QED [1, 2, 3, 4].

2.1 Quantum Electrodynamics

The first piece needed to construct the SM is the Lagrangian describing a free fermion:

L0 = iψ̄(x)γµ∂µψ(x)−mψ̄(x)ψ(x) . (1)

This Lagrangian is invariant under U(1) transformations,

ψ(x)
U(1)−−−→ ψ(x)′ = eiQθψ(x) , (2)

Qθ is a real, arbitrary constant. However, it is very unnatural to look at global transformations of the
fields. Instead we should consider local transformations, θ = θ(x).

The gauge principle is the requirement that U(1) holds locally. It is easy to check that imposing
local transformations the Lagrangian is not invariant anymore due to the piece:

∂µψ(x)
U(1)−−−→ ∂µψ(x)′ = eiQθ

(
∂µ + iQ∂µθ(x)

)
ψ(x) . (3)

To impose the gauge principle we need to add an extra piece to the Lagrangian, which is trans-
formed in such a way that cancels the transformation of Eq. (3),

Aµ(x)
U(1)−−−→ Aµ(x)′ ≡ Aµ(x)− 1

e
∂µθ . (4)

This new spin-1 field,1 Aµ defines the covariant derivative:

Dµψ(x) ≡ [∂µ + ieQAµ(x)]ψ(x) , (5)

which has the desired property of transforming like the field itself,

Dµψ(x)
U(1)−−−→ (Dµψ(x))′ = eiQθDµψ(x) . (6)

And the new Lagrangian is invariant under local U(1) transformations:

L ≡ iψ̄(x)γµDµψ(x)−mψ̄(x)ψ(x) = L0 − eQAµ(x)ψ̄(x)γµψ(x) . (7)

Note the new term in Eq. (7) describes the interaction between the fermionic field, ψ(x), and the
gauge field Aµ(x), which is the familiar Quantum Electrodynamics (QED) vertex. For Aµ(x) to be
the true propagating field, the gauge invariant kinetic term has to be added:

Lkin ≡ −
1

4
Fµν(x)Fµν(x) , (8)

where Fµν ≡ ∂µAν − ∂νAµ.
A mass term of the form Lm = 1

2m
2AµA

µ is forbidden, 2 because it would violate gauge invariance.
This means we expect the photon to be massless, in agreement with our experimental results (mγ <
10−18 eV) [1].

Combining (7) and (8), the complete QED Lagrangian is:

LQED = L+ Lkin = iψ̄(x)γµDµψ(x)−mψ̄(x)ψ(x)− 1

4
Fµν(x)Fµν(x) , (9)

which gives rise to the well-known Maxwell equations:

∂µF
µν = eJν = eQψ̄γνψ . (10)

1The field Aµ should be a spin-1 field since ∂µ has a Lorentz index.
2Note: Fµν(x)

U(1)−−−→ Fµν(x)′ = Fµν , while Aµ(x)Aµ(x)
U(1)−−−→ AµA

µ − 1
e
(Aµ∂µθ + ∂µθA

µ) + 1
e2
∂µθ∂µθ.
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2.2 Quantum Chromodynamics

Nowadays, it is an undeniable fact the existence of a deeper level of elementary constituents inside
mesons and baryons: the quarks. Quantum Chromodynamics (QCD), is a non-Abelian gauge theory
that describes the interaction through these elementary constituents (the quarks) and the gauge bosons
of the theory, the gluons [5]. This theory is similar to QED, replacing the fermions by quarks and the
photons by gluons, with the extra complication of being a non-Abelian theory.

In addition, to satisfy the Fermi-Dirac statistics the existence of a new quantum number, colour, is
requiered in such a way that each quark may have NC = 3 different colours (qα, α = 1, 2, 3). Baryons
and mesons are described by the colour-singlet combinations [2, 6]:

B =
1√
6
εαβγ |qαqβqγ〉 , M =

1√
3
δαβ |qαq̄β〉 . (11)

The fact that we do not observe colour states is related to the confinement hypotesis [7].

As we did for QED, let’s start by writing the free Lagrangian of our theory

L0 =
∑
f

q̄f (iγµ∂µ −mf )qf , (12)

where qαf represents the field of a quark with colour α and flavour f and we have adopted a vector

notation in colour space qTf ≡ (q1
f , q

2
f , q

3
f ). In a similar way as before, the Lagrangian in Eq. (12) is

invariant under a global SU(3)C transformation, 3

qαf
SU(3)−−−−→ (qαf )′ = Uαβ q

β
f , UU † = U †U = 1 , detU = 1 , (13)

where U represents a SU(3)C matrix,

U = exp

{
i
λa
2
θa

}
, (14)

being 1
2λ

a, a = (1, ..8) the generators of the group in the fundamental representation and θa arbitrary
parameters,4

As we did for QED we need to require our QCD Lagrangian to be invariant under local SU(3)C
transformations, i.e θa = θa(x). Imposing that, the quark fields are transformed as:

qαf
SU(3)C−−−−−→ (qαf )′ = Uαβ q

β
f = qαf + i

(λa
2

)
αβ
δθaq

β
f . (15)

And for the Lagrangian we have the following transformation:

L0
SU(3)C−−−−−→ L′0 =

∑
f

q̄f

(
iγµ

iλa
2
∂µθa + iγµ∂µ −mf

)
qf , (16)

which is not invariant under SU(3)C . To make it invariant the usual derivatives need to be replaced
by covariant derivatives,

Dµqf =
[
∂µ + igs

λa
2
Gµa(x)

]
qf ≡

[
∂µ + igsG

µ(x)
]
qf , (17)

where in the last step we just have introduced a more compact notation.5

3The fact that the symmetry is described by the group SU(NC) is related to the quantum number colour. In QED
our Lagrangian was invariant under charge Q, now it is invariant under transformations in colour space.

4These are traceless matrices Tr(λa) = 0 and satisfy the commutation relations [λa
2
, λb

2
] = ifabc λc

2
, being fabc SU(3)C

structure constants.
5[Gµ]αβ ≡

((
λa
2

)
αβ
Gµa(x)

)
.
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As a result, there will be eight new gauge bosons, 6 the gluons, Gµa , which apart from the usual
Lorentz index, µ carry colour (a).

The transformation properties of Dµ are fixed by the requirement of Dµqf to transform as the
colour-vector qf :

Dµ SU(3)C−−−−−→ (Dµ)′ = UDµU † , Gµ
SU(3)C−−−−−→ UGµU † +

i

gs
(∂µU)U † . (18)

The infinitesimal transformations of the quark fields are given by Eq. (15) and for the gluon fields:

Gµa
SU(3)C−−−−−→ (Gµa)′ = Gµa −

1

gs
∂µ(δθa)− fabcδθbGµc . (19)

As we did in QED, the next step is to build a gauge-invariant kinetic term. To do that the
corresponding field strengths need to be introduced:

Gµν(x) ≡ − i

gs
[Dµ, Dν ] = ∂µGν − ∂νGµ + igs[G

µ, Gν ] ≡ λa
2
Gµνa (x) , (20)

Gµνa (x) = ∂µGνa − ∂νGµa − gsfabcG
µ
bG

ν
c ,

with

Gµν
SU(3)C−−−−−→ (Gµν)′ = UGµνU † . (21)

Since gauge invariance forbids adding a mass term for the gluon fields, they will remain as massless
spin-1 particles. Now we are able to write the full QCD Lagrangian,

LQCD = −1

4
Gµνa Gaµν +

∑
f

qf (iγµDµ −mf )qf . (22)

And developing the Lagrangian of Eq. (22) we can look at the different contributions:

LQCD = −1

4
(∂µGνa − ∂νGµa)(∂µG

a
ν − ∂νGaµ) +

∑
f

q̄αf (iγµ∂µ −mf )qαf︸ ︷︷ ︸
quadratic kinetic terms

(23)

−gsGµa
∑
f

q̄αf γ
µ

(
λa
2

)
αβ

qβf︸ ︷︷ ︸
colour interaction between quarks and gluons

+
gs
2
fabc(∂µGνa − ∂νGµa)GbµG

c
ν −

g2
s

4
fabcfadeG

µ
bG

ν
cG

d
µG

e
ν︸ ︷︷ ︸

cubic and quartic gluon self interaction

.

Looking at the form of the Lagrangian we can identify the quadratic term, that will give us the
propagators, the interaction between gluons and quarks and finally the gluon self interactions, which
are due to the non-Abelian character of the theory.

2.3 Electroweak Unification

The model describing weak interactions is the Electroweak model, based on the symmetry group
G ≡ SU(2)L ⊗ U(1)Y . Now, the complexity is increased, since we need to express the different
behaviour of the left and right-handed fields, and the massive bosons W± and Z that were not present
in the case of QED and QCD have to be included.

68 = N2
c − 1 = 9− 1.
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Gaµ

gs
λαβ

2 γµ

qα qβ

Gaµ

Gbν

Gcσ

gsfabc

Gaµ Gbν

GcσGdρ g2
sfabcfade

Figure 1: Interaction vertices of the QCD Lagrangian.

In the SM there are three families of quarks and fermions, which can be expressed as:[
νe u
e− d′

]
,

[
νµ c
µ− s′

]
,

[
ντ t
τ− b′

]
, (24)

where each matrix represents the lepton sector (left column) and the quark sector (right column) of
each family. Taking any of these families for quarks we have:

ψ1(x) =

[
u
d

]
L

, ψ2(x) = uR , ψ3(x) = dR . (25)

And for leptons:

ψ1(x) =

[
ν3

e−

]
L

, ψ2(x) = νeR , ψ3(x) = e−R . (26)

As we did for QED and QCD we start by considering the free Lagrangian 7

L0 = iū(x)γµ∂µu(x) + id̄(x)γµ∂µd(x) =

3∑
j=1

iψ̄j(x)γµ∂µψj(x) , (27)

with

u(x) =

[
uR
uL

]
, d(x) =

[
dR
dL

]
. (28)

The Lagrangian, L0, is invariant under a global transformation of the fields under the group G,

ψ1(x)
G−→ ψ1(x)′ ≡ exp{iy1β}ULψ1(x) , (29)

ψ2(x)
G−→ ψ2(x)′ ≡ exp{iy2β}ψ2(x) ,

ψ3(x)
G−→ ψ3(x)′ ≡ exp{iy3β}ψ3(x) ,

where the part of (29) proportional to the exponential is the transformation under the group U(1)Y ,
with the parameters yi, the hypercharges, and the part corresponding to the SU(2)L group is related
to the non-abelian matrix transformation UL, (σi are the Pauli matrices),

UL ≡ exp
{
i
σi
2
αi
}
, (30)

and consequently it only acts on the left-handed components, i.e. it only acts on ψ1(x).

By requiring the Lagrangian to be also invariant under local transformations, αi = αi(x) and
βi = βi(x), we are forded to include the following covariant derivatives:

7We have not included a mass term in (27) because it would have mixed the left and right-handed fields.
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Dµψ1(x) ≡ [∂µ + igW̃µ(x) + ig′y1Bµ(x)]ψ1(x) , (31)

Dµψ2(x) ≡ [∂µ + ig′y2Bµ(x)]ψ2(x) ,

Dµψ3(x) ≡ [∂µ + ig′y3Bµ(x)]ψ3(x) ,

where

W̃µ(x) ≡ σi
2
W i
µ(x) . (32)

The requisite that Dµψj(x) is transformed as ψj(x) fixes the transformation of the gauge fields:

Bµ(x)
G−→ B′µ(x) ≡ Bµ(x)− 1

g′
∂µβ(x) , (33)

W̃µ(x)
G−→ W̃ ′µ(x) ≡ ULW̃µ(x)U †L +

i

g
∂µUL(x)UL(x)† .

These transformations remind us of the ones of QED (Bµ) and QCD (W̃µ).
To continue with our analysis we have to add all the possible gauge-invariant kinetic terms for the

gauge terms. Introducing the field strengths:

Bµν ≡ ∂µBν − ∂νBµ , (34)

W̃µν ≡ −
i

g

[(
∂µ + igW̃µ

)(
∂ν + igW̃ν

)]
= ∂µW̃ν − ∂νW̃µ + ig[W̃µ, W̃ν ] ,

W̃µν ≡
σi
2
W i
µν , W i

µν = ∂µW
i
ν − ∂νW i

µ − gεijkW j
µW

k
ν .

Under a G transformation:

Bµν
G−→ Bµν , W̃µν

G−→ ULW̃µνU
†
L . (35)

And the kinetic Lagrangian, with the pertinent normalization is

Lkin = −1

4
BµνB

µν − 1

2
Tr
[
W̃µνW̃

µν
]

= −1

4
BµνB

µν − 1

4
W i
µνW

µν
i . (36)

Since the field strengths of Eq. (36) contain quadratic pieces, Lkin will contain cubic and quartic
self-interactions between the gauge bosons. In addition, we can note that we are not allowed to add
a mass term neither for bosons, since it will break gauge symmetry, nor for fermions, because it will
imply an interaction between left and right-handed fields, with different transformation properties.

2.3.1 Charged-current interactions

In this section we will briefly introduce the part of the Lagrangian that gives rise to the interaction
between fermions and charged bosons (W±),

L =
3∑
j=1

iψj(x)γµ∂µψj(x)− gψ1(x)γµW̃µψ1(x)− g′Bµ
3∑
j=1

ψj(x)γµψj(x) . (37)

The first piece is the kinetic term for the fermions, while the second and the third terms will give
us the interaction between the fermions and the gauge bosons. To obtain the charged-current (CC)
interactions we should note:

W̃µ =
σi

2
W i
µ =

1

2

[
W 3
µ

√
2W †µ√

2Wµ −W 3
µ

]
, (38)

where the CC contribution will be due to the term W †µ ≡ (W 1
µ − iW 2

µ)/
√

2, and W 3
µ will contribute

to the neutral-current (NC), as we will see in the next section. The Lagrangian of the CC, for any
family of quarks and leptons is:

LCC = − g

2
√

2

{
W †µ[ūγµ(1− γ5)d+ νlγ

µ(1− γ5)l−] + h.c.
}
. (39)

and it will give rise to the vertices of Fig. 2.
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W

qd qu
g

23/2
(1− γ5)

W

l− νl
g

23/2
(1− γ5)

Figure 2: Charged-current interaction vertices.

2.3.2 Neutral-current interactions

As we can see from Eq. (37), our Lagrangian also contains NC interactions, that will come both from
the second term (interactions with W 3

µ) and third term (interactions with Bµ) of Eq. (37).
At first, we could think of identifying these fields with the Z boson and the photon, γ. But given

that the photon has the same interaction with both fermion chiralities, the field Bµ cannot be equal
to the electromagnetic field.8 Instead, it seems natural to work with an arbitrary combination of
the fields: [

W 3
µ

Bµ

]
=

[
cos θw sin θw

− sin θw cos θw

] [
Zµ
Aµ

]
. (40)

And, expressing the NC Lagrangian in terms of these fields we have

LNC = −
∑
j

ψ̄j(x)γµ
{
Aµ

[
g
σ3

2
sin θw + g′yj cos θw

]
+ Zµ

[
g
σ3

2
cos θw − g′yj sin θw

]}
ψj . (41)

To recover QED from the Aµ piece we impose:

g sin θw = g′ cos θw = e , Y = Q− T3 , (42)

where the electromagnetic charge operator, Q, is expressed as:

Q1 =

[
Qu/ν 0

0 Qd/e

]
, Q2 = Qu/ν , Q3 = Qd/e , (43)

and T3 ≡ σ3
2 .

The form of the hypercharge, Y , comes from the fact that it should be a linear combination of Q
and T3 and the requirement that it commutes with the involved operators, and fixes the hypercharge
of the fermions:

Quarks: y1 = Qu − 1
2 = Qd + 1

2 = 1
6 , y2 = Qu = 2

3 , y3 = Qd = −1
3 .

Leptons: y1 = Qν − 1
2 = Qe + 1

2 = −1
2 , y2 = Qν = 0, y3 = Qe = −1.

The NC Lagrangian reads:

LNC = LQED + LZNC , (44)

where

LQED = −eAµ
∑
j

ψ̄jγ
µQjψj ≡ −eAµJµem , (45)

for the QED part and

LZNC = − e

2 sin θw cos θw
JµZZµ , (46)

JµZ ≡
∑
j

ψ̄jγ
µ(σ3 − 2 sin2 θwQj)ψj = Jµ3 − 2 sin2 θwJ

µ
em ,

8That would require y1 = y2 = y3 and g′yj = eQj , which cannot be simultaneously true.
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f f
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(vf − afγ5)

Figure 3: Neutral-current interaction vertices with sθw ≡ sin θw and cθw ≡ cos θw.
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Figure 4: Self-interaction vertices of the gauge bosons.

or in terms of the fermion fields

LZNC = − 2

2 sin θw cos θw
Zµ
∑
f

f̄γµ(vf − afγ5)f , (47)

where af = T f3 and vf = T f3 (1− 4|Qf | sin2 θw).

2.3.3 Gauge self-interactions

As we can see from the term in (36), we will have cubic and quartic self-interactions between the
gauge bosons (Fig. 3):

L3 = ie cot θw

{
(∂µW ν − ∂νWµ)W †µZν − (∂µW ν† − ∂νWµ†)WµZν +WµW

†
ν (∂µZν − ∂νZµ)

}
(48)

+ie
{

(∂µW ν − ∂νWµ)W †µAν − (∂µW ν† − ∂νWµ†)WµAν +WµW
†
ν (∂µAν − ∂νAµ)

}
,

L4 = − e2

2 sin2 θw

{(
W †µW

µ
)2
−W †µWµ†WνW

ν

}
− e2 cot2 θw

{
W †µW

µZνZ
ν −W †µZµWνZ

ν
}

(49)

−e2 cot θw

{
2W †µW

µZνA
ν −W †µZµWνA

ν −W †µAµWνZ
ν
}

−e2
{
W †µW

µAνA
ν −W †µAµWνA

ν
}
.

3 Spontaneous Symmetry Breaking

In our description of Electroweak Unification gauge bosons are massless particles, while our experience
tells us that W± and Z should be massive bosons.

To generate masses, we need to break gauge symmetry. However, this has to be done carefully,
since we also need a fully symmetric Lagrangian in order to preserve renormalizability.

This can be done through a process known as SSB [8, 9, 10, 11, 12], in which we have a Lagrangian
invariant under a group of transformations that has a degenerate set of states with minimal energy.
The fact of selecting one of these states as the ground state will spontaneously break the symmetry,
leading to the appearance of new spin-0 massless particles, as we will see in the next section.
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Figure 5: Potential for the two different values of µ2. In the left potential we can see there is only one minimum,
while in the right there is an infinite number of degenerate states.

3.1 Goldstone Theorem

In order to illustrate the main idea of the Goldstone theorem, let’s consider a complex scalar field,
φ(x), and the following Lagrangian:

L = ∂µφ(x)†∂µφ(x)− V (φ) , V (φ) = µ2φ†φ+ h(φ†φ)2 . (50)

where L is invariant under a global phase transformation,

φ(x)→ φ(x)′ = eiθφ(x) . (51)

If we focus in the form of the potential, we can note h should be positive, for the potential to be
bounded from below. For the parameter µ2 we have two different possibilities, as it can be seen in
Fig. 5:

• 1. µ2 > 0: The only minimum of V (φ) is φ = 0, so there is not a degenerate set of states.

• 2. µ2 < 0: There is an infinity set of minima satisfying the condition |φ0(x)| =
√
−µ2
2h = v√

2
.

Now we are in the case mentioned before in which we have a degenerate set of states of minimum
energy.

We will focus in case 2, in which there is a degenerate set of minima. If we choose one of these
minima, for instance, φ0(x) = v√

2
, the symmetry gets spontaneously broken. To continue, let’s

parametrize excitations over the ground state as:

φ(x) =
1√
2

(
v + ϕ1(x) + iϕ2(x)

)
, (52)

where ϕ1 and ϕ2 are real fields.

Parameterizing the potential in this way we get:

V (φ) = V (φ0)− µ2ϕ2
1 + hvϕ1(ϕ2

1 + ϕ2
2) +

h

4
(ϕ2

1 + ϕ2
2)2 . (53)

From here we can see ϕ1 describes a state with mass m2
ϕ1

= −2µ2, while ϕ2 is massless and
describes excitations around the flat direction of the potential, where the energy is the same (ground
state). This is a general result, known as Goldstone Theorem: If a Lagrangian is invariant under
a continuous symmetry group G, but the vacuum is only invariant under a subgroup H ⊂ G, then
there must exist as many massless spin-0 particles (Nambu-Goldstone bosons) as broken generators
(i.e. generators of G which don’t belong to H).
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3.2 Higgs Boson

In this section we will see how, as a result of the Goldstone Theorem, the W± and Z bosons acquire
mass, while Aµ remains massless.

To do that let’s consider a SU(2)L doublet of complex scalar fields

φ(x) =

[
φ(+)(x)

φ(0)(x)

]
, (54)

and a gauged scalar Lagrangian invariant under SU(2)L ⊗ U(1)Y transformations

Ls = (Dµφ)†Dµφ− µ2φ†φ− h(φ†φ)2 , (h > 0, µ2 < 0) , (55)

Dµφ =
{
∂µ + igW̃µ + ig′yφB

µ
}
φ , yφ = Qφ − T3 =

1

2
.

The value of the hypercharge is fixed by the requirement of having the correct coupling between
φ(x) and Aµ(x) (φ(0) not coupled to the photon and φ(+) the right charge).

Looking for the minimum of the potential,

∂V

∂|φ|
= 0→ |φ| = 0, |φ| =

√
−µ2

2h
. (56)

Since φ(+) is charged its vev would be 0:

〈0| [Q, φ(+)(x)] |0〉 = Q 〈0|φ(+)(x) |0〉 = 〈0| Q, φ(+)(x) |0〉 − 〈0|φ(+)(x)Q |0〉 = 0→ 〈0|φ(+)(x) |0〉 = 0 .
(57)

And this does not happen for φ(0) since it is neutral (Q = 0). So, only the neutral component of
the doublet will acquire a vacuum expectation value,

| 〈0|φ |0〉 | =
[

0

| 〈0|φ(0) |0〉 |

]
=

[
0√
−µ2
2h

]
. (58)

There is an infinite set of states, differing by a phase, that satisfy Eq. (58). Once we choose a
particular ground state, for example

〈0|φ(0) |0〉 =

√
−µ2

2h
≡ v√

2
, (59)

the SU(2)L ⊗ U(1)Y symmetry gets broken to the electromagnetic group U(1)Q, which remains a
symmetry of the vacuum.

As before, we will parametrize our doublet considering excitations over the physical vacuum

φ(x) = exp
{
i
σi
2
θi(x)

} 1√
2

[
0

v+H(x)√
2

]
. (60)

Before moving on, and remembering the Goldstone Theorem of Section 3.1, let’s look at the
generators of the groups we are working with. The four generators of G = SU(2)L ⊗ U(1)Y are σi

2
(three generators for SU(2)) and Y (one generator for U(1)). The generator of the group U(1)Q into
which G gets broken is Q. We say a generator is broken if:

Taφ0 6= 0 , (61)

being φ0 = 1√
2

[
0
v

]
the vev of the doublet. To identify the broken and unbroken generators:
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T1φ0 =
σ1

2
φ0 =

1

2
√

2

[
v
0

]
6= 0 ,

T2φ0 =
σ2

2
φ0 = − i

2
√

2

[
v
0

]
6= 0 ,

T3φ0 =
σ3

2
φ0 =

1

2
√

2

[
0
−v

]
6= 0 , (62)

Y φ0 =
1

2
√

2

[
0
v

]
6= 0 ,

Qφ0 = (Y + T3)φ0 =

[
0
0

]
= 0 .

With that we have checked there are three broken generators. We can also note, that after the
SSB there are four degrees of freedom (three θi(x) and H(x)). Since we have local SU(2)L invariance
we can choose a particular gauge for which θi(x) = 0, 9

φ(x) =
1√
2

[
0

v +H(x)

]
. (63)

With this gauge, the kinetic term of the Lagrangian is:

Lkin =
1

2

{
(∂µH)(∂µH) + (v +H)2

(g2

4
W †µWµ +

g2

8 cos2 θw
ZµZ

µ
)}

. (64)

The vacuum expectation value of the neutral scalar doublet has generated a mass term for the
gauge bosons W± and Z. These mass terms are:

v2g2

4
= M2

W →MW =
vg

2
, (65)

v2g2

8 cos2 θw
=

1

2
M2
Z →MZ =

vg

2 cos θw
,

0 =
1

2
M2
A →MA = 0 .

At this point it can be seen how the SSB has generated the masses of the gauge bosons. Fur-
thermore, since Q is an unbroken generator, the photon remain massless, and there is a new scalar
particle: the Higgs boson.

To finish with this Section let’s count the degrees of freedom. Before the SSB we had 10 degrees
of freedom (d.o.f): three massless boson fields W± and Z (3 × 2 = 6 d.o.f), and four real scalars (4
d.o.f). After the SSB we have 10 d.o.f: three massive bosons (3 × 3 = 9 d.o.f) and the Higgs boson
(1 d.o.f).

The Lagrangian that describes this new particle, the Higgs boson is:

LS =
1

4
hv4 + LH + LHG2 , (66)

where

LH =
1

2
∂µH∂

µH − 1

2
M2
HH

2 −
M2
H

2v
H3 −

M2
H

8v2
H4 , (67)

LHG2 = M2
WW

†
µW

µ

{
1 +

2

v
H +

H2

v2

}
+

1

2
M2
ZZµZ

µ

{
1 +

2

v
H +

H2

v2

}
.

From (67) we see that the Higgs mass is given by

MH =
√
−2µ2 =

√
2hv . (68)

And (67) also give us the couplings that can be seen in Fig. 6.

9The fields θi are the massless Goldstones.
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Figure 6: Higgs coupling to the gauge bosons.

3.3 Yukawa sector

Once we have introduced the Higgs doublet the right structures to give mass to the fermions can
be formed. The forbidden structures by gauge invariance, that would give mass are of the form
ψψ = ψLψR + ψRψL, with the following quantum numbers: 10

eL → (1, 2,−1

2
), νeL → (1, 2,−1

2
), uL →

(
3, 2,

1

6

)
, dL →

(
3, 2,

1

6

)
, (69)

eR → (1, 1,−1), νeR → (1, 1, 0), uR →
(

3, 1,
2

3

)
, dR →

(
3, 1,−1

3

)
.

Note the left-handed fields form a doublet with the same quantum numbers, LL =

[
νeL
eL

]
andQL =

[
uL
dL

]
.

Since now we have a Higgs doublet with quantum numbers φ→ (1, 2, 1
2) the following non-violating

gauge symmetry structures can be formed:

LY = −c1[ū, d̄]L

[
φ(+)

φ(0)

]
dR − c2[ū, d̄]L

[
φ(0)∗

−φ(−)

]
uR − c3[ν̄e, ē]L

[
φ(+)

φ(0)

]
eR + h.c. , (70)

where the second term is the C-conjugate scalar field, φc ≡ iσ2φ
∗, which in the unitary gauge we are

working in has the form:

φc =
1√
2

[
v +H(x)

0

]
, (71)

and the Lagrangian takes the form:

LY = − 1√
2

(v +H)(c1d̄d+ c2ūu+ c3ēe) . (72)

From where we can see that the mass of the fermions is a consequence of the vev of the Higgs
doublet,

md = c1
v√
2
, mu = c2

v√
2
, me = c3

v√
2
. (73)

The values of ci are arbitrary, but the couplings of the fermions with the Higgs boson are fixed by
the masses, as we can see in Fig. 7 and Eq. (74),

LY = −
(

1 +
H

v

)
(mdd̄d+muūu+meēe) . (74)

10The quantum numbers indicate C, L, Y = Q - T3.
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Figure 7: Higgs coupling to fermions.

3.4 Yukawa coupling for three generations

The existence of three generations of quarks and leptons is an experimental fact, as we have seen in
Eq. (24). Since the particles of the second and third generation have the same quantum numbers and
only differ in their masses, we can add more terms to the Lagrangian of Eq. (74)

LY = −(Q̄′LM′
dφd′R + Q̄′LM′

uφ
cu′R + L̄′LM′

lφl′R + h.c) , (75)

where d′R, u′R, l′R, Q̄′L and L̄′L are vectors in the 3-dimensional flavour space, and M ′d, M
′
u and M ′l

are the mass matrices. These non-diagonal mass matrices introduce a total of 54 parameters, 11 in
addition of the non-conservation of lepton number. Since our Lagrangian is invariant under [U(3)]6

we can perform transformations in the fermionic fields to reduce the number of parameters,

Q′L → UQQ′L ≡ QL , L′L → UlL
′
L ≡ LL , (76)

d′R → Udd
′
R ≡ dR , u′R → Uuu

′
R ≡ uR , l′R → URl′R ≡ lR ,

which is equivalent to make a transformation in the mass matrices (for example for M′
d):

d̄′LM′
dd
′
R → d̄′LU†QM′

dUdd
′
R = d̄LMddR . (77)

Therefore it is as if the matrices M′
a=d,u,l were transformed as:

M′
d → U†QM′

dUd , (78)

M′
u → U†QM′

uUu ,

M′
l → U†LM′

lUR .

It is convenient to choose a transformation such that the maximum number of parameters of the
mass matrices is reduced, i.e, making them diagonal. But not all the matrices can be diagonalized
simultaneously. As a result there will be two diagonal mass matrices and one hermitic mass matrix,

v√
2
U†QM′

dUd = Md , (79)

v√
2
U†QM′

uUd =Mu ,

v√
2
U†LM′

lUR =Ml ,

whereMu andMl are diagonal, positive defined matrices and Md is an hermitian and positive defined
matrix.

A non-diagonal mass matrix will imply a mixture between the up and down quarks. To diagonalize
this matrix we can perform the transformation:

dR → V dR , dL → V dL. (80)

113 rows x 3 columns x 2 (complex) x 3 matrices = 54 parameters.
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Figure 8: Flavour-changing interactions due to the CC part of the Lagrangian.

This U(1) transformation is equivalent to diagonalize Md(Md → V †MdV =Md). With that, the mass
matrices of our Yukawa Lagrangian will be diagonal

LY = −
(

1 +
H

v

)
(dLMddR + uLMuuR + lLMllR + h.c) . (81)

The ūu and d̄d pieces will remain invariant, while the ūd and d̄u terms will be transformed according
to Eq. (81):

ūLuL → ūLuL , d̄LdL → d̄LV
†V dL = d̄LdL , (82)

ūLdL → ūLV dL , d̄LuL → d̄LV
†dL .

Having two terms (NC) that do not change flavour and two more (CC) that do change flavour (Fig. 8).
In terms of the Lagrangians:

LCC = − 2

2
√

2

W †µ
∑
i,j

ūiγ
µ(1− γf )Vijdj +

∑
l

ν̄lγ
µ(1− γ5)l

+ h.c.

 . (83)

From where it can be seen that NC terms do not change flavour while CC terms do change flavour,
via the so called Cabibbo-Kobayashi-Maskawa (CKM) matrix,

V =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (84)

3.5 Custodial Symmetry

The Custodial Symmetry, under the group SU(2)V = SU(2)L+R, is a global symmetry of the Higgs
Lagrangian, LS in the SM after the SSB and in the limit g = g′ → 0, that is, in the case in which
gauge invariance is not imposed yet. Once gauge invariance is imposed, Custodial Symmetry becomes
an approximate symmetry.

It is convenient to represent the Higgs doublet and its charge-conjugate into a 2×2 matrix [13, 14],

Σ ≡
[
φ̃, φ

]
=

[
φ0∗ φ+

−φ− φ0

]
=

1√
2

(
v +H(x)

)
U(~ϕ) , (85)

being

U(~ϕ) = exp

(
i

v
~σ~ϕ(x)

)
. (86)

Introducing this notation, the Lagrangian of (55) can be written as:

Ls =
1

2
Tr
{

(DµΣ)†DµΣ
}
− λ

4

(
Tr
[
Σ†Σ

]
− v2

)
=
v2

4
Tr
{

(DµU)†DµU
}

+O(H/v) . (87)
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By writing Ls in this form, the existence of a global SU(2)L × SU(2)R symmetry is clear.

Σ
SU(2)L×SU(2)R−−−−−−−−−−→ gLΣg†R , gX ∈ SU(2)X , (88)

but the ground state, 〈0|Σ |0〉 = v√
2
I2 is not invariant under this transformation unless the condition

gL = gR is imposed. Transformations which fulfill this conditions are said to belong to the custodial
symmetry group SU(2)V .

Thus the Lagrangian is characterized by the chiral symmetry breaking

SU(2)L ⊗ SU(2)R → SU(2)V . (89)

Being this the Custodial Symmetry. The SU(2)L group is a local gauge symmetry, while only the
U(1)Y subgroup of SU(2)R is gauged. The SU(2)R symmetry is broken at O(g′).

The three broken generators after the chiral symmetry breaking give rise to the three massless
Goldstone bosons, which can be eliminated from L. Going to the unitary gauge, it can be seen that
the masses of the three gauge bosons, W±, Z are generated through the covariant derivatives.

This symmetry gives the relation between the masses of the W and Z bosons that we have previ-
ously seen in Section 3.2

ρ =
M2
W

M2
Z cos2 θw

=
v2[T (T + 1)− Y 2]

2v2Y 2
= 1 , (90)

where we have written the masses in terms of the eigenvalues of the operators of the involved groups
(T = 1

2 = Y ).
To finish this section, recall that, in addition to the symmetry breaking due to the covariant

derivative there are also breaking terms due to radiative corrections of massive fermions, being specially
important the top-bottom quark doublet.

4 Higgs singlet extension

4.1 The model

In this section we will describe the most simple extension of the scalar sector of the SM, in which a
real bosonic singlet, neutral under all quantum numbers of the SM gauge group, is added to the SM
Higgs doublet [14, 15].

We have the freedom of adding a real singlet, ϕ, to the Lagrangian of (55) that we have used in
our discussion about the Higgs boson. The addition of such singlet (in fact we could add as many
sclar singlets as we desire) is motivated from the relation between the W± and Z masses of Eq. (90),
or which is the same, the SM prediction MW = MZ cos θw. In general, extending the scalar sector
with different fields, φi belonging to different represenations (Ti, Yi) will yield into a different form of
ρ at tree level [14],

ρ =

∑
i v

2
i [Ti(Ti + 1)− Y 2

i ]

2
∑

i v
2
i Y

2
i

. (91)

Remember from Section 3.5 ρ = 1 for the SM. By adding an arbitrary number of singlet fields
(Yi = Ti = 0) this result won’t change, and the SM’s relation between the boson masses will also hold.

This extension with one extra singlet will be described, studying the constraints of the parameters
and comparing with the current LHC data by performing a χ2 test. We will study the possibilities or
scenarios depending on the mass of the discovered Higgs (of 125 GeV).

The Lagrangian of a model with an extra singlet is:

L = (Dµφ)†(Dµφ) +
1

2
∂µϕ∂

µϕ− V (φ, ϕ) . (92)

With the potential taking the most general renormalizable form (dimension ≤ 4):

V (φ, ϕ) = µ′2(φ†φ) + h′(φ†φ)2 + (a′ϕ+ b′ϕ2 + c′ϕ3 + d′ϕ4) + (φ†φ)(A′ϕ+B′ϕ2) . (93)
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Since the fields are not physical themselves, and to partially recover the results of the SM we can
make a redefinition of the fields, ϕ→ ϕ+ 〈ϕ〉, such that ϕ doesn’t get a vev, 〈0|ϕ |0〉 = 0. Performing
this transformation the potential takes the form:

V (φ, ϕ) =
(
µ′2 +A′〈ϕ〉+B′〈ϕ〉2

)
(φ†φ) + h′(φ†φ)2 +

(
a′ + 2b′〈ϕ〉+ 3c′〈ϕ〉2 + 4d′〈ϕ〉3

)
ϕ (94)

+
(
b′ + 3c′〈ϕ〉+ 6d′〈ϕ〉2

)
ϕ2 +

(
c′ + 4d′〈ϕ〉

)
ϕ3 + d′ϕ4

+ (φ†φ)
(

(A′ + 2B′〈ϕ〉)ϕ+B′ϕ2
)

+
(
a′〈ϕ〉+ b′〈ϕ〉2 + c′〈ϕ〉3 + d′〈ϕ〉4

)
= µ2(φ†φ) + h(φ†φ)2 + (aϕ+ bϕ2 + cϕ3 + dϕ4) + (φ†φ)(Aϕ+Bϕ2) + V ′0 .

with V ′0 = a′〈ϕ〉+ b′〈ϕ〉2 + c′〈ϕ〉3 + d′〈ϕ〉4.

As we did in the previous section, for the potential to behave correctly it has to be:

• increasing: h > 0, d > 0 and B > 0.

• bounded (to have minima): detH > 0, where H is the Hessian matrix.

To find the minima of the potential

∂V

∂|φ|
= 0→ 2µ2|φ|+ 4h|φ|3 + 2|φ|(Aϕ+Bϕ2) , (95)

∂V

∂ϕ
= 0→ a+ 2bϕ+ 3cϕ2 + 4dϕ3 + |φ|2(A+ 2Bϕ) = 0 .

Doing that, the minima of (95) can take two different forms:

1. |φ| = 0, a = 0,

2. 4h|φ|2 = −2µ2 → |φ| =
√
−µ2

2h ≡
v√
2
, a = µ2

2hA = −v2

2 A.

If we study the critical points, we have for 1:

|H| =
[
2µ2 0
0 2b

]
= 4bµ2 < 0→ maximum (96)

And for 2:

|H| =

 −4µ2 2A
√
−µ2
2h

2A
√
−µ2
2h 2b− Bµ2

h

 = 4µ2
(
− 2b+

Bµ2

h
+
A2

2h

)
> 0→ minimum (97)

where, as in the SM µ2 < 0, and in (97) we have imposed the condition |H| > 0 for the potential to
have minima. Now we are in a situation similar than the one in Section 3 and we would have:

〈0|φ |0〉 =

[
0
v√
2

]
, 〈0|ϕ |0〉 = 0 . (98)

As before, considering excitations over the ground state and in the unitary gauge, we can parametrize
the fields as:

φ(x) = ei
σi
2
θi(x) 1√

2

[
0

v +H(x)

]
unitary gauge−−−−−−−−→ 1√

2

[
0

v +H(x)

]
, (99)

ϕ(x)
unitary gauge−−−−−−−−→ ϕ(x) .
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Once this parametrization is done, we can look at the kinetic terms of the Lagrangian,

(Dµφ†)(Dµφ) + (∂µϕ)(∂µϕ) =
1

2
∂µH∂

µH + (v +H)2

(
g2

4
W †µWµ +

g2

8 cos2 θw
ZµZµ

)
+ (∂µϕ)(∂µϕ) .

(100)
And for the potential term:

V =−1

4
hv4 + V ′0︸ ︷︷ ︸
V0

+ (hvH3 +
h

4
H4)︸ ︷︷ ︸

Higgs self-interactions

+ (cϕ3 + dϕ4)︸ ︷︷ ︸
ϕ self interactions

(101)

+
1

2
M2
HH

2 +
1

2
M2
ϕϕ

2 +AvϕH︸ ︷︷ ︸
Mass terms

+Bvϕ2H +
1

2
AH2ϕ+

1

2
BH2ϕ2︸ ︷︷ ︸

H-ϕ interaction

,

with M2
H = −2µ2 and M2

ϕ = 2b+Bv2.

From the form of the potential we can see that there will be new interactions between the SM
Higgs boson and the new scalar, and self-interactions between the bosons. In addition, we can note
that we have a mixture between the quadratic terms of H and ϕ. This means the mass eigenstates of
the fields are not H and ϕ, but a mixture of them. Such mixture can be parametrized by a rotation,[

h1

h2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
H
ϕ

]
, (102)

with mixing angle θ = [0, π],

tan 2θ =
2Av

M2
H −M2

ϕ

, (103)

and

m2
h1,2 =

M2
H +M2

ϕ

2
±
|M2

H −M2
ϕ|

2

√
1 + tan2 2θ . (104)

Now h1,2 are the scalar fields with masses mh1 and mh2 , and being h1 the heavy Higgs, m2
h1
> m2

h2
.

In terms of the fields h1,2 the interaction potential takes the form:

Vint =h3
1

(
hv cos3 θ + c sin3 θ +Bv sin2 θ cos θ +

A

2
sin θ cos2 θ

)
(105)

+h4
1

(h
4

cos4 θ + d sin4 θ +
B

2
sin2 θ cos2 θ

)
+h3

2

(
− hv sin3 θ + c cos3 θ −Bv sin θ cos2 θ +

A

2
sin2 θ cos θ

)
+h4

2

(h
4

sin4 θ + d cos4 θ +
B

2
sin2 θ cos2 θ

)
+h2

1h2

(
− 3hv sin θ cos2 θ + 3c sin2 θ cos θ +Bv sin θ(2− 3 sin2 θ) +

A

2
cos θ(1− 3 sin2 θ)

)
+h1h

2
2

(
3hv sin2 θ cos θ + 3c sin θ cos2 θ +Bv cos θ(1− 3 sin2 θ) +

A

2
sin θ(3 sin2 θ − 2)

)
+h3

1h2

(
− h sin θ cos3 θ + 4d sin3 θ cos θ +

B

4
sin 4θ

)
+h1h

3
2

(
− h sin3 θ cos θ + 4d sin θ cos3 θ − B

4
sin 4θ

)
+h2

1h
2
2

(
sin2 θ cos2 θ

(3

2
h+ 6d− 3B

)
+
B

2

)
.

From where it can be seen there are self-interactions of the bosons and interaction between h1 and
h2, as we can see in Fig. 9.
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hi
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hj

hi

hi

hj

hk

Figure 9: Self interactions of h1,2 (with i = j = k) and different interactions between the two Higgs-like particle
of the model (with i = k 6= j and j = k 6= i).

h1

h2

h2

Figure 10: Decay of the heavy Higgs-like particle, h1, into two light Higgs-like particles, h2h2.

4.2 Phenomenology and global fits

Since the field ϕ is a singlet under SU(2)L ⊗ U(1)Y transformations, it does not couple to fermions
and gauge bosons and the coupling of the scalars h1,2 to those particles will only be through their
doublet component, H [14].

But there is a new ingredient within this model. Since we have made the diagonalization of the
mass matrix the Yukawa Lagrangian is slightly different,

LY = − 1√
2

(
1 +

h1 cos θ − h2 sin θ

v

)(
c2d̄d+ c2ūu+ c3ēe

)
. (106)

And, even though the masses won’t change, the interaction vertices will do, having the couplings
mf cos θ

v and
mf sin θ

v .

Depending on the parameters of the potential we will have a “suppressed” Higgs and another
“allowed”. At first sight, and taking into account that our observations seem to be compatible with
the existence of just one Higgs boson, the suppression must be important.

As a consequence, there will be a universal reduction of the couplings with respect to the SM.

κh1V ≡ gh1V V /g
SM
HV V = cos θ , κh1f ≡ yh1ff/y

SM
Hff = cos θ , (107)

κh2V ≡ gh2V V /g
SM
HV V = − sin θ , κh2f ≡ yh2ff/y

SM
Hff = − sin θ .

The branching ratios and strengths of the two Higgs-like particles will be different. The lighter
scalar will have the same decay branching ratios as the SM Higgs boson, BR(h2 → X) = BR (H →
X)SM and Γh2/Γ

SM
H = sin2 θ, while the heaviest scalar boson can also have the contribution of

h1 → h2h2 (Fig. 10) if allowed, i.e. if mh1 > 2mh2 .

Such process will have a decay width of:

Γh1→h2h2 =
|µ̃|2

8πmh1

√
1−

4m2
h2

m2
h1

, (108)

with

µ̃ = (3hv sin2 θ cos θ + 3c sin θ cos2 θ +Bv cos θ(1− 3 sin2 θ) +
A

2
sin θ(3 sin2 θ − 2) . (109)

And we have,
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Γh1 = ΓSM cos2 θ + Γh1→h2h2︸ ︷︷ ︸
if allowed

, (110)

Γh2 = ΓSM sin2 θ .

Depending on the mass of these bosons, there will be three different possibilities or scenarios. First
of all, the most simple possibility is that the 125 GeV Higgs that we have found is the light Higgs
(heavy scenario). This possibility is pretty simple since all the strengths will be the same as in the SM
but reduced by a factor of sin θ and there will not be any new process contributing such as the decay
of Fig. 10. The possibility of the found Higgs being the heavy boson, is slightly more complicated
because, in addition of the suppressing factor cos θ the new decay of h1 → h2h2 may be present.

To analyze these possibilities, we will consider the Higgs signal strengths and will perform a
phenomenological analysis based on the minimization of the χ2 function. Details on the statistical
treatment on the data, as well as the experimental data used can be found in Appendix A.

4.2.1 Heavy scenario

It is easy to see that, for the heavy scenario the ratio of the cross sections for all the channels is

σ(pp→ h2Y )

σ(pp→ HY )SM
= sin2 θ . (111)

And for the branching ratios

BR(h2 → X)

BR(H → X)SM
=

Γ(h2 → X)

Γh2

ΓH,SM
Γ(H → X)SM

=
sin2 θ

1

1

sin2 θ
= 1 . (112)

So all the Higgs signal strengths, defined as µ = σ(pp→h2Y )
σ(pp→HY )SM

BR(h2→X)
BR(H→X)SM

are the same, µ = sin2 θ.

Now, we can perform the minimization of the χ2 function, defined as the difference between the
strengths of our model and the experimental ones over the experimental uncertainty, as described in
the Appendix A, getting a best-fit value for the sin θ with a 1σ uncertainty of:

sin θ = 0.99± 0.01 , (113)

obtaining a value of the χ2/ d.o.f. of 0.62.
As it can be seen in the left panel of Fig. 11, using this result we can compare the allowed ranges

at 1σ and 2σ with the experimental values, obtaining a good agreement at this level of significance.
Due to the value of sin θ, very close to 1, the strengths obtained are almost the ones predicted by the
SM.

4.2.2 Light scenario

This case is very similar to the heavy scenario, with the difference that now an additional decay, as
described in (108) and in Fig. 10 can be present. Now, for the branching ratios:

BR(h1 → X)

BR(H → X)SM
=

Γh1→X
Γh1

ΓH,SM
ΓH→X,SM

=
cos2 θΓH,SM

cos2 θΓH,SM + Γh1→h2h2
=

1

1 +
Γh1→h2h2

cos2 θΓH,SM

. (114)

And all the cross section ratios involving the Higgs scalars are identical, σ
σSM

= cos2 θ, yielding into
identical strengths,

µ = cos2 θ × 1

1 +
Γh1→h2h2

cos2 θΓH,SM

=
cos4 θ

cos2 θ +
Γh1→h2h2

ΓH,SM

. (115)

As before, we can perform a χ2 minimization in order to get the best fit values of the parameters
we have (in this case, cos θ and Γh1→h2h2). The best-fit parameters are obtained for the case in which
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Figure 11: Left: Allowed ranges for the Higgs signal strengths obtained for the fit (113) at 1σ (blue) and 2σ
(orange), together with the experimental data of ATLAS and CMS with 1σ errors (black) for the heavy scenario.

Right: Value of the coupling constant µ̃ and X (X =
m2

h2

m2
h1

) for which the process is perturbative (blue) and for

which the decay width is of the order of magnitude O(100) GeV (orange) and O(101) GeV (green).

the decay width of h1 into h2h2 is very suppressed (and considered to be zero). In this case, we
reproduce the results of the previous section (now cos θ = 0.99±0.01), with a redefinition of the angle,
θ → θ + π

2 . If we require a contribution to the decay width of Γh1→h2h2 to be considerable, the value
of the parameter quantizing our fit, χ2/d.o.f., increases as Γh1→h2h2 while the value of cos θ that best
fits does not change.

Currently, there is no experimental evidence of a light scalar with the characteristics of h2, which
would indicate Γh1→h2h2 ≈ 0, ruling out this scenario, as the best fit values of our minimization seem
to indicate. If evidence of a particle with the features of the light boson described in this section
was found, the function χ2 would have to be modified in order to include these experimental results,
having as a consequence the modification of our fit.

Assuming the decay h1 → h2h2 exists and is of significance, the parameters of the decay width
would need to meet perturbative constraints. In the right panel of Fig. 11 it can be seen the region
where the coupling constant, µ̃, is perturbative and for which range of mass, given as the square

fraction between the Higgs masses, X =
m2
h2

m2
h1

. 12 The perturbative region is obtained comparing the

tree level vertex with the one loop correction, as explained in Appendix C. Other constraints, which
can be more restrictive, may be obtained from other methods. In this figure it also can be seen the
values of µ̃ and X that will give an hypothetical decay width of order of magnitude O(100) GeV
(orange) and O(101) GeV (green).

5 The two-Higgs doublet model

The existence of a Higgs-like boson with mass around 125 GeV is a fact supported by the last LHC
data. The SM is the most simple model that explains the existence of this particle, but nothing
forbids us from building a more complicated model, such as the one studied in this section, the two-
Higgs double model (2HDM), which will both include all the features of the SM as well as some new
ingredients of new physics, like new sources of CP violation or dark matter candidates.

In this section we will describe the basic ingredients of the model, i.e. the scalar potential and the
process of SSB, identifying the two CP-even Higgs-like particles of the model and the CP-odd particle
in the CP conserving limit. Later, we will see how the alignment in flavour space is required in order
to avoid FCNCs and the consequences of the alignment. In Section 5.5 the available LHC data will
be analyzed in the context of the model.

12Note the mass of the lightest Higgs is constrained to be mh1 ≥ 2mh2 .
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5.1 The model. Scalar potential and symmetry breaking

In this model, in addtition to the usual ingredients of the SM, a new doublet with the same quantum
numbers as the SM Higgs is added [16, 17],

φ1 =

[
φ

(+)
1

φ
(0)
1

]
, φ2 =

[
φ

(+)
2

φ
(0)
2

]
. (116)

First of all, let’s look at the ρ parameter defined in Eq. (90),

ρ =
1
2v

2
1 + 1

2v
2
2

2(1
4v

2
1 + 1

4v
2
2)

= 1 . (117)

Again, we still have the same prediction relating the mass of the W and the Z bosons of the SM. 13

The procedure to follow is the usual. We will build the most general renormalizable potential that
respect the symmetries. The minimization of this potential will give us a value for the vev of the
doublets, and considering excitations over the vacuum in a convenient gauge the phenomenology and
the interesting ingredients of the model will be studied.

Before minimizing the potential, we should take into account the general form of the vev of the
doublets:

〈0|φ1 |0〉 =
1√
2

[
0

v1e
iθ1

]
, 〈0|φ2 |0〉 =

1√
2

[
0

v2e
iθ2

]
. (118)

Since we are allowed to make an arbitrary U(1) transformation, φi → φ′i = φie
−iθ1 , one of the phases

can be eliminated,

〈0|φ1 |0〉 =
1√
2

[
0
v1

]
, 〈0|φ2 |0〉 =

1√
2

[
0

v2e
iθ2−θ1

]
=

1√
2

[
0

v2e
iε

]
. (119)

Furthermore, it is convenient to perform a SU(2) transformation in the scalar space (φ1, φ2), and work
in the so called Higgs basis (Φ1,Φ2), in which only one of the doublets acquire a vev,[

Φ1

−Φ2

]
=

1

v

[
v1 v2

v2 −v1

] [
φ1

e−iεφ2

]
=

1

v

[
v1φ1 + e−iεv2φ2

v2φ1 − e−iεv1φ2

]
, (120)

with v2 = v2
1 + v2

2

In this basis, the vev of the doublets, are:

〈0|Φ1 |0〉 =
1√
2

[
0
v

]
, 〈0|Φ2 |0〉 =

[
0
0

]
. (121)

Just one of the doublets would acquire the same vev as in the SM (Section 3), while the vev of the
second one would be zero. Following the procedure of Sections 3 and 4, we consider excitations over
the vacuum,

Φ1 =

[
G+

1√
2
(v + S1 + iG0)

]
, Φ2 =

[
H+

1√
2
(S2 + iS3)

]
. (122)

The first doublet, Φ1 looks similar to the SM-Higgs doublet and the second one is just a copy of
Φ1 with 0 vev. We can see that, in addition to the three Goldstone fields, G± and G0, there are five
physical degrees of freedom in the scalar sector: two charged fields, H±, two CP-even neutral {Si}i=1,2

and one CP-odd neutral, S3.

In the Higgs basis the potential takes the form [14],

13This relation will also hold in a generalized model in which an arbitrary number of doublets is added.
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V = µ2
1(Φ†1Φ1) + µ2

2(Φ†2Φ2) + [µ3Φ†1Φ2 + µ∗3Φ†2Φ1] (123)

+λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+
[
(λ5Φ†1Φ2 + λ6Φ†1Φ1 + λ7Φ†2Φ2)(Φ†1Φ2) + h.c.

]
.

Due to the hermiticy of the potential, the parameters µ1, µ2, λ1, λ2, λ3 and λ4 are real, so there
are a total of 14 real independent parameters. Proceeding with the minimization of the potential of
Eq. (123) with the form of the vevs of Eq. (122) we find:

∂V

∂Φ1
= 0

∂V

∂Φ2
= 0

→ µ2
1 = −λ1v

2 , µ3 = −λ6v
2

2
. (124)

And the potential, decomposed into mass, cubic and quadratic term takes the form,

V = −1

4
λ1v

4 + V2 + V3 + V4 , (125)

with

V2 = M2
H±H

+H− +
1

2

[
S1, S2, S3

]
M

S1

S2

S3

 , (126)

being M2
H± function of the parameters of the potential and the mass matrix of Si non-diagonal,

M2
H± = µ2

2 +
1

2
λ3v

2 , (127)

M =

2λ1v
2 v2λR6 −v2λI6

v2λR6 M2
H± + v2(λ42 + λR5 −v2λI5

−v2λI6 −v2λI5 M2
H± + v2

(
λ4
2 − λ

R
5

)
 . (128)

with λRi = Re(λi) and λIi = Im(λi).
This indicates us that the Goldstone bosons, G± and G0 are massless fields, while from the matrix

of Eq. (128) we can see that the neutral fields do have mass. It can also be seen that their mass
eigenstates are not Si but a mixture of them. Since the matrix M contains imaginary terms, the
resulting mass eigenstates will not have a definite CP parity.

The matrixM is diagonalized by an orthogonal rotation, R that relates the fields {Si}i=1,2,3 with
the mass eigenstates ϕ0

i = {h(x), H(x), A(x)} :

M = RT
M2

h 0 0
0 M2

H 0
0 0 M2

A

R ,
hH
A

 = R

S1

S2

S3

 . (129)

Matching the traces of (128) and (129) it can be seen:

M2
h +M2

H +M2
A = 2M2

H± + v2(2λ1 + λ4) . (130)

Before continuing let’s count the degrees of freedom of our potential. The minimization of the
potential in Eq. (124) allows us to express µ1, µ3 in terms of v, λ6. Furthermore, since we have
freedom to rephase Φ2, only the relative phases among λ5, λ6 and λ7 are relevant, being just two of
them independent. Therefore, we can parametrize the potential with 11 parameters (v, µ2, |λ1...7|,
arg(λ5λ

∗
6) and arg(λ5λ

∗
7).

In the CP conserving limit (λI5 = λI6 = λI7 = 0), the CP admixture disappears and S3 does not
mix with other neutral fields. The scalar spectrum contains a CP-odd field, A = S3, and two CP-even
fields, h and H, which are a mixture of S1 and S2,[

h
H

]
=

[
cos α̃ sin α̃
− sin α̃ cos α̃

] [
S1

S2

]
. (131)
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We choose the convention Mh ≤MH and 0 ≤ α̃ ≤ π, so that sin α̃ is positive.
In this case, the masses of the scalar fields are:

M2
h =

1

2
(Σ−∆) , M2

H =
1

2
(Σ + ∆) , M2

A = M2
H± + v2

(λ4

2
− λR5

)
, (132)

with

Σ = M2
H± + v2

(
2λ1 +

λ4

2
+ λR5

)
, (133)

∆ =

√[
M2
H± + v2(−2λ1 +

λ4

2
+ λR5 )

]2

+ 4v2(λR6 )2 ,

tan α̃ =
M2
h − 2λ1v

2

λR6 v
2

.

Finally and for completeness, let’s consider the cubic and quartic terms of the potential of Eq. (125)
in the most general case in which CP is not conserved.

V3 = vH+H−(λ3S1 + λR7 S2 − λI7S3)− 1

2
vλI7S

3
3 −

1

2
vλI7S

2
2S3 −

3

2
vλI6S

2
1S3 (134)

+ λ1vS
3
1 +

1

2
vλR7 S

3
2 +

3

2
vλR6 S

2
1S2 +

1

2
v
(

2λR5 + λ3 + λ4

)
S1S

2
2

− 1

2
v
(

2λR5 − λ3 − λ4

)
S1S

2
3 +

1

2
vλR7 S2S

2
3 − 2vλI5S1S2S3 ,

and

V4 =H+H−
(
λ2H

+H− +
λ3

2
S2

1 + λ2S
2
3 + λ2S

2
2 − λI7S1S3 + λR7 S1S2

)
(135)

+
1

4
(λ3 + λ4 + 2λR5 )(S1S2)2 +

1

4
(λ3 + λ4 − 2λR5 )(S1S3)2 +

λ2

2
(S2S3)2

− 1

2
λI6S

3
1S3 − λI5S2

1S2S3 −
λI7
2
S1S

2
2S3 −

λI7
2
S1S

3
3 +

λR6
2
S3

1S2 +
λR7
2
S1S

3
2 +

λR7
2
S1S2S

2
3

+
λ1

4
S4

1 +
λ2

4
S4

2 +
λ2

4
S4

3 .

5.2 Gauge sector

Once we have performed the symmetry breaking, interaction terms between the scalar fields, Si and
H±, the Goldstone fields G± and G0 and the gauge bosons W±µ , Zµ, Aµ will arise. These terms will

come from the covariant derivative, Dµ = ∂µ + ieQAµ + i g
cos θw

Zµ(T3 −Q sin2 θw) + ig[T+W
†
µ + T−Wµ].

In addition, we will have a term introduced to fix the gauge and cancel the quadratic mixing terms
between the gauge and the Goldstone bosons,

Lkin +
2∑
i=1

DµΦ†aD
µΦa + LGF = LV 2 + Lφ2 + LφV + Lφ2V + LφV 2 + Lφ2V 2 , (136)

with the particular choice of the gauge-fixing term Rε (ε = 1):

LGF = −1

2
(∂µA

µ)2 − 1

2
(∂µZ

µ +MZG
0)2 − (∂µW †µ + iMWG

+)(∂νW
ν − iMWG

−) . (137)

This gauge also provides the Goldstone bosons with the masses MG± = MW = gv/2 and MG0 =
MZ = MW / cos θw. Then,

LV 2 = −1

2
(∂µA

µ)2 − 1

2
(∂µZ

µ)2 +
1

2
M2
ZZµZ

µ − (∂µW †µ)(∂νW
ν) +M2

WW
†
µW

µ , (138)
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Lφ2 =
1

2
[∂µh∂

µh+ ∂µH∂
µH + ∂µA∂

µA] + ∂µH
+∂µH− (139)

+
1

2
∂µG

0∂µG0 − 1

2
M2
Z(G0)2 + ∂µG

+∂µG− −M2
WG

+G−

Lφ2V = ie[Aµ + cot(2θw)Zµ]

[
(H+

↔
∂µH

−) + (G+
↔
∂µG

−)

]
(140)

+
e

sin(2θw)
Zµ
[
(G0

↔
∂µS1) + (S3

↔
∂µS2)

]
+
g

2
Wµ†

[
(H−

↔
∂µS3)− i(H−

↔
∂µS2) + (G−

↔
∂µG

0)− i(G−
↔
∂µS1)

]
+
g

2
Wµ

[
(H+

↔
∂µS3) + i(H+

↔
∂µS2) + (G+

↔
∂µG

0) + i(G+
↔
∂µS1)

]
,

LφV 2 =
2

v
S1

[
1

2
M2
ZZµZ

µ +M2
WW

†
µW

µ

]
(141)

+ (eMWA
µ − gMZ sin2 θwZ

µ)(G+Wµ +G−W+
µ ) ,

Lφ2V 2 =
1

v2

[
1

2
M2
ZZµZ

µ +M2
WW

†
µW

µ

]
[H2 + h2 +A2 + (G0)2] (142)

+

{
e2[Aµ + cot(2θw)Zµ]2 +

g2

2
W †µW

µ

}
(G+G− +H+H−)

+
eg

2
(Aµ − tan θwZ

µ)[S1(G+Wµ +G−W †µ) + S2(H+Wµ +H−Wµ)

+ iS3(H−W †µ −H+Wµ) + iG0(G−W †µ −G+Wµ)] ,

with A
↔
∂µB ≡ A(∂µB)− (∂µA)B.

As it can be seen in Eq. (141) the couplings are identical to the ones of the SM making the
identification H ↔ S1. This means

g0
ϕiV V = Ri1gSMhV V , (143)

being VV = ZZ, WW. Which implies:

g2
hV V + g2

HV V + g2
AV V = (gSMhV V )2 . (144)

This result indicates that the coupling to weak bosons cannot be enhanced over the SM value and
must obey custodial symmetry, gϕ0

iZZ
= gϕ0

iWW .

5.3 Yukawa sector and the Aligned two-Higgs doublet model

The two doublets of our model have the same quantum numbers as the SM doublet, so the most
generic form of the Yukawa Lagrangian will be very similar to the one in Eq. (75), containing extra
terms related to the new doublet,

LY = −Q̄′L(Γ1φ1 + Γ2φ2)d′R − Q̄′L(∆1φ̃1 + ∆2φ̃2)u′R − L̄′L(Π1φ1 + Π2φ2)l′R + h.c. (145)

where, Γi, ∆i and Πi are NG ×NG complex matrices in flavour space describing the coupling. Since
we are working in the Higgs basis, it is convenient to express LY in terms of Φ1 and Φ2,

LY = −
√

2

v

{
Q̄′L(M′

dΦ1 + Y′dΦ2)d′R − Q̄′L(M′
uΦ̃1 + Y′uΦ̃2)u′R − L̄′L(M′

lΦ1 + Y′lΦ2)l′R + h.c
}
(146)

being M′
a the same non-diagonal mass matrices as in Eq. (75) of Section 3.4. As before, we can diag-

onalize these matrices by performing transformations in the fields, paying the price of introducing the
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CKM matrix, but nothing guarantees us that the matrices Ya will be diagonal. These non-diagonal
matrices will introduce dangerous FCNC interactions, which are tightly constrained phenomenolog-
ically [17]. To avoid these FCNC effects several solutions can be proposed. Firstly, one can impose
that the non-diagonal Yukawa matrices are proportional to the geometric mean of the fermion masses
∝ √mimj . This is known as Type III 2HDM, as can be seen in [18]. In others models, the scalars are
so heavy that suppress the low energy FCNC effects, leading to a phenomenologically non-relevant
2HDM.

A more elegant solution that will be explored here is the known as A2HDM, in which we require
that the Yukawa couplings Ya are aligned in flavour space with the diagonal mass matrices,

Γ2 = εde
−iεΓ1 , ∆2 = ε∗ue

iε∆1 , Π2 = εle
−iεΠ1 . (147)

With that, once we express our Lagrangian in the Φi basis we have

Γ1φ1 + Γ2φ2 =
Γ1

v

[
Φ1(v1 + εdv2) + Φ2(−v2 + εdv1)

]
, (148)

∆1φ̃1 + ∆2φ̃2 =
∆1

v

[
Φ̃1(v1 + ε∗uv2) + Φ̃2(−v2 + ε∗uv1)

]
,

Π1φ1 + Π2φ2 =
Π1

v

[
Φ1(v1 + εlv2) + Φ2(−v2 + εlv1)

]
.

From here we have

M′
d =

Γ1

v
(v1 + εdv2) , Y′d =

Γ1

v
(−v2 + εdv1) = ςdM

′
d , (149)

M′
u =

∆1

v
(v1 + ε∗uv2) , Y′u =

∆1

v
(−v2 + ε∗uv1) = ς∗uM

′
u ,

M′
l =

Π1

v
(v1 + εlv2) , Y′l =

Π1

v
(−v2 + εlv1) = ςlM

′
l ,

Thus, M′
i and Y′i will be related by the function:

ςf =
εiv1 − v2

v1 + εiv2
=

εi − tanβ

1 + εi tanβ
, (150)

where tanβ = v2
v1

.

As we did in the SM in Section 3.3 we can perform transformations in the fields to diagonalize the
mass matrices, paying the cost of introducing the CKM matrix, V. In terms of the mass eigenstates,
the Yukawa Lagrangian takes the form:

LY = −
√

2

v
H+

{
ū(x)[ςdVMdPR − ςuM†

uV PL]d(x) + ςlν̄(x)MlPRl(x)
}

(151)

−1

v

∑
ϕ0
i ,f

y
ϕ0
i

f ϕ0
i [f̄(x)MfPRf(x)] + h.c. . (152)

PL,R are the quirality projectors and y
ϕ0
i

f are the neutral couplings for the physical scalar fields, given
by:

y
ϕ0
i

d,l = Ri1 + (Ri2 + iRi3)ςd,l , y
ϕ0
i

u = Ri1 + (Ri2 − iRi3)ς∗u . (153)

The consequences of the alignment are interesting. Firstly, all scalar-fermion couplings are pro-
portional to the fermion masses, and the neutral Yukawas are diagonal in flavour. As in the SM, in
the A2HDM there are no right-handed neutrinos, so all the leptonic couplings are diagonal in flavour,
having as a consequence the lack of lepton-flavour-violating neutral couplings in all orders in pertur-
bation theory. Regarding to the flavour-changing interactions, the only possible contribution to them
is the CKM matrix in the charged sector.
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Model ςd ςu ςl
Type I cotβ cotβ cotβ
Type II − tanβ cotβ − tanβ
Type X cotβ cotβ − tanβ
Type Y − tanβ cotβ cotβ

Inert 0 0 0

Table 1: CP-conserving 2HDMs based on discrete Z2 symmetries, being tanβ ≡ v2/v1

There are only three new parameters ςf , which encode all the possible freedom in the alignment.
These couplings satisfy universality among generations, are invariant under global SU(2) transfor-
mations of scalar fields, φa → φ′a = Uabφb and since, in general, are complex numbers, their phases
introduce new sources of CP violation. The usual models with natural flavour conservation, based on
discrete symmetries, Z2, are recovered for particular real values of ςf as it can be seen in Table 1.

From the orthogonality of the rotation matrix, R we can also obtain the relations [19],

3∑
i=1

(y
ϕ0
i

f )2 = 1 ,
3∑
i=1

|yϕ
0
i

f |
2 = 1 + 2|ςf |2 ,

3∑
i=1

y
ϕ0
i

f Ri1 = 1 , (154)

3∑
i=1

y
ϕ0
i

d,lRi2 = ςd,l ,
3∑
i=1

y
ϕ0
i

u Ri2 = ς∗u ,

3∑
i=1

y
ϕ0
i

d,lRi3 = iςd,l ,

3∑
i=1

y
ϕ0
i

u Ri3 = −iς∗u .

5.4 Phenomenology and Higgs signal strengths

The A2HDM has a richer phenomenology than the SM. First of all, since the Higgs-like particles are
a mixture of the two CP-even scalars, S1,2 and the CP-odd scalar, S3, the processes involving ϕ0

i will
have contributions from both even and odd particles. In the CP-conserving limit the mixture between
CP-even and CP-odd particles disappears, so two of the Higgs-like particles will be CP-even and their
couplings to fermions and neutral bosons will be the same as in the SM, with different constant factors
as we have seen in Eq. (143) and (153). In addition, we will have new vertices corresponding to the
CP-odd Higgs boson that were not present in the SM.

In this limit, the couplings of the A2HDM with respect to the SM ones for fermions, take the form:

yhf = cos α̃+ ςf sin α̃ , yAd,l = iςd,l , (155)

yHf = − sin α̃+ ςf cos α̃ , yAu = −iςu .

And, for weak bosons, with κ
ϕ0
i
V defined as κ

ϕ0
i
V ≡ gϕ0

i V V
/gSMHV V .

κhV = cos α̃ , κHV = − sin α̃ , κAV = 0 , (156)

which means that in this limit only the CP-even Higgs-like particles, h and H, couple to weak bosons.
This implies that the decay of A into weak bosons cannot exist at tree level, and therefore it will be
very suppressed.

Having fixed the gauge as we did in Section 5.2, besides the Higgs-like particles, the only new
particles of our model are the charged scalars, H±, which couple to bosons. In this section, we will
describe these new ingredients, absent in the SM, and we will compare with the experimental data of
current colliders.

The relevant processes within the model will be described, focusing on the differences with respect
to the SM. Then, we will write the Higgs signal strengths, as described in Appendix A, and finally we
will perform a χ2 minimization, as we did in Sections 4.2.1 and 4.2.2.
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Figure 12: Higgs coupling to fermions (left) and to weak bosons (right) both in the SM and in the A2HDM.

To calculate the strengths of the relevant processes, as expressed in Section A and perform a χ2

test, let’s remind the general form of the Higgs signal strength:

µ
ϕ0
i
X =

σ(pp→ ϕ0
i )BR(ϕ0

i → X)

σ(pp→ h)SMBR(h→ X)SM
, µ

ϕ0
i
Xjj =

σ(pp→ jjϕ0
i ) BR(ϕ0

i → X)

σ(pp→ jjh)SMBR(h→ X)SM
, (157)

being X the possible final states studied, i.e, X = γγ,WW,ZZ, τ+τ−, bb.
The ratio of the A2HDM and SM branching ratios is given by:

BR(ϕ0
i → X)

BR(h→ X)SM
=

Γ(ϕ0
i → X)

Γ(ϕ0
i )

Γ(h)SM
Γ(h→ X)SM

=
1

ρ(ϕ0
i )

Γ(ϕ0
i → X)

Γ(h→ X)SM
, (158)

with

ρ(ϕ0
i ) =

Γϕ0
i

ΓSM (h)
. (159)

Assuming only one dominant production channel and taking into account that the ratios are defined
for Mϕ0

i
= MhSM we find for the general case:

µ
ϕ0
i
bb = C

ϕ0
i

gg

[
Re(y

ϕ0
i

d )2 + Im(y
ϕ0
i

d )2β−2
b

]
ρ(ϕ0

i )
−1, µ

ϕ0
i
γγ = C

ϕ0
i

gg C
ϕ0
i

γγ ρ(ϕ0
i )
−1 , (160)

µ
ϕ0
i
ττ = C

ϕ0
i

gg

[
Re(y

ϕ0
i

l )2 + Im(y
ϕ0
i

l )2β−2
τ

]
ρ(ϕ0

i )
−1, µ

ϕ0
i
γγjj = (Ri1)2C

ϕ0
i

γγ ρ(ϕ0
i )
−1 ,

µ
ϕ0
i
bbV = (Ri1)2

[
Re(y

ϕ0
i

d )2 + Im(y
ϕ0
i

d )2β−2
b

]
ρ(ϕ0

i )
−1, µ

ϕ0
i
V V = C

ϕ0
i

gg (Ri1)2ρ(ϕ0
i )
−1 ,

µ
ϕ0
i
ττV = (Ri1)2

[
Re(y

ϕ0
i

l )2 + Im(y
ϕ0
i

l )2β−2
τ

]
ρ(ϕ0

i )
−1 , µ

ϕ0
i
V V jj = (Ri1)4ρ(ϕ0

i )
−1 ,

where βf = (1− 4m2
f/M

2
ϕ0
i
)1/2.

It is important to note that the strengths containing two separated terms as µ
ϕ0
i

bb(V ) and µ
ϕ0
i

ττ(V )

are related to the CP-even scalars, S1,2, (real parts) and to the CP-odd scalar, S3, (imaginary parts),
with fermionic couplings given in the left panel Fig. 12. The factors Ri1 are due to the ratio between
the SM and the A2HDM coupling in the case of weak bosons, as it can be seen in the right panel of
Fig. 12. Detailed calculation of the decay widths and cross sections that appear in the strengths can
be seen in Appendix B.

C
ϕ0
i

gg and C
ϕ0
i

γγ are the one-loop functions, given by:

C
ϕ0
i

gg =
σ(gg → ϕ0

i )

σ(gg → h)SM
=
|
∑

q Re(y
ϕ0
i

q )F(xq)|2 + |
∑

q Im(y
ϕ0
i

q )K(xq)|2

|
∑

q F(xq)|2
(161)

and

C
ϕ0
i

γγ =
Γ(ϕ0

i → γγ)

Γ(h→ γγ)SM
=
|
∑

q Re(y
ϕ0
i

f )Nf
CQ

2
fF(xf ) + G(xw)Ri1 + Cϕ

0
i

H± |
2 + |

∑
f Im(y

ϕ0
i

f )Nf
CQ

2
fK(xf )|2

|
∑

f N
f
CQ

2
fF(xf ) + G(xw)|2

,

(162)
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Figure 13: Loops with the scalar particle, H± contributing to the process ϕ0
i → γγ.

where, again, the real and imaginary terms correspond to the CP-even and to the CP-odd particles
respectively. Nf

C and Qf are the colour number and the electric charge of the fermions, xf = 4m2
f/M

2
ϕ0
i

and xW = 4M2
W /M

2
ϕ0
i
. The term Cϕ

0
i

H± in the photon loop is a new contribution of the A2HDM, given

in Fig. 13 and which takes the form:

Cϕ
0
i

H± =
v2

2M2
H±

λϕ0
iH

+H−A(xH±) . (163)

being λϕ0
iH

+H− the cubic coupling between the Higgs-like boson ϕ0
i and the charged Higgs, which

can be related to the parameters of the potential, as it can be seen in Eq. (134). If CP is assumed to
be an exact symmetry, λAH+H− = 0.

The explicit expressions of the loop functions are:

F(x) =
x

2
[4 + (x− 1)f(x)] , G(x) = −2− 3x+

(
3

2
x− 3

4
x2

)
f(x) , (164)

A(x) = −x− x2

4
f(x) , K(x) = −x

2
f(x) ,

with

f(x) =

−4 arcsin2(1/
√
x), x ≥ 1[

ln
(

1+
√

1−x
1−
√

1−x

)
− iπ

]2
, x < 1 .

(165)

5.5 Global fits for the A2HDM in the CP-conserving limit

As it is indicated in Eq. (155) and (156) if our Lagrangian preserves the CP symmetry the CP-
even scalars h and H couple to gauge bosons with reduced couplings R11 and R21 and their Yukawa
couplings are real, while the CP-odd scalar does not couple to weak bosons and their Yukawa couplings
are purely imaginary [19].

In this section, in order to obtain values for the parameters of the theory, a χ2 minimization will
be performed in the context of the CP-conserving limit. Details about the statistics are given in
Appendix A.

First, in Sections 5.5.1 and 5.5.2 we will analyze the possibility in which the lightest scalar corre-
sponds to the observed Higgs, h, with a mass, Mh = 125 GeV, both not including and including the
charged scalar loop H± of Fig. 13. Later in Section 5.5.3 the possibility of the observed Higgs to be
the CP-odd Higgs will be analyzed. Similar analyses can be found in [19, 20].

5.5.1 Light CP-even Higgs at 125 GeV without H± loop

In our first analysis we assume that the loop of charged scalars, H±, does not contribute to the
diphoton decay, i.e, ChH± ≈ 0, which means either H± is very heavy, or the coupling is very small. In
the next section, the case in which this process is not omitted will be studied.

The minimization of the χ2 function give us the following values for the relevant parameters and
their 1σ uncertainties. Looking at the form of the χ2 function we can see that for the Yukawa couplings,
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Figure 14: Higgs signal strengths for the CP-even light Higgs without the H± loop with a positive value of yhu
(left panel) and a negative value (right panel). In blue and orange we have the results for the fit at 1σ and 2σ
respectively. In black we have the experimental data with an uncertainty of 1σ.

yhd and yhl the only information we can get from the fit is their absolute values. The minimization give
us two different sets of parameters, depending on the relative sign between yhu and cos α̃,

cos α̃ = 0.98+0.02
−0.06 , yhu = 0.98± 0.08 , |yhd | = 0.84+0.08

−0.09 , |yhl | = 0.97+0.14
−0.16 , (166)

and χ2/d.o.f = 0.47.

cos α̃ = 0.83± 0.06 , yhu = −0.83± 0.06 , |yhd | = 0.87+0.08
−0.09 , |yhl | = 1.12+0.15

−0.18 , (167)

and χ2/d.o.f = 2.96.
In the first solution, the relative sign between yhu and cos α̃ is positive, which means that the quark

loop (in which the top loop dominates) and the W± contribute with different signs, giving a destructive
interference as in the SM.14 This gives a ratio between the decay widths of ρ(h) = 0.80+0.11

−0.14 and the
strengths of the left panel of Fig. 14, from where it can be seen that all the channels are compatible
with the experimental results at 1σ.

The second, solution corresponding to yhu < 0 and cos α̃ > 0 gives a much worse fit as we can
see from the value of the χ2 / d.o.f. In this case the top-quark loop contribution and the W -boson
interfere constructively, which makes it more difficult to reproduce the γγ signal without adding new
ingredients (as the H± loops). For this fit we find ρ(h) = 0.77+0.14

−0.11. In the right panel of Fig. 14 the
signal strengths for this case can be seen, resulting in a worse agreement that for the previous fit.

In Fig. 15 the allowed regions of yhu − yhd (left) and yhu − yhl (right) are shown graphically at 86%
(1σ), 90% and 99% CL. The rest of the parameters are fixed to the central values of the fit. From
here it can be seen the degeneracy in the sign of yhd and yhl , as well as the difference in the results for
yhu > 0 and yhu < 0.

5.5.2 Light CP-even Higgs at 125 GeV with H± loop

As it has been previously mentioned, a new ingredient of the A2HDM with respect to the SM is the
presence of a charged scalar particle, H±, that couples to the scalars, Si, as well as to weak bosons

and photons, as it can be seen in Eq. (134) - (141). This introduces a modification in C
ϕ0
i

γγ .
The current and less restrictive lower bound for the H± mass is 72.5 GeV, obtained assuming a

type-I fermionic structure and allowing the decay H± →W±A→W±bb̄ as well as the fermionic decays
[21]. A model independent bound can be extracted from the masured Z width, to MH± & 39.6 GeV
at a 95% confidence level (CL) [21].

As we have seen in Eq. (162) the H± loop can interfere with the W± and fermionic loops. By the
perturbative arguments given in Appendix C we expect |ChH± | . O(101) GeV, which will be translated
into an allowed region for the values of λhH+H− and MH± .

14Note that F(xt) > 0, while G(xW ) < 0.
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Figure 15: Global fit for an even scalar of the A2HDM model in the CP-conserving limit and ignoring the
contribution of the H± loop, in the planes yhu − yhd (left) and yhu − yhl (right). The orange, gray and blue regions
represent 68%, 90% and 99% CL regions.

Including this new parameter in our fit and with the signs of yu and cos α̃ taken as in the SM we
obtain a χ2/ d.o.f. of 0.59 with:

cos α̃ = 0.98+0.02
−0.05 , ChH± = (−0.03+0.70

−0.61 ∪ 12.68+0.70
−0.67) , (168)

yhu = 0.98± 0.08 , |yhd | = 0.84+0.08
−0.09 , |yhl | = 0.97+0.14

−0.16 .

The two disjoint solutions of ChH± reverse the sign of the argument of Chγγ , so its absolute value is

the same, corresponding to a destructive interference (ChH± > 0) or to a constructive one (ChH± < 0).
In both cases the fit is better than the one of Eq. (167) and comparable to (166). The total decay
with is modified to ρ = 0.80+0.11

−0.12 similarly to the case of (166).

In Fig. 16 (left) the Higgs signal strengths of the fit are compared with the experimental ones,
at one and two σ CL, showing a good agreement with the experimental data. The allowed regions of
yhu − yhd (left) and yhu − yhl (right) are shown in Fig. 17 for a 68%, 90% and 99% CL.

In the right panel of Fig. 16 the allowed regions for the (|λhH+H− |, MH±) are shown, correspond-
ing to the two possible values fitted for ChH± at 1σ CL, together with the perturbative bounds, as
discussed in Appendix C. The solution with a larger contribution from the charged Higgs is excluded
by perturbative arguments.

5.5.3 CP-odd Higgs at 125 GeV

To finish with our analysis for the CP-conserving limit we should study the possibility of the observed
Higgs to be the CP-odd particle, A. In this case the fit gives us a worse result than in the previous
cases. This is because, as it can be seen from Eq. (141) a CP-odd boson does not couple to weak
bosons at tree level, so these decays are very suppressed, and consequently some of the Higgs signal
strengths considered at (160) will be zero. 15

Performing the χ2 minimization as in the previous sections we find χ2/d.o.f. = 11.6 with the
following values:

|yAu | = 0.84± 0.07 , |yAd | = 0.34+0.10
−0.08 , |yhl | = 0.35+0.09

−0.12 . (169)

Having such a large value for χ2/d.o.f. indicates us that we are on a more unlikely case than
previously. The study of the Higgs strengths and of the total decay width also indicate us that this
possibility is very disfavoured by the present data.

15As it can be easily seen since R13 = 0.
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Figure 16: Left: Higgs signal strengths for the CP-even light Higgs considering the loop of charged H±. In
blue and orange we have the results for the fit at 1σ and 2σ respectively. In black we have the experimental
data with an uncertainty of 1σ. Right: Allowed regions for (|λhH+H− |, MH±) plane, corresponding to the two
possible fitted values of ChH± at 1σ CL. The blue region shows the values for (|λhH+H− |, MH±) for which ChH±

is perturbative.
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Figure 17: Global fit for an even scalar of the A2HDM model in the CP-conserving limit taking into account
the contribution of the H± loop, in the planes yhu − yhd (left) and yhu − yhl (right). The orange, gray and blue
regions represent 68%, 90% and 99% CL regions.
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6 Diphoton excess

Both ATLAS and CMS collaborations have recently presented the first preliminary results obtained
at the LCH Run 2, with pp collision at a center of mass energy of

√
s = 13 TeV. An excess of diphoton

signal has been observed, corresponding to a resonance of an invariant mass around 750 GeV.

The ATLAS collaboration [22] has 3.2 fb−1 of data and claims a local significance of 3.9σ, corre-
sponding to 14 events excess, and 2.3σ of global signifance in the Large Width (LW) fit.16 This result
is compatible with the CMS data [23], which employs 2.6fb−1 of data and has observed an excess of
10 events with a local significance of 2.6σ and global significance of 1.2σ in the LW fit and 2σ in the
Narrow Width (NW) fit. In addition, the CMS collaboration presented the combined results that
include 19.7fb−1 data of the Run 1 (

√
s = 8 TeV), which exhibits an excess at the same energy and

enhances the local significance to 3.1σ [24, 25]. Not combined data is presented for ATLAS, since its
Run 1 extends only to 600 GeV.

The most simple interpretation of this, is to consider the excess as the resonant process pp→ S → γγ,
where S is a new uncolored boson with mass around 750 GeV, and given that spin-1 decays into pho-
tons are forbidden by the Landau-Yang theorem, the particle S will have either spin zero or two.
Further, if this new particle is neutral, its coupling to photons has to be mediated by a loop of charged
particles. As we will see in the following it would be necessary to add such charged particles to re-
produce the diphoton signal. Properties and quantum numbers of these new charged particles can be
constrained by studying the decays of S, as it is done in [26].

In this section we will study the significance of this signal on the scalar extensions of the SM
studied in Section 4 and Section 5 using the data of our χ2 fit and considering both the possibility of
a NW or a LW fit. To perform such analysis we will assume an invariant mass spectrum of 750 GeV,
suggesting a cross section times branching ratio for the 8 + 13 TeV CMS data of

σCMS
pp→SBRCMS

S→γγ = 4.47± 1.86 fb . (170)

obtained by the combination of 8 and 13 TeV data, properly scaled with the kinematic factors needed
to convert a cross section at 8 TeV into a effective one at 13 TeV.

For ATLAS the most significant excess is observed around 747 GeV at 13 TeV

σATLASpp→S BRATLAS
S→γγ = 10.6± 2.9 fb . (171)

Using both results we have a combined cross section times branching ratio of

σ̂pp→SB̂RS→γγ = 6.26± 3.32 fb . (172)

To see if our models can reproduce the experimental excess we will consider the quantity σpp→SBRS→γγ
together with the values of the total cross section of the LW and the NW fit.

6.1 Diphoton excess in the singlet model

As we are about to see the singlet model explained in Section 4 cannot accommodate the diphoton
excess without adding any new ingredient. In this model the γγ decay can only be suppressed by a
factor cos θ or sin θ with respect to the SM value, as we will see in the following sections. We will use
the data obtained from our global fits of Section 4.

In both cases the values of σ(pp → hi) and Γ(hi → γγ) are fixed by the values of cos θ and sin θ
obtained from the minimization of the χ2 function. In the case of the heavy scenario the total decay
width of the Higgs-like particle, h1 can also have contributions from the decay h1 → h2h2 with the
unknown parameter µ̃ as defined in Eq. (109).

16Here, we will refer both to a Large Width fit (LW) and to a Narrow fit (NW). We note, that for LW Γ ≈ 45 GeV,
while for NW Γ ≈ 0.1 GeV [26].
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Ana Peñuelas Mart́ınez TFM Curs 2015-2016

6.1.1 Heavy scenario

First of all, let’s look at the total width of the heavy Higgs, h1. Using the value for the cos θ of Section
4 we get cos θ = 0.14± 0.07 which yields into a total width of

Γh1 = 12.7 + Γh1→h2h2 ± 12.6 GeV . (173)

where Γh1→h2h2 is the possible decay of h1 into two lighter Higgs-like scalars and 12.7 ± 12.6 GeV is
the decay width of h1 into the observable channels obtained using the value for the cos θ. Here, we
have also included the kinematically forbidden decays for the 125 GeV boson, and now allowed (decay
into on-shell W± and into top quarks). The large uncertainty is due to propagation of the error of
cos θ. With these values we could reproduce the total widths of the NW and to the LW within the
errors by adding a large decay width of h1 into h2h2. 17

A more detailed analysis is needed to accept or reject the validity of the model. If we focus now
on the quantity σ(pp→ h2)BR(h2 → γγ) we find values of O(10−13) fb - O(10−14) fb, which cannot
reproduce the experimental data.

6.1.2 Light scenario

Remember from Section 4.2.2 how the best-fit value for the angle was cos θ = 0.99±0.01, exactly as in
the heavy scenario with a redefinition of the angle and with the difference that now the decay of the
other Higgs-like particle cannot have contributions from the decay to lighter scalars, i.e. h2 → h1h1, so
the analysis for this scenario will be identical as the previous one with Γh1→h2h2 = 0, and the observed
excess cannot be reproduced.

6.2 Diphoton excess in the A2HDM

In this section we will analyze the possibility of the observed resonance to be one of the scalars of the
A2HDM, in the limit in which CP is conserved. As we have seen in Section 5.5.3 the χ2 seem to exclude
the possibility of the 125 GeV observed Higgs being the CP-odd Higgs, so in this section we will not
treat this unlikely possibility and we will assume the 125 GeV Higgs is a CP-even Higgs (sections 5.5.1
and 5.5.2) with the previous results of the fit. Inside this scenario three different possibilities can be
studied. First of all, the resonance could be due to a heavy CP-even scalar, H, whose diphoton rate
can be enhanced by a charged-particle loop of H± as we will see in Section 6.2.1. Secondly, there exist
the more unlikely possibility that the responsible particle of the excess may be the odd Higgs, A. In
this context it is more difficult to reproduce the experimental data, since the loop of H± is not present
in the decay of A into photons (Section 6.2.2). Finally, if the masses of H and A are degenerated or
quasi-degenerated, the resonance could be a consequence of the decays of the two particles together,
as will be analyzed in Section 6.2.3. We will see how the excess cannot be reproduced at the same
time as all the couplings remain perturbative.

6.2.1 Heavy even Higgs

From the fit results of Eq. (168) and the relations of Eq. (154) values for R21 = − sin α̃ and yHf can
be obtained:

sin α̃ = 0.20± 0.20 , yHu = −0.20± 0.37 , |yHd | = 0.88± 0.44 , |yHl | = 0.25± 0.77 . (174)

In this case the cross sections and decay widths are very similar to the case of the light scalar,
with the difference that now the channels H → XX with XX = V V, ZZ, tt̄, hh are kinematically
allowed. Further, the decay width of H → γγ may be enhanced by the charged scalar loop, H±.

At this point, and taking the parameters of (174), only ΓH→H+H−

(
or what is the same, CHH± =

CHH±(λHH+H− ,MH±)
)

and ΓH→hh are undetermined.

17Which should be checked that is perturbative.
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Γ = 45 GeV
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Figure 18: Left: In blue values of ΓH→H+H− and ΓH→hh for which the order of magnitude for σpp→SBRS→γγ
is reproduced. In green the region for which the total width reproduces the LW hypothesis and in orange it is
shown the region in which λHhh is not perturbative. Right: Region that reproduces the desired signal (orange)
and region where the coupling λHH+H− remains perturbative (blue).

Without setting these parameters, and taking into account the other decays the total decay width is

ΓH = ΓH→γγ + ΓH→hh + 8.92+16.10
−8.92 GeV , (175)

It can be checked that there is no overlap between the values reproducing the NW fit (Γ = 0.1
GeV) and the order of magnitude of σpp→SBRS→γγ desired.

For the LW fit, with suitable values of ΓH→H+H− and ΓH→hh the experimental results of σpp→SBRS→γγ
can be reproduced. In Fig. 18 possible values of ΓH→H+H− and ΓH→hh giving the excess in the dipho-
ton signal are shown. Since the data are still limited and the values of ATLAS and CMS differ we
analyze the region in which σpp→SBRS→γγ ≈ O(101) fb (blue). The green area shows the region for
which the total width is Γ = 45 ± 5 GeV, i.e, the LW hypothesis, with an uncertainty of the 10%.
In orange the non-perturbative region for λHhh is shown, according to the discussion of Appendix C.
The values ΓH→H+H− and ΓH→hh that would meet our requirements will be contained in the overlap
of the blue region with the green one, and not overlapping with the non-perturbative region of λHhh
indicated in orange. The perturbativity of ΓH→H+H− still has to be checked.

The allowed range of ΓH→H+H− can be translated in possible values of λHH+H− and MH± . As it
can be seen in the right panel of Fig. 18, the values of λHH+H− that will reproduce the excess are
very large (λHH+H− > 1500) and comparing this with the perturbative region, it can be seen that the
regions do not overlap, which means if the diphoton excess is reproduced with these values of λHH+H−

and MH± it would not be perturbative.

The values that better approach to the experimental data remaining perturbative correspond to

λHH+H− ≈ 20 and X ≡ M2
H

M2
H±
≈ 9.9, giving a σpp→SBRS→γγ of the order O(10−3) fb. If we relax

the perturbativity constraints into ∆ < 1 (see Appendix C for details), we get λHH+H− ≈ 30 and
X ≈ 9.9, a slight improvement, doubling the value σpp→SBRS→γγ , but still very far from the order of
magnitude needed.

6.2.2 Heavy odd Higgs

In this section we will explore the possibility of the resonance observed to be the heavy odd scalar of the
A2HDM, A. There are two main characteristics of the odd boson that seem to discard this possibility.
First of all, since W± and Z bosons do not couple to A at tree level, the dominant contribution for
ΓA→V V will start at one loop (Appendix B), consequently being very suppressed. Further, as we have
previously seen, in the CP-conserving limit A does not couple to the charged bosons, H±, so in this
case any loop mediated via H+H− particles cannot enhance the photon signal.
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Ana Peñuelas Mart́ınez TFM Curs 2015-2016

To see that in detail, let’s consider the values or the coupling obtained through the relations of
Eq. (154):

R31 = 0 , yAu = (0.02± 0.27)i , yAd = (0.69± 0.91)i , yAl = (0.01± 3.57)i . (176)

The first we note is the large uncertainties in the parameters, that will later be translated into
large uncertainties in our results. The total decay width obtained, using Eq. (176) is

ΓA = 0.02+7.17
−0.02 GeV , (177)

automatically ruling out the LW fit, and if we look at σ(pp→ A)BR(A→ γγ) we obtain an order of
magnitude of O(10−8) fb - O(10−9) fb, very far from the experimental value.

6.2.3 Heavy and odd (degenerate mass)

Lastly, we will briefly analyze the unlikely possibility of the masses of H and A being degenerate. If
the two bosons have such close masses that the observed resonance is due to their combination, the
observed signal and the calculated decay width will be the sum of both contributions, i.e, Γ = ΓH + ΓA.
In principle it may look that it is a simple way to increase the diphoton signal. However, since we
have seen in 6.2.2 that the contribution of the odd particle is negligible in front of the even scalar, our
analysis will be reduced into the one of Section 6.2.1.

7 Conclusions

In this work the best theory physicist have to describe fundamental particles and their interactions
with high precision, the SM, has been introduced, showing how dynamical forces arise from the gauge
principle together with the symmetries of the model. Phenomenology of strong, electromagnetic and
weak interactions has also been studied. As an attempt to solve the fact that masses are forbidden by
gauge symmetry, the Higgs boson and the process of SSB have been introduced, showing how, with
this new ingredient fermions and weak bosons acquire mass.

Even though the great success of the SM, which has passed very precise test of the 0.1 % to
1% some features of nature, such as the sources of CP-violation, related to the matter-antimatter
asymmetry in the Universe or the experimental evidence of dark matter, are not well-explained with
only the ingredients of the SM. This, together with the freedom to extend the scalar sector of the
SM with certain conditions is the main motivation for the two models studied here: the Higgs singlet
extension and the A2HDM.

The Higgs singlet extension is the simplest modification of the scalar sector. Basically, it consists
in adding an extra real bosonic singlet, invariant under all the quantum numbers of the SM gauge
group. The addition of such new particle increases the number of parameters from 2 to 7 and the new
singlet is mixed with the SM Higgs. Due to this mixing, a rotation matrix needs to be introduced to
diagonalize the states and this, together with the fact that the singlet is invariant under SU(2)L⊗U(1)Y
transformations introduces a modification in the Yukawa Lagrangian, so that the two bosons (in the
mass eigenstates basis) are coupled to fermions with a reduced factor of sin θ / cos θ. A new interesting
ingredient of this model is the possibility of having a dark matter (DM) candidate in the decoupling
limit cos θ = 1. Given that the new scalar couple feebly to ordinary fermions via the Higgs boson it is
a good candidate for cold DM (particles that interact with themselves with considerable σ but weakly
with ordinary matter) [27] .

The other extension studied, the A2HDM, includes more interesting new ingredients. In this model,
an identical doublet as the SM’s Higgs doublet (the same quantum numbers) is added. As a result,
three scalars, Si, two CP-even and one CP-odd appear after the SSB. Since the interaction states are
not mass eigenstates an orthogonal rotation needs to be introduced to relate the fields Si with the
mass eigenstates ϕ0

i = h,H,A. In general, these bosons will be mixed, while in the CP-conserving
limit, where the imaginary parts of the couplings are set to be zero, the mixing between even and odd
bosons disappear.
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Since the new doublet has the same quantum numbers as the SM one, more terms can be added
to the Yukawa Lagrangian. The alignment in flavour space of the Yukawa couplings is an essential
property of the model, introduced to avoid FCNC, tightly constrained experimentally. The alignment
has interesting consequences, as explained in Section 5. The phenomenology of this model, is richer
than for the previous extension, since the coupling between the odd scalar and the fermions is not
present in the SM. The existence of a charged particle, H±, is also a novelty of the A2HDM which has
interesting consequences as the addition of new diagrams contributing to the decay of Higgs scalars
into photons, or in the meson mixing, not studied here.

For both models, an statistical analysis has been performed by minimizing the χ2 function con-
taining the experimental Higgs strengths of the data and the theoretical ones predicted by the models.
Depending on the value of χ2 / d.o.f. the goodness of the fit made these possibilities more or less
unlikely, finding as the most viable possibility the A2HDM with the observed Higgs a CP-even boson.

ATLAS and CMS have recently presented preliminary results of Run 2 of LHC, showing an excess
of the diphoton signal corresponding to an invariant mass around 750 GeV. Such excess has been
studied in the context of these two extensions. Adding a real singlet, as in the Higgs singlet extension,
these excess cannot be reproduced, as it is explained in Section 6.1. The A2HDM contains more new
ingredients with respect to the SM, among them the previously mentioned charged particle H± which
can enhance the diphoton signal. To reproduce the experimental signal the coupling constant of such
particle, λHH+H− , will not be perturbative applying the criterion of Appendix C. To reproduce the
experimental signal a non-perturbative cubic coupling λHH+H− would be needed. LHC data showing
the excess are still preliminary and the excess may be due just to statistical fluctuations. To confirm
or reject that, new data will be needed.

Other interesting ingredients of the A2HDM not studied here are the DM implications. The Inert
A2HDM (IDM) (discrete Z2 symmetry in the Higgs basis and therefore ςf = 0) is of special interest
for studying these DM implications and the relic abundance can be obtained. 18 In this model the
lightest scalar particle, h, is the SM Higgs boson, while the two remaining scalars are DM candidates.
Constraints and numerical analysis for this model have been studied as in [28].

In the future, and thanks to the abilities acquired while doing this work more detailed analysis of
the A2HDM could be done by studying the theoretical and experimental constraints of the model and
exploring other interesting consequences as the just mentioned DM ingredients and the sources of CP
violation.

A Phenomenological analysis with the χ2 function

In this section we will explain the procedure used to perform a global fit in the models studied. Such
procedure is based on the minimization of the χ2 function, and uses as input the experimental data
of the Higgs searches and the SM predictions.

The experimental data on the Higgs searches are usually given in terms of the so called sig-
nal strengths, the measured cross sections in units of the SM expectations. The relevant pro-
cesses to consider at the LHC for a SM Higgs are gluon fusion (gg → H), vector boson fusion
(qq′ → qq′V V → qq′H), associated production with a vector boson (qq̄′ →WH/ZH) and associated
production with a tt̄ pair (qq̄/gg → tt̄H).

18However, for the IDM to be a correct model for baryogenesis extra ingredients need to be added, because CP violation
occurs only in the CKM matrix as in the SM.
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Channel µ̂k
bb̄ 1.09± 0.91
bb̄V 0.65± 0.3

WWjj 1.38± 0.39
WW 1.44± 0.36
ZZjj 0.48± 1.16
ZZ 1.00± 0.22
τ+τ− 1.10± 0.60
τ+τ−V 1.12± 0.36
γγ 1.19± 0.27
γγjj 1.05± 0.43

Table 2: Higgs signal strengths for the channels considered. Averages from ATLAS and CMS at s =
√

7 and
s =
√

8 TeV respectively.

To perform the fit let’s consider the following signal strengths:

µ
ϕ0
i
bb ≡

σ(pp→ ϕ0
i )Br(ϕ

0
i → bb̄)

σ(pp→ H)SMBr(H → bb̄)SM
, µ

ϕ0
i
γγ ≡

σ(pp→ ϕ0
i )Br(ϕ

0
i → γγ)

σ(pp→ H)SMBr(H → γγ)SM
, (178)

µ
ϕ0
i
ττ ≡

σ(pp→ ϕ0
i )Br(ϕ

0
i → ττ)

σ(pp→ H)SMBr(H → ττ)SM
, µ

ϕ0
i
γγjj ≡

σ(pp→ jjϕ0
i )Br(ϕ

0
i → γγ)

σ(pp→ jjH)SMBr(H → γγ)SM
,

µ
ϕ0
i
bbV ≡

σ(pp→ V ϕ0
i )Br(ϕ

0
i → bb̄)

σ(pp→ V H)SMBr(H → bb̄)SM
, µ

ϕ0
i
V V ≡

σ(pp→ ϕ0
i )Br(ϕ

0
i → V V )

σ(pp→ H)SMBr(H → V V )SM
,

µ
ϕ0
i
ττV ≡

σ(pp→ V ϕ0
i )Br(ϕ

0
i → ττ)

σ(pp→ V H)SMBr(H → ττ)SM
, µ

ϕ0
i
V V jj ≡

σ(pp→ jjϕ0
i )Br(ϕ

0
i → V V )

σ(pp→ jjH)SMBr(H → V V )SM
,

where V = W,Z and j stands for jet.
The experimental values for the signal strengths combining the last results of ATLAS and CMS

are given in Table 2. [29]
For a given choice of a neutral scalar field, the χ2 function is defined as usual,

χ2(ϕ0
i ) =

∑
k

(
µ
ϕ0
i
k − µk

)2

σ2
k

, (179)

where k runs over all the significant decay/production channels and µk and σk are the measured Higgs
signal strengths and their uncertainties, as it can be seen in Table 2.

The parameters of our model are contained in µ
ϕ0
i
k . The procedure to find the best value for these

parameters consists in the minimization of the χ2 function of Eq.(179), and the uncertainties are given
by their CL, obtained by increasing the function χ2 a certain quantity depending on d.o.f. and in the
desired CL. A table with the values of ∆χ2 for the differents CL and d.o.f. can be seen in [30]. The
goodness of the fit also depends on the number of d.o.f. and this is the reason why we have always
mentioned χ2/ d.o.f. and not just χ2.

Finally, in the cases in which the errors are asymmetric but close, and to use the standard error
propagation the following formula to symmetrize the errors is used:

δX =

√
(δX+)2 + (δX−)2

2
, (180)

being δX± the one-sided errors.

B Phenomenology of the A2HDM

In this appendix, detailed calculations of the processes involving the Higgs-like scalars are given, both
for the CP-even scalars (H and h) and for the CP-odd scalar (A), being processes involving this
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last particle different than the SM ones as we have seen in the theoretical discussion of the model in
Section 5.

Since the length available is limited only some of the processes are included in this appendix.
Other processes as pp→ jjϕ0

i have also been calculated.

B.1 Decay channels

B.1.1 Decay into a fermion pair

The decay of a Higgs-like scalar, ϕ0
i into a pair of fermions can be seen in Fig. 12 (left) with the

convention of p1 as the incoming momentum of ϕ0
i and p2 and p3 the momenta the outgoing fermion

pair.

In the case of the CP-even scalar, the amplitude matrix reads:

M = ū2

(
−
mfy

ϕ0
i

f

v

)
v3 , (181)

being ui and vj the spinors of the particle with momentum pi. The squared amplitude matrix is:

∑
r2,r3

|M|2 ≡ |M|2 =
|yϕ

0
i

f |
2m2

f

v2
Tr
[
( /p2 +mf

)
( /p3 −mf )] = 4

|yϕ
0
i

f |
2m2

f

v2
(p2 · p3 −m2

f ) (182)

= 2
|yϕ

0
i

f |
2m2

f

v2
(M2

ϕ0
i
− 4m2

f ) = 2
|yϕ

0
i

f |
2m2

f

v2
M2
ϕ0
i

(
1−

4m2
f

M2
ϕ0
i

)
= 2
|yϕ

0
i

f |
2m2

f

v2
M2
ϕ0
i
β2
f ,

where we have used conservation of the 4-momentum, p2
1 = m2

ϕ0
i

= (p2 + p3)2 = 2m2
f + 2p2p3 and the

βf function is defined as:

βX ≡

√√√√1−
4m2

X

M2
ϕ0
i

. (183)

To find the decay width we integrate over the phase space:

Γeven(ϕ0
i → ff̄) =

1

2Mϕ0
i

∫
dQ2|M|2 = NC

|yϕ
0
i

f |
2m2

f

8πv2
Mϕ0

i
β3
f , (184)

NC is the number of colours, NC = 3 for quarks and NC = 1 for leptons.

For the odd scalar the results are slightly different. The matrix element takes the form:

M = ū2

(
−
mfy

ϕ0
i

f γ5

v

)
v3 . (185)

The square matrix element:

|M|2 =
|yϕ

0
i

f |
2m2

f

v2
Tr
[
( /p2 +mf

)
γ5( /p3 −mf )γ5] = 4

|yϕ
0
i

f |
2m2

f

v2
(p2 · p3 +m2

f ) (186)

= 2M2
ϕ0
i

|yϕ
0
i

f |
2m2

f

v2
.

And the decay width:

Γodd(ϕ0
i → ff̄) =

1

2Mϕ0
i

∫
dQ2|M|2 = NC

|yϕ
0
i

f |
2m2

f

8πv2
Mϕ0

i
βf . (187)

Universitat de València Page 41



Ana Peñuelas Mart́ınez TFM Curs 2015-2016

ϕ0
i (~p1)

V (~p4), r4, ν

f̄ ′(~p2), r2

f(~p3), r3

V ∗

X(vk − akγ5)

Ri1
2m2

V
v

Figure 19: Decay of the scalar ϕ0
i into a virtual and a on-shell boson.

In the decays into quarks, quantum corrections are an important contribution, and must be added.
They are included by evaluating the running quark masses on the Higgs scale and introducing the
correction as given in [31] (with nf the number of flavours):

R̃(αs, nf ) = 1+5.66667
(αs(Mϕ0

i
)

π

)
+(35.94−1.359nf )

(αs(Mϕ0
i
)

π

)2
+(164.1−25.77nf+0.259n2

f )
(αs(Mϕ0

i
)

π

)3
.

(188)

B.1.2 Decay into weak bosons

The decay of a Higgs-like scalar into weak bosons would be on-shell, if the mass of the scalar is above
the kinematic threshold or into a virtual and on-shell boson if the mass is below the threshold.19 For
the on-shell decay we would have a process as shown in Fig. 12 (right), independently of the CP-parity
of the boson, with the following amplitude:

M =
2M2

v

v
Ri1εµ,2εµ3 , (189)

and∑
r2,r3

|M|2 =
4M4

v

v2
R2
i1

(
− gµν +

p2µp2ν

M2
v

)(
− gµν +

pµ3p
ν
3

M2
v

)
=

4M4
v

v2
R2
i1

(
3 +

1

4

M4
ϕ0
i

M4
v

−
M2
ϕ0
i

M2
v

)
. (190)

Using the result of the phase space of Section B.1.1 the decay width takes the form:

Γ(ϕ0
i →W+W−) =

1

4π

M4
W

v2Mϕ0
i

R2
i1βW

(
3 +

1

4

M4
ϕ0
i

M4
W

−
M2
ϕ0
i

M2
W

)
, (191)

Γ(ϕ0
i → ZZ) =

1

8π

M4
Z

v2Mϕ0
i

R2
i1βZ

(
3 +

1

4

M4
ϕ0
i

M4
Z

−
M2
ϕ0
i

M2
Z

)
, (192)

with βX as defined in Eq.(183). The relative 1
2 factor between the two decays is due to the fact that

ZZ are identical particles.
If the mass of ϕ0

i is below the kinematic threshold, it would decay into a virtual and an on-shell
bosons, as it can be seen in Fig. 19. Here, we consider together the cases of the decay into ZZ∗ and
into WW ∗. For the first one we would have X = e

2cwsw
and vk = vf , ak = af , while for the decay into

WW ∗, X = g

2
√

2
Vud and (vk − akγ5) = (1 − γ5). Regarding to the final states, they will be f and f̄

for Z as final state and fu, f̄d for W as final state. We will do it assuming massless fermions.
For the matrix element, in the unitary gauge, with q = p1 − p4 = p2 + p3:

M = −2M2
v

v
XRi1v̄2γµ(vk − akγ5)u3

gµν − qµqν
M2
v

q2 −M2
v

εν4 . (193)

19Since MW = 80.4 GeV and MZ = 91.2 GeV, for the scalar to decay on-shell into W bosons, Mϕ0
i
> 160.8 GeV, and

to decay both into W and Z, Mϕ0
i
> 182.4 GeV,
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The square matrix element involves a trace, Tr:

|M|2 =
4M4

v

v2
R2
i1(Tr)µµ′(P )µµ

′ 1

(q2 −M2
v )2

, (194)

with

(Tr)µµ′ = Tr
[
/p2γµ(vk − akγ5) /p3(vk + akγ5)γ′µ

]
(195)

= 4(a2
k + v2

k)[p2µp3µ′ + p2µ′p3µ − gµµ′(p2p3)]− 8akvkiεµ′µαβp
α
2 p

β
3 .

After some algebra

(P )µµ
′

= −
(
gµν − qµqν

M2
v

)(
gµ
′ν′ − qµ

′
qν
′

M2
v

)(
gνν′ −

p4νp4ν′

M2
v

)
(196)

= −

[
gµµ

′ − 2
qµqµ

′

M2
v

+ q2 q
µqµ

′

M2
v

− pµ4p
µ′

4

M2
v

+ 2(p4 · q)
qµpµ

′

4

M4
v

− (p4 · q)2 q
µqµ

′

M6
v

]
.

To write it in a more compact way let’s consider:

sij = (pi + pj)
2 , (197)

with that

(Tr)µµ′(P )µµ
′

= −4M2
ϕ0
i

+ 4s24 + 8s34 +
4s24

M2
v

(s24 + s34 −M2
ϕ0
i
) . (198)

And the corresponding phase space integral, with x = M2
v

M2
ϕ0
i

and smin = 0, smax = M2
ϕ0
i

+M2
v − s24 −

M2
ϕ0
i

m2
v

s24
,∫ smax

smin

dQ3
(Tr)µµ′(P )µµ

′

(q2 −M2
v )2

=
S(x)

768π3x
, (199)

with

S(x) = 47x2 − 60x+ 15− 2

x
− 3(4x2 − 6x+ 1) ln(x)− 6(20x2 − 8x+ 1)

(4x− 1)
1
2

arccos
(3x− 1

2x3/2

)
. (200)

The decay width for Wfufd reads:

Γ(ϕ0
i →Wfufd) =

g2

2v2

M2
WR2

i1

M2
ϕ0
i

NC

∑
u,d

|Vu,d|2
∫ smax

smin

dQ3
(Tr)µµ′(P )µµ

′

(q2 −M2
W )2

(201)

=
g2

v2

3M2
W

256π3
Mϕ0

i
S(x) .

For the decay into a Zff̄ :

Γ(ϕ0
i → Zff̄) =

e2R2
i1

c2
ws

2
w

M2
z

1536v2π3
Mϕ0

i
S(x)

∑
f

(a2
f + v2

f ) , (202)

and performing the sum over vf and af (which previously was just 2),

∑
f

(v2
f + a2

f ) = NC

∑
i=u,c

(a2
i + v2

i ) +
∑
i=d,s,b

(a2
i + v2

i )

+ 3
[
(a2
l + v2

l ) + (a2
ν + v2

ν)
]

(203)

= 18
( 7

12
− 10

9
sin2 θw +

40

27
sin4 θw

)
≡ 18R(θw) .

So, the decay width takes the form

Γ(ϕ0
i → Zff̄) =

e2R2
i1

c2
ws

2
w

3M2
z

256v2π3
Mϕ0

i
S(x)R(θw) . (204)
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B.1.3 Decay ϕ0
i → γγ through a H+H− loop

In this section we will calculate the contribution of the H± loop to the decay ϕ0
i → γγ as it is seen

in Fig. 13. Of course, these two diagrams are completed with a third, identical to the first with the
crossing of the photon external lines and the full decay width of ϕ0

i → γγ is completed with diagrams
containing quarks and W± loops.

For the first diagram we have:

M1 = vλεµ2ε
ν
3

∫
ddk

(2π)d
(2kµ + p2µ)(−2kν + p3ν) (205)

1

k2 −M2
H±

1

(k − p3)2 −M2
H±

1

(k + p2)2 −M2
H±

= vλe2εµ2ε
ν
3

∫
ddk

(2π)d
4kµkν

(k2 −M2
H±)((k − p3)2 −M2

H±)((k + p2)2 −M2
H±)

,

where some terms have vanished due to transversality, εαi piα = 0.
Now we can use Feynman parametrization:

1

ABC
=

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzδ(x+ y + z − 1)

2

[Ax+By + Cz]3
. (206)

Using that:

1

(k2 −M2
H±)

(
(k − p3)2 −M2

H±

)(
(k + p2)2 −M2

H±

) =

∫ 1

0
dx

∫ 1−x

0
dy

1

(k′2 − a2)3
, (207)

with k′ = k+p2y−p3z and a2 = M2
H±−2p2p3yz. Performing the change in the variable of integration

dk → dk′ we get:

M1 = 4vλe2εµ2ε
ν
3

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddk′

(2π)2

2(k′µk
′
ν − p3µp2νyz)

(k′2 − a2)3
. (208)

We have two different integrals that can be calculated using the following expression with d = 4+2ε:

J (d, α, β, a2) =

∫
ddk′

(2π)d
(k′2)α

(k′2 − a2 + iε)β
(209)

=
i

(4π)d/2
(a2)d/2(−a2)α−β

Γ(β − α− d/2)Γ(α+ d/2)

Γ(β)Γ(d/2)
.

The first one:

Iµν =

∫
ddk′

(2π)2

2k′µk
′
ν

(k′2 − a2)3
= 2

gµν
d
J (d, 1, 3, a2) . (210)

This integral have a divergent part and another finite:

Iµν =
i

(4π)2
(a2)ε

Γ(−ε)(ε+ 2)

2
=

i

(4π)2

(
− 1

ε̂
− 1

2
− ln a2

)
, (211)

with 1
ε̂ = 1

ε + γE . For the second one we find:

I1 =

∫
ddk′

(2π)2

1

(k′2 − a2)3
= J (d, 0, 3, a2) = − i

(4π)d/2
(a2)d/2(−a2)−3 Γ(−1− ε)

Γ(3)
(a2)ε−1 = − i

(4π)2

( 1

2a2

)
.

Combining these, for M1 we find:

M1 = 4vλe2εµ2ε
ν
3

i

(4π)2

∫ 1

0
dx

∫ 1−x

0
dy

{
gµν
4

(−1

ε̂
− 1

2
− ln a2)− p3µp2νxy

1

a2

}
. (212)
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~k

g(~p2), r2,a

g(~p3), r3,b

ϕ0
i (~p1)

~k

g(~p2), r2,a

g(~p3), r3,b

ϕ0
i (~p1)

Figure 20: Production of ϕ0
i through gluon fusion.

It is easy to see that the diagram whose only difference withM1 is the external photon lines (let’s
call it M2), gives exactly the same contribution,

M1 =M2 . (213)

The other diagram can be seen in the right of Fig. 13 and has as matrix element:

M3 = −vλe2gµνε
µ
2ε
ν
3

∫
ddk

(2π)2

1

k2 −M2
H±

1

(k − p1)2 −M2
H±

. (214)

Using the following Feynman parametrization

1

AB
=

∫ 1

0
dx

∫ 1

0
dyδ(x+ y − 1)

1

[Ax+By]2
, (215)

M3 takes the form:

M3 = −vλe2εµ2ε3µ

∫ 1

0
dy

∫
ddk′

(2π)2

1

(k′2 − b2)2
, (216)

with the change k′ = k − p1y and b2 = M2
H±y(y − 1) +M2

H± . As before, we have an integral we will
calculate using (209):

I2 =

∫
ddk′

(2π)2

1

(k′2 − b2)2
= J (d, 0, 2, b2) (217)

=
i

(4π)d/2
(b2)εΓ(−ε) =

i

(4π)2
(−1

ε̂
− ln b2) .

And

M3 = −vλe2εµ2ε3µ
i

(4π)2

∫ 1

0
dy
(
− 1

ε̂
− ln b2

)
. (218)

Adding the contribution of (212), (213) and (218) we see the divergent terms cancel and the finite
parts can be integrated numerically, and squared give us:

|M|2 =
M4
ϕ0
i

2v2

α

π2

∣∣∣ v2

2M2
H±

λϕ0
iH

+H−A(xH±)
∣∣∣2 , (219)

with A(x) as defined in (164) and xH± =
4M2

H±
M2
ϕ0
i

.

B.2 Production channels

B.2.1 Gluon-gluon fusion

The production of the scalar, ϕ0
i through gluon fusion can be seen in Fig. 20

Due to the ϕ0
i qq̄ vertex, the contribution of the even and the odd scalars will be different. We will

start with the CP-even scalar, for which M1, corresponding to the left diagram, takes the form:
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M1 = −ig2
s

mq

v
εaµ,r2ε

b
µ,r3

(λa
2

)
δγ

(λb
2

)
δ′γ′

δδδ′δγ′σδσγ (220)

∫
ddk

(2π)d

Tr
[
γµ(/k + /p2 +mq)(/k − /p3 +mq)γ

ν(/k +mq)
]

D1 ·D2 ·D3

= −ig2
s

mq

v
εaµ,r2ε

b
µ,r3

(λa
2

)
δσ

(λb
2

)
δσ
Iµν

with

D1 = k2 −m2
q (221)

D2 = (k + p2)2 −m2
q

D3 = (k − p3)2 −m2
q

The colour trace is: (λa
2

)
δσ

(λb
2

)
σδ

= Tr

(
λa
2

λb
2

)
=

1

2
δab . (222)

And the spinor trace:

Tr
[
γµ(/k + /p2 +mq)(/k − /p3 +mq)γ

ν(/k +mq)
]

(223)

= 4mq(−k2gµν +m2
qg
µν − gµν(p2 · p3) + 4kµkν + 2kνpµ − 2kµpν3 + pν2p

µ
3 − p

µ
2p

ν
3) ≡ 4mqN

µν .

As we haven seen in Eq. (206) performing a Feynman parametrization, we get

1

D1 ·D2 ·D3
=

∫ 1

0
dy

∫ 1−y

0
dz

2

[(k + p2y − p3z)2 − a2]3
. (224)

With the transformation k′ = k + p2y − p3z and with a2 = m2
q − 2(p2 · p3)yz and eliminating the

vanishing terms proportional to and k and kα the tensor reads Nµν ,

Nµν → N ′µν = 4k′µk′ν − gµνk2 + pµ3p
ν
2(1− 4yz) (225)

+pµ2p
ν
3(−1− 4yz + 2y + 2z) + pµ3p

ν
3(4z2 − 2z)

+pµ2p
ν
2(4y2 − 2y) + gµν(m2

q − p2 · p3 + 2p2 · p3yz) .

The integral Iµν can be separated in two pieces:

Iµν =

∫ 1

0
dy

∫ 1−y

0
dz

∫
ddk′

(2π)d
8mqN

′µν

(k′2 − a2)3
(226)

= 8mq

∫ 1

0
dy

∫ 1−y

0
dz
{
Iµν1 + (pµ3p

ν
2(1− 4yz) + gµν(m2

q − p2 · p3 + 2p2 · p3yz))I2

}
,

where we have eliminated the vanishing terms due to transversality. The integrals can be calculated:

Iµν1 =

∫
ddk′

(2π)d
4k′µk′ν − gµνk′2

(k′2 − a2)3
=
(4

d
− 1
)
gµνJ (d, 1, 3, a2) =

i

32π2
gµν , (227)

I2 = J (d, 0, 3, a2) =
−i

32π2

1

a2
. (228)

And defining ∫ 1

0
dy

∫ 1−y

0
dz

1

−a2
(1− 4yz) ≡ C (229)

we find

Iµν =
8im

32π2
C[pµ3p

ν
2 − gµνp2 · p3] . (230)
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As we can see from Fig. 20 the second diagram will give us the same contribution so |M|2 = 4|M1|2
and

|M|2 =
1

64
g2
s

α2

v2π2
m2
q |F(xq)|2 , (231)

with F coming from the integral in (229) and defined in Eq. (164).
For the odd scalar, we will have the same diagrams, but now the transition amplitude will be

different

M1 = −ig2
s

mq

2v
εaµ,r2ε

b
µ,r3δab (232)

∫
ddk

(2π)d

Tr
[
γµ(/k + /p2 +mq)γ5(/k − /p3 +mq)γ

ν(/k +mq)
]

D1 ·D2 ·D3

= ig2
s

mq

2v
εaµ,r2ε

b
µ,r3δabI

µν .

The only difference with respect to (220) is the trace, which now takes the form:

Tr
[
γµ(/k + /p2 +mq)γ5(/k − /p3 +mq)γ

ν(/k +mq)
]

= 4imqp2αp3βε
αβµν ≡ Aµν , (233)

with the same Feynman parametrization as in the case of the even scalar:

Iµν =

∫ 1

0
dy

∫ 1−y

0
dz

2Aµν

(k2 − a2)3
. (234)

The only integral has already been calculated in Eq. (228). With that Iµν takes the form:

Iµν =
mq

4π2
p2αp3βε

αβµν

∫ 1

0
dy

∫ 1−y

0
dz

1

a2
=
mq

4π2
p2αp3βε

αβµνI3 . (235)

As before, adding the other identical diagram and performing the integral of Eq. (235) we get:

|M|2 =
g2
sα

2m2
q

64v2π2
|K(xq)|2 , (236)

with the loop function, K(x) defined in (164).
In order to calculate the cross section, the one-particle phase space is needed:∫

dQ1 ≡
∫
d3p

2E
δ(4)(Pi − Pf ) = 2πδ(s−Mϕ2) , (237)

and
σ̂(gg → ϕ0

i ) =
π

256M2
ϕ0
i

δ(s−Mϕ2)|M|2 . (238)

Finally, we have to integrate using the parton distribution functions (PDF) that can be found in
http://projects.hepforge.org/mstwpdf/. To do this, we consider two protons carrying momenta
P1 and P2 (with pgi = xiPi) and xi the momentum fractions (0 ≤ xi ≤ 1). The PDF functions have
the form g(x, µ), with µ being the scale .

s = (pg1 + pg2)2 = (x1P1 + x2P2)2 = x1x2S , (239)

δ(s−M2
ϕ0
i
) = δ(x1x2S −M2

ϕ0
i
) =

1

x1S
δ(x2 −

M2
ϕ0
i

x1S
) .

The cross section

σ(gg → ϕ0
i ) =

∫
dx1

∫
dx2g(x1, µ)g(x2, µ)σ̂(gg → ϕ0

i ) (240)

=
π

256M2
ϕ0
i
S

∫ 1

M2
ϕ0
i

S

|M|2dx1

x1
g(x1, µ)g

(M2
ϕ0
i

Sx1
, µ
)
.
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A(~p1)

B(~p2)

B(~p3)

vλ

A(~p1)

B

B

B(~p2)

B(~p2)

A(~k)

vλ

vλ

vλ

Figure 21: Diagram of the tree-level vertex (left) and one-loop correction (right) of Hhh and ϕ0
iH

+H− (A =
ϕ0
i , H and B = H±, h).

C Perturbativity constraints

In previous sections we have mentioned the perturbative constraints of processes like H → hh or
ϕ0
i → γγ. In this section the criterion used will be explained. Unlike in other references where

perturbativity constraints are taken from requiring the couplings to be smaller than a certain value,
i.e. 8π [15], here we consider the effective coupling one-loop correction to be smaller than the tree-level
vertex (at most a 50%).

We will do that for the two processes previously mentioned, since they share the same structure
(with A = ϕ0

i , H and B = H±, h). The tree-level vertex and its one-loop correction are given in
Fig. 21.

The tree level amplitude is just:

MTL = ivλ . (241)

The one-loop contribution is finite:

M1L = (ivλ)3

∫
ddk

(2π)d
i

k2 −m2
A

i

(k + p2)2 −m2
B

i

(k + p1)2 −m2
B

(242)

=
iλ3v3

(4π)2m2
B

Z
(m2

A

m2
B

)
,

with

Z(X) =

∫ 1

0
dy

∫ 1−y

0
dz[(y + z)2 +X(1− y − z − yz)]−1 . (243)

And we have used Feynman parametrization and performed the integral using (209).
Once the tree level and one-loop amplitude have been calculated, it can be seen that the effective

vertex at one-loop takes the form:

ivλeff = ivλ+
ivλ3v3

16π2m2
B

Z
(m2

A

m2
B

)
→ λeff =

[
1 +

v2λ2

16π2m2
B

(m2
A

m2
B

)]
≡ λ(1 + ∆) , (244)

with

∆ =
v2λ2

16π2m2
B

Z
(m2

A

m2
B

)
.

And we say the vertex λ is perturbative if ∆ < 0.5.
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