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Resumen de la tesis

El 4 de Julio del año 2012, las colaboraciones experimentales ATLAS y CMS del gran

acelerador de hadrones (LHC, por sus siglas en inglés) han descubierto un nuevo bosón en

la naturaleza con una masa cercana a 126 GeV, unas ciento veintiseis veces más pesado

que un átomo de hidrógeno. Esta nueva part́ıcula no fue encontrada por azar, por el

contrario, es el resultado de una larga búsqueda para entender el origen de la masa de

las part́ıculas elementales. La masa de las part́ıculas elementales está intŕınsicamente

relacionada a la interacción electrodébil, la cual, junto con la gravedad y la interacción

fuerte constituyen las fuerzas fundamentales conocidas en la Naturaleza.

La teoŕıa de la interacción electrodébil describe fenómenos tan dispares como la

desintegración radiactiva de ciertos núcleos, la estabilidad de los átomos y moléculas, las

ondas electromagnéticas, la desintegración del muón, entre una infinidad más. De alguna

manera, el tratar de entender la f́ısica fundamental subyacente en estos fenómenos nos ha

llevado hasta el descubrimiento del 4 de Julio de 2012. La interacción electrodébil está

determinada de forma elegante por el principio de la simetŕıa de gauge. Sin embargo,

el hecho de que las part́ıculas tienen masa solo se puede explicar si la simetŕıa de gauge

está rota de manera espontánea. La manera más sencilla de explicar dicha ruptura es

asumiendo la existencia de un sector escalar en la Naturaleza cuyo estado en el vaćıo

rompe la simetŕıa electrodébil, dando lugar a un bosón neutro masivo de esṕın cero y tres

bosones de Goldstone que proveen masa a los bosones W±, Z. El modelo estándar de la

interacción electrodébil es la teoŕıa cient́ıfica que se ha probado experimentalmente con

mayor precisión. Sin embargo, a pesar de la gran cantidad de mediciones experimentales

que comprueban la teoŕıa, no se hab́ıa podido encontrar dicho bosón neutro de esṕın cero.
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El bosón recién descubierto en el LHC, podŕıa ser entonces la primera evidencia directa

que tenemos del mecanismo que causa la ruptura de la simetŕıa de gauge electrodébil y,

por ende, del origen de la masa de las part́ıculas elementales.

En esta tesis se analiza la posibilidad de que el bosón recién descubierto pertenezca

a un sector escalar extendido conocido como modelo de dos dobletes de Higgs, teniendo

en cuenta experimentos en la frontera de intensidad (factoŕıas de mesones B) y de enerǵıa

(LHC). Hay varias razones para estudiar la fenomenoloǵıa de sectores escalares extendidos.

Por un lado, ningún principio fundamental de la teoŕıa electrodébil explica la ruptura

espontánea de la simetŕıa de gauge electrodébil, uno más bien tiene que asumir que este

fenómeno ocurre. Muchos modelos o teoŕıas que tratan de explicar el rompimiento de

la simetŕıa electrodébil involucran sectores escalares más complejos que el del modelo

estándar. Sectores escalares extendidos son una interesante posibilidad también dado

que pueden proporcionar: nuevas fuentes de violación de CP, necesarias para entender

la asimetŕıa entre la materia y la antimateria en el Universo; candidatos para explicar la

materia oscura en el Universo, entre otras.
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Chapter 1
Introduction

Particle physics as a branch of physics is interested in a very simple question: What are

the elementary building blocks of matter and how these interact? The word “atom” was

coined by the Greek philosopher Democritus around the year 465BC and literally means

“uncuttable” or “indivisible”. Currently, we know that the atoms which form all the basis

of Chemistry (Hydrogen, Helium, Oxygen, . . .) are not elementary or fundamental but are

composed of smaller constituents. Our present understanding of the elementary particles

that build up the matter around us and the fundamental interactions in Nature is encoded

in what we know as the Standard Model of elementary particle physics, see figure 1.1.

Gravity is not included in this framework and in the rest of this manuscript we will not

discuss effects related to this force. It is however worth stressing that gravitational effects

have in general no impact at the energy scales and experiments we will be interested.

Apart from Gravity, we know of the electromagnetic interaction which unifies electric and

magnetic forces, the weak interaction which is behind the radioactive decay of certain

nuclei, and, the strong force responsible for the formation of hadrons like the proton

and the neutron. The electromagnetic and weak forces are nowadays seen as different

manifestations of the electroweak interaction, see figure 1.2. The different elementary

particles can be classified according to their spin as fermions (spin 1/2) and bosons (spin

0 or 1). Forces associated with a symmetry of the Lagrangian are mediated by the

exchange of spin one bosons (γ, W±, Z, g).
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Figure 1.1: Interactions among the elementary particles discovered in Nature so far are well

described by the Standard Model of elementary particle physics. The particles are divided in this

table as spin 1/2 fermions (leptons and quarks) and spin 1 bosons (force carriers). We now have

strong evidence that the spin 0 Higgs boson has been discovered, having a mass around 126 GeV.

One of the most mysterious aspects of the Standard Model is that the gauge symmetry

which describes particle interactions with such great success cannot explain elementary

particle masses, in other words, the vacuum state breaks the electroweak gauge symmetry.

By enlarging the particle content of the theory to include a SU(2)L doublet complex

scalar, one can account for the breaking of the electroweak symmetry if the vacuum

expectation value of the scalar field is non-vanishing. This can be regarded as a minimal

and simple way to account for the breaking of the electroweak gauge symmetry. It is

however unsatisfactory from the point of view that it really does not explain why the

electroweak symmetry is broken, one can say that it just parametrizes the phenomenon.

In any case, this hypothesis leads to a very clear and testable prediction: the existence

of a spin zero boson in Nature whose properties are completely specified once its mass

is known. The mass of such particle is a free parameter of the theory and searches for
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such particle were carried over the years covering a large mass range, having no clue

where could it lie. On July 4 of 2012, the ATLAS and CMS collaborations at the Large

Hadron Collider (LHC) have discovered a new boson in Nature with characteristics so far

in remarkable agreement with those predicted by the Standard Model. Even though the

data are still in early stages and experimental uncertainties on many measurements of

the properties of this boson are large, it seems that the simple Standard Model picture

of electroweak symmetry breaking is on the right path. The discovery of such boson is

a milestone in our understanding of Nature, a new era in particle physics has started

with the objective of achieving a better understanding of the phenomenon of electroweak

symmetry breaking.

Figure 1.2: The known fundamental interactions in Nature. The electromagnetic and weak

interactions are understood nowadays as manifestations of the same force, “the electroweak in-

teraction”. Figure taken from www.particleadventure.org.

Our hope is that by understanding at a deeper level the mechanism of electroweak

symmetry breaking we will also obtain answers to many of the remaining big questions of

particle physics as: Why are there 3 generations of fermions and why their masses are so

hierarchical? What is the origin of the Baryon Asymmetry of the Universe? What forms

the observed Dark Matter content of the Universe? Is there some unknown dynamics

behind the Strong CP-problem? Many extensions of the electroweak sector of the Stan-
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dard Model addressing these questions often lead one to consider richer scalar sectors that

involve several Higgs bosons. Searching for additional scalar bosons in Nature is there-

fore one of the main tasks of the particle physics community in the following years. In

this thesis we perform a phenomenological analysis of a simple extension of the Standard

Model in which the scalar sector contains two complex scalar doublets instead of just one.

The thesis is divided as follows: In chapter 2 we discuss the basic features of the

Standard Model of electroweak interactions. In chapter 3 we present the two-Higgs-

doublet model. The different papers constituting the bulk of the thesis are introduced

in chapter 4 and are presented afterwards in separate chapters 5, 6, 7 and 8. General

conclusions are given in chapter 9.



Chapter 2
The standard model of electroweak

interactions

2.1 The gauge symmetry principle

Our modern understanding of the fundamental interactions in Nature, with the exception

of Gravity, is based on the gauge symmetry principle. The simplest example of a gauge

theory that we know in Nature is that of quantum electrodynamics. Consider a free Dirac

field ψe. The Lagrangian for a free Dirac fermion is given by

L = ψ̄e(iγ
µ∂µ −me)ψe . (2.1)

Here ψ̄e is the conjugate field. This Lagrangian posses an invariance under a global phase

transformation of the fermion fields

ψe → ψ′e = eiQθψe , ψ̄e → ψ̄′e = e−iQθψ̄e . (2.2)

This just reflects the fact that absolute phases are not observable in Quantum Mechanics.

The parameter Q is going to be later identified with the electric charge while θ is an

arbitrary real number. The principle of gauge invariance promotes the invariance of the

Lagrangian under phase transformations of the fermions fields to a local symmetry, that

is, the parameter θ is allowed to vary in every point of space θ → θ(x). The most general

gauge invariant Lagrangian that can be built from operators of dimension d ≤ 4 is given
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in this case by

L = −1

4
FµνF

µν + ψ̄e(iγ
µDµ −me)ψe , (2.3)

where we have introduced the covariant derivative Dµ ≡ (∂µ+ieQAµ),1 the vector field Aµ,

and, the field strength tensor Fµν ≡ ∂µAν − ∂νAµ. The vector field Aµ transforms under

a gauge transformation as Aµ → Aµ − (1/e)∂µθ and is introduced so that the electron

kinetic term is gauge invariant. Note that a mass term for the field Aµ is forbidden by

the gauge symmetry. By using the equations of motion one arrives to

∂µF
µν = eQ(ψ̄eγ

νψe) , (2.4)

which are precisely the Maxwell equations describing the dynamics of a point-like particle

with charge eQ in the presence of an electromagnetic field.

The standard model of electroweak interactions due to Weinberg, Salam and Glashow

[1–3] is a renormalizable quantum field theory based on the principles of unitarity, causal-

ity, locality, Lorentz invariance and local gauge invariance under SU(2)L⊗U(1)Y . Strong

interactions are described by the non-abelian gauge group SU(3)C and together with the

electroweak sector form the standard model (SM) of elementary particle physics. Gauge

interactions are mediated by bosons also known as gauge bosons, just like the photon in

the previous example of quantum electrodynamics. The gauge bosons associated with the

electroweak gauge symmetry SU(2)L ⊗ U(1)Y are the photon together with the W± and

Z bosons. In this sense, the electroweak theory unifies the electromagnetic interactions

and the weak interactions. The strong force described by the non-abelian gauge group

SU(3)C on the other hand is mediated by bosons called gluons.

The matter content of the theory can be classified according to its transformation

properties under the gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y and the Lorentz group. All

the fermion fields are represented by Weyl fields of definite chirality,

1We have written Q in terms of the electric charge “e”.
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LL(1, 2,−1/2) =

(
νL

lL

)
, lR(1, 1,−1),

QL(3, 2,+1/6) =

(
uL

dL

)
, uR(3, 1,+2/3), dR(3, 1,−1/3) .

(2.5)

There are three known families of fermions with the same quantum numbers and dif-

ferent masses, we say that each type of fermion comes in three flavours. These are (u, c, t)

and (d, s, b) for the up and down quarks respectively, and (e, µ, τ) and their corresponding

neutrino flavours for the leptons. A pedagogical introduction to the formulation of the

SM as a gauge theory can be found in ref. [4].

2.2 The Brout-Englert-Higgs mechanism

The principle of gauge invariance forbids mass terms for the elementary particles so that

the EW gauge symmetry must be spontaneously broken in Nature. This is achieved in

the SM through the Brout-Englert-Higgs mechanism [5, 6]. A complex SU(2)L-doublet

Φ(1, 2,+1/2) transforming as a singlet under Lorentz transformations is introduced into

the theory. The electroweak symmetry then gets spontaneously broken to the electro-

magnetic U(1)em group due to a non-vanishing vacuum expectation value of the scalar

doublet. Lectures about the phenomenon of spontaneous symmetry breaking of a global

symmetry and how the situation changes in the presence of a local gauge symmetry can

be found in refs. [7–9].

The complex scalar doublet Φ can be parametrized in terms of four real fields ϕi(x)

(i = 1, 2, 3) and H(x) as

Φ(x) =

[
Φ+

Φ0

]
= exp

{
i

v
~σ · ~ϕ(x)

}
1√
2

[
0

v +H(x)

]
, (2.6)

where ~σ = (σ1, σ2, σ3) denote the usual Pauli matrices. The most general renormalizable

scalar Lagrangian can be written as

LΦ = (DµΦ)†DµΦ− λ
(
|Φ|2 − v2

2

)2

+
λ

4
v4 . (2.7)
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Here 〈0|Φ0|0〉 = v/
√

2 is the vacuum expectation value (vev) for the neutral component

of Φ, which is responsible for the electroweak symmetry breaking (EWSB). The covariant

derivative acting on the scalar field is given by2

DµΦ =
[
∂µ + ig

σi
2
W µ
i + ig′yΦB

µ
]

Φ , yΦ = QΦ − T3 =
1

2
. (2.8)

In the unitary gauge, ~ϕ(x) = ~0, one can expand the kinetic term as

(DµΦ)†(DµΦ)→ 1

2
∂µH∂

µH + (v +H)2

{
g2

4
W †
µW

µ +
g2

8 cos2 θW
ZµZ

µ

}
, (2.9)

where v = (
√

2GF )−1/2 ' 246 GeV fixes the value of the W± and Z masses through the

relation

MW = cos θWMZ =
1

2
vg . (2.10)

Of the original four real degrees of freedom contained in Φ, three have become the longitu-

dinal polarization components of the W±, Z bosons while the remaining degree of freedom

is the physical scalar field H(x). The would-be Goldstone bosons ~ϕ correspond to exci-

tations along the bottom of the scalar potential while the physical scalar corresponds to

radial excitations, see figure 2.1. The photon remain massless since it is associated with

the unbroken gauge symmetry U(1)em. The classical value of the Higgs mass is given by

M2
H = 2v2λ . (2.11)

Tree level self-interactions of the Higgs boson H are determined uniquely in terms of the

vev and the quartic coupling λ.

The Higgs boson plays a very important role in the SM regarding the ultraviolet

behaviour (UV) of the theory [11, 12]. Consider the scattering of longitudinally po-

larized gauge bosons in the SM at high center of mass energies, W+
L (p1)W−

L (p2) →
W+
L (k1)W−

L (k2). The diagrams contributing to this process at tree-level in the SM are

shown in figure 2.2. Diagrams (a-c) involve pure gauge couplings while diagrams (d-e)

involve the coupling of the Higgs boson with the longitudinal component of the massive

vector boson W±. In the center of mass frame of the incoming W+
L (p1)W−

L (p2) bosons,

2See ref. [4] for details about the conventions used here.
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Figure 2.1: The SM scalar potential. The Goldstone boson ~ϕ and Higgs field (H) parametrize

fluctuations of the scalar field along the directions shown by the arrows. Figure taken from

ref. [10].

Figure 2.2: Diagrams contributing to W+W− scattering at tree-level in the SM.

we can express the longitudinal polarization vectors of the incoming bosons (at leading

order in MW/E) as

εµL(p1) =
pµ1
MW

− 2MW

s
pµ2 , εµL(p2) =

pµ2
MW

− 2MW

s
pµ1 . (2.12)

The longitudinal polarization vectors for the outgoing vector bosons are given by similar

expressions. Here we define the Mandelstam variables as usual s = (p1 +p2)2 = (k1 +k2)2,

u = (p1−k2)2 and t = 4M2
W −s−u. Assuming that s�M2

H ,M
2
W one gets that diagrams
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(a), (b) and (c) contribute to the amplitude as

iMgauge = iMγ+Z
t + iMγ+Z

s + iM4 ' −
ig2

4M2
W

u . (2.13)

Here we have neglected sub-leading terms which do not grow with the energy. Weak

interactions cannot remain perturbative up to very high energies in the absence of the

Higgs boson or else unitarity would be violated [11, 12]. The Higgs mediated diagrams

(d) and (e) give rise to

iMHiggs ' ig2

4M2
W

u , (2.14)

so that the Higgs boson has the role of curing the bad high-energy behavior of the total

amplitude for W+
LW

−
L scattering, one obtains up to O(MW/E) corrections that

iMHiggs + iMgauge ' 0 . (2.15)

2.3 The flavour structure of the standard model

Gauge interactions corresponding to unbroken symmetries do not distinguish between the

different fermion families. All the flavour dynamics in the SM, i.e. interactions that

distinguish between different flavours, is then generated by the electroweak sector. In the

SM electroweak theory, fermions also acquire their masses from their interaction with the

Higgs field after EWSB. In the case of neutrinos, however, it is possible that the Brout-

Englert-Higgs mechanism is not entirely responsible for the generation of their observed

masses. The most general renormalizable Lagrangian containing the interactions of the

Higgs field with SM fermions (without right-handed neutrinos) is given by

LY = −
3∑

j,k=1

{(
ū′j, d̄′j

)
L

[
c

(d)
jk Φ d′kR + c

(u)
jk Φ̃u′kR

]
+
(
ν̄ ′j, l̄′j

)
L
c

(l)
jk Φ l′kR

}
+ h.c., (2.16)

where the parameters c
(f)
j,k (f = u, d, l) are arbitrary complex numbers and Φ̃ = iσ2Φ∗.

The fermionic fields have been expressed as three-dimensional vectors in flavour space and

carry a prime as an upper index to emphasize that these are not physical fields at this
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point. One is free to perform unitary transformations of the fermion fields under which

the Lagrangian remains invariant [13]. After EWSB, the Yukawa Lagrangian LY can

be diagonalized giving rise to fermion masses and fermionic interactions for the physical

scalar H,

LY = −
(

1 +
H

v

){
d̄Md d+ ūMu u+ l̄ Ml l

}
. (2.17)

Here

Mu = diag(mu,mc,mt) ,

Md = diag(md,ms,mb) ,

Ml = diag(me,mµ,mτ ) . (2.18)

In the fermion mass basis, the charged weak current is not diagonal and can be written

as

LCC = − g

2
√

2

{
W †
µ

[∑
ij

ūi γ
µ(1− γ5)Vij dj +

∑
l

ν̄l γ
µ(1− γ5) l

]
+ h.c.

}
, (2.19)

where V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [14,15],

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (2.20)

The CKM matrix is unitary V V † = V †V = 1 [13] and its elements have to be determined

experimentally. The following parametrization of the CKM matrix is used by the Particle

Data Group (PDG) [16]

V =


c12 c13 s12 c13 s13 e−iδ13

−s12 c23 − c12 s23 s13 eiδ13 c12 c23 − s12 s23 s13 eiδ13 s23 c13

s12 s23 − c12 c23 s13 eiδ13 −c12 s23 − s12 c23 s13 eiδ13 c23 c13

 . (2.21)

Here cij = cos θij, sij = sin θij (i, j = 1, 2, 3). By an appropriate redefinition of the quark

fields, one can restrict the real angles θ12, θ23 and θ13 to lie in the first quadrant so that
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λ A ρ̄ η̄

CKMfitter 0.22543+0.00059
−0.00095 0.812+0.015

−0.022 0.145± 0.027 0.343± 0.015

UTfit 0.22535± 0.00065 0.827± 0.013 0.132± 0.021 0.350± 0.014

Table 2.1: CKMfitter [18–20] and UTfit [21,22] results for the CKM parameters in the Wolfen-

stein parametrization from a global fit of the SM. We have used (ρ̄, η̄) = (1− λ2/2)(ρ, η).

cij ≥ 0 and sij ≥ 0. The CP-violating phase δ13 lies in the range 0 ≤ δ13 ≤ 2π. Another

useful parametrization of the CKM matrix is due to Wolfenstein [17],

V =


1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 + O
(
λ4
)
, (2.22)

which exploits the strong hierarchy between the CKM matrix elements and performs a

perturbative expansion in terms of λ ≡ s12 ' 0.22. Both parametrizations are related by

the following relations:

s12 = λ = |Vus|/
√
|Vud|2 + |Vus|2 ,

s23 = Aλ2 = λ|Vcb/Vus| ,
s13e

iδ = Aλ(ρ+ iη) = V ∗ub . (2.23)

The current values for the Wolfenstein parameters, as obtained by a global fit to flavour

observables within the SM by the CKMfitter [18–20] and UTfit [21,22] groups, are given

in table 2.1.

The unitarity of the CKM matrix implies the following identities∑
i

Vij V
∗
il = δjl ,

∑
j

Vij V
∗
kj = δik , (2.24)

which can be represented as triangles in the complex plane. The area of these triangles

is independent of the phase conventions for the fermion fields, it is equal to half of the

Jarlskog invariant [23], J , defined by

Im
[
VijV

∗
ikVlkV

∗
lj

]
= J

3∑
mn=1

εilmεjkn . (2.25)
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Figure 2.3: State-of-the-Art constraints on the (ρ̄, η̄) plane from the CKMfitter [18–20].

The Jarlskog invariant is explicitly given by

J = c12 c23 c
2
13 s12 s23 s13 sin δ13 ' A2λ6η < 10−4 , (2.26)

and it measures the strength of CP violation in the SM [23]. The unitarity relations in

eq. (2.24) give rise to the identities

V ∗udVus + V ∗cdVcs + V ∗tdVts = 0 ,

V ∗usVub + V ∗csVcb + V ∗tsVtb = 0 ,

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0 . (2.27)

The first two of these relations describe triangles for which one side is much shorter than

the others. The relations between the sides of the triangle described by the first and second

lines are λ : λ : λ5 and λ4 : λ2 : λ2 respectively. The last identity in eq. (2.27) describes

a triangle with all sides of a similar size ∼ λ3. Normalizing the last line of eq. (2.27) by
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V ∗cbVcd one arrives to a triangle with sides of length {1, |VudV ∗ub/(VcdV ∗cb)|, |VtdV ∗tb/(VcdV ∗cb)|}
and with internal angles {α, β, γ} given by:

α ≡ −arg

(
Vtd V

∗
tb

VudV ∗ub

)
, β ≡ −arg

(
Vcd V

∗
cb

VtdV ∗tb

)
, γ ≡ −arg

(
Vud V

∗
ub

VcdV ∗cb

)
. (2.28)

It is common to display the determination of the CKM matrix elements from experimental

data in the (ρ̄, η̄) plane as shown in figure 2.3, where (ρ̄, η̄) = (1− λ2/2)(ρ, η).

2.4 The discovery of a new boson

Despite the remarkable success of the SM model of EW interactions, the Brout-Englert-

Higgs (BEH) mechanism of EWSB predicted a neutral scalar boson which had not been

observed experimentally. The properties of the Higgs boson are completely specified once

its mass is known but in the SM the Higgs mass is a free parameter. The Large Hadron

Collider (LHC) was built with the purpose of discovering the Higgs boson, or alternatively,

the mechanism responsible for restoring unitarity in WW scattering.

At the LHC, the dominant Higgs production mechanisms involve the Higgs coupling

with massive gauge bosons or with the top quark. Gluon fusion (pp → H) which occurs

at the loop level due to intermediate heavy quarks has the largest cross section, followed

by vector boson fusion (pp → qqH), Higgs-strahlung (pp → V H), and top-quark fusion

(pp → tt̄H), see figure 2.4. The decay modes of the Higgs on the other hand depend

considerably on the Higgs boson mass. For a light Higgs boson the decay width is domi-

nated by the Higgs decaying into a bb̄ pair, though many other decay modes have relevant

branching fractions also. A heavy Higgs on the other hand would decay dominantly into

massive gauge bosons as shown in figure 2.5.

The LEP experiment was able to exclude the SM Higgs boson up to ∼ 114 GeV. It

took only a small amount of time for the LHC to rule out the SM Higgs up to masses

of ∼ 600 GeV [25], leaving only a very small window around 125 GeV where a light SM

Higgs could still be hiding. These were very exciting times, the possibility of a light Higgs

boson within the SM was very close to be excluded once and for all after many years of

experimental efforts. Things however were going to change drastically.

On the 4th of July 2012, the ATLAS and CMS collaborations at the LHC announced

the discovery of a new boson with mass close to 126 GeV which properties so far compat-
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Figure 2.4: Feynman diagrams contributing to the dominant Higgs production modes at the

LHC.

ible with those of the SM Higgs boson [26, 27]. The masses of the new boson measured

by ATLAS (125.5 ± 0.2 +0.5
−0.6 GeV) [28] and CMS (125.7 ± 0.3 ± 0.3 GeV) [27] are well

compatible with each other and agree nicely with fits to electroweak precision data, see

figure 2.6. For such value of the Higgs mass the quartic scalar coupling is determined to

be λ ' 0.13 and weak interactions among all particles in the SM are perturbative up to

very high energy [11,12].

A first insight into the properties of the new boson can be obtained from the Higgs

signal strengths measured by the ATLAS and CMS collaborations in different channels.

Higgs signal strengths are defined as Higgs cross sections normalized by the SM prediction

µF =
σ(pp→ H → F )

σ(pp→ H → F )SM

. (2.29)

The most accessible final states at the LHC for a 126 GeV Higgs are γγ, W+W−∗, ZZ∗,

b̄b and τ+τ−. Measurements of the Higgs signal strengths by the ATLAS and CMS

collaborations in different channels are shown in figure 2.7 and are well compatible with

a SM Higgs. It is also important to note that the sensitivity is still very low in many

channels and sizable deviations from the SM predictions are still possible in principle.

To get an idea of how SM-like the discovered new boson is, lets consider a simple fit
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Figure 2.5: Left: Production cross section for the Higgs boson at the LHC in the dominant

modes as a function of the Higgs mass. Right: Branching fractions for the Higgs boson as a

function of the Higgs mass. See ref. [24] for details.

of the Higgs couplings to current data. We assume that the Higgs couplings scale with

respect with the SM as (κHF = gHFF̄/g
SM
HFF̄

)

κHV = a , κHf = c . (2.30)

Here a and c are real parameters to be determined from experimental data; V = W,Z

while f denotes any fermion. The SM corresponds to (a, c) = (1, 1) by definition. The

relevant production cross-sections and partial decay widths will scale as functions of a and

c, for example Γ(H → b̄b) = c2Γ(H → b̄b)SM at leading order. By fitting the Higgs signal

strengths to the experimental measurements one can then extract the free parameters. A

fit of current experimental data done by J. Ellis and T. You gives [31]

a = 1.03± 0.06 , c = 0.84± 0.15 . (2.31)

Fits of Higgs data performed by other groups obtain similar values. This results suggest

that the observed boson is remarkably close to what we expected from the Brout-Englert-

Higgs mechanism of electroweak symmetry breaking in the SM.
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Figure 2.7: Measurement of Higgs signal strengths in several channels by the ATLAS [30] (left)

and CMS [27] (right) collaborations. The vertical line at µ ≡ σ/σSM = 1 corresponds to a SM

Higgs boson.
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Chapter 3
The two-Higgs-doublet model

3.1 Introduction

Extensions of the SM scalar sector have been extensively studied in the past [1,2]. From

the theoretical point of view, there are many motivations to enlarge the scalar sector of

the standard model electroweak sector. Solutions to the hierarchy problem like super-

symmetry [3], explaining the Dark Matter in the Universe [4, 5], theories of spontaneous

CP-violation [6], the strong CP problem [7, 8], the baryon asymmetry of the Universe

(BAU) and electroweak Baryogenesis [9–16]; often require extending the scalar sector of

the SM. Having observed a neutral boson around 126 GeV with properties so far com-

patible with the SM Higgs, one of the main tasks in particle physics will be to address

whether this particle pertains to a richer scalar sector.

Of all the types of scalar multiplets that can be part of the electroweak symmetry

breaking sector, scalar singlets and doublets under SU(2)L are particularly interesting be-

cause they do not spoil the relation MW = cos θWMZ at the classical level [1, 13]. While

adding additional scalar singlets to the SM scalar sector does not introduce modifications

in the flavour structure of the theory (scalar singlets do not couple to fermions due to

gauge invariance), adding additional doublets gives rise to a completely different flavour

structure. We are interested in this thesis in the two-Higgs-doublet model (2HDM), a min-

imal extension of the SM scalar sector with an additional scalar doublet. In section 3.2

we describe the Lagrangian of the 2HDM. In section 3.3 we explain the phenomenologi-

cal complications that arise due to tree-level flavour-changing neutral currents (FCNCs)
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present in the model and discuss different ways to suppress these dangerous terms. In sec-

tion 3.4 we provide a brief description of the different constraints that have to be imposed

on the scalar potential in order to have a viable model.

3.2 The two-Higgs-doublet model Lagrangian

The scalar sector of the two-Higgs-doublet model contains two complex scalar doublets

φa(x) (a = 1, 2) under SU(2)L with hypercharge Y = 1/2,

φa =

[
ϕ+
a

ϕ
(0)
a

]
. (3.1)

The corresponding charged conjugated fields φ̃a = iσ2φ
∗
a are also SU(2)L doublets with

hypercharge Y = −1/2. In general, both scalar doublets can acquire vacuum expec-

tation values that break spontaneously the electroweak gauge symmetry, 〈0|φTa (x)|0〉 =
1√
2
(0, vae

iθa), while preserving invariance under U(1)em. Through an appropriate U(1)Y
transformation we can enforce θ1 = 0 without loss of generality, only the relative phase

θ ≡ θ2−θ1 is observable. The 2HDM is then described by the most general renormalizable

and gauge invariant Lagrangian that can be built with the same gauge symmetry than in

the SM,

L2HDM = Lscalar + Lgauge−kinetic + LGF + LY . (3.2)

The scalar part of the Lagrangian can be written as

Lscalar =
2∑

a=1

caa(D
µφa)

†(Dµφa) +
[
c12(Dµφ1)†(Dµφ2) + h.c.

]
− V (φ1, φ2) . (3.3)

Here c11 and c22 are arbitrary real parameters while c12 can be complex. The covariant

derivative associated with the SU(2)L × U(1)Y gauge symmetry is the same than in the

SM and is given by

Dµ = ∂µ + ieQAµ + i
g

cos θW
Zµ(T3 −Q sin2 θW ) + ig

[
T+W

†
µ + T−Wµ

]
. (3.4)

The weak mixing angle θW is defined through the relation g sin θW = g′ cos θW = e and

the operators T± = 1√
2
(T1 ± i T2) and T3 can be expressed in terms of the Pauli matrices
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by Ti =
σi
2

. The hermitian scalar potential V contains all possible quadratic and quartic

couplings among the scalar doublets compatible with the electroweak gauge symmetry.

The scalar Lagrangian retains its form (is invariant) after an arbitrary non-singular

complex transformation in the scalar space, φa → φ′a = Tabφb, where the complex matrix

Tab is parametrized by eight real parameters [17–20]. Four degrees of freedom in Tab can

be used to bring the scalar sector into canonical form (c11 = c22 = 1 and c12 = 0).1

The most general redefinition of the scalar fields, which leaves invariant the form of the

canonical kinetic term, corresponds then to a global U(2) transformation, φa → φ′a =

Uabφb, parametrized by four real parameters [17]. A U(2) transformation in the scalar

space is nothing more than a change of basis. Any physical prediction within the general

2HDM should be independent of the chosen scalar basis, in the same way than physical

predictions within the SM are independent of weak-basis transformations of the fermions

fields.

Working in a scalar basis in which only one of the scalar doublets acquires a vev

is particularly useful, one can always arrive to such basis from a generic one (φ1, φ2) by

means of a U(2) transformation(
Φ1

−Φ2

)
≡
[

cos β sin β

sin β − cos β

] (
φ1

e−iθφ2

)
, (3.5)

with tan β = v2/v1, 〈Φ0
1〉 = 1√

2

√
v2

1 + v2
2) and 〈Φ0

2〉 = 0. The basis (Φ1,Φ2) is known

as the Higgs basis and is closely related to physical quantities (invariants under basis

transformations) [17–20]. The Higgs basis however is not unique, an overall rephasing

transformation Φ2 → eiχΦ2 does not alter the fact that 〈Φ0
2〉 = 0.

3.2.1 The scalar potential

In general one can parametrize the scalar doublets in the Higgs basis as

Φ1 =

[
G+

1√
2

(v + S1 + iG0)

]
, Φ2 =

[
H+

1√
2

(S2 + iS3)

]
, (3.6)

1When a theory contains several fields with the same quantum numbers one can always write the

kinetic part of the Lagrangian in the canonical form as shown in refs. [21,22] within the context of lepton

flavour violating µ to e transitions.
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with v =
√
v2

1 + v2
2. The fields {G0, S1, S2, S3} are hermitian Klein-Gordon fields, while

G+ and H+ are complex Klein-Gordon fields. In the Higgs basis the Goldstone bosons

G0,± and the physical charged scalar H± appear explicitly. The scalar potential in the

Higgs basis takes the form

V = µ1 Φ†1Φ1 + µ2 Φ†2Φ2 +
[
µ3 Φ†1Φ2 + µ∗3 Φ†2Φ1

]
+ λ1

(
Φ†1Φ1

)2

+ λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[(
λ5 Φ†1Φ2 + λ6 Φ†1Φ1 + λ7 Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

]
. (3.7)

The Hermiticity of the potential requires all parameters to be real except µ3, λ5, λ6 and

λ7. The tree-level potential stationary conditions read

∂V (Φ1,Φ2)

∂Φ†i

∣∣∣∣∣
〈Φ0

1〉=v/
√

2

= 0 , for i = 1, 2. (3.8)

These conditions give rise to the following relations among the scalar potential parameters

µ1 = −λ1v
2 , µ3 = −1

2
λ6v

2 . (3.9)

Note that µ1 can be used to fix the value of the vev from the first of these relations.

After imposing the potential stationary conditions in the Higgs basis, there are twelve

free real parameters in the scalar potential {µ1, µ2, λ1, . . . , λ7}. Since the Higgs basis is

not unique, only the relative phases of the complex parameters {λ5, λ6, λ7} are physical,

leaving a total of eleven physical degrees of freedom [23].

The scalar potential can be decomposed into a quadratic term plus cubic and quartic

interactions

V = −1

4
λ1 v

4 + V2 + V3 + V4 . (3.10)

The mass terms take the form

V2 = M2
H± H

+H− +
1

2
(S1, S2, S3) M

 S1

S2

S3


= M2

H± H
+H− +

1

2
M2

h h
2 +

1

2
M2

H H
2 +

1

2
M2

AA
2 , (3.11)
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where the charged Higgs mass is given by

M2
H± = µ2 +

1

2
λ3 v

2 . (3.12)

The neutral scalar mass matrix M reads

M =

 2λ1v
2 v2 λR

6 −v2 λI
6

v2 λR
6 M2

H± + v2
(
λ4
2

+ λR
5

)
−v2 λI

5

−v2 λI
6 −v2 λI

5 M2
H± + v2

(
λ4
2
− λR

5

)
 , (3.13)

where λR
i ≡ Re(λi) and λI

i ≡ Im(λi). The physical states ϕ0
i = {h,H,A} are obtained by

means of an orthogonal transformation ϕ0
i = RijSj that diagonalizes the mass matrixM.

Assuming that the CP-violating terms in the scalar potential are very small, the mixing

matrix can be written conveniently as h

H

A

 =

 cos α̃ sin α̃ ε13

− sin α̃ cos α̃ ε23

ε31 ε32 1


 S1

S2

S3

 . (3.14)

At first order in the CP-violating terms λI
5,6, the elements εij are found to be

ε13 =
v2(

M̄2
A − M̄2

h

) (sin α̃ λI
5 + cos α̃ λI

6

)
,

ε23 =
v2(

M̄2
A − M̄2

H

) (cos α̃ λI
5 − sin α̃ λI

6

)
,

ε31 = − 1

2v2

(
αA3 λ

I
5 + 2αA2 λ

I
6

)
,

ε32 = − 1

2v2

(
2αA1 λ

I
5 + αA3 λ

I
6

)
, (3.15)

where

M̄2
h =

1

2
(Σ−∆) , M̄2

H =
1

2
(Σ + ∆) , M̄2

A = M2
H± + v2

(
λ4

2
− λR

5

)
,

(3.16)

and

Σ = M2
H± + v2

(
2λ1 +

λ4

2
+ λR

5

)
, (3.17)

∆ =

√[
M2

H± + v2

(
−2λ1 +

λ4

2
+ λR

5

)]2

+ 4v4(λR
6 )2 . (3.18)
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The mixing angle α̃ is determined through

tan α̃ =
M̄2

h − 2λ1v
2

v2λR
6

. (3.19)

The physical scalar masses can be written, at leading order in the CP-violating parameters

λI
5,6, as

M2
ϕ0
i

= M̄2
ϕ0
i

+ α
ϕ0
i

1 (λI5)2 + α
ϕ0
i

2 (λI6)2 + α
ϕ0
i

3 (λI5λ
I
6) , (3.20)

where M̄ϕ0
i

are given in (3.16) and

α
ϕ0
i

1 =
v4
(
M̄2

ϕ0
i
− 2λ1v

2
)

∏
j 6=i

(
M̄2

ϕ0
j
− M̄2

ϕ0
i

) ,

α
ϕ0
i

2 =
v4
(

2λ1v
2 + M̄2

ϕ0
i
− M̄2

H − M̄2
h

)
∏

j 6=i

(
M̄2

ϕ0
j
− M̄2

ϕ0
i

) ,

α
ϕ0
i

3 =
2v6λR6∏

j 6=i

(
M̄2

ϕ0
j
− M̄2

ϕ0
i

) . (3.21)

In the CP conserving limit, λI5,6,7 = 0, the physical states ϕ0
i = {h,H,A} have definite

CP quantum numbers. The matrix R becomes block-diagonal (εij = 0) and the physical

masses reduce to Mϕ0
i

= M̄ϕ0
i
. Cubic and quartic Higgs self interactions are described in

chapter 7.

3.2.2 Scalar couplings with gauge bosons

The scalar coupling with gauge bosons are determined by the kinetic term for the scalar

fields and the gauge fixing Lagrangian. The scalar kinetic term can be decomposed

according to the number of scalar (φ) and vector (V ) fields as,

2∑
a=1

(DµΦa)
†(DµΦa) = LV 2 + Lφ2 + LφV + Lφ2V + LφV 2 + Lφ2V 2 . (3.22)

The term LV 2 is given by

LV 2 = −1

2
(∂µA

µ)2 − 1

2
(∂µZ

µ)2 +
1

2
M2

Z ZµZ
µ −

(
∂µW †

µ

)
(∂νW

ν) +M2
W W †

µW
µ , (3.23)
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withMW = gv/2 andMZ = MW/ cos θW . The vev of Φ1 is then fixed to v = (
√

2GF )−1/2 '
246 GeV in order to accommodate the gauge boson masses. It is convenient to adopt the

Feynman-’t Hooft Rξ gauge (ξ = 1) for the gauge fixing Lagrangian LGF, given by

LGF = −1

2
(∂µA

µ)2 − 1

2

(
∂µZ

µ +MZG
0
)2 −

(
∂µW †

µ + iMWG
+
) (
∂νW

ν − iMWG
−) ,
(3.24)

where the specific choice of gauge has been done to cancel exactly all terms in LφV , which

mix gauge and Goldstone bosons. The part of the Lagrangian Lφ2 takes the form

Lφ2 =
1

2
[∂µh ∂

µh+ ∂µH ∂µH + ∂µA∂
µA] + ∂µH

+∂µH−

+
1

2
∂µG

0 ∂µG0 − 1

2
M2

Z (G0)2 + ∂µG
+ ∂µG− −M2

W G+G− . (3.25)

The cubic interactions terms between the scalar and gauge bosons in LφV 2 are given by:

LφV 2 =
2

v
S1

[
1

2
M2

Z ZµZ
µ +M2

W W †
µW

µ

]
+

(
eMW Aµ − gMZ sin2 θW Zµ

) (
G+Wµ +G−W †

µ

)
. (3.26)

In the CP-conserving limit, the scaling of the lightest CP-even Higgs coupling with a

gauge boson pair is then given by

κhV = cos α̃ , κHV = − sin α̃ , κAV = 0 , (3.27)

with κ
ϕ0
i
V ≡ gϕ0

i V V
/gSM

hV V , V = W,Z. The rest of cubic and quartic interaction terms

between the scalar fields and the gauge vector bosons are discussed in chapter 7.

3.2.3 Yukawa interactions

The interactions of the Higgs fields with fermions are contained in the Yukawa Lagrangian,

which includes all renormalizable and gauge invariant interaction terms between the scalar

fields and the fermions. In the Higgs basis, the Yukawa Lagrangian is given by,

LY = −
√

2

v

{
L̄′L (M ′

` Φ1 + Π′` Φ2) `′R

+ Q̄′L (M ′
d Φ1 + Π′d Φ2) d′R + Q̄′L

(
M ′

u Φ̃1 + Π′u Φ̃2

)
u′R

}
+ h.c. , (3.28)
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where the mass M ′
f and Yukawa matrices Π′f are arbitrary complex matrices in flavour

space at this point, the primes indicate that we are in a generic weak basis. After EWSB,

the mass terms can be diagonalized as in the SM by means of a bi-unitary transformation

in flavour space, one arrives then at

LY = −
∑

ϕk,f=u,d,`

ϕk f̄ Y
ϕk
f PR f

−
√

2

v
H+

{
ū
[
V Πd PR − Π†u V PL

]
d + ν̄ Π` PR `

}
+ h.c. . (3.29)

Here V represents the CKM matrix, PL,R = (1∓ γ5)/2 are the usual chirality projectors

and

v Y ϕk
d,` = Md,`Rk1 + Πd,` (Rk2 + iRk3) ,

v Y ϕk
u = MuRk1 + Πu (Rk2 − iRk3) , (3.30)

where ϕ0
i = RijSj, Mf=u,d,l being diagonal fermion mass matrices and Πf=u,d,l remaining

arbitrary complex matrices in flavour space. Since the two matrices M ′
f and Π′f are in

general independent, it is not possible to diagonalize both of them simultaneously with

the same bi-unitary transformation. The non-diagonal matrices Πf=u,d,l lead to tree-level

flavour-changing neutral currents (FCNCs) in the Higgs sector as well as to new sources

of CP violation beyond the SM.

3.3 Avoiding large flavour-changing neutral currents

New sources of CP violation and tree-level flavour changing neutral currents are strongly

constrained by experimental data [22, 24]. If it is the case that Nature posses an scalar

sector composed of two complex Higgs doublets, the discovery of a Higgs boson around

126 GeV implies that some mechanism should be operating suppressing these phenomeno-

logically dangerous terms to acceptable levels [25, 26]. One possibility is that the 2HDM

is near the decoupling limit, leaving an SM-like Higgs at the electroweak scale while the

other scalars are very heavy and quasi-degenerate. The non-diagonal couplings of the

light Higgs boson are suppressed by the heavy mass scale in this case, see section 3.3.1.

Another possibility is that the flavour structure of the 2HDM is determined by some un-

derlying symmetry or an unknown flavour dynamics associated with an UV completion

of the model, this will be discussed in section 3.3.2.
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3.3.1 The decoupling limit of the 2HDM

In a special limit of the 2HDM, two disparate mass scales arise in the scalar sector.

The lightest CP-even Higgs boson remains around the electroweak scale while the other

scalars H,A,H± become very heavy and quasi-degenerate, this is called the large-mass

decoupling limit [27, 28]. In the Higgs basis, the large-mass decoupling limit occurs for

µ2 � v2, where µ2 is the coefficient of the quadratic Φ†2Φ2 term in the scalar potential,

while keeping perturbative quartic scalar couplings |λi/4π| . 1. The scalar masses are

given in this limit by

M2
h ' 2λ1v

2 +O
(

v4

M2
H±

)
, M2

H 'M2
A 'M2

H± = µ2 +O(v2) . (3.31)

The mixing between the two Higgs doublets approaches zero, tan α̃ ' O(v2/M2
H±), and

as a consequence, the couplings of the lightest CP-even Higgs boson with vector bosons

and fermions approach the SM values

cos α̃ = (1 + tan2 α̃)−1/2 ' 1 +O
(

v4

M4
H±

)
, Y h

f '
Mf

v
+O

(
v2

M2
H±

)
. (3.32)

In the large-mass decoupling limit of the 2HDM, dangerous contributions due to tree-level

FCNCs and new sources of CP-violation are naturally suppressed by the heavy mass scale

M2
H± ' µ2 � v2.

An SM-like CP-even Higgs can also arise when µ3, λ6 → 0; i.e., for vanishing Φ†1Φ2

and Φ†1Φ1Φ†1Φ2 terms [27]. This is known as the weak-coupling decoupling limit. For a

recent discussion see also refs. [28–32]. In this limit the scalar mass matrix M becomes

diagonal and there is no mixing between the CP-even fields. The masses of the CP-even

Higgs bosons take a simple form in this limit

M2
h ' 2λ1v

2 , M2
H 'M2

H± + v2

(
λ4

2
+ λ5

)
, (3.33)

while the masses of the CP-odd Higgs and the charged Higgs remain the same than in

the general 2HDM. Unlike for the large-mass decoupling scenario, the SM-like scalar field

S1 in this case can correspond to either the lightest CP-even Higgs h or the heaviest one

H. The two kinds of decoupling of the 2HDM are depicted in figure 3.1.
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Figure 3.1: Decoupling limits of the 2HDM, denoted as weak-coupling and large-mass decoupling

after ref. [28].

3.3.2 Yukawa alignment and natural flavour conservation

In the aligned two-Higgs doublet model (A2HDM) one assumes that due to some unknown

dynamics of flavour, probably related with an UV completion of the model, the Yukawa

matrices for each type of fermion are aligned in flavour space. Explicit models that can

lead to a low energy A2HDM structure have been discussed in refs. [33–35]. The Yukawa

alignment hypothesis [36, 37] eliminates tree-level FCNCs while allowing for new sources

of CP-violation beyond the CKM-phase at the same time. In the Higgs basis this implies

that one can write the matrices Πf in eq. (3.29) as

Πd,l = ςd,lMd,l , Πu = ς∗uMu , (3.34)

where the flavour universal alignment parameters ςf=u,d,l are arbitrary complex numbers.

Another approach that can be found in the literature, is to assume that the flavour sector

is governed by a minimal flavour violating principle which then suppresses non-diagonal

couplings by fermion masses and small elements of the CKM matrix [38–42].
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Model ςd ςu ςl

Type I cot β cot β cot β

Type II − tan β cot β − tan β

Type X cot β cot β − tan β

Type Y − tan β cot β cot β

Inert 0 0 0

Table 3.1: CP-conserving 2HDMs with natural flavour conservation.

In the CP-conserving limit of the A2HDM, the fermionic couplings of the neutral

scalar fields are then given, in units of the SM Higgs couplings, by

yhf = cos α̃ + ςf sin α̃ , yAd,l = i ςd,l ,

yHf = − sin α̃ + ςf cos α̃ , yAu = −i ςu . (3.35)

Loop corrections introduce misalignment between the Yukawa matrices at the quantum

level, giving rise to FCNCs with the following structure [37,43–45]

LFCNC =
C(µ)

4π2v3
(1 + ς∗uςd)∑

i

ϕ0
i (x)

{
(Ri2 + iRi3) (ςd − ςu)

[
d̄L V

†MuM
†
u VMd dR

]
−

− (Ri2 − iRi3) (ς∗d − ς∗u)
[
ūL VMdM

†
d V
†Mu uR

]}
+ h.c.

(3.36)

where C(µ) = C(µ0) − log (µ/µ0). However, the generated non-diagonal terms are sup-

pressed by quark masses and quark-mixing factors in such a way that the stringent bounds

from light-quark systems can be avoided. The loop generated FCNCs in eq. (3.36) vanish

exactly in special limits corresponding to the different versions of the 2HDM with natural

flavour conservation (NFC) [37,43–45], see table 3.1.

The NFC hypothesis was formulated independently in refs. [46,47] were it was noted

that if only one Higgs doublet couples to each type of fermion, the couplings of the

neutral scalars are flavour diagonal in the fermion mass basis. It is possible to arrive to

such a Yukawa structure by imposing a discrete Z2 symmetry in the Lagrangian. The Z2
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Figure 3.2: Evolution of the 2HDM Yukawa structure under the renormalization group equa-

tions (RGE) in the CP-conserving A2HDM. 2HDMs with NFC appear as stable solutions to the

RGE (the Yukawa structure remains flavour diagonal).

symmetry can be imposed in a generic scalar basis (3.1), were both doublets acquire a

vev. Defining the following charge assignments for the scalar fields φ1 → φ1 , φ2 → −φ2

and the left-handed fermion doublets QL → QL , LL → LL , four different versions of

2HDM with NFC appear according to how the right handed fermions transform:

Type I: fR → −fR (f = u, d, l).

Type II: uR → −uR, dR → dR, lR → lR.

Type X (lepton-specific): uR → −uR, dR → −dR, lR → lR.

Type Y (flipped): uR → −uR, dR → dR, lR → −lR.

Terms with an odd number of φ2 fields in the scalar potential are be forbidden in this

case by the Z2 symmetry in all of these models. For the type II model, for example, the

Yukawa Lagrangian in a generic scalar basis takes the form

LY = −Q̄′L ∆′2 φ̃2 u
′
R − Q̄′L Γ′1 φ1 d

′
R − L̄′L Π′1 φ1 `

′
R + h.c. (3.37)
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Notice that each type of fermion couples only with one Higgs doublet and as a result there

are no tree-level FCNCs.

The Z2 symmetry can also be imposed in the Higgs basis so that all SM fields and Φ1

are even under this symmetry while Φ2 → −Φ2, this is the Inert 2HDM. Terms with an

odd number of Φ2 fields in the scalar potential are forbidden in this case (µ3 = λ6,7 = 0),

therefore there is no mixing between the CP-even neutral Higgs bosons h and H.

3.4 Constraints on the scalar potential

The 2HDM posses a large freedom in the scalar sector, coming from the many free pa-

rameters of the scalar potential. There are certain theoretical restrictions on the scalar

potential that have to be imposed in order to obtain a viable model. In general one is

interested in the 2HDM as a weakly coupled theory so that one needs to impose pertur-

bativity and perturbative unitarity bounds. One needs to ensure also that the vacuum of

the theory is not unstable. Oblique corrections to gauge boson two-point functions will

restrict the mass-splitting between the physical scalars of the theory. Furthermore, LHC

data for the 126 GeV boson put direct constraints on the structure of the scalar sector.

Lets describe briefly these constraints:

Vacuum stability: For the vacuum configuration to be stable, the Higgs potential must

be positive in all field space directions for asymptotically large values of the fields [48–

52]. Following ref. [52] and references therein we parametrize the Higgs doublets as

(we work in the Higgs basis)

Φ1 = |Φ1|Φ̂1 , Φ2 = |Φ2|Φ̂2 . (3.38)

Here |Φ1| represents the norm of Φi and Φ̂i is a unit spinor. Due to SU(2)L invariance

only four combinations of fields are relevant,

Φ†1Φ1 = |Φ1|2 , Φ†2Φ2 = |Φ2|2 , Φ†2Φ1 = |Φ2||Φ1|Φ̂†2 ·Φ̂1 , Φ†1Φ2 = [Φ†2Φ1]∗ .

(3.39)

We parametrize the norms of the Higgs fields and the product Φ̂†2 · Φ̂1 as

|Φ1| = r cos γ , |Φ2| = r sin γ , Φ̂†2 · Φ̂1 =
Φ†2Φ1

|Φ1||Φ2|
= ρ eiθ . (3.40)
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Here γ ∈ [0, π/2], r ≥ 0, ρ ∈ [0, 1] and θ ∈ [0, 2π). The scalar potential in eq. (3.7)

can then be decomposed as

V = r2 V2 + r4 V4 , (3.41)

where we have factored out the common factor r. The quartic part of the potential

V4 is given by

V4 = λ1 cos4 γ + λ2 sin4 γ + λ3 cos2 γ sin2 γ + λ4 ρ
2 cos2 γ sin2 γ

+ 2λ5 ρ
2 cos(2θ) cos2 γ sin2 γ + 2λ6 ρ cos θ cos3 γ sin γ + 2λ7 ρ cos θ cos γ sin3 γ .

(3.42)

For the stability condition to be satisfied we require that the quartic part must

be positive V4 > 0 for all allowed values of {γ, ρ, θ}. Some special points give

particularly simple conditions

V4(γ = 0) = λ1 , V4(γ = π/2) = λ2 , (3.43)

so that our first two stability conditions are

λ1 > 0 , λ2 > 0 . (3.44)

Another point is ρ = 0 for which

V4(ρ = 0) = λ1 cos4 γ + λ2 sin4 γ + λ3 cos2 γ sin2 γ . (3.45)

This implies that

λ3 > −
(

λ1

tan2 γ
+ λ2 tan2 γ

)
. (3.46)

The right-hand side takes its minimum value at tan2 γ =
√
λ1/λ2 so that our third

stability condition arises

λ3 > −2
√
λ1λ2 . (3.47)

Similarly, setting θ = π/2 and ρ = 1 we get an additional condition

λ3 + λ4 − λ5 > −2
√
λ1λ2 . (3.48)
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We can get another necessary condition by considering ρ = 1, cos θ = ±1 and

γ = π/4, giving

2|λ6 + λ7| < λ1 + λ2 + λ3 + λ4 + 2λ5 . (3.49)

In summary, necessary conditions for the stability of the scalar potential are given

in eqs. (3.44), (3.47), (3.48) and (3.49). Sufficient conditions for the stability of the

CP-conserving 2HDM potential have been derived in refs. [53, 54] but these do not

take a simple form.

Perturbativity: A usual requirement on the quartic coefficients of the scalar potential

is that these are small |λi| . O(1), to avoid that the Higgs sector becomes strongly

coupled and perturbation theory is no longer valid. Though the exact upper bound

imposed on |λi| is somewhat arbitrary, we attach to 4π being a common choice in

the literature,

|λi| ≤ 4π , (3.50)

for i = 1, . . . , 7.

Perturbative unitarity: Arguments about the perturbative unitarity in WLWL →
WLWL elastic scattering within the SM as derived in ref. [11, 12], can also be ex-

tended to the 2HDM. The scalar-scalar scattering matrix at high energies contains

only s-wave amplitudes which are described by the quartic part of the Higgs poten-

tial, tree-level unitarity constraints put an upper bound on the eigenvalues of the

scattering matrix. The full scattering matrix SY,σ in the 2HDM have been worked

out in refs. [55–59], see for example eqs. (7a)-(7d) of ref. [58]. The perturbative

unitarity bound on the eigenvalues Λj of the matrices 8π SY,σ read

|Λj| <
1

8π
. (3.51)

Analytical expressions for the Λj in terms of the quartic-couplings λj can be found

when a Z2 symmetry is imposed in the Lagrangian [58].

Oblique Parameters: The S, T and U parameters, introduced in refs. [60, 61], are

ultraviolet-finite combinations of radiative corrections to gauge bosons two-point

functions also known as oblique corrections. The oblique parameters are expressed
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in terms of the transverse part of the gauge boson two-point functions as

ᾱ T ≡ Πnew
WW (0)

M2
W

− Πnew
ZZ (0)

M2
Z

,

ᾱ

4s̄2
Z c̄

2
Z

S ≡ Πnew
ZZ (M2

Z)− Πnew
ZZ (0)

M2
Z

−
(
c̄2
W − s̄2

W

c̄W s̄W

)
Πnew
Zγ (M2

Z)

M2
Z

− Πnew
γγ (M2

Z)

M2
Z

,

ᾱ

4s̄2
W c̄

2
Z

(S + U) ≡ Πnew
WW (M2

W )− Πnew
WW (0)

M2
W

− c̄W
s̄W

Πnew
Zγ (MW )

M2
W

− Πnew
γγ (MW )

M2
W

. (3.52)

Here s̄W ≡ sin θW (MZ), c̄W ≡ cos θW (MZ), and ᾱ ≡ ḡ2s̄2
Z/(4π) are defined in the MS

scheme and are evaluated at MZ . The Πnew
VaVb

denote the new physics contributions to

the one-loop Va− Vb vacuum polarization functions. The new physics contributions

are defined relative to the SM with a particular choice for the Higgs mass, so that

S = T = U = 0 corresponds to the SM with the reference Higgs mass. The

2HDM contributions to the oblique parameters S, T and U have been calculated

in refs. [62]. Constraints from the oblique parameters bound the mass splitting

between the physical Higgs bosons, which then translate into constraints on the

scalar potential parameters [63].

A 126 GeV SM-like Higgs boson: The fact that we have discovered a Higgs boson

around 126 GeV with a coupling to massive vector bosons that is well compatible

with the SM prediction puts strong constraints on the 2HDM scalar sector. To ac-

commodate the 126 GeV boson data within the 2HDM, at least one of the neutral

bosons of the model should have a mass around 126 GeV. A pure CP-odd Higgs is

excluded as the 126 GeV boson since it does not couple to massive vector bosons at

tree-level, it is possible though that the 126 GeV Higgs contains some CP-odd ad-

mixture. Neglecting the exotic possibility of quasi-degenerate Higgs bosons around

126 GeV, we therefore know that the 126 GeV state must me mostly CP-even. The

simplest way to accommodate the data is then is to assume a CP-conserving scalar

sector where the Higgs-like boson corresponds to one of the CP-even states, h or

H. To obtain a Higgs coupling to vector bosons similar in magnitude to the SM,

the scalar sector is pushed towards one of the decoupling limits: weak-coupling or

large-mass. If one assumes that the lightest CP-even state h is the 126 GeV boson
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then both types of decoupling limits are possible. If on the other hand one assumes

that the 126 GeV state corresponds to the heavy CP-even Higgs H, then only the

weak-coupling decoupling limit is possible and all the scalars lie at the electroweak

scale.
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Chapter 4
Preliminaries and motivations

This thesis consists of a phenomenological analysis of the two-Higgs-doublet model in

three different areas. One part of the work focuses on the possibility to observe indirectly

the effects of a charged Higgs boson in low-energy flavour experiments involving B and

D meson decays. Semileptonic and leptonic meson decays which are mediated by the

charged weak current at tree-level can also receive contributions from a charged scalar at

the same level. If there is a light charged scalar which couples to fermions, it would give

rise to modifications of the decay rates and angular correlations for this kind of meson

decays.

Another part of the thesis, focuses on a phenomenological analysis of possible Higgs

mediated lepton flavour violating (LFV) transitions among charged leptons. In the general

2HDM, unsuppressed FCNCs can appear both in the quark and lepton sectors. Flavour

changing couplings of the Higgs boson with quarks are currently strongly constrained

while there is still room for sizable LFV Higgs couplings with the heaviest leptons. We

explore the complementarity between low energy flavour experiments and searches at the

LHC to probe possible LFV effects associated with the Higgs sector.

The third part of this thesis discusses the constraints that can be extracted on the

2HDM parameter space from LHC and Tevatron data for the 126 GeV boson, consider-

ing also the most relevant constraints from low energy flavour experiments, electroweak

precision data and searches for additional scalars at colliders.

The calculations/programming in the different works have been done by me and my

collaborators in an independent manner and sometimes using different strategies. The
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main idea behind paper II was borne from discussions with Vincenzo Cirigliano and

Emilie Passemar during a short research stay I did on the Theory Division of Los Alamos

National Laboratory. I have not carried out the determination of the hadronic form factors

via dispersive methods for paper II, this was done by Emilie Passemar. I however carried a

comparison of the results found by E. Passemar for the form factors with previous results

in the literature, finding a reasonably good agreement. In the following subsections I will

describe in more detail the motivations behind the different works that form this thesis.

4.1 Paper I

One of the distinctive features of the 2HDM is the appearance of a charged Higgs boson

in the particle spectrum. A charged Higgs can induce a violation of lepton flavour univer-

sality (LFU) in semileptonic and leptonic meson decays where it enters at the same level

than the SM contribution, see figure 4.1. Decays of the B or D(s) meson into a final state

with a τ lepton are particularly sensitive to charged scalar contributions in models where

the couplings of such particle are proportional to fermion masses. The BaBar collabo-

ration has reported an excess in b → cτντ exclusive semileptonic transitions [1, 2] which

could be pointing to such scenario, see figure 4.2. The measured quantity by BaBar is a

ratio between the B → D(∗)τν decay mode and that with light leptons in the final state.

R(D) ≡ Br(B̄ → Dτ−ν̄τ )

Br(B̄ → D`−ν̄`)

BaBar
= 0.440± 0.058± 0.042

avg
= 0.438± 0.056 ,

R(D∗) ≡ Br(B̄ → D∗τ−ν̄τ )

Br(B̄ → D∗`−ν̄`)

BaBar
= 0.332± 0.024± 0.018

avg
= 0.354± 0.026 ,

(4.1)

which are larger than the corresponding SM prediction for these quantities [3–6]. By

taking this ratio, some important sources of uncertainty as |Vcb| cancel allowing to make

a more precise theory prediction. The main source of uncertainty in the theoretical

prediction comes then from our ability to estimate the relevant hadronic from factors in

all the kinematical regime. Our determination of the form factors relies on Heavy Quark

Effective Theory [7–9] , Lattice QCD [10–12] and experimental data for B → D(∗)µν [13].
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Figure 4.1: Semileptonic and leptonic B meson decays mediated by the weak charged current

at tree-level. Left: diagram contributing to B → D(∗)τν decays. Right: Diagram contributing to

B− → τ−ν decay.

A charged Higgs contributing to B → D(∗)τν decays is also expected to enter in

leptonic B− → τ−ν̄τ decays as well as in D(s) leptonic decays. The SM prediction

(0.733 + 0.121
− 0.073) × 10−4 [14] (taking the modulus of the CKM matrix element |Vub| from

a global CKM fit) is well compatible with the current experimental average Br(B− →
τ−ν̄τ ) = (1.15± 0.23)× 10−4, the same occurs for leptonic D(s) decays. We are interested

then in trying to explain an excess on B → D(∗)τν decays while at the same having SM-

like rates for the leptonic B and D(s) decays within the framework of 2HDMs. We will

show how using the hypothesis of Yukawa alignment one is able to derive generic conclu-

sions about the possibility to explain such excess as due to charged Higgs contributions.

We also explore different observables that can be built based on the rich kinematical struc-

ture of the three-body decays B → D(∗)τν. Some of these observables are particularly

sensitive to charged scalar contributions and their measurement could provide a powerful

way to discriminate among the different NP candidates for such excess in the future.
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Figure 4.2: Excess observed by the Babar collaboration in the measurement of R(D) and

R(D∗) [1, 2]. The white cross denotes the mean value observed experimentally while the black

cross corresponds to the SM prediction.

4.2 Paper II

It has been pointed out recently that flavour constraints still allow for large decay rates

of the 126 GeV Higgs into H → τ` (with ` = e, µ) [15, 16]. Branching ratios for H → τ`

as large as ten percent are in principle allowed by the constraints coming from radiative

τ → `γ and leptonic τ → 3` decays [15, 16]. It is important to note however that these

results were known well before the Higgs discovery, see for example refs. [17, 18]. The

main motivation to carry out this analysis was to study the role of LFV semileptonic

decays (τ → `ππ, τ → `η(′)) to constrain possible LFV Higgs couplings of the 126 GeV

Higgs, which was not being discussed in the literature. The main obstacle or problem we

encountered in this analysis was that previous treatments of the relevant hadronic matrix

elements in the literature were far from adequate.

Previous treatments about Higgs mediated τ → `ππ decays were only taking into

account the hadronic matrix element for 〈ππ|muūu+mdd̄d|0〉 within leading order chiral

perturbation theory (LO-ChPT), see for example refs. [19,20]. A description of τ → `ππ

decays within the language of effective field theory was also done recently in ref. [21]
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considering also LO-ChPT predictions for the hadronic matrix elements. This treatment

of the hadronic matrix elements has two serious problems. First, Higgs interactions with

hadronic systems at low energy are expected to be dominated by the effective Higgs-

gluon interaction as was realized many years ago in ref. [22], the coupling of the Higgs

with strange quarks is also expected to provide important contributions as is well known

from studies of µ to e conversion in nuclei [23,24]. The other important point is that for

τ → `ππ decays the momentum transfer to the pion pair can be as large as ∼ 1 GeV, it is

well known that ChPT is only valid at energies below the ρ mass. Recently, it was shown

in ref. [25] that a proper treatment of the scalar form factors in τ → `ππ decays lead to

significant modifications of the decay rate and thus on the bounds extracted.

In the late eighties and nineties, physicists were looking for a SM Higgs boson with

a mass around 1 GeV, see ref. [26] for a review. One of the theoretical challenges at

that time was to calculate the decay rate H → ππ which was expected to be one of

the dominant decay channels for such low mass Higgs, together with H → µ+µ−. A

full calculation of the H → ππ decay rate was obtained in ref. [27]. The use of chiral

perturbation theory together with dispersive methods allowed a robust determination of

the relevant hadronic matrix elements [27],

〈πi(p)πk(p′)|θµµ|0〉 = θπ(s) δik ,

〈πi(p)πk(p′)|muūu+mdd̄d|0〉 = Γπ(s) δik ,

〈πi(p)πk(p′)|mss̄s|0〉 = ∆π(s) δik . (4.2)

Here we have expressed the matrix element of the gluonic operator Ga
µνG

µν
a via the trace

anomaly relation of the energy momentum tensor

θµµ = −9
αs
8π

Ga
µνG

µν
a +

∑
q=u,d,s

mq q̄q . (4.3)

In the case of the on-shell Higgs decay, the invariant mass of the pion pair is given by

s = M2
H while for τ → `ππ decays we have

4m2
π ≤ s ≤ (mτ −m`)

2 , s = (pπ+ + pπ−)2 . (4.4)

For this project, the required form factors in eq. (4.2) were determined by Emilie Passemar

following the methods developed in ref. [27] and using the latest experimental data. I
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verified that the form factors obtained by E. Passemar were in good agreement with the

results of ref. [27]. It is instructive to review the determination of the relevant form

factors within ChPT as we will discuss later the impact of a proper determination of

the form factors. The leading order chiral Lagrangian in the formulation of Gasser and

Leutwyler [28,29] can be written in terms of the following building blocks

• uµ = i{u†(∂µ − irµ)u− u(∂µ − ilµ)u†}

• χ± = u†χu† ± uχ†u
where

χ = 2B(s+ ip),

φ =

(
π0

√
2π+

√
2π− −π0

)
,

u = eiφ/2F ≈ 1 +
(
iφ/2F

)
+

1

2

(
iφ/2F

)2
+

1

3!

(
iφ/2F

)3
+ · · · . (4.5)

The fields s, p, lµ, rµ are external hermitian matrix fields. The notation used for the basic

building blocks is the one used in refs. [30, 31]. The mass term is introduced via the

external field s, which in the isospin limit is equal to

s = m̂

(
1 0

0 1

)
. (4.6)

The other external fields are not needed in the following and are set to zero lµ = rµ =

p = 0. The leading order chiral Lagrangian is given by

L(2)
ππ =

F 2

4
(〈uµuµ〉+ 〈χ+〉),

where 〈A〉 stands for the trace of A. The low energy constant F corresponds to the pion

decay constant F ≡ fπ/
√

2 ' 93 MeV and can be determined from the π+ → µ+νµ decay

rate. Expanding the chiral Lagrangian in the pion fields one obtains

L(2)
ππ =

1

2
∂µπ

0∂µπ0 + ∂µπ
+∂µπ− −M2π+π− − 1

2
M2(π0)2 + · · · . (4.7)

To lowest order the pion mass is then given by m2
π ≡ M2 = 2Bm̂. Matching the light-

quark scalar current to the effective Lagrangian,

(muūu+mdd̄d)eff = −F
2

4
〈χ+〉 =

1

2
m2
π(π0)2 +m2

ππ
+π− + · · · , (4.8)
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so that within LO-ChPT we obtain

Γπ = m2
π +O(p4) . (4.9)

One also gets for the form factor associated with the energy-momentum tensor

θπ(s) = s+ 2m2
π +O(p4) . (4.10)

This result was obtained for the first time by Voloshin [32]. The determination of the

remaining scalar form factor ∆π(s) within ChPT has been discussed in ref. [27].

4.3 Paper III

In this paper we assume that the discovered 126 GeV boson is one of the neutral scalars of

the 2HDM and analyze the implications of Tevatron and LHC data within this framework.

We analyze the CP-conserving limit as well as the more general CP-violating scenario.

Different possibilities for the scalar spectrum are also considered, including: the 126 GeV

boson as the lightest or the heaviest CP-even Higgs boson, and, the 126 GeV observed

resonance as a result of two quasi degenerate neutral Higgs bosons. By the time our work

was made public, a large number of analyses of LHC data within 2HDMs had already

been done by other authors. Two main aspects distinguished our work from previous

analyses:

• We work in the Higgs basis and express bounds in terms of quantities that are

invariant under scalar basis transformations.

• We assume a general Yukawa structure without FCNCs as provided by the hypoth-

esis of Yukawa alignment. The different models with NFC can be recovered as

particular limits of the parametrization we use.

These two points are closely related. Indeed, in the A2HDM there is no special choice

of basis since one does not impose any Z2 discrete symmetry. By performing a basis

transformation in the scalar space one can always arrive to the Higgs basis, where only

one doublet has a non-vanishing vev. Working in the Higgs basis has the advantage that

the parameters of the scalar sector are closely related to physical quantities (invariants
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under basis transformations). Before our work appeared, there were already previous

works which were using general parametrizations analogous to that of the A2HDM to

analyze the data. These analyses however were performed in a generic scalar basis in

which the unphysical parameter tan β appears explicitly.

By performing the analysis of experimental data within the A2HDM, one allows

experiments to determine whether there is a 2HDM with NFC realized in Nature, see

figure 4.3. On the other hand, by using a general Yukawa structure the analysis involves

more free parameters and one is less predictive. In the next paper we showed how unitarity

sum-rules among the scalar couplings of the 2HDM provide a powerful way to analyze

LHC data for the 126 GeV Higgs and searches for additional scalars while at the same

time keeping a generic Yukawa structure as provided by the A2HDM.

Figure 4.3: Scheme for the determination of the 2HDM Yukawa structure.

4.4 Paper IV

In this paper we put forward a general and powerful way to analyze LHC data within the

framework of 2HDMs which exploits the use of tree-level unitarity sum-rules governing the
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scalar couplings. Such tree-level unitarity sum-rules had been discussed in several works

prior to the Higgs discovery and also mentioned in some analyses of LHC Higgs data.

The full power of these sum-rules to analyze LHC data however was not being exploited

and this work can be considered a first step along this direction. We know already from

LHC data that the 126 GeV Higgs has a coupling with massive vector bosons that is

close to the SM value in magnitude and that it is a spin zero boson. The 126 GeV boson

should therefore be playing a major role in the restoration of perturbative unitarity in

longitudinal WW boson scattering. If there is an extended scalar sector in Nature which

remains perturbative up to very high energies, perturbative unitarity conditions give rise

to specific sum-rules among the couplings of the different physical scalar fields. These

sum-rules provide a very compact way to frame our studies of LHC and Tevatron data

for the 126 GeV boson as well as searches for additional scalars within the framework of

2HDMs.

Another advantage of the use of unitarity sum-rules when analyzing the data comes

from the more practical task of comparing results from different groups. Currently, there

is a large amount of works analyzing LHC data within 2HDMs and one can find many

different parametrizations or conventions being used for the scalar couplings, this makes

it very difficult to perform even a simple comparison of the constraints extracted from the

same data. Since the unitarity sum-rules are expressed in terms of physical quantities, they

provide a common setting to compare analyses by different groups in a straightforward

way. Independently of which parametrization one prefers for the scalar couplings of the

2HDM or the choice of scalar basis, one can always express the results in terms of the

unitarity sum-rules and provide a concise result that can be interpreted by other groups

without problems.

There is still room for improvement in the analyses we have performed and points

that should be treated more carefully in future studies. First, one would like to perform

a full scan of the 2HDM parameter space, in particular of the CP-conserving A2HDM

where the number of free parameters reduces somewhat but is still more general than

the 2HDMs with NFC. Studies along this direction within the A2HDM performed by

different groups have assumed that the scalar potential has a softly-broken Z2 symmetry

in a generic scalar basis, this simplifies some expressions like for example the perturbative

unitarity bounds. This however is not the best way to carry such analysis since within the

A2HDM there is no reason to impose such condition a priori. On the other hand, state of
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the art calculations of the Higgs production cross section and Higgs decay widths within

the 2HDM have been summarized recently in ref. [33]. With the advent of more data and

the reduction of statistical errors, phenomenological studies of the 2HDM at the LHC will

have to incorporate these developments in order to have meaningful results (taking into

account properly the theoretical uncertainties). It is important to note also that we have

not included in our analysis the Higgs production through b-quark fusion. This production

channel becomes important to estimate the production cross-section of the missing neutral

Higgs bosons for large values of the alignment parameter ςd. Assuming for example that h

is the 126 GeV Higgs boson, we know that |yhd | ∼ 1 while |yH,Ad | ∼ |ςd| (κhV is bounded to

be close to the SM limit) so that the b-quark fusion production mechanism can be greatly

enhanced for H or A.
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We analyze the recent experimental evidence for an excess of τ -lepton production in several

exclusive semileptonic B-meson decays in the context of two-Higgs-doublet models. These decay

modes are sensitive to the exchange of charged scalars and constrain strongly their Yukawa

interactions. While the usual Type-II scenario cannot accommodate the recent BaBar data, this

is possible within more general models in which the charged-scalar couplings to up-type quarks

are not as suppressed. Both the B → D(∗)τντ and the B → τντ data can be fitted within the

framework of the Aligned Two-Higgs-Doublet Model, but the resulting parameter ranges are

in conflict with the constraints from leptonic charm decays. This could indicate a departure

from the family universality of the Yukawa couplings, beyond their characteristic fermion mass

dependence. We discuss several new observables that are sensitive to a hypothetical charged-

scalar contribution, demonstrating that they are well suited to distinguish between different
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scenarios of new physics in the scalar sector, and also between this group and models with

different Dirac structures; their experimental study would therefore shed light on the relevance

of scalar exchanges in semileptonic b→ c τ−ν̄τ transitions.
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5.1 Introduction

The BaBar collaboration has recently reported an excess of events in two semileptonic

transitions of the type b→ c τ−ν̄τ . More specifically, they have measured the ratios [1]

R(D) ≡ Br(B̄ → Dτ−ν̄τ )

Br(B̄ → D`−ν̄`)

BaBar
= 0.440± 0.058± 0.042

avg
= 0.438± 0.056 ,

R(D∗) ≡ Br(B̄ → D∗τ−ν̄τ )

Br(B̄ → D∗`−ν̄`)

BaBar
= 0.332± 0.024± 0.018

avg
= 0.354± 0.026 , (5.1)

which are normalized to the corresponding decays into light leptons ` = e, µ. The sec-

ond value given in each line is the average with the previous measurements by the Belle

collaboration [2, 3], which also yield central values corresponding to an excess, but not

significantly so. These relative rates can be predicted with a rather high accuracy, be-

cause many hadronic uncertainties cancel to a large extent. The Standard Model (SM)

expectations [4–7] are significantly lower than the BaBar measurements. If confirmed,

this could signal new physics (NP) contributions violating lepton-flavour universality.

A sizable deviation with respect to the SM prediction was previously observed in the

leptonic decay B− → τ−ν̄τ , when combining the data by BaBar [8,9] and Belle [10]. The

world average Br(B− → τ−ν̄τ ) = (1.65±0.34)×10−4 [11] used to be 2.5σ higher than the

SM prediction (0.733 + 0.121
− 0.073) × 10−4 [12] (taking the modulus of the Cabibbo-Kobayashi-

Maskawa (CKM) [13] matrix element |Vub| from a global CKM fit). However, a value

closer to the SM expectation has been just reported by Belle [14], leading to the new

Belle combination Br(B− → τ−ν̄τ )Belle = (0.96 ± 0.22 ± 0.13) × 10−4, which we average

with the combined BaBar result [9] to obtain Br(B− → τ−ν̄τ ) = (1.15± 0.23)× 10−4.

While more experimental studies are clearly needed, these measurements are intrigu-

ing enough to trigger the theoretical interest [4–7, 15–20]. This kind of non-universal

enhancement of the τ production in semileptonic B-meson decays could be generated

by NP contributions with couplings proportional to fermion masses. In particular, it

could be associated with the exchange of a charged scalar within two-Higgs-doublet mod-

els (2HDMs), with the expected contribution to the transition amplitude being propor-

tional to mτmb/M
2
H± . This approach offers (obviously) a solution when considering scalar

NP contributions model-independently; even in this general case, however, non-trivial

predictions for other observables in these decays can be obtained. More specific models
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generally have difficulties in describing all the data. For example, the BaBar data on

B̄ → D τ−ν̄τ and B̄ → D∗τ−ν̄τ cannot be explained simultaneously within the usually

adopted Type-II scenario [1, 4, 15]. It is also observed that none of the four types of

2HDMs with natural flavour conservation (i.e., Type-I, Type-II, “lepton specific” and

“flipped”) [21] can simultaneously account for the B → τ data [4]. We shall show, how-

ever, that they can be accommodated by the more general framework of the Aligned

Two-Higgs-Doublet Model (A2HDM) [22], albeit creating a tension when including them

in a global fit.

Other suggested interpretations of the observed excess within different NP scenarios

include the 2HDM of Type-III, equipped with a MSSM-like Higgs potential and flavour-

violation in the up-quark sector [15], a leptoquark model with renormalizable interac-

tions to third-generation SM fermions [4], composite Higgs models where the heavier SM

fermions are expected to be partially or mostly composite [4], the exchange of right-handed

down-type squarks within the R-parity violating MSSM [19], as well as a non-universal

left-right model where only the third generation couples to the WR [23].

Generic multi-Higgs-doublet models give rise to unwanted flavour-changing neu-

tral current (FCNC) interactions through non-diagonal couplings of neutral scalars to

fermions [21]. The tree-level FCNCs can be eliminated by requiring the alignment in

flavour space of the Yukawa matrices coupling to a given right-handed fermion [24]. This

results in a very specific structure, with all fermion-scalar interactions being propor-

tional to the corresponding fermion masses, and implies an interesting hierarchy of FCNC

effects, suppressing them in light-quark systems while allowing potentially relevant sig-

nals in heavy-quark transitions. The A2HDM leads to a rich and viable phenomenol-

ogy [22, 24–27]; it constitutes a very general framework which includes, for particular

values of its parameters, all previously considered 2HDMs without tree-level FCNCs [21],

and at the same time incorporates additional new sources of CP violation beyond the SM.

In the following, we shall consider the phenomenology of b → q τ−ν̄τ (q = u, c)

transitions within a framework with additional scalar operators, assumed to be generated

by the exchange of a charged scalar. Starting from the most general parametrization of

such effects, we then specialize to various more specific models to examine their capability

to describe the data and the possibility to distinguish between them.

Our paper is organized as follows: In section 5.2, we briefly describe the theoreti-

cal framework adopted in our analysis. In section 5.3, we present our numerical results
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and show the parameter ranges needed to explain the present data. We proceed in sec-

tion 5.4 by analyzing various additional observables sensitive to scalar contributions, both

integrated and differential, before concluding in section 5.5. The appendices include a dis-

cussion of the relevant input parameters and details on the calculation for the semileptonic

B-meson decays.

5.2 Theoretical framework

We are going to assume that, in addition to the SM W -exchange amplitude, the quark-

level transitions b→ q l−ν̄l receive tree-level contributions from the exchange of a charged

scalar. The effective low-energy Lagrangian describing these transitions takes then the

form

Leff = −4GF√
2

∑
q=u,c

Vqb
∑
l=e,µ,τ

{
[q̄γµPLb]

[
l̄γµPLνl

]
+
[
q̄
(
gqblL PL + gqblR PR

)
b
] [
l̄PLνl

]}
,

(5.2)

where PR,L ≡ 1±γ5
2

are the chirality projectors, and the effective couplings are, in the

majority of 2HDMs, proportional to the fermion masses, gquqdlL ∼ mquml/M
2
H± , gquqdlR ∼

mqdml/M
2
H± . These explicit fermion mass factors imply negligible effects in decays into

light leptons (e, µ),1 while decays involving the τ receive potentially large contributions.

Owing to the mq suppression, the coupling gqblL does not play any relevant role in b →
uτ−ν̄τ transitions, but it can give sizeable corrections to b→ cτ−ν̄τ .

We present next the key relations for including scalar NP contributions in the decays

in question. When considering specific models, the main focus lies on the A2HDM,

of which we give a short review. For the relevant kinematical variables, notation and

derivation of the double differential decay rates, we refer the reader to the appendices.

5.2.1 b→ q τ− ν̄τ (q = u, c) decays

Due to the helicity suppression of the SM amplitude, the leptonic decay B− → τ−ν̄τ

is particularly sensitive to the charged scalar exchange. The total decay width is given

1 The obvious exception are leptonic meson decays, where the SM contribution is already suppressed

by the light lepton masses, yielding a large relative contribution from the charged scalar.
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by [25,28]

Γ(B− → τ−ν̄τ ) = G2
Fm

2
τf

2
B|Vub|2

mB

8π

(
1− m2

τ

m2
B

)2

(1 + δem) |1−∆τ
ub|2 , (5.3)

where δem denotes the electromagnetic radiative contributions, and the new-physics infor-

mation is encoded in the correction2

∆l
qb =

(gqblL − gqblR )m2
B

ml(mb +mq)

q=u' −g
ubl
R m2

B

mlmb

, (5.4)

absorbing in addition mass factors from the hadronic matrix elements.

Semileptonic decays receive contributions from a charged scalar as well, but in this

case the leading SM amplitude is not helicity suppressed; therefore, the relative influence

is smaller. In addition, they involve momentum-dependent form factors. The B̄ → Dlν̄l

decay amplitude is characterized by two form factors, f+(q2) and f0(q2), associated with

the P-wave and S-wave projections of the crossed-channel matrix element 〈0|c̄γµb|B̄D̄〉.
The scalar-exchange amplitude only contributes to the scalar form factor; it amounts to

a multiplicative correction [25]

f0(q2) → f̃0(q2) = f0(q2)

[
1 + δlcb

q2

(mB −mD)2

]
, (5.5)

with

δlcb ≡
(gcblL + gcblR )(mB −mD)2

ml(mb −mc)
. (5.6)

The sensitivity to the scalar contribution can only be achieved in semileptonic decays

into heavier leptons. The decays involving light leptons can, therefore, be used to extract

information on the vector form factor, reducing the necessary theory input to information

on the scalar form factor. Since the observables are usually normalized to the decays into

light leptons, the relevant input quantity is not the scalar form factor itself, but the ratio

of scalar to vector form factors, f0(q2)/f+(q2); an important constraint on the latter is

its normalization to unity at q2 = 0. These features lead us to parametrize the different

CP-conserving observables that we are going to consider in the following form:

O = c0 + c1 Re (δτcb) + c2 |δτcb|2 , (5.7)

2Here and in the following we suppress in the notation the scale dependence of e.g. the quark masses

and scalar couplings.
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implying a discrete symmetry Im (δτcb) → −Im (δτcb). The coefficients ci, which contain

the dependence on the strong-interaction dynamics, are parametrized in turn in terms

of the vector form-factor slope ρ2
1 and the scalar density ∆(vB · vD) [29, 30]. For the

former we use the value extracted from B → D`ν (` = e, µ) decays. The function

∆(vB · vD) ∝ f0(q2)/f+(q2) has been studied on the lattice, in the range vB · vD = 1–

1.2, and found to be consistent with a constant value ∆ = 0.46 ± 0.02, very close to its

static-limit approximation (mB −mD)/(mB + mD) [7, 17, 31]. This value is furthermore

in agreement with QCD sum rule estimates [32,33].

The decay B̄ → D∗l−ν̄l has a much richer dynamical structure, due to the vector na-

ture of the final D∗ meson. The differential decay distribution is described in terms of four

helicity amplitudes, H±±, H00 and H0t, where the first subindex denotes the D∗ helicity

(±, 0) and the second the lepton-pair helicity (±, 0, t) in the B-meson rest frame [34,35].

In addition to the three polarizations orthogonal to its total four-momentum qµ, the lep-

tonic system has a spin-zero time component (t) that is proportional to qµ and can only

contribute to the semileptonic decays for non-zero charged-lepton masses (it involves a

positive helicity for the l−). The corresponding H0t amplitude is the only one receiving

contributions from the scalar exchange [5]:

H0t(q
2) = HSM

0t (q2)

(
1−∆τ

cb

q2

m2
B

)
. (5.8)

The observables are then given in an expansion analogous to eq. (5.7), with δτcb replaced

by ∆τ
cb, and the coefficients depend on the different form-factor normalizations Ri(1) (i =

0, 1, 2, 3) and the slope ρ2, see Appendix 5.D for details. Here, again, we use inputs

extracted from the decays involving light leptons where possible, while for the remaining

form-factor normalization R3(1) we adopt a value calculated in the framework of Heavy

Quark Effective Theory (HQET) [36].

A summary of the different form-factor parameters is given in table 5.3, in the ap-

pendix.

5.2.2 Overview of the A2HDM

The 2HDMs extend the SM Higgs sector by a second scalar doublet of hypercharge Y = 1
2
.

Thus, in addition to the three Goldstone bosons, they contain five physical scalars: two
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charged fields H± and three neutral ones ϕ0
i = {h,H,A}. The most generic Yukawa

Lagrangian with the SM fermionic content gives rise to tree-level FCNCs, because the

Yukawa couplings of the two scalar doublets to fermions cannot be simultaneously di-

agonalized in flavour space. The non-diagonal neutral couplings can be eliminated by

requiring the alignment in flavour space of the Yukawa matrices [22]; i.e., the two Yukawa

matrices coupling to a given type of right-handed fermions are assumed to be proportional

to each other and can, therefore, be diagonalized simultaneously. The three proportional-

ity parameters are arbitrary complex numbers and introduce new sources of CP violation.

In terms of the fermion mass-eigenstate fields, the Yukawa interactions of the charged

scalar in the A2HDM read [22]

LH±Y = −
√

2

v
H+ {ū [ςd VMdPR − ςuMuV PL] d + ςl ν̄MlPRl} + h.c. , (5.9)

where ςf (f = u, d, l) are the proportionality parameters in the so-called “Higgs basis” in

which only one scalar doublet acquires a non-zero vacuum expectation value. The CKM

quark mixing matrix V [13] remains the only source of flavour-changing interactions. All

possible freedom allowed by the alignment conditions is determined by the three family-

universal complex parameters ςf , which provide new sources of CP violation without

tree-level FCNCs [22]. Comparing eqs. (5.9) and (5.2), one obtains the following relations

between the A2HDM and the general scalar NP parameters:

gquqdlL = ςuς
∗
l

mquml

M2
H±

, gquqdlR = −ςd ς∗l
mqdml

M2
H±

. (5.10)

The usual models with natural flavour conservation (NFC), based on discrete Z2 symme-

tries, are recovered for particular (real) values of the couplings ςf ; especially ςd = ςl =

−1/ςu = − tan β and ςu = ςd = ςl = cot β correspond to the Type-II and Type-I models,

respectively.

Limits on the charged-scalar mass from flavour observables and direct searches depend

strongly on the assumed Yukawa structure. The latest bound on the Type-II 2HDM

charged Higgs from B̄ → Xsγ gives MH± ≥ 380 GeV at 95% confidence level (CL) [37].

Within the A2HDM on the other hand it is still possible to have a light charged Higgs [25,

26]. Assuming that the charged scalar H+ only decays into fermions uid̄j and l+νl, LEP

established the limit MH± > 78.6 GeV (95% CL) [38], which is independent of the Yukawa

structure. A charged Higgs produced via top-quark decays has also been searched for
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at the Tevatron [39, 40] and the LHC [41, 42]; these searches are, however, not readily

translatable into constraints for the model parameters considered here. It should be

noted that the charged-scalar mass enters only in combination with the other couplings

and, therefore, its size does not affect directly our results at this level.

5.3 Results and discussions

In table 5.1 we summarize our predictions within the SM for the various semileptonic and

leptonic decays considered in this work, using the hadronic inputs quoted in table 5.3

(parameters that do not appear in this table are taken from [11]). The rates for leptonic

D, K and π decays are obtained from eq. (5.3) with appropriate replacements, while the

ratio of τ → K/πντ decay widths is given by [25]

Γ(τ → Kν)

Γ(τ → πν)
=

(
1−m2

K/m
2
τ

1−m2
π/m

2
τ

)2 ∣∣∣∣VusVud

∣∣∣∣2 (fKfπ
)2

(1 + δτK2/τπ2
em )

∣∣∣∣1−∆us

1−∆ud

∣∣∣∣2 . (5.11)

One can see that, apart from R(D) and R(D∗), all the observables are in agreement with

their SM predictions. While for the decays involving only D(s), K, and π mesons no large

effect could be expected because of the relatively small quark masses involved, this is

equally true for the influence of gcbτL . Contrary to that expectation, however, the data on

R(D) and R(D∗) indicate a large value for this coupling. This not only renders especially

models with NFC incompatible with the data, but also poses a problem in more general

models.

We start by analyzing the constraints on the A2HDM parameters from the decays

listed in table 5.1.3 In contrast to the models with NFC, the observables involving B-

meson decays (R(D), R(D∗) and Br(B → τν)) can be consistently explained in the

3We do not take into account the experimental correlation between the measured values of R(D) and

R(D∗) given in [1]. It is reduced to −19% when averaging with the Belle data and does not affect our

results significantly. Moreover, the BaBar fit is sensitive to the assumed kinematical distribution, which

is modified by the scalar contribution. While BaBar has already performed an explicit analysis within the

Type-II 2HDM, it would be useful to analyze the experimental data in terms of the more general complex

parameters ∆l
cb and δlcb, to make the inclusion of this effect possible in the future. This modification is,

however, only relevant for large values of the scalar couplings, which are excluded in the scenarios 2 and

3 discussed below.
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Table 5.1: Predictions within the SM for the various semileptonic and leptonic decays discussed

in this work, together with their corresponding experimental values. The first uncertainty given

always corresponds to the statistical uncertainty, and the second, when present, to the theoretical

one.

Observable SM Prediction Exp. Value Comment

R(D) 0.296+0.008
−0.006 ± 0.015 0.438± 0.056 our average [1–3]

R(D∗) 0.252± 0.002± 0.003 0.354± 0.026 our average [1–3]

Br(B → τντ ) (0.79+0.06
−0.04 ± 0.08)× 10−4 (1.15± 0.23)× 10−4 our average [9, 14]

Br(Ds → τντ ) (5.18± 0.08± 0.17)× 10−2 (5.54± 0.24)× 10−2 our average [11,43]

Br(Ds → µν) (5.31± 0.09± 0.17)× 10−3 (5.54± 0.24)× 10−3 our average [11,43]

Br(D → µν) (4.11+0.06
−0.05 ± 0.27)× 10−4 (3.76± 0.18)× 10−4 [44]

Γ(K → µν)/Γ(π → µν) 1.333± 0.004± 0.026 1.337± 0.003 [11]

Γ(τ → Kντ )/Γ(τ → πντ ) (6.56± 0.02± 0.15)× 10−2 (6.46± 0.10)× 10−2 [11]

A2HDM. However, the resulting parameter region excludes the one selected by the leptonic

D(s)-meson decays. More generally speaking, models fulfilling the relations

(a) gquqdlL /g
q′uq
′
dl
′

L = mquml/(mq′uml′) and (b) gquqdlR /g
q′uq
′
dl
′

R = mqdml/(mq′d
ml′)

(5.12)

are in conflict with the data. Removing R(D∗) from the fit leads to a consistent picture

in the A2HDM; in this case, however, the SM is also globally consistent with the data,

as the tension in R(D) is “distributed” over the remaining observables. Models with

NFC remain disfavoured compared to the SM. These observations lead us to consider the

following scenarios:

• Scenario 1 (Sc.1) is a model-independent approach where all couplings gquqdlL,R are

assumed to be independent. One possible realization is the 2HDM of Type III. This

implies that the effective couplings δlcb and ∆l
cb in the two semileptonic processes can

be regarded as independent. Therefore, predictions for the additional observables

in B → D(D∗)τν follow in this case only from R(D) (R(D∗)).

• In scenario 2 we assume the relations in eq. (5.12) to hold for qd = b, while pro-

cesses involving only the first two generations are regarded as independent. When
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considering only the constraints from R(D), R(D∗) and Br(B → τν), the couplings

in the A2HDM fulfill this condition; we will assume this form in the following for

definiteness.

• For scenario 3 we discard the measurement of R(D∗) as being due to a statistical

fluctuation and/or an underestimated systematic effect, leaving us with a viable

A2HDM. From a global fit to all the other measurements we then obtain predictions

for the new observables in B → D(∗)τν as well as R(D∗).

The ratios in eq. (5.12) might of course also be changed for l = τ or l = µ. However, be-

cause of the smallness of mµ, this would not be visible in any of the observables considered

here. A way to test this option is to consider the ratio Br(B− → τ−ν̄τ )/Br(B− → µ−ν̄µ),

which is independent of NP in the scalar sector if eq. (5.12) is fulfilled.

In figure 5.1 we first show the allowed regions in the R(D)–R(D∗) plane for the

different scenarios. Scenario 1 is just reflecting the experimental information, while the

additional constraint from B → τν already excludes part of that area in scenario 2.

For the third scenario, the tension with the measurement of R(D∗) is clearly visible; the

allowed range includes the SM range and values even further away from the measurement,

thereby predicting this effect to vanish completely in the future if this scenario is realized.

The value implied by the fit reads R(D∗)Sc.3 = 0.241± 0.003± 0.007.

In the second and third plot in this figure we show the corresponding allowed pa-

rameter regions in the complex δlcb (left) and ∆l
cb (right) planes at 95% CL. Here the

strong influence of the leptonic decays becomes visible again, excluding most of the pa-

rameter space of R(D) in the δlcb plane, and driving the fit far away from the region

indicated by the R(D∗) measurement in the ∆l
cb plane. To examine this effect further,

we plot the individual constraints in the ς∗l ςu,d/M
2
H± planes in figure 5.2. Here it is seen

explicitly that the conflict lies mainly between the leptonic charm decays and R(D∗).

It is also noted that, in order to accommodate the data in scenarios 1 and 2, a large

value for |ςuς∗l |/M2
H± ∼ O(10−1) GeV−2 is needed. This is not a direct problem in these

scenarios, as the different couplings are not related. It would however point to a very

strong hierarchy between the charm and the top couplings or a very large value of the lep-

tonic coupling, as the constraints from observables involving loops like Br(Z → b̄b) imply

|ςu| . 1 for the top coupling [25]. In the A2HDM, the combined constraints from leptonic

τ decays and these processes require a small value for |ςuς∗l |/M2
H± : under the assumptions
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Figure 5.1: Allowed regions in the R(D)–R(D∗) (left), complex δlcb (center) and ∆l
cb (right)

planes at 95% CL, corresponding to the three different scenarios. See text for details.

that |ςd| < 50 and the charged-scalar effects dominate the NP contributions to Z → bb̄,

|ςuς∗l |/M2
H± < 0.005 GeV−2 was obtained in [25]. Similar bounds also arise from consid-

ering the CP-violating parameter εK in K0–K̄0 mixing and the mass difference ∆mB0 in

B0–B̄0 mixing [25]. This is however compatible with our results above, see figure 5.2. As

the focus in this article lies on tree-level contributions, and loop induced quantities have

a higher UV sensitivity, we refrain from including these constraints explicitly here.

Having in mind the above scenarios, our main concern is whether they can be dif-

ferentiated with forthcoming data. In addition, the basic assumption of only scalar NP

contributions in these decays can be questioned. We identify several combinations of

observables which will signal the presence of additional contributions. In the following
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Figure 5.2: Constraints in the complex ςdς
∗
l /M

2
H± (left) and ςuς

∗
l /M

2
H± (right) planes, in units

of GeV −2, from the various semileptonic and leptonic decays. Allowed regions are shown at

95% CL for different combinations of the observables.

section we discuss how future measurements of additional observables in B → D(∗)τν de-

cays, especially their differential distributions, will provide useful information to address

these questions.

5.4 Observables sensitive to scalar contributions

We now proceed to analyze the additional observables in B → D(∗)τντ decays that provide

an enhanced sensitivity to scalar NP contributions. Apart from the differential rates, these

are the forward-backward and τ -spin asymmetries in the considered decays, and for B →
D∗τν additionally the longitudinal polarization fraction of the D∗. These observables

have been considered in the past by various authors [5, 6, 16, 34, 35, 45–49], addressing

their sensitivity to NP contributions.

Experimentally, while one expects more information on B → D(∗)τντ decays in the

near future from Belle, BaBar, and also LHCb, most of these observables will be accessible

only at a Super-Flavour factory (SFF) [50,51], as their study requires more statistics than

the branching ratios and the inclusion of the information from the correlated B meson.

The precise sensitivity of future experiments to the different observables has, however,
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Table 5.2: Predictions for the q2-integrated observables both within the SM and in the different

scenarios. The observables have been integrated from q2
min = m2

τ to q2
max = (mB −mD(∗))2. The

first error given corresponds to the statistical uncertainty, and the second, when given, to the

theoretical one.

Observable SM Prediction Scenario 1 Scenario 2 Scenario 3

RL(D∗) 0.115± 0.001± 0.003 0.217± 0.026 0.223+0.013
−0.026 ± 0.006 0.104+0.006

−0.003 ± 0.003

Aλ(D) −0.304± 0.001± 0.035 −0.55+0.10
−0.04 −0.55+0.09

−0.04 −0.55+0.09
−0.04 ± 0.01

Aλ(D∗) 0.502+0.005
−0.006 ± 0.017 0.06+0.10

−0.06 0.04+0.10
−0.03 ± 0.01 0.57+0.04

−0.02 ± 0.02

Aθ(D) 0.3602+0.0006
−0.0007 ± 0.0022 0.03+0.01

−0.00 ± 0.30 −0.21+0.13
−0.00 ± 0.06 0.36+0.01

−0.09
†

Aθ(D
∗) −0.066± 0.006± 0.009 −0.136+0.012

−0.003 ± 0.222 0.081+0.008
−0.059 ± 0.009 −0.146+0.039

−0.017 ± 0.021

† Note that the lower tail is rather long, due to a suppressed local maximum.

not yet been determined.

For simplicity, we discuss below these additional observables without considering the

subsequent decays of the final τ and D∗. While studying the q2 spectra of the observables

has the advantage in identifying potential NP contributions and their Dirac structure,

this generally requires very high statistics, which might not be available even in the early

stages of a SFF. Therefore, we shall analyze both the q2 spectra and the q2-integrated

observables. Our predictions for the latter are given in table 5.2, both within the SM

and in the three different scenarios defined before. Note that we do not consider isospin

breaking; the observables shown are always isospin-averaged. Note furthermore that

model-independent analyses similar to our scenario 1 have been performed in refs. [5,6,16].
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5.4.1 The differential decay rates

First, we obtain the singly differential rates by summing in eqs. (5.36) and (5.43) over the

τ helicities, λτ = ±1/2, and performing the integration over cos θ:

dΓ(B̄ → Dτ−ν̄τ )

dq2
=
G2
F |Vcb|2|~p|q2

96π3m2
B

(
1− m2

τ

q2

)2 [
|H0|2

(
1 +

m2
τ

2q2

)
+

3m2
τ

2q2
|Ht|2

]
,

(5.13)

dΓ(B̄ → D∗τ−ν̄τ )

dq2
=
G2
F |Vcb|2|~p|q2

96π3m2
B

(
1− m2

τ

q2

)2 [(
|H++|2 + |H−−|2 + |H00|2

) (
1 +

m2
τ

2q2

)
+

3m2
τ

2q2
|H0t|2

]
. (5.14)

Again, normalizing to the decays with light leptons reduces the theoretical error:

RD(∗)(q2) =
dΓ(B̄ → D(∗)τ−ν̄τ )/dq

2

dΓ(B̄ → D(∗)`−ν̄`)/dq2
. (5.15)

Note that in order to obtain the expression forRD(∗) from this, numerator and denominator

have to be integrated separately. This should be kept in mind as well for the other

quantities.

Our predictions for these observables, within the SM and in the three different sce-

narios, are shown in figure 5.3. For RD(q2), we show in addition the binned distribution

in five equidistant q2 bins, as the ratio does diverge at the endpoint, where however both

rates vanish. From these plots, we make the following observations:

• As expected, the uncertainty due to the hadronic form factors (the grey shaded

band) in RD(∗)(q2) is significantly reduced compared to that in the differential

branching ratio.

• In scenario 2, relatively large deviations from the SM are predicted for almost the full

range in RD∗(q
2) and for high q2 in RD(q2). The predicted q2 spectra in scenario 3

are close to those of the SM, especially for the D∗ decay mode. However, there is

still room for differences, especially in RD(q2), and furthermore in this scenario the

distribution in RD∗(q
2) lies preferably below the SM one, which should differentiate

this scenario clearly from the first two.
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Figure 5.3: The q2 dependence of the differential branching ratios (left) and RD(∗)(q2) (right),

both within the SM (grey) as well as in scenario 1 (red), scenario 2 (orange), and scenario 3 (yel-

low). The binned distribution for RD(q2) is also shown.

• Compared to the SM prediction, the peak of the differential branching ratio in the

NP scenarios (especially in scenario 2) is shifted to higher and lower values in q2

for the D and the D∗ decay mode, respectively. This is characteristic of scalar NP

contributions and should allow for a separation from models with different Dirac

structure. The reason for that is the following: while both of them are explicitly

proportional to q2 (see eqs. (5.32) and (5.39)), the charged-scalar contribution to

RD∗(q
2) is in addition proportional to the D∗ momentum |~p|, which vanishes at

the endpoint q2
max = (mB − mD∗)

2, rendering its relative contribution maximal

for intermediate values of q2, while the one to RD(q2) continuously increases with

q2. The relative suppression of the terms proportional to the τ mass by the D∗

momentum furthermore renders RD∗(q
2) finite everywhere, while RD(q2) diverges

at the endpoint.4 However, as both the rates for the τ and the light lepton modes

vanish there, this does not influence the experimental extraction: when calculating

4In fact, this behavior is an artifact of setting m` ≡ 0. The actual value is ∼ m2
τ/m

2
` .



85 Sensitivity to charged scalars in B → D(∗)τντ and B → τντ decays

the contributions to different bins, all integrals remain finite. These characteristic

features are illustrated by the right two plots.

As the charged scalar only contributes to the helicity amplitude H0t in B → D∗τντ

decays, an increased sensitivity is expected by studying the case with a longitudinally

polarized D∗ meson in the final state, where the transverse helicity amplitudes are no

longer relevant. For this purpose, we define a singly differential longitudinal decay rate [5]:

dΓLτ
dq2

=
G2
F |Vcb||~p|q2

96π3m2
B

(
1− m2

τ

q2

)2 [
|H00|2

(
1 +

m2
τ

2q2

)
+

3m2
τ

2q2
|H0t|2

]
. (5.16)

In analogy to RD∗(q
2), it is again advantageous to consider the ratio with the τ mode

normalized to the light lepton mode:

R∗L(q2) =
dΓLτ /dq

2

dΓL` /dq
2
. (5.17)

It is important, however, to note that within our NP framework this is not an independent

observable. As long as we consider only additional scalar operators, the difference

X1(q2) ≡ RD∗(q
2)−R∗L(q2) (5.18)

is independent of NP effects. A measurement of this observable serves, therefore, as a

cross-check for the effect in RD∗ and gives us information on whether scalar NP operators

are sufficient to describe the data. This observation is reflected in table 5.2 and in fig-

ure 5.4, where we show the predictions for RL(D∗) and R∗L(q2) both within the SM and in

the three different scenarios; the results are analogous to the ones for R(D∗) and RD∗(q
2)

discussed above, but clearly exhibit an increased sensitivity to the scalar NP effect.

5.4.2 The τ spin asymmetry

Information on the τ spin in semileptonic B-meson decays can be inferred from its dis-

tinctive decay patterns [5, 16, 45, 49]. Therefore, we consider here the τ spin asymmetry

defined in the τ -ν̄τ center-of-mass frame:

AD
(∗)

λ (q2) =
dΓD

(∗)
[λτ = −1/2]/dq2 − dΓD

(∗)
[λτ = +1/2]/dq2

dΓD(∗) [λτ = −1/2]/dq2 + dΓD(∗) [λτ = +1/2]/dq2
, (5.19)
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Figure 5.4: Predictions for R∗L(q2) both within the SM and in the three different scenarios.

The other captions are the same as in figure 5.3.

where the polarized differential decay rates are obtained after integration over cos θ of the

doubly-differential ones given by eqs. (5.36) and (5.43). Using the formulae presented in

appendices 5.C and 5.D, we obtain explicitly

ADλ (q2) =
|H0|2 (1− m2

τ

2q2
)− 3m2

τ

2q2
|Ht|2

|H0|2 (1 + m2
τ

2q2
) + 3m2

τ

2q2
|Ht|2

,

AD
∗

λ (q2) =
(|H00|2 + |H++|2 + |H−−|2) (1− m2

τ

2q2
)− 3m2

τ

2q2
|H0t|2

(|H00|2 + |H++|2 + |H−−|2) (1 + m2
τ

2q2
) + 3m2

τ

2q2
|H0t|2

. (5.20)

Again, these two observables have the same dependence on scalar NP contributions as

the differential rates; this observation follows from the combinations

XD
2 (q2) ≡ RD(q2) (ADλ (q2) + 1) and XD∗

2 (q2) ≡ RD∗(q
2) (AD

∗

λ (q2) + 1) (5.21)

being independent of δτcb and ∆τ
cb, respectively. However, because of the different nor-

malization and systematics in this case, a future measurement would give important

information on the size and nature of NP in B → D(∗)τν decays: like for X1(q2), any

deviation from the SM value of these combinations would indicate non-scalar NP. Our

predictions for the two asymmetries when integrated over q2 are given again in table 5.2;

the predicted ranges for the differential distributions are shown in figure 5.5. The corre-

lation between Aλ(D
∗) and RL(D∗), following from eqs. (5.18) and (5.21), is furthermore

illustrated in figure 5.6, where we show the predicted values for the two observables for

the SM and the three scenarios, yielding in every case a very small band, corresponding

to the hadronic uncertainties.
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Figure 5.5: The q2 dependence of the τ spin asymmetries ADλ (q2) (left) and AD
∗

λ (q2) (right).

The other captions are the same as in figure 5.3.

Figure 5.6: Predictions for Aλ(D∗) vs. RL(D∗) both within the SM (grey) and in the three sce-

narios ((1)-red, (2)-orange, (3)-yellow), from a global fit including the appropriate observables.

The integrated asymmetries span a rather large range. For Aλ(D), due to the com-

mon input, a differentiation between the different scenarios seems very difficult, while for

Aλ(D
∗) at least the separation of the SM and scenario 3 on the one hand and scenarios 1

and 2 on the other hand is very clear. Importantly, the predictions for Aλ(D) in all sce-

narios are clearly negative, providing another option to potentially exclude the SM and

only scalar NP at the same time. Also largely negative values for Aλ(D
∗) are excluded in

all scenarios.

The separation of the different models improves, once differential distributions are

considered: from figure 5.5 we observe very distinct patterns for the different scenarios,

especially for scenario 2. This scenario will be clearly distinguishable from the SM and

scenario 3, once the necessary experimental precision is reached. Scenario 1, on the other

hand, has again possibly very large effects, but might be close to any of the other scenarios,
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including the SM. A characteristic feature of this observable is the zero-crossing point:

for ADλ (q2), it is absent for the SM and scenario 3, while it appears likely for scenario 2

to have one, and also scenario 1 has that option. Within the SM, the observable AD
∗

λ (q2)

crosses the zero at q2 = 3.66 ± 0.04 GeV2; compared to the SM case, the zero-crossing

point occurs at significantly higher values of q2 for scenario 2, while most likely at lower

values of q2 for scenario 3. This indicates that measuring the zero-crossing point of the

τ spin asymmetries can be a useful probe of the flavour structure of the charged scalar

interaction.

5.4.3 The forward-backward asymmetries

Finally, we discuss the forward-backward asymmetries defined as the relative difference

between the partial decay rates where the angle θ between the D(∗) and τ three-momenta

in the τ -ν̄τ center-of-mass frame is greater or smaller than π/2:

AD
(∗)

θ (q2) =

∫ 0

−1
d cos θ (d2ΓD

(∗)
τ /dq2d cos θ)−

∫ 1

0
d cos θ (d2ΓD

(∗)
τ /dq2d cos θ)

dΓD(∗)
τ /dq2

. (5.22)

Using eqs. (5.36) and (5.43), we arrive at the following explicit expressions:

ADθ (q2) =
3m2

τ

2q2

Re(H0H
∗
t )

|H0|2 (1 + m2
τ

2q2
) + 3m2

τ

2q2
|Ht|2

,

AD
∗

θ (q2) =
3

4

|H++|2 − |H−−|2 + 2m
2
τ

q2
Re(H00H

∗
0t)

(|H++|2 + |H−−|2 + |H00|2) (1 + m2
τ

2q2
) + 3m2

τ

2q2
|H0t|2

. (5.23)

In terms of a model-independent determination of NP parameters, i.e. scenario 1, this

is the key observable to determine ∆τ
cb and δτcb. The reason, as mentioned before, is that

the observables R∗L(q2), RD(∗)(q2) and AD
(∗)

λ (q2) do not give independent information, see

eqs. (5.18) and (5.21). The forward-backward asymmetry AD
(∗)

θ (q2) is therefore the only

independent constraint in the complex δτcb (∆τ
cb) plane. Our predictions for this observable

are given in table 5.2 and shown in figure 5.7. Furthermore, its correlation with the τ spin

asymmetry for the two modes is shown in the first two panels in figure 5.8. It is clearly

seen that the correlation is much weaker in this case, especially in scenario 1, where the

only influence stems from the restriction on |δτcb| and |∆τ
cb|. However, the pattern of a
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more SM-like A2HDM prediction and strongly shifted predictions from scenarios 1 and

2 is repeated. Regarding the differential distributions, within the SM, the observable

ADθ (q2) does not cross zero, while this becomes possible for scenarios 1 and 2. AD
∗

θ (q2)

has a zero-crossing point at q2 = 5.67± 0.02 GeV2 in the SM, for which again large shifts

are possible with NP, and it might even vanish in scenario 3. Large deviations from the

SM expectations, especially in scenario 2, are therefore still possible for this observable.
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Figure 5.7: The q2 dependence of the forward-backward asymmetries ADθ (q2) (left) and

AD
∗

θ (q2) (right). The other captions are the same as in figure 5.3.

In order to illustrate the impact of a possible future measurement of this observable,

we exemplarily show in the right panel in figure 5.8 the resulting constraint in the ∆τ
cb

plane, together with the one from R(D∗) as measured at the moment. The Aθ(D
∗)

constraints drawn in lighter colours correspond to an uncertainty of 10%. For the darker

constraints, an improvement by a factor of 2 has been assumed compared to the lighter

ones. Furthermore, an index ‘SM’ indicates the measurement chosen to be compatible

with the SM, while the index ‘NP’ corresponds to measurements excluding the SM, but

compatible with scenario 1. As can be seen, such a measurement would allow to exclude a

large part of the parameter space in the model-independent scenario 1, as well as constrain

the other scenarios further. Furthermore, as mentioned before, the two constraints could

also miss each other in that plane, indicating NP with a different Dirac structure. This

possibility exists of course also for the other observables discussed above.

Additional information on ∆τ
cb could obviously be obtained from a measurement of

the B−c → τ−ν̄τ rate. With the NP influence being determined by ∆τ
cb, this rate is clearly

predicted to be different from the SM in scenarios 1 and 2, while close to the SM in

scenario 3. However, this mode is extremely hard to be measured experimentally.
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Figure 5.8: Prediction for Aθ(D
(∗)) vs. Aλ(D(∗)) for the SM (grey), and the three scenarios

((1)-red, (2)-orange, (3)-yellow), from a global fit including all appropriate observables. The

right plot shows the possible impact of future measurements on the complex ∆τ
cb plane (see text).

5.5 Summary

In this paper, motivated by the recent experimental evidence for an excess of τ -lepton

production in exclusive semileptonic B-meson decays, we have performed a detailed phe-

nomenological analysis of b → q τ−ν̄τ (q = u, c) transitions within a framework with

additional scalar operators, assumed to be generated by the exchange of a charged scalar

in the context of 2HDMs.

While the usual Type-II scenario cannot accommodate the recent BaBar data on

B̄ → D(∗)τ−ν̄τ decays, this is possible within more general models, in which the charged-

scalar couplings to up-type quarks are not as suppressed. An explicit example is given

by the A2HDM, in which the B̄ → D(∗)τ−ντ as well as the B− → τ−ν̄τ data can be

fitted. However, the resulting parameter ranges are in conflict with the constraints from

leptonic charm decays, which could indicate a departure from the family universality of

the Yukawa couplings ςf (f = u, d, l).

These observations led us to define three scenarios for scalar NP, in which we incor-

porated information from R(D(∗)) (Sc.1), B decays (Sc.2), and all available data from

leptonic and semileptonic decays apart from R(D∗) (Sc.3). We showed that these scenar-

ios can be differentiated by coming data, using information e.g. from differential decay

rates and/or spin and angular asymmetries. These observables therefore allow to verify

this hint for NP in semileptonic decays, and gather additional information on its precise
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nature. Furthermore we pointed out several combinations of observables independent of

this kind of NP, as well as common characteristics, which will allow additionally to test

for the presence of NP with other Dirac structures. The coming experimental analyses

for these modes will therefore be an important step in our quest for NP.
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Appendix

5.A Input parameters and statistical treatment

Bounds on the parameter space are obtained using the statistical treatment based on

frequentist statistics and Rfit for the theoretical uncertainties [52], which has been imple-

mented in the CKMfitter package [12]. To fix the values of the relevant CKM entries, we

only use determinations that are not sensitive to the scalar NP contributions [12,53–55].

Explicitly, we use the Vud value extracted from super-allowed nuclear β decays and the

CKM unitarity to determine Vus ≡ λ. The values of |Vub| and |Vcb| are determined from

exclusive and inclusive b→ u`ν̄` and b→ c`ν̄` transitions, respectively. Relevant hadronic

input parameters are collected in table 5.3, while quark and meson masses as well as any

other relevant parameters that do not appear in this table are taken from [11].
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Table 5.3: Input values for the hadronic parameters, obtained as described in the text. The

first error denotes the statistical uncertainty, and the second the systematic/theoretical. †This

value includes the correction to the isospin limit usually assumed in lattice calculations [56,69].

Parameter Value Comment

fBs (0.228± 0.001± 0.006) GeV [57–59]

fBs/fBd 1.198± 0.009± 0.025 [57,58,60]

fDs (0.249± 0.001± 0.004) GeV [57,58,60,61]

fDs/fDd 1.169± 0.006± 0.02 [57,58,60–62]

fK/fπ 1.1908± 0.0016± 0.0104† [62–64]

δ
K`2/π`2
em −0.0069± 0.0017 [65–69]

δ
τK2/τπ2
em 0.0005± 0.0053 [70–72]

λ 0.2254± 0.0010 [73]

|Vub| (3.51± 0.11± 0.02)× 10−3 [55]

|Vcb| (40.9± 1.1)× 10−3 [55]

ρ2
1 1.186± 0.036± 0.041 [55]

G1(1)|Vcb| (42.64± 1.53)× 10−3 [55]

∆|B→Dlν 0.46± 0.02 [7, 17,31]

hA1(1)|Vcb| (35.90± 0.45)× 10−3 [55]

R1(1) 1.403± 0.033 [55]

R2(1) 0.854± 0.020 [55]

R3(1) 0.97± 0.10 [36]

ρ2 1.207± 0.026 [55]

The plots for the differential observables are obtained using the allowed NP parameter

ranges from a different fit. As the latter already include uncertainties from the hadronic

input parameters, we do not vary them again additionally.



93 Sensitivity to charged scalars in B → D(∗)τντ and B → τντ decays

5.B Kinematics for semileptonic decays

Within the SM, the squared matrix element for the decay B̄(pB)→ D(∗)(pD(∗) , λD(∗))l(kl, λl)ν̄(kν̄)

can be written as [34,35]

|M(B̄ → D(∗)lν̄)|2 = |〈D(∗)lν̄|Leff |B̄〉|2 = LµνH
µν , (5.24)

where the leptonic (Lµν) and hadronic (Hµν) tensors are built from the respective tensor

products of the lepton and hadron currents. Using the completeness relation for the

virtual W ∗ polarization vectors ε̄µ(±, 0, t), one can further express eq. (5.24) as

|M(B̄ → D(∗)lν̄)|2 =
∑

m,m′,n,n′

L(m,n)H(m′, n′) gmm′gnn′ , (5.25)

where gmm′ = diag(+1,−1,−1,−1), L(m,n) = Lµν ε̄µ(m)ε̄∗ν(n) andH(m,n) = Hµν ε̄∗µ(m)ε̄ν(n).

The two quantities L(m,n) and H(m,n) are Lorentz invariant and can, therefore, be eval-

uated in different reference frames. For convenience, the hadronic part H(m,n) is usually

evaluated in the B-meson rest frame with the z axis along the D(∗) trajectory, and L(m,n)

in the l-ν̄ center-of-mass frame (i.e. in the virtual W ∗ rest frame) [34,35].

In the B-meson rest frame with the z axis along the D(∗) trajectory, a suitable basis

for the virtual W ∗ polarization vectors ε̄µ(±, 0, t) can be chosen as [34]

ε̄µ(±) =
1√
2

(0,±1,−i, 0) , ε̄µ(0) =
1√
q2

(|~p|, 0, 0,−q0) ,

ε̄µ(t) =
1√
q2

(q0, 0, 0,−|~p|) , (5.26)

where q0 = (m2
B − m2

D(∗) + q2)/2mB and |~p| = λ1/2(m2
B,m

2
D(∗) , q

2)/2mB are the energy

and momentum of the virtual W ∗, with q2 = (pB − pD(∗))2 being the momentum transfer

squared, bounded at m2
l ≤ q2 ≤ (mB−mD(∗))2, and λ(a, b, c) = a2+b2+c2−2(ab+bc+ca).

Similarly, a convenient basis for the D∗ polarization vectors is

εα(±) = ∓ 1√
2

(0, 1,±i, 0) , εα(0) =
1

mD∗
(|~p|, 0, 0, ED∗) , (5.27)

where ED(∗) = (m2
B +m2

D(∗) − q2)/2mB is the D(∗) energy in the B-meson rest frame.

In the l-ν̄ center-of-mass frame, which can be obtained by a simple boost from the

B-meson rest frame, the lepton and antineutrino four-momenta are given, respectively, as
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kl = (El, pl sin θ, 0, pl cos θ) , kν̄ = (pl,−pl sin θ, 0,−pl cos θ) , (5.28)

where El = (q2 + m2
l )/2

√
q2, pl = (q2 −m2

l )/2
√
q2, and θ is the angle between the D(∗)

and l three-momenta in this frame. The virtual W ∗ polarization vectors ε̄µ(±, 0, t) reduce

to [34,35]

ε̄µ(±) =
1√
2

(0,±1,−i, 0) , ε̄µ(0) = (0, 0, 0,−1) ,

ε̄µ(t) =
1√
q2
qµ = (1, 0, 0, 0) . (5.29)

With the above specified kinematics, the explicit expression for LµνH
µν in terms

of the q2 dependent helicity amplitudes can be found in refs. [5, 34]. Using the equa-

tions of motion, the hadronic and leptonic amplitudes of the scalar and the pseudoscalar

current can be related to those of the vector and the axial-vector current, respectively.

Therefore, the scalar NP contributions can be considered together with the spin-zero

component (λW ∗ = t) of the virtual W ∗ exchange.

5.C Formulae for B̄ → Dlν̄

In the presence of NP of the form (5.2), the non-zero hadronic matrix elements of the

B̄ → D transition can be parametrized as

〈D(pD)|c̄γµb|B̄(pB)〉 = f+(q2)

[
(pB + pD)µ − m2

B −m2
D

q2
qµ
]

+ f0(q2)
m2
B −m2

D

q2
qµ ,

(5.30)

〈D(pD)|c̄ b|B̄(pB)〉 =
qµ

mb −mc

〈D(pD)|c̄γµb|B̄(pB)〉 =
m2
B −m2

D

mb −mc

f0(q2) , (5.31)

where mq are the running quark masses and the two QCD form factors f+(q2) and f0(q2)

encode the strong-interaction dynamics. Contracting the above matrix elements with

the virtual W ∗ polarization vectors (5.26) in the B-meson rest frame, we obtain the two

non-vanishing helicity amplitudes [5, 34]:

H0(q2) =
2mB|~p|√

q2
f+(q2) ,

Ht(q
2) =

m2
B −m2

D√
q2

f0(q2)

[
1 + δlcb

q2

(mB −mD)2

]
, (5.32)
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where δlcb, defined by eq. (5.6), accounts for the contribution from the charged scalar.

It is customary to relate the QCD form factors f+(q2) and f0(q2) to the quantities

G1(w) and ∆(w) in the HQET [36]

f+(q2) =
G1(w)

RD

, f0(q2) = RD
(1 + w)

2
G1(w)

1 + r

1− r ∆(w) , (5.33)

where RD(∗) = 2
√
mBmD(∗)/(mB + mD(∗)), r = mD(∗)/mB, and the new kinematical

variable w is defined as

w = vB · vD(∗) =
m2
B +m2

D(∗) − q2

2mBmD(∗)
, (5.34)

with vB and vD(∗) being the four-velocities of the B and D(∗) mesons, respectively. We

approximate the scalar density ∆(w) by a constant value ∆(w) = 0.46 ± 0.02 [7, 17, 31]

and G(w) is parametrized in terms of the normalization G1(1) and the slope ρ2
1 as [74]

G1(w) = G1(1)
[
1− 8ρ2

1 z(w) + (51ρ2
1 − 10) z(w)2 − (252ρ2

1 − 84) z(w)3
]
, (5.35)

with z(w) = (
√
w + 1−

√
2)/(
√
w + 1 +

√
2).

Equipped with the above information, the double differential decay rates for B̄ →
Dlν̄, with l in a given helicity state (λl = ±1/2), can be written as

d2ΓD[λl = −1/2]

dq2d cos θ
=

G2
F |Vcb|2q2

128π3m2
B

(
1− m2

l

q2

)2

|~p| |H0(q2)|2 sin2 θ ,

d2ΓD[λl = +1/2]

dq2d cos θ
=

G2
F |Vcb|2q2

128π3m2
B

(
1− m2

l

q2

)2

|~p| m
2
l

q2
|H0(q2) cos θ −Ht(q

2)|2 ,(5.36)

from which the total decay rate and the various q2-dependent observables can be obtained

via summation over λl and/or integration over cos θ. Owing to its lepton-mass suppression,

the λl = +1/2 helicity amplitude is only relevant for the τ decay mode.
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5.D Formulae for B̄ → D∗lν̄

For the B̄ → D∗ transition, the hadronic matrix elements of the vector and axial-vector

currents are described by four QCD form factors V (q2) and A0,1,2(q2) via

〈D∗(pD∗ , ε∗)|c̄γµb|B̄(pB)〉 =
2iV (q2)

mB +mD∗
εµναβ ε

∗νpαBp
β
D∗ ,

〈D∗(pD∗ , ε∗)|c̄γµγ5b|B̄(pB)〉 = 2mD∗ A0(q2)
ε∗ · q
q2

qµ + (mB +mD∗)A1(q2)

(
ε∗µ −

ε∗ · q
q2

qµ

)
− A2(q2)

ε∗ · q
mB +mD∗

[
(pB + pD∗)µ −

m2
B −m2

D∗

q2
qµ

]
,

(5.37)

from which one can show that, using the equations of motion, the B̄ → D∗ matrix element

for the scalar current vanishes while the pseudoscalar one reduces to

〈D∗(pD∗ , ε∗)|c̄γ5b|B̄(pB)〉 = − qµ
mb +mc

〈D∗(pD∗ , ε∗)|c̄γµγ5b|B̄(pB)〉

= − 2mD∗

mb +mc

A0(q2) ε∗ · q. (5.38)

Contracting the above matrix elements with the W ∗ and D∗ polarization vectors in

eqs. (5.26) and (5.27), we obtain the four non-vanishing helicity amplitudes [5, 34]:

H±±(q2) = (mB +mD∗)A1(q2)∓ 2mB

mB +mD∗
|~p|V (q2) ,

H00(q2) =
1

2mD∗
√
q2

[
(m2

B −m2
D∗ − q2) (mB +mD∗)A1(q2)− 4m2

B|~p|2
mB +mD∗

A2(q2)

]
,

H0t(q
2) =

2mB|~p|√
q2

A0(q2)

(
1−∆l

cb

q2

m2
B

)
, (5.39)

where ∆l
cb, defined by eq. (5.4), accounts for the contribution from the charged scalar.

In the heavy-quark limit for the b and c quarks, the four QCD form factors V (q2)
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and A0,1,2(q2) are related to the universal HQET form factor hA1(w) via [74]

V (q2) =
R1(w)

RD∗
hA1(w) ,

A0(q2) =
R0(w)

RD∗
hA1(w) ,

A1(q2) = RD∗
w + 1

2
hA1(w) ,

A2(q2) =
R2(w)

RD∗
hA1(w) , (5.40)

where the w dependence of hA1(w) and the three ratios R0,1,2(w) reads [74]

hA1(w) = hA1(1) [1− 8ρ2z(w) + (53ρ2 − 15) z(w)2 − (231ρ2 − 91) z(w)3] ,

R0(w) = R0(1)− 0.11(w − 1) + 0.01(w − 1)2 ,

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2 ,

R2(w) = R2(1)− 0.11(w − 1)− 0.06(w − 1)2 . (5.41)

The free parameters ρ2, R1(1) and R2(1) are determined from the well-measured B̄ →
D∗`ν̄ decay distributions [55] (` = e, µ), whereas for the parameter R0(1), that appears

only in the helicity-suppressed amplitude H0t, we have to rely on the HQET prediction

for the linear combination [36],

R3(1) =
R2(1)(1− r) + r [R0(1)(1 + r)− 2]

(1− r)2
= 0.97± 0.10 , (5.42)

which includes the leading-order perturbative (in αs) and power (1/mb,c) corrections to

the heavy-quark limit, plus a conservative 10% uncertainty to account for higher-order

contributions [5].

Finally, the double differential decay rates for B̄ → D∗lν̄, with l in a given helicity

state (λl = ±1/2), can be written as

d2ΓD
∗
[λl = −1/2]

dq2d cos θ
=

G2
F |Vcb|2|~p|q2

256π3m2
B

(
1− m2

l

q2

)2

×
[
(1− cos θ)2 |H++|2 + (1 + cos θ)2 |H−−|2 + 2 sin2 θ |H00|2

]
,

d2ΓD
∗
[λl = +1/2]

dq2d cos θ
=

G2
F |Vcb|2|~p|q2

256π3m2
B

(
1− m2

l

q2

)2
m2
l

q2

×
[
sin2 θ (|H++|2 + |H−−|2) + 2 |H0t −H00 cos θ|2

]
, (5.43)
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which are the starting point for the total decay rate, as well as the additional observables

considered.
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It has been pointed out recently that current low-energy constraints still allow for sizable

flavour-changing decay rates of the 125 GeV boson into leptons, h→ τ` (` = e, µ). In this work

we discuss the role of hadronic tau-lepton decays in probing lepton flavour violating couplings

in the Higgs sector. At low energy, the effective Higgs coupling to gluons induced by heavy

quarks contributes to hadronic tau decays, establishing a direct connection with the relevant

process at the LHC, pp(gg) → h → τ`. Semileptonic transitions like τ → `ππ are sensitive to

flavour-changing scalar couplings while decays such as τ → `η(′) probe pseudoscalar couplings,

thus providing a useful low-energy handle to disentangle possible Higgs flavour violating signals

at the LHC. As part of our analysis, we provide an appropriate description of all the relevant

hadronic matrix elements needed to describe Higgs-mediated τ → `ππ transitions, improving

over previous treatments in the literature.
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6.1 Introduction

With the discovery of a new boson with mass close to 125 GeV, here referred as h(125), a

new era in the understanding of the electroweak symmetry breaking (EWSB) mechanism

has started. Current experimental data already indicate that this boson is related to the

origin of particle masses and its properties are so far in good agreement with those of the

standard model (SM) Higgs boson [1,2]. The spin-parity of the new particle are consistent

with the assignment JP = 0+, other possibilities being strongly disfavoured. Global fits

of the ATLAS, CMS and Tevatron data also find that the couplings of this boson to the

gauge vector bosons (γ, g,W±, Z) and the third family of fermions (t, b, τ) are compatible

with the SM expectation [3–6].

Searches for lepton flavour violating (LFV) Higgs decays at the LHC offer an interest-

ing possibility to test for new physics effects that could have escaped current experimental

low-energy constraints [7]. LFV effects associated with the scalar sector have been studied

considerably in the past [8–17]. The recent discovery of the h(125) boson at the LHC has

naturally caused renewed interest in this possibility [7, 18–23]. In this work we address

several questions related to LFV in the Higgs sector:

• How robust a connection can be made between the LFV Higgs decays and LFV τ

decays?

• What is the role of hadronic τ decays (τ → `ππ, `η(′), . . .) compared to other τ

decays (τ → `γ, . . .) in probing LFV couplings of the Higgs sector?

• What can be said about LFV phenomena within the general two-Higgs-doublet

model based on our current knowledge of the h(125) properties?

Along the way we provide an appropriate treatment of the form factors needed to study

hadronic LFV τ decays. These will be useful for any analysis of LFV τ decays, beyond the

specific framework adopted here. In this work we will not attempt to perform a study of

all the available LFV hadronic decay modes. Indeed, just for semileptonic transitions the

experimental collaborations have considered at the moment a great variety of hadronic

final states τ → `(ππ, πK,KK, ηπ, ηη). Instead, we focus here on τ → `ππ semileptonic

transitions for which a better control of the relevant hadronic matrix elements can be

achieved. Concerning the τ → `P decays, we restrict the discussion to a few modes
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P = π, η, η′ for clarity. The richness of hadronic τ decay modes could certainly be ex-

tremely useful in the future to corroborate any possible LFV signal at the LHC, providing

complementary information to scrutinize its origin.

6.1.1 Motivation

Flavour violating couplings of the Higgs boson to leptons arise in many extensions of the

SM. If the new physics originates at a scale Λ well above the EW scale, then an effective

theory treatment is justifiable. Details of the ultraviolet completion of the SM can then

be encoded in effective operators containing only the SM degrees of freedom and which

can give rise to LFV effects [24, 25]. It is however possible that the new physics (NP)

enters at a scale not much higher than the electroweak scale, so that these new degrees

of freedom cannot be integrated out. One possibility is to consider an extended Higgs

sector with several scalar fields below the TeV scale and non-diagonal Yukawa couplings

in flavour space. Indeed, it is the case that a simple extension of the SM scalar sector by

an additional Higgs doublet, a two-Higgs-doublet model (2HDM), gives rise to flavour-

changing neutral currents (FCNCs) at tree-level in the quark and lepton sectors. Usually

a symmetry principle is assumed that forbids such effects [26,27] and allows to evade the

stringent bounds coming from the Kaon and B-meson precision experiments. While such

an approach is well justified or needed for the quark sector, one can be less restrictive in

the lepton sector, while being consistent with flavour constraints.

The strongest bound on possible LFV Higgs couplings to τ−` (` = e, µ) are currently

obtained from τ → `γ decays. It was first noticed in ref. [7] that present bounds still

allow for very large LFV Higgs decay rates BR(h → τ`) . 10%. It was later shown

in refs. [18, 19] that the LHC prospects in constraining such LFV Higgs couplings are

very promising, even with present accumulated data. Constraining LFV couplings of the

125 GeV Higgs directly at the LHC, or finding additional low-energy handles, becomes

even more relevant when one considers the nature of the bound that can be extracted from

τ → `γ decays. The effective dipole operator (¯̀σµνPL,Rτ)Fµν giving rise to τ → `γ decays

appears at the loop-level and is very sensitive to details of the high energy dynamics. Due

to the strong chirality suppression of the one-loop diagrams, the dominant contribution

to the τ → `γ decay amplitude arises from two-loop diagrams of the Barr-Zee type [28].

Additional scalars or heavy degrees of freedom belonging to the UV completion of the
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theory can cause sizable interfering contributions, making it impossible to extract a model

independent bound on the scalar LFV couplings. This issue is circumvented at the LHC

by searching directly for LFV Higgs decays, the Higgs being produced via its coupling

to V V = W+W−, ZZ in vector-boson fusion and in associated Higgs production with a

vector boson [18], or, relying on its loop-induced coupling to gluons in the gluon fusion

mode [19].

At low energy, semileptonic τ decays like τ → `ππ (ππ = π+π−, π0π0) offer a unique

opportunity to extract a bound on the LFV Higgs couplings which is much less sensitive

to details of the high energy dynamics, thus establishing a model-independent connection

with the search for LFV Higgs decays at the LHC. The same effective coupling of the Higgs

to gluons that would give rise to pp(gg) → h → τ`, also enters in the τ → `ππ mode

though at a much lower energy scale where non-perturbative QCD effects play a major

role, see figure 6.1. Similarly, the semileptonic decays τ → `P (where P is a pseudoscalar

meson) establish a connection with the search for LFV decays of a CP-odd Higgs at the

LHC.

Figure 6.1: Relation between the LHC process pp(gg)→ h→ τµ (left figure) and the semilep-

tonic decay τ → µππ (right figure): the effective Higgs coupling to gluons enters in both processes.

Calculations of τ → `ππ mediated by a Higgs boson with LFV couplings in the lit-

erature have mostly considered the scalar-current associated with the Higgs coupling to

light quarks, thus neglecting the effective coupling of the Higgs to gluons due to interme-

diate heavy quarks (with the exception of ref. [29], in which a more general EFT analysis

including gluon operators is presented). Moreover, a description of the scalar-current

hadronic matrix elements based on leading order predictions of Chiral-Perturbation The-

ory (ChPT) has been used in these works [9, 12, 14, 29]. Such treatment of the hadronic
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matrix elements is not adequate to deal with τ decays, for which the ππ invariant mass

can be as large as mτ −m`. It was pointed out recently in ref. [30], within the context

of R-parity violating supersymmetry, that by using a more appropriate description of the

hadronic matrix elements of the scalar and vector currents, the bounds obtained on the

R-parity-violating couplings improve considerably.

6.1.2 Overview of results

In this work we provide for the first time a complete description of the τ → `ππ mode in

the presence of a Higgs boson with LFV couplings. A detailed discussion of the hadronic

matrix elements involved is given. When relevant we also compare the form factors we

obtain with those of previous work. With these tools in hand, we extract from τ → `ππ

robust model-independent bounds on LFV couplings of the Higgs. The LFV decays

τ → `P and the relevant hadronic matrix elements in this case are also discussed, leading

to bounds on LFV couplings of a CP-odd neutral scalar.

In the context of an extended Higgs sector, we also point out the importance of

performing searches for additional Higgs bosons in the LFV decay modes τ −µ and τ − e
at the LHC. Present data constrain the h(125) coupling to vector bosons to be very close

to the SM value ghV V ' gSM
hV V [1–3]. In general two-Higgs-doublet models, any possible

LFV coupling of the 125 GeV Higgs boson at the end turns out to be suppressed by an

accompanying small or vanishing mixing factor
(
1− (ghV V /g

SM
hV V )2

)1/2
. Additional Higgs

bosons which would play a minor role in the restoration of perturbative unitarity on the

other hand, do not receive this suppression of their LFV couplings. The search for LFV

decays associated to the scalar sector should therefore not be restricted to the 125 GeV

boson.

Our paper is organized as follows: In section 6.2 we describe our framework. In

section 6.3 we provide a detailed discussion of the hadronic form factors relevant for the

description of τ → µππ decays. In section 6.4 we describe the framework used in this

work to motivate the discussion of possible LFV effects due to both CP-even and CP-odd

Higgs bosons. We then consider the semileptonic LFV decay τ → µππ (ππ = π+π−, π0π0)

mediated by a CP-even Higgs boson, we discuss the relevance of this process in connection

to other LFV transitions accessible at B-factories (τ → µγ, 3µ, . . .) as well as for the LHC

(h→ τµ). The phenomenology of a CP-odd Higgs boson is also discussed along the same
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lines. We give our conclusions in section 6.5.

6.2 Framework

We will consider the following phenomenological Lagrangian that describes the fermionic

interactions of a generic extended scalar sector,

L = −mk f̄
k
L f

k
R −

∑
ϕ

Y ϕ
ij

(
f̄ iL f

j
R

)
ϕ+ h.c. , (6.1)

where ϕ runs over the light neutral scalars of the theory, the Yukawa couplings can be

complex in principle and the various physical scalar fields do not need to be CP eigenstates.

A similar Lagrangian has been considered very recently in refs. [7,18] to analyze possible

flavour violating effects of a CP-even Higgs of mass 125 GeV. In the SM there is only one

physical CP-even scalar field, h, with Yukawa couplings given by Y h
ij = (mi/v)δij. We

will parametrize the deviations from the SM diagonal couplings as Y h
ii = yhi (mi/v) for

convenience in the following. Since here we are not interested in CP-violating effects we

will assume that CP is a good symmetry of the scalar interactions. Physical scalars are

then CP-eigenstates and the couplings Y ϕ
ij are real for a CP-even Higgs, ϕ ≡ h, or pure

imaginary for a CP-odd Higgs, ϕ ≡ A.

In section 6.4.1 we will discuss how the non-standard Higgs fermion couplings of

eq. (6.1) arise within the framework of the general 2HDM, or from higher dimensional

gauge invariant operators. There we will also discuss in detail the phenomenological

impact of LFV couplings of the CP-even and CP-odd scalars. Here, we outline in general

terms the low-energy effects of the non-standard couplings of eq. (6.1) and motivate the

analysis of hadronic matrix elements to be discussed in section 6.3.

At low energy, where the Higgs fields can be integrated out, the fermion couplings of

eq. (6.1) generate a set of LFV operators, as depicted by representative diagrams in fig-

ure 6.2. The diagram to the left generates at one-loop the dipole operator (¯̀σµνPL,Rτ)Fµν .

Additional two-loop contributions to this operator are not shown in figure 6.2 but will be

included in the calculation. The tree-level diagram in the middle generates a four-fermion

operator with scalar or pseudoscalar couplings to the light quarks, ¯̀(1± γ5)τ · q̄{1, γ5}q.
Finally, the diagram to the right, through heavy-quarks in the loop generates gluonic

operators of the type ¯̀(1± γ5)τ ·GG and ¯̀(1± γ5)τ ·GG̃.



111 LFV in the Higgs sector and the role of hadronic τ -lepton decays

Figure 6.2: Integrating out the Higgs field(s) generates at low-energy several LFV operator

structures: dipole (left diagram), scalar four-fermion (center diagram), gluon (right diagram).

When considering hadronic LFV decays such as τ → `ππ or τ → `P (P = π, η, η′)

one needs the matrix elements of the quark-gluon operators in the hadronic states. In

particular, P-even operators will mediate the τ → `ππ decay and one needs to know the

relevant two-pion form factors. The dipole operator requires the vector form factor related

to 〈ππ|q̄γµq|0〉 (photon converting in two pions). The scalar operator requires the scalar

form factors related to 〈ππ|q̄q|0〉. The gluon operator requires 〈ππ|GG|0〉, which we will

reduce to a combination of the scalar form factors and the two-pion matrix element of

the trace of the energy-momentum tensor 〈ππ|θµµ|0〉 via the trace anomaly relation:

θµµ = −9
αs
8π
Ga
µνG

µν
a +

∑
q=u,d,s

mq q̄q . (6.2)

We do not discuss in this work Z-mediated contributions to semileptonic τ decays. In gen-

eral, these are expected to be much smaller than the photon-mediated contribution due to

the O(q2/M2
Z) suppression factor in the amplitude coming from the Z-propagator, where

q2 is the invariant mass squared of the ππ system. In some new physics scenarios how-

ever, the Z-mediated contribution can be relevant and should be taken into account [31].

The Z-mediated contribution to τ → `ππ decays would involve the vector form factor

related to 〈ππ|q̄γµq|0〉, the same as for the photon mediated contribution described in

this work. The Z-mediated contribution to τ → `P decays, on the other hand, would

involve the hadronic matrix elements for the axial current q̄γµγ5q. The latter are related

to pseudoscalar q̄γ5q and gluonic GG̃ hadronic matrix elements due to the axial anomaly

relation of QCD.

To impose robust bounds on LFV Higgs couplings from τ → `ππ, we need to know
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the hadronic matrix elements with a good accuracy. With this motivation in mind, we

now discuss in detail the derivation of the two-pion matrix elements.

6.3 Hadronic form factors for τ → `ππ decays

The dipole contribution to the τ → `ππ decay requires the matrix element〈
π+(pπ+)π−(pπ−)

∣∣1
2
(ūγαu− d̄γαd)

∣∣0〉 ≡ FV (s)(pπ+ − pπ−)α, (6.3)

with FV (s) the pion vector form factor. As for the scalar currents and the trace of the

energy-momentum tensor θµµ, the hadronic matrix elements are given by〈
π+(pπ+)π−(pπ−)

∣∣muūu+mdd̄d
∣∣0〉 ≡ Γπ(s) ,〈

π+(pπ+)π−(pπ−)
∣∣mss̄s

∣∣0〉 ≡ ∆π(s) ,〈
π+(pπ+)π−(pπ−)

∣∣θµµ∣∣0〉 ≡ θπ(s) , (6.4)

with Γπ(s) and ∆π(s) the pion scalar form factors and θπ(s) the form factor related to

θµµ. Here s is the invariant mass squared of the pion pair: s = (pπ+ + pπ−)2 = (pτ − p`)2.

In what follows, we determine the form factors by matching a dispersive parameter-

ization (that uses experimental data) with both the low-energy form dictated by chiral

symmetry and the asymptotic behavior dictated by perturbative QCD. Numerical tables

with our results are available upon request.

6.3.1 Determination of the ππ vector form factor

The vector form factor FV (s) has been measured both directly from e+e− → π+π− [32–36]

and via an isospin rotation from τ → π−π0ντ [37, 38]. It has also been determined by

several theoretical studies [39–54,56].

In the spirit of refs. [53, 57–63] we determine the vector form factor phenomenologi-

cally by fitting the invariant mass distribution of τ → π−π0ντ decays using a theoretically

well-motivated parametrization. To this end, we adapt the dispersive parametrizations

introduced in refs. [53,61] mimicking what has been done for Kπ in refs. [58–60,64]. Note

that for our purposes, the isospin-breaking corrections can be neglected. A dispersion re-

lation with three subtractions at s = 0 is written for ln(FV (s)). This leads to the following
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representation for FV (s) [53, 61]

FV (s) = exp

[
λ′V

s

M2
π

+
1

2

(
λ′′V − λ′2V

)( s

M2
π

)2

+
s3

π

∫ ∞
4M2

π

ds′

s′3
φV (s′)

(s′ − s− iε)

]
. (6.5)

To fix one subtraction constant, use has been made of FV (s = 0) ≡ 1 required by gauge

invariance. λ′V and λ′′V are the two other subtraction constants corresponding to the slope

and the curvature of the form factor. They are determined from a fit to the data. φV (s)

represents the phase of the form factor. In the elastic region
(
s . 1 GeV2

)
, according to

Watson theorem [65] the phase of the form factor φV (s) is equal to the P wave I = 1 ππ

scattering phase shift δ1
1(s) which is known with an excellent precision from the solutions

of Roy-Steiner equations [55,66]. However for s > 1 GeV2 other channels open (4π,KK̄)

and φV (s) is not known. Taking advantage of the precise measurements of the invariant

mass distribution of τ → π−π0ντ decays [38], the phase of the form factor can be modeled

in terms of the three resonances found in this decay region and directly determined from

the data.

We write tanφV (s) = ImF̃V (s)/ReF̃V (s) in terms of a model for the form factor F̃V (s)

that includes three resonances ρ(770), ρ′(1465) and ρ′′(1700) with two mixing parameters

α′ and α′′ measuring the relative weight between the resonances and φ′ and φ′′ accounting

for the corresponding interferences, see ref. [61]:

F̃V (s) =
M̃2

ρ +
(
α′eiφ

′
+ α′′eiφ

′′)
s

M̃2
ρ − s+ κρ(s) Re

[
Aπ(s) + 1

2
AK(s)

]
− iM̃ρΓ̃ρ(s)

− α′eiφ
′
s

D(M̃ρ′ , Γ̃ρ′)
− α′′eiφ

′′
s

D(M̃ρ′′ , Γ̃ρ′′)
,

(6.6)

with

D(M̃R, Γ̃R) = M̃2
R − s+ κR(s)ReAπ(s)− iM̃RΓ̃R(s) . (6.7)

In this equation M̃R and Γ̃R are model parameters. Γ̃R and κR are given by :

Γ̃R(s) = Γ̃R
s

M̃2
R

(σ3
π(s) + 1/2 σ3

K(s))(
σ3
π(M̃2

R) + 1/2 σ3
K(M̃2

R)
) , κR(s) =

Γ̃R

M̃R

s

π
(
σ3
π(M̃2

R) + 1/2 σ3
K(M̃2

R)
) ,

(6.8)

if R ≡ ρ and

Γ̃R(s) = Γ̃R
s

M̃2
R

σ3
π(s)

σ3
π(M̃2

R)
, κR(s) =

Γ̃R

M̃R

s

πσ3
π(M̃2

R)
, (6.9)
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otherwise. This parametrization is guided by Resonance Chiral Theory (RChT) [67–69].

While RChT allows one to compute the decay width Γ̃R and κR for the ρ resonance,

eq. (6.8), taking into account the ππ and KK̄ intermediate states [49], this is not the case

anymore for ρ′ and ρ′′. Hence in eq. (6.9), generic Γ̃R and κR as expected for a vector

resonance decaying only in ππ has been assumed1 [57]. In eq. (6.6), Aπ(s) and AK(s) are

the ππ and KK̄ loop functions in ChPT [49,61] and σπ and σK represents the velocity of

the two particles in the centre-of-mass frame:

σπ(s) ≡
√

1− 4M2
π/s θ

(
s− 4M2

π

)
,

σK(s) ≡
√

1− 4M2
K/s θ

(
s− 4M2

K

)
. (6.10)

Here θ denotes the Heaviside step function θ(x) = 1 for x > 0, being zero otherwise. Note

that the parameter κR is defined such as iκR(s) ImAπ(s) = −iM̃RΓ̃R(s) with ImAπ(s)→
Im[Aπ(s) + 1/2Aπ(s)] for ρ. We emphasize here that M̃R and Γ̃R are model parameters

and do not correspond to the physical resonance mass and width. To find them one has

to find the pole of each term of eq. (6.6) or equivalently the zeros of their denominator

eq. (6.7) on the second Riemman sheet.

The model used to determine φV , eq. (6.6), inspired by the Gounaris-Sakurai parametriza-

tion [40] is only valid in the τ decay region and is therefore only used in eq. (6.5)

for s ≤ scut ∼ m2
τ . For the high-energy region of the dispersive integral eq. (6.5)

(s > scut ∼ m2
τ ) the phase is unknown and following refs. [60, 64, 70] we take a con-

servative interval between 0 and 2π centered at the asymptotic value of the phase of the

form factor which is π. Indeed perturbative QCD dictates the asymptotic behavior of

the form factor: it should vanish as O(1/s) up to logarithmic corrections [71] for large

values of s implying that its phase should asymptotically reach π. The use of a three-time

subtracted dispersion relation reduces the impact of our ignorance of the phase at rela-

tive high energies in eq. (6.5). However, in order for the form factor to have the correct

asymptotic behavior two sum rules have to be satisfied:

λ′ sr
V =

m2
π

π

∫ ∞
4M2

π

ds′
φV (s′)

s′2
, (6.11)

1The assumption that ρ′ and ρ′′ only decay in ππ has been made. One could improve the model by

considering other decay modes as it has been done for Kπ in ref. [64].
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(λ′′V − λ′2V )sr =
2m4

π

π

∫ ∞
4M2

π

ds′
φV (s′)

s′3
≡ αsr

2v . (6.12)

They are used to constrain the fit to the data as done for Kπ in refs. [60, 64].

Twelve parameters entering FV (s), eq. (6.5) are therefore determined by a fit to the

data:

• λ′V and λ′′V , the two subtraction constants

• M̃ρ and Γρ, M̃ρ′ and Γρ′ , M̃ρ′′ and Γρ′′ the mass and decay width of ρ(770), ρ′(1465)

and ρ′′(1700) respectively used to model the phase

• α′, α′′ and their phases φ′, φ′′ the mixing parameters between the resonances

The following quantity is minimized :

χ2 =
62∑
i=1

(
(|FV (s)|2)

theo
i − (|FV (s)|2)

exp
i

σ(|FV (s)|2)expi

)2

+

(
λ′V − λ′ sr

V

σλ′ sr
V

)2

+

(
α2v − αsr

2v

σαsr
2v

)2

, (6.13)

with (|FV (s)|2)
exp

and its uncertainty σ(|FV (s)|2)exp, the modulus squared of the vector

form factor experimentally extracted from the measurement of the τ− → π−π0ντ invariant

decay distribution [38] and FV (s)theo the form factor parametrized in eq. (6.5). In addition

to the first term also minimized in previous analyses [38, 61], we impose the constraints

given by the two sum rules eqs. (6.11) and (6.12)2 to guarantee the correct asymptotic

behaviour of the form factor. This allows us to have a description for the form factor,

eq. (6.5) that not only fulfills the properties of analyticity and unitarity but is also in

agreement with perturbative QCD. This is not the case for the dispersive representations

of refs. [53,61] and for the parametrization used by Belle collaboration to fit their data [38].

The result of the fit is given in table 6.1 and shown in figure 6.3 together with the Belle

data. As can been seen from the figure and the χ2, the agreement with data is excellent.

Note that we have presented here a description for the form factor that represents the

state-of-the-art, in that it relies on the fewest model assumptions and is valid on a large

2σλ′ sr
V

and σαsr
2v

are given by the 2π band taken for the high energy phase.
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λ′V × 103 36.7± 0.2

λ′′V × 103 3.12± 0.04

M̃ρ[MeV] 833.9± 0.6

Γ̃ρ[MeV] 198± 1

M̃ρ′ [MeV] 1497± 7

Γ̃ρ′ [MeV] 785± 51

M̃ρ′′ [MeV] 1685± 30

Γ̃ρ′′ [MeV] 800± 31

α′ 0.173± 0.009

φ′ −0.98± 0.11

α′′ 0.23± 0.01

φ′′ 2.20± 0.05

χ2/d.o.f 38/52

Table 6.1: Results for the ππ vector form factor parameters from a fit to τ → ππντ

data [38]. Note that M̃R and Γ̃R are model parameters and do not correspond to the

physical resonance mass and width.

energy range. For the purposes of bounding LFV Higgs couplings, a parametrization a la

Gounaris-Sakurai that describes well the data as the one used in ref. [38] could have been

sufficient.

6.3.2 Determination of Γπ(s), ∆π(s) and θπ(s)

The scalar form factors and θπ(s) cannot be determined so directly and unambiguously

from the data. However, they can be reconstructed from dispersive theory with a matching

at low-energy to ChPT as pioneered in ref. [72]. As we have seen, elastic unitarity only

holds at low-energy for s� 1 GeV2 and in the scalar case it is very well known that the

elastic approximation breaks down for the ππ S-wave already at the KK̄ threshold due

to the strong inelastic coupling of two S-wave pions to KK̄ in the region of f0(980). In

order to describe the scalar form factors in the kinematical region needed for τ → `ππ, one

has to solve a two-channel Muskhelishvili-Omnès problem following refs. [72,74] including

ππ and KK̄ scattering. As s increases, a new two-body channel opens: ηη. At some
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Figure 6.3: Fit result for the modulus squared of the pion vector form factor. The data in

green are from Belle Collaboration [38]. The red line represents the result of the fit presented in

table 6.1.

point, the 4π-channel will also become important. As discussed in refs. [74, 75], below√
s ∼ 1.4 GeV the inelasticity is found to be saturated to a good approximation by a

single channel KK̄.

The Muskhelishvili-Omnès problem

We briefly recall below the procedure presented in ref. [72] to solve a two-channel Muskhelishvili-

Omnès (MO) problem. The form factors Fi(s) (F1 ≡ Γπ,∆π, or θπ and
√

3/2F2 ≡ ΓK ,∆K ,

or θK) are analytic functions everywhere in the complex plane except for a right-hand cut.

Under the assumptions discussed above, the discontinuity of the form factors along the

cut is determined by the two-channel unitarity condition:

ImFn(s) =
2∑

m=1

T ∗nm(s)σm(s)Fm(s) , (6.14)

where Tmn represent the T matrix elements which describe the scattering among the

relevant channels (n = ππ,KK̄ with ` = 0 and I = 0). The general solution to the
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condition (6.14) that does not grow faster than a power of s at infinity can be written

as [72,73]: (
Fπ(s)

2√
3
FK(s)

)
=

(
C1(s) D1(s)

C2(s) D2(s)

)(
PF (s)

QF (s)

)
, (6.15)

where PF (s) and QF (s) are polynomials and the “canonical” solutions Cn(s), Dn(s) gen-

eralize the Omnès factor appearing in the solution of the one-channel unitarity condi-

tion [76].

Provided that the S-matrix satisfies certain asymptotic conditions at large s (namely

that S12 → 0 and Arg(det(S))→ 4π), the solutions Cn(s) and Dn(s), generically denoted

by Xn(s) behave as 1/s for |s| → ∞. Therefore, the Xn(s) satisfy unsubtracted dispersion

relations, which combined with the unitarity condition (6.14) lead to a set of coupled

Muskhelishvili-Omnès singular integral equations [73,76]

Xn(s) =
2∑

m=1

1

π

∫ ∞
4M2

π

dt

t− sT
∗
nm(t)σm(t)Xm(t) , X(s) = C(s), D(s) . (6.16)

So in order to find a solution to the MO problem described above, we need to specify

an appropriate T matrix. The T matrix is related to the S matrix by

Smn = δmn + 2i
√
σmσn Tmn , (6.17)

where the kinematical factor σm(s) represents the velocity of the two particles in the

centre-of-mass frame defined in eq. (6.10) with σ1(s) = σπ(s) and σ2(s) = σK(s). In turn,

the ` = 0, I = 0 projection of the S matrix is parameterized as follows

S =

(
cosγ e2iδπ i sinγ ei(δπ+δK)

i sinγ ei(δπ+δK) cosγ e2iδK

)
, (6.18)

and therefore we need three input functions, the inelasticity η0
0 ≡ cos γ, the ππ S-wave

phase shift δπ(s) and the KK̄ phase shift δK(s). Up to some energy, these inputs are

determined by solving the Roy-Steiner equations for ππ [55, 66, 77, 78] and Kπ scatter-

ing [79]. Since eq. (6.14) is a reasonable approximation to the exact discontinuity only in

the energy region below some cut scut . m2
τ , we use the following strategy: for s < scut we

use the inputs for the two phase shifts δπ(s) and δK(s) and the inelasticity η0
0(s) coming
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from a recent update of the solutions of Roy-Steiner equations [79] 3 provided by B. Mous-

sallam. For s > scut, we drive the T matrix to zero consistently with unitarity, by forcing

the three input functions to the asymptotic values δπ = 2π, δK = 0, η0
0 = 1, which ensure

that the canonical solutions to the MO problem fall off as 1/s [72,74,80]. We have varied

scut in the range (1.4 GeV)2 − (1.8 GeV)2, and find that the form factors are insensitive

to scut for
√
s < 1.4 GeV.

Following ref. [72], we generate a family of solutions {X1(s), X2(s)} of the unitary

condition by iteration. We start with
{
X

(1)
1 (s) = Ωπ(s), X

(1)
2 = λ ΩK(s)

}
where λ is a

real parameter and Ωπ,K(s) is the Omnès function [76]

Ωπ,K(s) ≡ exp

[
s

π

∫ ∞
4M2

π

dt

t

δπ,K(t)

(t− s)

]
, (6.19)

solution of the one-channel unitary condition. We compute the iteration (N + 1) from

iteration (N) using eq. (6.14) for the imaginary part and eq. (6.16) for the real part. The

problem admits two independent solutions [73] that are linear combinations of the family

of solutions labelled by the parameter λ we have found. They are chosen such that [72]

Cn(s)|s=0 = δn1, Dn(s)|s=0 = δn2 . (6.20)

Fixing the subtraction constants with chiral symmetry

The form factors Fπ,K(s) (with F ∈ {Γ,∆, θ}) are obtained from (6.15) once the polyno-

mials PF (s) and QF (s) are given. The polynomials can be determined by matching the

form factors to their ChPT expressions at low energy [72], as summarized below.

For Γπ,K(s) and ∆π,K(s), the requirement that the form factors behave as O(1/s)

for large values of s fixes the polynomials to be constants. The polynomials are then

determined by the values of the form factors at s = 0, which are related to the response of

the pseudoscalar masses to changes in the quark masses (Feynman-Hellmann theorem):

ΓP (0) =

(
mu

∂

∂mu

+md
∂

∂md

)
M2

P , ∆P (0) =

(
ms

∂

∂ms

)
M2

P . (6.21)

3The input values Mπ = 139.57018 MeV and MK = 495.7 MeV have been used to generate these

inputs.
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The above relations imply [72]:

PΓ(s) = Γπ(0) = M2
π + · · · (6.22)

QΓ(s) =
2√
3

ΓK(0) =
1√
3
M2

π + · · · (6.23)

P∆(s) = ∆π(0) = 0 + · · · (6.24)

Q∆(s) =
2√
3

∆K(0) =
2√
3

(
M2

K −
1

2
M2

π

)
+ · · · , (6.25)

where in the second equality above we have given the leading chiral order result and

the dots represent higher order corrections. For the pion form factors, we neglect the

higher order chiral corrections expected to be of order M2
π/(4πFπ)2. However, for the

kaon form factors the chiral corrections are not a priori negligible. They can be cal-

culated within SU(3) ChPT in terms of low-energy constants estimated from lattice

QCD [81]. These corrections have also been recently evaluated from lattice data in

the framework of Resumed ChPT [82]. We take the ranges ΓK(0) = (0.5 ± 0.1) M2
π ,

∆K(0) = 1+0.15
−0.05 (M2

K − 1/2M2
π) [30] that encompass the recent estimates.

For θπ,K(s) requiring that Pθ(s) and Qθ(s) be constant (to enforce θπ,K ∼ O(1/s)

asymptotically) is not consistent with the behavior in the chiral regime [72]. This is a

signal that the unsubtracted dispersion relation for these form factors is not saturated by

the two states considered in the analysis. Relaxing the requirement on the asymptotic

behavior and matching to ChPT expressions implies

Pθ(s) = 2M2
π +

(
θ̇π − 2M2

πĊ1 −
4M2

K√
3
Ḋ1

)
s (6.26)

Qθ(s) =
4√
3
M2

K +
2√
3

(
θ̇K −

√
3M2

πĊ2 − 2M2
KḊ2

)
s , (6.27)

where ḟ ≡ (df/ds)(s = 0). θ̇π = 1 up to small chiral SU(2) corrections. At leading chiral

order θ̇K = 1. An alternative procedure to estimate θ̇K , taking into account chiral SU(3)

corrections, has been given in ref. [72]. The approach is based on writing an unsubtracted

dispersion relation for θK(s) − θπ(s): this leads to θ̇K = 1.15 − 1.18, depending on the

value of scut adopted. Based on this, in what follows we use the range θ̇K = 1.15± 0.1.
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Figure 6.4: The form factors Γπ(s), ∆π(s) and θπ(s) defined in eq. (6.4) as determined by

solving the two-channel unitarity condition and then by matching to ChPT , see text for details.

The black solid line represents their real part and the red dashed-dotted red line stands for

their imaginary part. This plot is generated using scut = (1.4 GeV)2 and central values for the

matching coefficients.

Results

Using the two sets of solutions {C1(s), C2(s)} and {D1(s), D2(s)} and the polynomials

determined in the last subsection we can construct the three form factors Γπ(s), ∆π(s) and

θπ(s) from eq. (6.15). They are shown in figure 6.4 using scut = (1.4 GeV)2 and central

values for the matching coefficients. For
√
s < 1.4 GeV, the form factor are relatively

insensitive to the choice of scut: the dependence on scut induces variations of the τ → `ππ
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phase space integrals at the < 15% level. Likewise, varying the matching polynomials

in the ranges specified in the previous subsection leads to changes in the phase space

integrals at the level of 10%.

Note that a similar approach to describe Γπ(s), ∆π(s) to study lepton flavour vio-

lating effects within R-parity violating supersymmetry has been implemented in ref. [30]

improving the hadronic treatment used in ref. [14]. Compared to previous work, we in-

clude the effective Higgs-gluon interaction induced by the Higgs coupling to heavy quarks.

The influence of heavy quarks is not small and provides in general the dominant contri-

bution to low-energy hadronic transitions mediated by scalar bosons associated to the

mechanism of EWSB, the Higgs coupling to light quarks being mass suppressed. This

well known fact has been discussed for example within the context of Higgs-nucleons in-

teractions [83] and for the decay of a very light Higgs into two pions, H → ππ [72]. Here

we provide for the first time an adequate description of this effect for Higgs mediated

semileptonic τ → `ππ decays.

6.4 Phenomenology

Having developed the necessary form factors to describe Higgs mediated LFV τ → `ππ

decays in the previous section, we proceed to analyze the role of semileptonic τ decays

to probe for LFV effects in the scalar sector. We discuss the robustness of the bounds

obtained compared with previous treatments in the literature that rely on LO-ChPT

predictions. We also analyze the connection between semileptonic τ decays and other LFV

τ decays as well as with the search for LFV Higgs decays at the LHC. The phenomenology

of a CP-odd Higgs boson with LFV couplings is discussed with a similar spirit. A general

two-Higgs-doublet model is introduced to motivate the discussion of LFV effects in the

scalar sector, however all the results in this section are expressed using the Lagrangian in

eq. (6.1) and can therefore be interpreted within other new physics scenarios.

6.4.1 Phenomenological analysis within the 2HDM

Two-Higgs-doublet models (2HDM) provide a specific gauge-invariant framework where

lepton flavour violating effects encoded in eq. (6.1) can occur, due to both CP-even and

CP-odd Higgs bosons at tree-level. Comparing the 2HDM Lagrangian presented in chap-
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ter 3 with the generic Lagrangian presented in eq. (6.1) we derive the following matching

for the CP-conserving limit,

Y h
ij =

(Mf )ij
v

cos α̃ +
(Πf )ij
v

sin α̃ ,

Y H
ij = −(Mf )ij

v
sin α̃ +

(Πf )ij
v

cos α̃ ,

Y A
ij = ±i (Πf )ij

v
. (6.28)

The plus sign in the expression for Y A
ij is for f = d, ` while the minus sign is for f = u. In

this limit ghV V = cos α̃ gSM
hV V , gHV V = − sin α̃ gSM

hV V and gAV V = 0. We can see that certain

relations between the LFV scalar couplings arise in this case. The fermionic couplings

of the lightest CP-even Higgs are flavour conserving in the limit ghV V = gSM
hV V , and, in

general these are suppressed by the factor sin α̃. Flavour-changing couplings of the CP-

odd Higgs on the other hand do not receive such suppression. Considering the 2HDM

to be a low-energy effective theory, the effect of heavy degrees of freedom contained in a

UV completion will in general introduce corrections to eq. (6.28), spoiling these specific

relations. The effective Lagrangian of dimension-six for example contains the following

terms that modify the Yukawa structure of the 2HDM,

Ld=6 ⊃
∑
p,r,s

1

Λ2

(
Cprs
` Φ†pΦr (L̄L `R Φs) + h.c.

)
+ · · · , (6.29)

where Λ represents the scale of new physics (beyond the 2HDM) and Cprs
` are arbitrary

coefficients with the role of dimensionless low-energy constants that encode the high-

energy dynamics. Corrections of the type (6.29) are in general very small since these are

suppressed by inverse powers of the high energy scale Λ. For the LFV couplings however

these corrections can become relevant since it is possible that these couplings vanish or

are very small in the low-energy theory.

6.4.2 A CP-even Higgs with LFV couplings

The phenomenology of a CP-even Higgs at 125 GeV with LFV couplings has been analyzed

recently in refs. [7,18,19]. It has been noticed that large branching fractions for the decay

h→ τµ are possible (BR(h→ τµ) . 0.1) while being compatible with present low-energy
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constraints from τ → µγ and τ → µµµ. Higgs decays into a τ − e pair can also have large

branching fractions consistent with low-energy flavour constraints while h→ eµ is already

strongly bounded by µ→ eγ [7]. In ref. [19] it has been estimated that the LHC can set

an upper bound BR(h → τµ) . 4.5 × 10−3 with 20 fb−1 of data with Higgs production

occurring mainly through the dominant gluon fusion mode.

The strongest low-energy constraint on possible τ -` LFV couplings of the 125 GeV

Higgs is obtained from the process τ → `γ. This decay occurs at the loop-level and

receives dominant contributions from two-loop diagrams of the Barr-Zee type since the

one-loop diagrams are chirality suppressed [28]. The LFV radiative τ decay however is

not directly related to the process pp(gg) → h → τ` observable at the LHC. Indeed,

heavy degrees of freedom belonging to the UV completion of the theory or additional

scalars from an extended Higgs sector could contribute also to the effective dipole opera-

tor (¯̀σµνPL,Rτ)Fµν , making the bound extracted very model dependent. For example, in

the simple scenario of a 2HDM, the additional neutral Higgs bosons A and H generate

interfering contributions through diagrams similar to the ones involving h. These effects

cannot be neglected in general [16,28].

It is therefore important to consider processes that can give a more reliable bound on

the LFV couplings of the 125 GeV Higgs and, also, which are more directly connected with

the observables measured at the LHC. Besides light quark exchange, the same effective

vertex of the Higgs to gluons responsible for the production of the Higgs via gluon fusion

at the LHC, would also contribute to the semileptonic decay τ → `ππ (ππ = π+π−, π0π0),

see figure 6.1. The energy scale of these processes however are completely different and in

opposite domains of QCD: the LHC process gg → h occurs in the perturbative domain of

QCD, while the τ decays takes place at an intermediate scale where non-perturbative QCD

effects play a crucial role (one has to consider the matrix element 〈ππ|Ga
µνG

µν
a |0〉). At the

energy scale relevant for τ decays, the effective Lagrangian describing the interactions of

the Higgs with light-quarks and gluons is given by [83]

Lheff ' −
h

v

( ∑
q=u,d,s

yhq mq q̄ q −
∑
q=c,b,t

αs
12π

yhq G
a
µνG

µν
a

)
. (6.30)

Neglecting m`, the differential decay width for the decay τ → `ππ mediated by the CP-

even Higgs h can be written in terms of the two-pion invariant mass
√
s ( s = (pπ+ +
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pπ−)2 = (pτ − p`)2) as

dΓ(τ → `π+π−)Higgs

d
√
s

=
(m2

τ − s)2 (s− 4m2
π)

1/2

256π3m3
τ

· |Y
h
τ`|2 + |Y h

`τ |2
M4

h v
2

×
∣∣∣K∆∆π(s) +KΓΓπ(s) +Kθθπ(s)

∣∣∣2 ,
dΓ(τ → `π0π0)Higgs

d
√
s

=
1

2

dΓ(τ → µπ+π−)Higgs

d
√
s

, (6.31)

where

Kθ =
2

27

∑
q=c,b,t

yhq , K∆ = yhs −Kθ , KΓ =
muy

h
u +mdy

h
d

mu +md

−Kθ . (6.32)

The form factors Γπ(s), ∆π(s), and θπ(s) parametrize the hadronic matrix elements of

the scalar-currents and the gluonic operators (see eqs. (6.2) and (6.4)).

At the loop-level, a LFV Higgs also generates an effective dipole operator

Leff = cLQLγ + cRQRγ + h.c. , (6.33)

with

QLγ,Rγ =
e

8π2
mτ

(
¯̀σαβ PL,R τ

)
Fαβ . (6.34)

For the evaluation of the Wilson coefficients cL,R we consider one-and two-loop contribu-

tions calculated in ref. [28] and recently discussed in ref. [18]. The effective dipole operator

gives rise to τ → `π+π− via photon exchange, the associated differential decay width is

given by (neglecting small lepton mass effects)

dΓ(τ → `π+π−)photon

d
√
s

=
α2(|cL|2 + |cR|2)

768π5mτ

· (s− 4m2
π)3/2 (m2

τ − s)2 (s+ 2m2
τ ) |FV (s)|2

s2
,

dΓ(τ → `π0π0)photon

d
√
s

= 0 , (6.35)

where FV (s) is the pion vector form factor defined in eq. (6.3).

The Higgs (eq. (6.31)) and photon exchange (eq. (6.35)) contributions do not interfere

so that Γtotal = ΓHiggs + Γphoton. While the τ → `π+π− channel can be mediated by pho-

ton exchange, the τ → `π0π0 mode does not receive any contributions from intermediate

photons due to the Bose statistics of the hadronic final state. The τ → µπ0π0 decays there-

fore do not receive any contributions from the effective dipole operator (¯̀σµνPL,Rτ)Fµν
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Figure 6.5: τ → µπ+π− differential decay rate vs the di-pion invariant mass
√
s: dipole

contribution (thick solid orange line), Higgs-mediated contribution (dashed blue line), and total

rate (thin solid red line). The diagonal couplings of the Higgs are fixed to their SM values.

and isolates the CP-even Higgs exchange contribution (a CP-odd Higgs cannot mediate

τ → µππ decays due to spin-parity conservation).

In figure. 6.5 we plot the τ → µπ+π− differential decay rate in the di-pion invariant

mass
√
s, using the benchmark input values Mh = 125 GeV, yhf = 1, and |Y h

τ`|2 + |Y h
`τ |2 =

1. The dipole contribution is characterized by the ρ resonance peak, while the Higgs-

mediated contribution (dominated by ∆π(s) and θπ(s)) is characterized by the sharp

f0(980) peak. Clearly, a measurement of the spectrum would greatly help disentangling

the underlying LFV mechanism.

The branching fraction for τ → µπ+π− is shown in figure 6.6 (left-panel) as a function

of the combination of LFV couplings
√
|Y h
τµ|2 + |Y h

µτ |2, the mass of the Higgs is fixed at

Mh = 125 GeV and the diagonal fermionic Higgs couplings are taken to be SM-like

(yhf = 1). We use here the form factors determined in section 6.3. The short-dashed

(blue) curve shows the Higgs mediated contribution eq. (6.31) while the long-dashed

(orange) curve shows the photon mediated one eq. (6.35). The total branching fraction is

shown as a continuous (red) line. In figure 6.6 (right-panel) we compare our prediction for

the Higgs mediated contribution to the one usually considered in the literature [9,12,14],

which is based on leading order ChPT predictions for Γπ(s), see section 6.4.2 for a detailed
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Figure 6.6: Left-plot: Branching fraction for τ → µπ+π− as a function of
√
|Y h
µτ |2 + |Y h

τµ|2
for Mh = 125 GeV and SM-like diagonal couplings (continuous red line). The effective dipole

contribution is shown in orange (long-dashed) while the Higgs exchange contribution is shown

in blue (short-dashed). The present experimental upper bound is shown in green (horizontal

dashed line). Right-plot: Higgs mediated contribution to the branching ratio considering: (I)

our prediction for the form factors {Γπ(s),∆π(s), θπ(s)} using ChPT and dispersion relations,

(II) estimate usually found in the literature considering only the scalar form factor Γπ(s) in

LO-ChPT.

discussion.

In table 6.2 we show the bounds that different LFV τ decays put on the combination

of LFV couplings
√
|Y h
µτ |2 + |Y h

τµ|2, assuming SM-like diagonal Yukawa couplings (yhf = 1).

Similar bounds for τ − e transitions are shown in table 6.3. The branching fraction for

τ → µρ is obtained by a cut on the invariant mass of the pair of charged pions (π+π−),

587 MeV <
√
s < 962 MeV [86]. The processes τ → µγ and τ → 3µ receive the

dominant contribution from two-loop diagrams of the Barr-Zee type [28]. We find our

results for these processes to be in good agreement with those of ref. [18]. Even though

the experimental limits for τ → µγ and τ → 3µ are very similar, the extracted bound

from τ → 3µ is weaker by an order of magnitude mainly due to the additional factor of

αem.

The 90% CL current upper bounds on BR(τ → `π+π−) set by the Belle collaboration

are at the 10−8 level using 854 fb−1 of collected data [87]. While weaker by one order
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Process (BR× 108) 90% CL
√
|Y h
µτ |2 + |Y h

τµ|2 Operator(s)

τ → µγ < 4.4 [89] < 0.016 Dipole

τ → µµµ < 2.1 [90] < 0.24 Dipole

τ → µπ+π− < 2.1 [87] < 0.13 Scalar, Gluon, Dipole

τ → µρ < 1.2 [86] < 0.13 Scalar, Gluon, Dipole

τ → µπ0π0 < 1.4× 103 [88] < 6.3 Scalar, Gluon

Table 6.2: Current experimental upper bounds on the different processes considered as well as

the bounds obtained on
√
|Y h
µτ |2 + |Y h

τµ|2 for a CP-even Higgs at 125 GeV and SM-like diagonal

couplings yhf = 1. The last column indicates the dominant operators contributing to each process.

of magnitude compared to τ → `γ, the bounds from τ → `ππ are quite less sensitive

to the UV detail of the theory, and thus allow one to probe more directly the Higgs

LFV couplings. We observe that the Belle and BaBar collaborations have not presented

results for the τ → `π0π0 mode. The current upper limit in this channel was set by the

CLEO collaboration with 4.68 fb−1 of collected data, BR(τ → µπ0π0) < 1.4 × 10−5 and

BR(τ → eπ0π0) < 6.5× 10−6 at 90% CL [88].

Note from figure 6.6 that the Higgs and photon mediated contributions to τ → µπ+π−

are of similar size. One can then infer that if the mode τ → µπ0π0 had been updated by

the Belle or BaBar collaborations, it would be possible to set a limit on
√
|Y h
µτ |2 + |Y h

τµ|2
at the 10−1 level from this process. This is reinforced by the fact that the upper-limit

set by the CLEO collaboration on the mode τ → µπ+π− is very similar to that for

τ → µπ0π0 [88]. The process τ → µπ0π0 has the advantage compared to τ → µπ−π+,

that it cannot be mediated by the photon and is therefore not affected by possible NP

effects entering into the effective dipole operator. The decay τ → µπ0π0 establishes the

most direct connection between searches for LFV τ decays at B-factories and the search

for LFV Higgs decays at the LHC: pp(gg) → h → τµ. Similar arguments apply for

τ → eπ0π0. If LFV Higgs decays are observed at some point, this would imply lower

bounds on the τ → `π0π0 BR. We therefore encourage the experimental collaborations to

provide limits for this channel in the future.
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Process (BR× 108) 90% CL
√
|Y h
eτ |2 + |Y h

τe|2 Operator(s)

τ → eγ < 3.3 [89] < 0.014 Dipole

τ → eee < 2.7 [90] < 0.12 Dipole

τ → eπ+π− < 2.3 [87] < 0.14 Scalar, Gluon, Dipole

τ → eρ < 1.8 [86] < 0.16 Scalar, Gluon, Dipole

τ → eπ0π0 < 6.5× 102 [88] < 4.3 Scalar, Gluon

Table 6.3: Current experimental upper bounds on the different processes considered as well as

the bounds obtained on
√
|Y h
eτ |2 + |Y h

τe|2 for a CP-even Higgs at 125 GeV and SM-like diagonal

couplings yhf = 1. The last column indicates the dominant operators contributing to each process.

The impact of hadronic matrix elements

In figure 6.6 (right-panel) we show the branching ratio for τ → µπ+π− considering only

the LO-ChPT prediction for the form factor Γπ(s)LO-ChPT = m2
π (while neglecting ∆π(s)

and θπ(s)) as done in refs. [9, 12, 14]. Our prediction considering the three form factors

{Γπ(s),∆π(s), θπ(s)}, estimated using ChPT together with dispersion relations, is ob-

served to be significantly larger. It is important to clarify some points regarding such

comparison between our results and those that have been considered previously by other

authors using LO-ChPT. First, a proper treatment of the decay τ → µπ+π− would require

taking into account not only Γπ(s) as is usually done, but also θπ(s) and ∆π(s) which

actually provide the dominant contributions to the decay rate. The LO-ChPT prediction

for these form factors is [72]

θπ(s)LO-ChPT = s+ 2m2
π , Γπ(s)LO-ChPT = m2

π , ∆π(s)LO-ChPT = dF s+ dBm
2
π . (6.36)

Here dF = 0.09 while dB ' 0, and we refer the reader to ref. [72] for the respective

NLO-ChPT predictions. The range of validity of the ChPT form factors is about
√
sχ ∼

0.3 GeV (LO-ChPT) or
√
sχ ∼ 0.5 GeV (NLO-ChPT), see figures 6.7-6.8. The LO-ChPT

form factors are always real. The absorptive contribution starts at NLO in ChPT due

to the appearance of re-scattering one-loop diagrams generated by interaction terms of

the leading chiral Lagrangian [72]. Above
√
s ∼ 0.5 GeV, even the NLO-ChPT is not

reliable anymore and significant departures can be observed compared with the form
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factors obtained using dispersion relations, that take into account large ππ rescattering

effects beyond one-loop.

Figure 6.7: Real (left) and imaginary (right) part of the form factor associated with the trace of

the QCD energy-momentum tensor, θπ(s), using different treatments: LO-ChPT (short-dashed

orange), NLO-ChPT (long-dashed red), and our prediction based on ChPT and dispersion rela-

tions (continuous blue).

In order to asses the impact of the hadronic matrix elements for the calculation of

the τ → `ππ decay rate, we consider the ratio

R =

∫ sχ
smin

ds [dΓ(τ → µπ+π−)Higgs/ds]LO-ChPT∫ smax

smin
ds [dΓ(τ → µπ+π−)Higgs/ds]ChPT + DR

' 3.3× 10−5 . (6.37)

Here the numerator stands for the decay width calculated using the LO-ChPT predictions

for the hadronic form factors (using the expressions in eq. (6.36)), integrated up to a cut-

off
√
sχ ' 0.3 GeV that specifies the range of validity of the LO-ChPT treatment. The

denominator represents the decay width calculated using the form factors obtained in

this work using dispersion relations (DR) to extend the range of validity of the hadronic

matrix elements to higher energies. The smallness of R ' 3.3×10−5 shows the importance

of a proper treatment of the hadronic matrix elements. One may argue that by cutting

the phase space integral at
√
sχ = 0.3 GeV one is throwing away most of the effect,

some authors for example use the LO-ChPT estimates of the form factors over the full

parameter space. If we set sχ = smax in eq. (6.37) we get instead the much larger value
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Figure 6.8: Real (left) and imaginary (right) part for the scalar form factors (Γπ(s),∆π(s)),

using different treatments: LO-ChPT (short-dashed orange), NLO-ChPT (long-dashed red), and

our prediction based on ChPT and dispersion relations (continuous blue).

R = 0.45. This however is a very misleading result, based on using LO-ChPT form factors

in a kinematical regime where they no longer describe properly the hadronic dynamics. 4

4 The authors of ref. [29], working within an effective theory framework, set bounds on LFV gluonic

operators from τ → `ππ using the LO-ChPT result in the chiral limit, namely θπ(s) = s. The claim that

large departures from the LO-ChPT predictions are not to be expected [29] misses the fact that even in

the chiral limit (mu = md = ms = 0) ChPT is inadequate to describe the hadronic dynamics for large

invariant masses of the ππ system
√
s ∼ 1 GeV.
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6.4.3 A CP-odd Higgs with LFV couplings

The Higgs boson at 125 GeV cannot be a pure pseudoscalar state, the experimental

data already constrain its coupling to vector bosons to be very close to the SM value

and analyses of the angular distributions in the Higgs decay final states also disfavor

this possibility [1, 2]. Assuming that the h(125) boson is the lightest CP-even state of a

general 2HDM, current LHC and Tevatron measurements of the h(125) properties imply

that ghV V ' gSM
hV V [85,91–93]. Lepton flavour violating Yukawa couplings of h would take

the form: (Πf )ij/v sin α̃ (see eq. (6.28)) and are therefore suppressed by the small factor

| sin α̃| =
(
1− (ghV V /g

SM
hV V )2

)1/2
. The LFV Yukawa couplings of the heavier CP-even

state H and the CP-odd Higgs A on the other hand do not receive this suppression. It is

therefore interesting not only to consider searches for LFV decays of the 125 GeV boson at

the LHC, but also of possible additional Higgs bosons. The question of which observables

measurable at flavour factories could be related to the process pp(gg)→ A→ τµ relevant

at the LHC then arises naturally. We argue in this section that the semileptonic decays of

τ into a pseudoscalar meson P , τ → `P , provide a direct connection with the search for

a CP-odd Higgs with LFV couplings at the LHC. In this section we focus on the CP-odd

boson A, which implies a somewhat different phenomenology of τ LFV decays compared

to the CP-even state already analyzed in the previous section and in refs. [7, 18, 19].

We do not consider the effect of interfering contributions of the different scalars ϕk =

{h,H,A} in τ → `γ or the phenomenology of the charged Higgs, these have been discussed

elsewhere [12,16,28].

At the relevant energy scale for τ decays, the heavy-quarks can be integrated out

from the theory, the effective Lagrangian describing the interactions of the CP-odd Higgs

with the light quarks is then given by [83]

LAeff ' −
A

v

( ∑
q=u,d,s

yAq mq q̄iγ5 q −
∑
q=c,b,t

yAq
αs
8π

Ga
µν G̃

a
µν

)
, (6.38)

with real couplings yAq related to those of eq. (6.1) by ImY A
qq = (mq/v)yAq and the dual

tensor of the gluon field strength defined by G̃a
ρν = 1

2
ερναβ G

a
αβ (with ε0123 = 1). Contrary

to a CP-even Higgs boson, a CP-odd Higgs with LFV couplings can mediate at tree-level

the semileptonic decays τ → `P , where P = π0, η, η′, stands for a pseudoscalar meson.

Semileptonic τ decays into a pseudoscalar meson cannot be mediated by the photon either,
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so that this mode isolates the CP-odd Higgs exchange. The decays τ → `P therefore

establish a direct connection with the search for CP-odd Higgs decays into LFV channels

at the LHC, with the Higgs being produced via gluon fusion. The relevant hadronic matrix

elements can be obtained following the FKS mixing scheme [94, 95], those involving the

Higgs coupling to light-quarks are parametrized by

〈π0(p)|ū γ5 u|0〉 = i
m2
π

2
√

2m̂
fπ , 〈π0|d̄ γ5 d|0〉 = −〈π0(p)|ū γ5 u|0〉 , (6.39)

〈η(′)(p)|q̄ γ5 q|0〉 = − i

2
√

2mq

hq
η(′)

, 〈η(′)(p)|s̄ γ5 s|0〉 = − i

2ms

hsη(′) ,

while those related to the loop-induced effective operator AGa
µν G̃

a
µν are given by

〈η(′)(p)|αs
4π

Gµν
a G̃

a
µν |0〉 = aη(′) . (6.40)

Numerical values for the different parameters appearing in eqs. (6.39,6.40) are given in

table 6.4. The contributions from the effective operator AGa
µν G̃

a
µν to the decay τ → `π

vanishes in the isospin limit mu = md [96] and we do not consider it here. The total decay

Parameter Value

fπ 130.41± 0.20 MeV

hqη 0.001± 0.003 GeV3

hqη′ 0.001± 0.002 GeV3

hsη −0.055± 0.003 GeV3

hsη′ 0.068± 0.005 GeV3

aη 0.022± 0.002 GeV3

aη′ 0.056± 0.002 GeV3

Table 6.4: Numerical values for the hadronic matrix elements relevant for τ → `P (P = π, η, η′)

obtained in the FKS mixing scheme [94, 95].

width for τ → `π0, neglecting small lepton and pion mass effects, reads

Γ(τ → `π0) =
f 2
π m

4
πmτ

256πM4
A v

2

(
|Y A
τµ|2 + |Y A

µτ |2
) (
yAu − yAd

)2
, (6.41)
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the amplitude for τ → µπ0 vanishes exactly in the limit yAu = yAd since the π0 only selects

the isovector component of the amplitude. The decay width for τ → `η can be written

using the definitions of eqs. (6.39,6.40) as (neglecting small lepton mass effects)

Γ(τ → `η) =
β̄ (m2

τ −m2
η)
(
|Y A
µτ |2 + |Y A

τµ|2
)

256 πM4
A v

2mτ

[
(yAu + yAd )hqη +

√
2yAs h

s
η −
√

2aη
∑
q=c,b,t

yAq

]2

,

(6.42)

with β̄ = (1− 2(m2
` + m2

η)/m
2
τ + (m2

` −m2
η)

2/m4
τ )

1/2. A simple replacement of η → η′ in

eq. (6.42) gives the expression for Γ(τ → `η′).

A CP-odd Higgs boson would also give rise to an effective dipole operator at the loop-

level [28], contributing then to τ → `γ, and photon-mediated τ → `π+π−, 3` decays. Note

that while τ → 3` is also mediated at tree-level by the CP-odd Higgs, the semileptonic

decay τ → `ππ are not due to spin-parity conservation. The CP-odd Higgs exchange

contribution to τ → 3µ is however sub-leading compared to that coming from the two-

loop diagrams of the Barr-Zee type due to the small Yukawa coupling to the muons, see

the recent discussion in ref. [18]. In tables 6.5 and 6.6 we summarize the bounds on√
|Y A
`τ |2 + |Y A

τ` |2 from the different τ decays considered fixing the diagonal couplings to

|yAf | = 1. The scaling of the semileptonic τ → `P decay rates with the CP-odd Higgs

mass is very simple, ∝M−4
A , while that for processes mediated by the photon is non-trivial

due to loop-functions entering in the calculation of the transition dipole moment. The

stringent bound coming from τ → `γ is sensitive to possible interference effects from other

scalars or heavy particles from a UV completion of the theory. The semileptonic decays

τ → `P on the other hand are mediated at tree-level by the CP-odd Higgs exchange and

provide then a more reliable bound in this respect.

In case any LFV signal pp → τ` + X is observed at the LHC, it will be crucial

to determine the properties of the mediator. The complementarity between low-energy

searches for LFV τ decays and the energy frontier is very important for this purpose. A

CP-even Higgs with LFV couplings for example would give rise to τ → `γ decays via

loop contributions while it cannot mediate semileptonic τ → `P decays. If the 125 GeV

Higgs turns out to have sizable LFV couplings and h → τ` decays are observed at some

point at the LHC, specific patterns between all the possible LFV τ decays would then

be predicted and any departure from these could be an indication of additional particles

with LFV couplings for example.
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Process (BR× 108) 90% CL MA = 200 GeV MA = 500 GeV MA = 700 GeV

τ → µγ < 4.4 [89] Z < 0.018 Z < 0.040 Z < 0.055

τ → µµµ < 2.1 [90] Z < 0.28 Z < 0.60 Z < 0.85
(∗) τ → µπ < 11 [97] Z < 41 Z < 257 Z < 503
(∗) τ → µη < 6.5 [97] Z < 0.52 Z < 3.3 Z < 6.4
(∗) τ → µη′ < 13 [97] Z < 1.1 Z < 7.2 Z < 14.1

τ → µπ+π− < 2.1 [87] Z < 0.25 Z < 0.54 Z < 0.75

τ → µρ < 1.2 [86] Z < 0.20 Z < 0.44 Z < 0.62

Table 6.5: Current experimental upper bounds on the different processes considered as well as

the bounds obtained on Z ≡
√
|Y A
µτ |2 + |Y A

τµ|2 for different values of the CP-odd Higgs mass and

SM-like diagonal couplings |yAf | = 1. Neither the effective dipole operator nor the CP-even Higgs

exchange contribute to the processes marked with (∗).

Process (BR× 108) 90% CL MA = 200 GeV MA = 500 GeV MA = 700 GeV

τ → eγ < 3.3 [89] Z < 0.016 Z < 0.034 Z < 0.05

τ → eee < 2.7 [90] Z < 0.14 Z < 0.30 Z < 0.42
(∗) τ → eπ < 8 [97] Z < 35 Z < 219 Z < 430
(∗) τ → eη < 9.2 [97] Z < 0.6 Z < 3.9 Z < 7.6
(∗) τ → eη′ < 16 [97] Z < 1.3 Z < 8 Z < 15.6

τ → eπ+π− < 2.3 [87] Z < 0.26 Z < 0.56 Z < 0.80

τ → eρ < 1.8 [86] Z < 0.25 Z < 0.54 Z < 0.76

Table 6.6: Current experimental upper bounds on the different processes considered as well as

the bounds obtained on Z ≡
√
|Y A
eτ |2 + |Y A

τe|2 for different values of the CP-odd Higgs mass and

SM-like diagonal couplings |yAf | = 1. Neither the effective dipole operator nor the CP-even Higgs

exchange contribute to the processes marked with (∗).

In view of the possibility to make a dedicated search for heavy scalars decaying to

a τ − µ pair, similar to the flavour conserving searches [98, 99], we estimate the total

cross-section for σ(pp → A → τµ) at the LHC. The inclusive Higgs production cross-
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Figure 6.9: Left-plot: Inclusive cross-section σ(pp → A → τµ) at
√
s = 8 TeV as a function

of Z ≡
√
|Y A
µτ |2 + |Y A

τµ|2 for SM-like diagonal couplings |yAf | = 1, taking different values of the

CP-odd Higgs mass MA. Right-plot: Inclusive cross-section σ(pp→ A→ τµ) at
√
s = 8 TeV as

a function of the CP-odd Higgs mass MA for Z = 0.1 (squares), 0.01 (triangles), 0.001 (circles).

The continuous green line shows the upper bound at 95% CL on the cross-section σ(pp→ A→
ττ) using the full 2011 + 2012 data set by the CMS collaboration [98].

section σ(pp → A) was obtained using the SusHi code [100, 101], considering only the

dominant gluon fusion production mode. Higgs partial decay widths were obtained using

the 2HDMC code [102]. For a CP-odd Higgs we have (neglecting small lepton mass

corrections)

Γ(A→ τ+µ− + τ−µ+) ≡ Γ(A→ τµ) =
MA

(
|Y A
τµ|2 + |Y A

µτ |2
)

8π
. (6.43)

We assume that besidesA→ τµ, only SM decay channels are significant (A→ gg, c̄c, b̄b, ττ, . . .)

and we fix the diagonal Yukawa couplings at |yAf | = 1. Large branching ratios for the

fermionic decays of a CP-odd Higgs and in particular for the A → τµ mode, can be ob-

tained since the CP-odd Higgs does not couples to V V = W+W−, ZZ at tree-level. Here

we focus on the τ − µ mode but an analogous analysis can be carried for τ − e.
In figure 6.9 we show the total cross-section σ(pp → A → τµ) as a function of√
|Y A
µτ |2 + |Y A

τµ|2 for
√
s = 8 TeV. A large drop in the total cross section can be observed

when MA & 2mt since A → t̄t decays become kinematically open and suppress the

branching ratio BR(A → τµ). The total cross-section σ(pp → A → τµ) can be as large

as ∼ 1 pb for a CP-odd Higgs with MA ∼ 200 GeV and
√
|Y A
µτ |2 + |Y A

τµ|2 ∼ 10−2, which
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is allowed in principle by low-energy constraints, see table 6.5. Current upper bounds

for the flavour conserving cross-section σ(pp → A → ττ) by the CMS collaboration,

using the full 2011 + 2012 data set [98], are also shown in figure 6.9. The bound on

σ(pp → A → ττ) is already at the ∼ 1 pb level. One can therefore expect that the

sensitivity of the LHC to a plausible heavy Higgs with LFV couplings should be very

good compared to flavour constraints, as previous analyses have shown for the 125 GeV

boson [18,19]. A detailed analysis of the LHC prospects to detect LFV Higgs decays of a

heavy Higgs boson within the generic 2HDM was performed in ref. [103] finding promising

results. Given the considerable experimental progress in the study of the Higgs sector over

the last years, we encourage experimental collaborations to consider the search for heavy

scalars in LFV decay modes.

6.5 Conclusions

The discovery of a new boson around 125 GeV, h(125), opens a new era in our understand-

ing of the electroweak symmetry breaking mechanism, yet to be explored in detail. Any

departure from the SM Higgs properties or exotic effect associated with the h(125) boson

would be an indication of new physics beyond the SM. The search for LFV phenomena in

the scalar sector at the LHC has a special role in this respect, given the relatively weak

constraints from low-energy experiments.

While h → eµ transitions are strongly constrained already by µ → eγ decays and

µ − e conversion in nuclei, the situation is completely different for h → τ` (` = e, µ) in

which large decay rates are still allowed [7, 18, 19]. The strongest bound on such LFV

Higgs couplings is currently extracted from the radiative τ → `γ decays. This decay

receives dominant contributions from two-loop diagrams of the Barr-Zee type due to the

strong chirality suppression of the one-loop diagrams, making the bounds very sensitive

to the underlying UV model.

Hadronic τ -lepton decays offer an interesting low-energy handle to constrain possible

LFV effects associated with the Higgs sector and in particular the h(125) boson. The

bounds extracted from hadronic τ -decays are less sensitive to the UV completion of the

theory and establish a more direct connection with the search for LFV Higgs decays at

the LHC. We have shown in this work that the bounds obtained from semileptonic decays
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τ → `ππ are at the same level than those from τ → 3` (τ → 3` decays are dominated

by the same two-loop diagrams than τ → `γ and are therefore very sensitive to the UV

completion of the theory). This result was achieved thanks to an adequate description

of the hadronic matrix elements involved, improving considerably over previous related

works on this subject. Concerning the semileptonic τ → `ππ transitions we emphasize

the following results found in this work:

• In section 6.3 we provide a dispersive treatment of all the hadronic matrix elements

needed to describe Higgs mediated τ → `ππ decays. These results will be useful in

analyzing τ → `ππ decays beyond the specific framework adopted here.

• The form factors obtained in section 6.3 were used to extract robust bounds on

possible LFV couplings of the h(125) boson from current experimental data. This

was done in section 6.4.2, the main results being summarized in tables 6.2 and 6.3,

as well as figures 6.5 and 6.6.

• We find that the dominant contributions to the Higgs mediated decay rate τ → `ππ

arise from the effective Higgs couplings to gluons (induced by heavy quarks) and the

strange component of the scalar current (Higgs coupling directly to strange quarks).

Previous treatments [9, 12, 14] of these decays considering only the scalar current

muūu+mdd̄d therefore do not capture the main contributions to the decay rate.

• LO-ChPT predictions for the hadronic matrix elements contributing to τ → `ππ

are valid only at very low energies
√
s . 0.3 GeV (see section 6.4.2): if used over

the whole phase space they lead to unreliable bounds on the LFV couplings.

• Contrary to τ → `π+π−, the τ → `π0π0 decays cannot be mediated by the effective

dipole operator (¯̀σµνPL,Rτ)Fµν and isolate the CP-even Higgs exchange contribu-

tion. So τ → `π0π0 decays establish the most direct connection between searches

for LFV τ decays at B-factories and the search for LFV Higgs decays at the LHC

(pp(gg)→ h→ τ`). We encourage the experimental collaborations to provide limits

for these modes in the future.

Finally, we point out in section 6.4.3 that the search for LFV effects associated to the

scalar sector should not be restricted to the h(125) boson. Within the general 2HDM, it
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is plausible that the LFV couplings of the h(125) boson are too suppressed to be observed

given that its coupling to vector bosons V V = W+W−, ZZ is already constrained to be

very close to the SM value. If such an LFV extended scalar sector is realized in nature,

it might be possible on the other hand to detect LFV phenomena at the LHC due to the

decays of additional scalars for which such strong suppression of the LFV couplings does

not takes place. Current constraints from low-energy flavour experiments still allow for

sizable LFV effects in this respect.
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A new Higgs-like boson with mass around 126 GeV has recently been discovered at the

LHC. The available data on this new particle is analyzed within the context of two-Higgs dou-

blet models without tree-level flavour-changing neutral currents. Keeping the generic Yukawa

structure of the Aligned Two-Higgs Doublet Model framework, we study the implications of the

LHC data on the allowed scalar spectrum. We analyze both the CP-violating and CP-conserving

cases, and a few particular limits with a reduced number of free parameters, such as the usual

models based on discrete Z2 symmetries.
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7.1 Introduction

The ATLAS and CMS collaborations have recently announced the discovery of a new

neutral boson, with a measured mass of 125.2 ± 0.3 ± 0.6 GeV [1] and 125.8 ± 0.4 ± 0.4

GeV [2], respectively. The LHC data is compatible with the expected production and

decay of the Standard Model (SM) Higgs boson, the most significant decay modes being

H → γγ and H → ZZ(∗) → `+`−. The excess of events observed by ATLAS (CMS) has

a (local) statistical significance of 6.1σ (6.9σ). Although the spin of the new particle has

not been measured yet, the observed diphoton decay channel shows clearly that it is a

boson with J 6= 1, making very plausible the scalar hypothesis. Preliminary analyses of

H → ZZ → 4` [3, 4] and H → γγ [5, 6] events suggest indeed the assignment JP = 0+,

though more statistics is still needed to give a definite answer.

Additional (but less significant) evidence has been reported by the CDF and DØ col-

laborations [7], which observe an excess of events in the mass range between 120 and 135

GeV (the largest local significance is 3.3σ). The excess seems consistent with a SM Higgs

produced in association with a W± or Z boson and decaying to a bottom-antibottom

quark pair.

While more experimental analyses are needed to assess the actual nature of this boson,

the present data give already very important clues, constraining its couplings in a quite

significant way. The stringent exclusion limits set previously on a broad range of masses

provide also complementary information which is very useful to establish allowed domains

for alternative new-physics scenarios. A SM Higgs boson has been already excluded at

95% CL in the mass ranges 0–122.5 and 127–600 GeV [5,8–14].

The new boson appears to couple to the known gauge bosons (W±, Z, γ, g) with

the strength expected for the SM Higgs [15–24], although a slight excess of events in

the 2γ decay channel, compared with the SM expectation, is observed by ATLAS and

CMS [1, 2]. Moreover, its fermionic couplings seem compatible with a linear dependence

with the fermion mass, scaled by the electroweak scale v ≈ 246 GeV [23]. Thus, it has

the properties expected for a Higgs-like particle, related with the spontaneous breaking

of the electroweak symmetry. An obvious question to address is whether it corresponds

to the unique Higgs boson incorporated in the SM, or it is just the first signal of a much

richer scalar sector.

The simplest modification of the SM Higgs mechanism consists in incorporating ad-
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ditional scalar doublets, respecting the custodial symmetry, which can easily satisfy the

electroweak precision tests. This leads to a rich spectrum of neutral and charged scalars,

providing a broad range of dynamical possibilities with very interesting phenomenological

implications. The minimal extension of the scalar sector with only one additional doublet

contains five physical scalars: two charged fields H± and three neutral ones h, H and A;

thus, there are three possible candidates for the recently discovered neutral boson. If the

scalar potential preserves the CP symmetry, h and H are CP-even, while A is CP-odd;

in this case there are no AW+W− and AZZ couplings at tree level, which makes the A

possibility quite unlikely.

Generic multi-Higgs doublet models give rise to unwanted flavour-changing neu-

tral current (FCNC) interactions through non-diagonal couplings of neutral scalars to

fermions. The tree-level FCNCs can be eliminated requiring the alignment in flavour

space of the Yukawa matrices coupling to a given right-handed fermion [25]. The Aligned

Two-Higgs Doublet Model (A2HDM) [26] results in a very specific structure, with all

fermion-scalar interactions being proportional to the corresponding fermion masses. This

leads to a rich and viable phenomenology [25–30] with an interesting hierarchy of FCNC

effects, suppressing them in light-quark systems while allowing potentially relevant signals

in heavy-quark transitions. The A2HDM constitutes a very general framework which in-

cludes, for particular values of its parameters, all previously considered two-Higgs doublet

models (2HDMs) without FCNCs [31,32], and incorporates in addition new sources of CP

violation.

In the following, we will analyze the recent discovery of a Higgs-like object within

the A2HDM. We will study the different possible interpretations of the new boson, the

corresponding experimental constraints on its couplings, and the implications for the

remaining scalar spectrum. Previous analyses [33–43] have only considered more specific

scenarios based on discrete Z2 symmetries [44], i.e., the so called 2HDMs of types I [45,46],

II [46, 47], X (leptophilic or lepton specific), Y (flipped) [48–51] and inert [52]. The

more general A2HDM framework opens a wide range of additional possibilities, which we

will try to characterize keeping in mind the high-statistics data samples that the LHC

is expected to deliver in the future, at higher energies. Two very recent works have

already employed the A2HDM, in the limit of CP conservation, to analyze the Higgs

data [53, 54]. Another previous work has considered the CP-conserving A2HDM with a

custodial symmetry imposed on the Higgs potential [55]. We will compare our results in
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that limit and will also explore the consequences of allowing CP-violating phases, either

in the scalar potential (mixing of the three neutral scalars) or in the Yukawa couplings.

While parts of our analysis remain valid in more general 2HDM settings, the flavour

constrains would necessary be different in models with tree-level FCNCs [56–58] and,

therefore, the appropriate modifications should be taken into account.

Our paper is organized as follows: In section 7.2, we describe the theoretical frame-

work adopted in our analysis, indicating the relevant couplings of the A2HDM scalars.

In section 3 we define the Higgs signal strengths, which are used to make contact with

the experimental measurements. Section 7.4 presents our results and shows the scalar

parameter ranges needed to explain the present data. Our conclusions are given in sec-

tion 7.5. The appendices include a compilation of useful formulae as well as the statistical

treatment and data used in this work.

7.2 The Aligned Two-Higgs-Doublet Model

The 2HDM extends the SM with a second scalar doublet of hypercharge Y = 1
2
. The

neutral components of the scalar doublets φa(x) (a = 1, 2) acquire vacuum expectation

values that are, in general, complex: 〈0|φTa (x)|0〉 = 1√
2

(0, va eiθa). Through an appropriate

U(1)Y transformation we can enforce θ1 = 0, since only the relative phase θ ≡ θ2 − θ1 is

observable. It is convenient to perform a global SU(2) transformation in the scalar space

(φ1, φ2) and work in the so-called Higgs basis (Φ1,Φ2), where only one doublet acquires a

vacuum expectation value:(
Φ1

−Φ2

)
≡
[

cos β sin β

sin β − cos β

] (
φ1

e−iθφ2

)
, (7.1)

with tan β = v2/v1. In this basis, the two doublets are parametrized as

Φ1 =

[
G+

1√
2

(v + S1 + iG0)

]
, Φ2 =

[
H+

1√
2

(S2 + iS3)

]
, (7.2)

where G± and G0 denote the Goldstone fields and 〈0|H+|0〉 = 〈0|G+|0〉 = 〈0|G0|0〉 =

〈0|Si|0〉 = 0. Thus, Φ1 plays the role of the SM scalar doublet with v ≡
√
v2

1 + v2
2 '

(
√

2GF )−1/2 = 246 GeV.
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The physical scalar spectrum contains five degrees of freedom: the two charged fields

H±(x) and three neutral scalars ϕ0
i (x) = {h(x), H(x), A(x)}, which are related with the

Si fields through an orthogonal transformation ϕ0
i (x) = RijSj(x). The form of the R

matrix is fixed by the scalar potential, which determines the neutral scalar mass matrix

and the corresponding mass eigenstates. A detailed discussion is given in appendix 7.A.

In general, the CP-odd component S3 mixes with the CP-even fields S1,2 and the resulting

mass eigenstates do not have a definite CP quantum number. If the scalar potential is

CP symmetric this admixture disappears; in this particular case, A(x) = S3(x) and1(
h

H

)
=

[
cos α̃ sin α̃

− sin α̃ cos α̃

] (
S1

S2

)
. (7.3)

Performing a phase redefinition of the neutral CP-even fields, we can fix the sign of sin α̃.

In this work we adopt the conventions Mh ≤MH and 0 ≤ α̃ ≤ π, so that sin α̃ is positive.

7.2.1 Yukawa Alignment

The most generic Yukawa Lagrangian with the SM fermionic content gives rise to FC-

NCs because the fermionic couplings of the two scalar doublets cannot be simultaneously

diagonalized in flavour space. The non-diagonal neutral couplings can be eliminated by

requiring the alignment in flavour space of the Yukawa matrices [26]; i.e., the two Yukawa

matrices coupling to a given type of right-handed fermions are assumed to be proportional

to each other and can, therefore, be diagonalized simultaneously. The three proportional-

ity parameters ςf (f = u, d, l) are arbitrary complex numbers and introduce new sources

of CP violation.

In terms of the fermion mass-eigenstate fields, the Yukawa interactions of the A2HDM

1 In the usually adopted notation α̃ = α − β, where α is the rotation angle expressing the two

mass eigenstates h and H in terms of the CP-even neutral fields of the original scalar basis φ1(x) and

φ2(x). Since the choice of initial basis is arbitrary, the parameters α and β are in general unphysical;

their values can be changed at will through SU(2) rotations. These angles only become meaningful in

particular models where a specific basis is singled out (through a symmetry for instance).
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Table 7.1: CP-conserving 2HDMs based on discrete Z2 symmetries.

Model ςd ςu ςl

Type I cot β cot β cot β

Type II − tan β cot β − tan β

Type X cot β cot β − tan β

Type Y − tan β cot β cot β

Inert 0 0 0

read [26]

LY = −
√

2

v
H+

{
ū
[
ςd VMdPR − ςuM †

uV PL
]
d + ςl ν̄MlPRl

}
− 1

v

∑
ϕ0
i ,f

y
ϕ0
i

f ϕ0
i

[
f̄ MfPRf

]
+ h.c. , (7.4)

where PR,L ≡ 1±γ5
2

are the right-handed and left-handed chirality projectors, Mf the

diagonal fermion mass matrices and the couplings of the neutral scalar fields are given

by:

y
ϕ0
i

d,l = Ri1 + (Ri2 + iRi3) ςd,l , y
ϕ0
i

u = Ri1 + (Ri2 − iRi3) ς∗u . (7.5)

As in the SM, all scalar-fermion couplings are proportional to the corresponding fermion

masses. This linear dependence on the fermion mass is characteristic of the A2HDM

framework and does not hold in non-aligned 2HDMs with FCNCs. The only source of

flavour-changing interactions is the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing

matrix V [59]. All possible freedom allowed by the alignment conditions is determined

by the three family-universal complex parameters ςf , which provide new sources of CP

violation without tree-level FCNCs [26]. The usual models with natural flavour conser-

vation, based on discrete Z2 symmetries, are recovered for particular (real) values of the

couplings ςf , as indicated in table 7.1.

Quantum corrections induce a misalignment of the Yukawa matrices, generating small

FCNC effects suppressed by the corresponding loop factors [25–27, 60, 61]. However,

the flavour symmetries of the A2HDM tightly constraint the possible FCNC structures,
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keeping their effects well below the present experimental bounds [25–30].2

The orthogonality of the rotation matrix R, implies the following relations among

the Yukawa couplings of the three neutral scalars:

3∑
i=1

(y
ϕ0
i

f )2 = 1 ,
3∑
i=1

|yϕ
0
i

f |2 = 1 + 2 |ςf |2 ,
3∑
i=1

y
ϕ0
i

f Ri1 = 1 ,

3∑
i=1

y
ϕ0
i

d,l Ri2 = ςd,l ,
3∑
i=1

y
ϕ0
i

u Ri2 = ς∗u ,

3∑
i=1

y
ϕ0
i

d,l Ri3 = i ςd,l ,
3∑
i=1

y
ϕ0
i

u Ri3 = −i ς∗u . (7.7)

7.2.2 Bosonic Couplings

The full set of interactions among the gauge and scalar bosons is given in appendix 7.B.

The relevant vertices for our analysis are the ones coupling a single neutral scalar with a

pair of gauge bosons. As shown in eq. (7.54), they are identical to their SM counterpart,

with the field S1 taking the role of the SM Higgs. Therefore (V V = W+W−, ZZ),

gϕ0
i V V

= Ri1 g
SM
hV V , (7.8)

which implies

g2
hV V + g2

HV V + g2
AV V =

(
gSM
hV V

)2
. (7.9)

2 The only FCNC structures induced at one loop take the form [25,27]:

LFCNC =
C(µ)

4π2v3
(1 + ς∗uςd )

∑
i

ϕ0
i (x)

{
(Ri2 + iRi3) (ςd − ςu)

[
d̄L V

†MuM
†
u VMd dR

]
− (7.6)

− (Ri2 − iRi3) (ς∗d − ς∗u)
[
ūL VMdM

†
d V
†Mu uR

]}
+ h.c.

with C(µ) = C(µ0) − log (µ/µ0). These FCNC effects vanish identically in the Z2 models where the

alignment condition is protected by a discrete symmetry. In the most general case, assuming the alignment

to be exact at some scale µ0, i.e. C(µ0) = 0, a non-zero value for the FCNC coupling is generated when

running to a different scale. However, the numerical effect is suppressed by mqm
2
q′/v

3 and quark-mixing

factors, avoiding the stringent experimental constraints for light-quark systems. Explicit examples of

symmetry-protected underlying theories leading to a low-energy A2HDM structure have been discussed

in refs. [62–64].
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The strength of the SM Higgs interaction is shared by the three 2HDM neutral bosons.

In the CP-conserving limit, the CP-odd field decouples while the strength of the h and

H interactions is governed by the corresponding cos α̃ and sin α̃ factors. Thus, a general

feature of 2HDMs is that, at tree level, the couplings of the neutral scalars to vector bosons

cannot be enhanced over the SM value and obey the custodial symmetry relation gϕ0
iZZ

=

gϕ0
iWW . Observing a scalar boson with a somewhat enhanced coupling to vector bosons or

a deviation from custodial symmetry [65] would therefore be in clear contradiction with

the predictions of this class of models. The relations (7.7) and (7.9) establish a connection

between the couplings of the observed 126 GeV resonance and searches for other neutral

and charged scalars within the A2HDM.

In order to compute the two-photon decay widths of the neutral scalars, one also

needs their couplings to a pair of charged scalars, generated through the scalar potential

discussed in appendix 7.A. Since these couplings depend on still unknown parameters, we

will parametrize the corresponding interaction as

Lϕ0H+H− = −v
∑
ϕ0
i

λϕ0
iH

+H− ϕ0
i H

+H− . (7.10)

Explicit expressions for the cubic couplings λϕ0
iH

+H− , in terms of the Higgs potential

parameters, can be found in appendix 7.A. If CP is assumed to be an exact symmetry,

λAH+H− = 0.

7.3 Higgs Signal Strengths

The experimental data on Higgs searches is given in terms of the so-called signal strengths,

measuring the observable cross sections in units of the corresponding SM expectations.

At the LHC, the relevant production mechanisms for a SM-like Higgs particle are gluon

fusion (gg → H), vector boson fusion (qq′ → qq′V V → qq′H), associated production

with a vector boson (qq̄′ → WH/ZH) and the associated production with a tt̄ pair

(qq̄/gg → tt̄H). The Higgs decay channels explored so far are γγ, ZZ(∗), WW (∗), bb̄ and

τ+τ−.
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In order to fit the experimental measurements, we consider the ratios :

µ
ϕ0
i
γγ ≡

σ(pp→ ϕ0
i ) Br(ϕ0

i → γγ)

σ(pp→ h)SM Br(h→ γγ)SM

, µ
ϕ0
i
γγjj ≡

σ(pp→ jjϕ0
i ) Br(ϕ0

i → γγ)

σ(pp→ jjh)SM Br(h→ γγ)SM

,

µ
ϕ0
i
V V ≡

σ(pp→ ϕ0
i ) Br(ϕ0

i → V V )

σ(pp→ h)SM Br(h→ V V )SM

, µ
ϕ0
i
WWjj ≡

σ(pp→ jjϕ0
i ) Br(ϕ0

i → WW )

σ(pp→ jjh)SM Br(h→ WW )SM

,

µ
ϕ0
i
ττ ≡

σ(pp→ ϕ0
i ) Br(ϕ0

i → ττ)

σ(pp→ h)SM Br(h→ ττ)SM

, µ
ϕ0
i
bbV ≡

σ(pp→ V ϕ0
i ) Br(ϕ0

i → bb̄)

σ(pp→ V h)SM Br(h→ bb̄)SM

,

(7.11)

where V = W, Z and j stands for jet. QCD corrections cancel to a large extend in these

ratios, provided that a single production mechanism dominates. This certainly applies

to µ
ϕ0
i
γγ, µ

ϕ0
i
V V and µ

ϕ0
i
ττ which are governed by the dominant production channel through

gluon fusion. The same would be true for µ
ϕ0
i
WWjj and µ

ϕ0
i
γγjj (gauge-boson fusion), and µ

ϕ0
i
bbV

(associated production), assuming that there is no contamination from other channels. It

is convenient to express the ratio of the branching fractions as:

Br(ϕ0
i → X)

Br(h→ X)SM

=
1

ρ(ϕ0
i )

Γ(ϕ0
i → X)

Γ(h→ X)SM

, (7.12)

where ρ(ϕ0
i ) measures the total decay width of the scalar ϕ0

i in units of the SM Higgs

width,

Γ(ϕ0
i ) = ρ(ϕ0

i ) ΓSM(h) . (7.13)

Particularizing to the A2HDM and assuming only one dominant production channel in

each case,3 one finds:

µ
ϕ0
i
bbV = (Ri1)2

[
Re(y

ϕ0
i

d )2 + Im(y
ϕ0
i

d )2β−2
b

]
ρ(ϕ0

i )
−1, µ

ϕ0
i
WWjj = (Ri1)4 ρ(ϕ0

i )
−1,

µ
ϕ0
i
ττ = C

ϕ0
i

gg

[
Re(y

ϕ0
i

l )2 + Im(y
ϕ0
i

l )2β−2
τ

]
ρ(ϕ0

i )
−1, µ

ϕ0
i
V V = C

ϕ0
i

gg (Ri1)2 ρ(ϕ0
i )
−1,

µ
ϕ0
i
γγ = C

ϕ0
i

gg C
ϕ0
i

γγ ρ(ϕ0
i )
−1, µ

ϕ0
i
γγjj = (Ri1)2 C

ϕ0
i

γγ ρ(ϕ0
i )
−1,

(7.14)

3 The contamination of the different Higgs production mechanisms in h → γγ(jj) is discussed in

appendix 7.C.
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where βf = (1− 4m2
f/M

2
ϕ0
i
)1/2. The one-loop functions are given by

C
ϕ0
i

gg =
σ(gg → ϕ0

i )

σ(gg → h)SM

=

∣∣∣∑q Re(y
ϕ0
i

q )F(xq)
∣∣∣2 +

∣∣∣∑q Im(y
ϕ0
i

q )K(xq)
∣∣∣2∣∣∣∑q F(xq)

∣∣∣2 (7.15)

and

C
ϕ0
i

γγ =
Γ(ϕ0

i → γγ)

Γ(h→ γγ)SM

(7.16)

=

∣∣∣∑f Re(y
ϕ0
i

f )N f
C Q

2
f F(xf ) + G(xW )Ri1 + Cϕ

0
i

H±

∣∣∣2 +
∣∣∣∑f Im(y

ϕ0
i

f )N f
C Q

2
f K(xf )

∣∣∣2∣∣∣∑f N
f
C Q

2
f F(xf ) + G(xW )

∣∣∣2 ,

with N f
C and Qf the number of colours and the electric charge of the fermion f , xf =

4m2
f/M

2
ϕ0
i

and xW = 4M2
W/M

2
ϕ0
i
. Notice that the ratios (7.11) are defined for Mϕ0

i
= MhSM .

The two separate terms in the numerators of eqs. (7.15) and (7.16) correspond to the CP-

even and CP-odd structures ϕ0
iXµνX

µν and ϕ0
iXµνX̃

µν , with Xµν = Gµν (Fµν) in the gluon

(photon) case and X̃µν = εµνσρXσρ. The functions F(xf ), K(xf ) and G(xW ) contain the

triangular 1-loop contributions from fermions and W± bosons. We will neglect the masses

of the first two fermion generations. Since F(xf ) and K(xf ) vanish for massless fermions,

we only need to consider the top, bottom and tau contributions; the last two are negligible

in the SM, but in the A2HDM could be enhanced by the alignment factors ςd and ςl. In

C
ϕ0
i

γγ we have also considered the contribution from a charged-scalar loop parametrized by

Cϕ
0
i

H± =
v2

2M2
H±

λϕ0
iH

+H− A(xH±) , (7.17)

with xH± = 4M2
H±/M

2
ϕ0
i
. The explicit expressions of the different loop functions are:

F(x) =
x

2
[4 + (x− 1)f(x)] , G(x) = −2− 3x+

(3

2
x− 3

4
x2
)
f(x) ,

A(x) = −x− x2

4
f(x) , K(x) = −x

2
f(x) , (7.18)

with

f(x) =

−4 arcsin2(1/
√
x) , x > 1[

ln
(

1+
√

1−x
1−
√

1−x

)
− iπ

]2

, x < 1
. (7.19)
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7.4 Phenomenological Analysis

We are interested in analyzing the current LHC and Tevatron data within the A2HDM.

The experimental information on the new neutral boson is certainly in early stages; some

decay channels have very big uncertainties while some others have not even been seen

yet. Nevertheless, while more precise information on all possible production and decay

channels is necessary in order to make a detailed study, present data already allow us to

extract significant constraints on the parameter space of the model.

The deviations from the SM expectations originate from several sources. The three

neutral scalars of the A2HDM have couplings to the gauge bosons which are different

(smaller in absolute value) than the ones of the SM Higgs: in SM units they are given by

Ri1. The Yukawa couplings get also multiplied by the factors y
ϕ0
i

f , which are functions of

Rij and the parameters ςf . Moreover, the presence of a charged scalar manifests in one

additional one-loop contribution to the ϕ0
i → 2γ decay amplitudes, parametrized through

the constants Cϕ
0
i

H± . In the limit of CP conservation, there are two clear candidates for the

new scalar, the CP-even fields h and H (we will nevertheless analyze later the unlikely A

possibility). The A2HDM allows in addition for physical CP-violating phases, both in the

scalar potential and the Yukawa couplings, generating mixings among the three neutral

scalars and CP-odd contributions to the Higgs-like signal strength parameters. Being

quadratic in the CP-violating parameters, this last type of corrections could be expected

to be small. However, the current bounds on the A2HDM couplings still allow for sizeable

effects [25–30].

Sensitivity to the top-quark Yukawa coupling and to a lesser extent to the bottom

coupling appears through the one-loop production mechanism of gluon fusion and in the

γγ decay channel. Neutral scalar production via pp→ tϕ0
i j(b) could provide complemen-

tary information on the top Yukawa coupling when more data becomes available [66,67].

The most important constraints on the bottom Yukawa coupling come indirectly from

the total decay width, which is in general dominated by ϕ0
i → bb̄, and the measurement

of scalar production with an associated vector boson (qq̄′ → ϕ0
iV → (bb̄)V ). Neutral

boson production via top-quark fusion with subsequent decay into a pair of b quarks,

qq̄/gg → tt̄ϕ0
i → tt̄(b̄b), in which the bottom and top Yukawa couplings appear at tree

level will also play an important role; the current experimental sensitivities in this channel

are still low [68, 69]. The τ Yukawa coupling is directly tested through ϕ0
i → τ+τ−, the
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most accessible production mechanisms at the LHC being in this case vector-boson fusion,

associated production with a vector boson and gluon fusion.

For a given choice of neutral scalar-field candidate ϕ0
i and its couplings, we define

the χ2 function as

χ2(ϕ0
i ) =

∑
k

(
µ
ϕ0
i
k − µ̂k

)2

σ2
k

, (7.20)

where k runs over the different production/decay channels considered, µ̂k and σk are the

measured Higgs signal strengths and their one-sigma errors, respectively, and µ
ϕ0
i
k the

corresponding theoretical predictions in terms of the A2HDM parameters, as given in

eqs. (7.11) and (7.14). Scanning over the allowed parameter space, we then look for those

sets of couplings minimizing the χ2 and their corresponding uncertainties. The details

about the statistical treatment and data used in this work are presented in appendix 7.C.

We will first analyze the CP-conserving limit in section 7.4.1, where we will also

study some particular scenarios often adopted in previous works. In section 7.4.2 we will

discuss the most general case, without making any assumption about the scalar potential,

and analyze the present constraints on the complex Yukawa couplings of the assumed 126

GeV scalar boson.

7.4.1 The A2HDM in the CP-conserving limit

Assuming that the Lagrangian preserves the CP symmetry, the two CP-even neutral

scalars h and H couple to the gauge bosons with reduced couplings R11 = cos α̃ and

R21 = − sin α̃, respectively, and their Yukawa couplings are real:

yhf = cos α̃ + ςf sin α̃ , yHf = − sin α̃ + ςf cos α̃ . (7.21)

The CP-odd boson A does not couple at tree-level to W+W− and ZZ (R31 = 0), while

its fermionic couplings are purely imaginary (pseudoscalar interaction):

yAd,l = i ςd,l , yAu = −i ςu . (7.22)

A light CP-even Higgs at 126 GeV

We will first focus in the most plausible possibility that the lightest scalar h corresponds to

the observed neutral boson with Mh = 126 GeV. The alternative choice of the heavier field
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H can be easily recovered through an appropriate change of the mixing angle, α̃→ α̃−π/2,

and will be further discussed in section 7.4.1. We will also consider later, in section 7.4.1,

the more exotic case of a CP-odd Higgs A. In this first analysis we assume that the

charged scalar is either very heavy or its coupling to the neutral Higgs is very small, so

that its contribution ChH± to the h → γγ decay width is negligible. We also assume that

the bounds from flavour physics are naturally evaded, as it is the case at large values of

the charged scalar mass. The H± contribution to the diphoton decay width as well as the

flavour constraints will be considered later in section 7.4.1.

The minimization of χ2(h) leads to two different solutions, differing in the sign of the

top Yukawa coupling. The central values of the corresponding A2HDM parameters and

their statistical one-sigma errors obtained from the global fit are:

cos α̃ = 0.99+0.01
−0.06 , yhu = 0.8+0.1

−0.2 ,
∣∣yhd ∣∣ = 0.7± 0.3 ,

∣∣yhl ∣∣ = 0.8± 0.5 , (7.23)

and

cos α̃ = 0.99+0.01
−0.04 , yhu = −0.8+0.1

−0.3 ,
∣∣yhd ∣∣ = 1.1± 0.3 ,

∣∣yhl ∣∣ = 0.9± 0.5 . (7.24)

In both cases, the gauge coupling ghV V is very close to the SM one. Changing simulta-

neously the signs of cos α̃ and yhf leads obviously to identical Higgs signal strengths and,

therefore, to two equivalent solutions.

In the first solution the W± and top-quark loops contribute with different signs

to the h → γγ amplitude, giving a destructive interference as in the SM. The needed

enhancement of the 2γ branching ratio is obtained through a smaller total decay width,

ρ(h) ≈ 0.6. This pushes upward the ratios µhγγ and µhγγjj, allowing to explain part of

the excess experimentally observed in these two channels. However, the gluon-fusion

production channel has a smaller cross section than in the SM. The combined effect

results in a small increase of the γγ channel, µhγγ ≈ 1.1, while a much larger enhancement

remains in the γγjj case, µhγγjj ≈ 1.5.

The second solution corresponds to a top-quark contribution to h → γγ with the

opposite sign, so that it interferes constructively with the W± amplitude. This allows one

to explain the 2γ excess without hardly modifying the total decay rate, ρ(h) ≈ 1.1 and

providing a slightly better fit.

In both solutions there is a sign degeneracy in the bottom and tau Yukawa couplings.

Although the tree-level decays h → b̄b and h → τ+τ− are insensitive to these signs, the
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loop-induced processes gg → h and h → γγ receive contributions from the bottom and

tau (only the γγ process) Yukawas, which interfere with the leading top and W± (in the

γγ decay) amplitudes as shown in eqs. (7.15) and (7.16). In the SM the bottom and tau

contributions are negligible, but their effect could be relevant in the A2HDM if the top

Yukawa coupling is considerably suppressed or if the parameters ςd,l are large. However,

this is not the case for the fitted Yukawa values in eqs. (7.23) and (7.24), which are of

O(1) for both solutions, leaving the sign of the bottom and tau Yukawas undetermined.

The relevance of the τ+τ− and b̄b channels to determine possible deviations from the SM

and within the different Z2 versions of the 2HDM, which could be pointing to a more

general Yukawa structure as provided by the A2HDM, has been emphasized recently in

ref. [53].
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Figure 7.1: Global fit to the A2HDM, in the CP-conserving case, in the planes yhu − yhd (left)

and yhu − yhl (right). The parameters not shown in each case are fixed to the best global-fit point.

The orange, yellow and gray areas denote 68%, 90% and 99% CL regions. The dashed lines

correspond to fixed values of µhγγ.

In figure 7.1 we show graphically the results of this global fit, giving the allowed

regions in the yhu − yhd (left) and yhu − yhl (right) planes at 68%, 90% and 99% CL. The

parameters that are not shown are, in each case, set to the best global-fit point. The

sign degeneracy in the τ and b Yukawa couplings is clearly observed. Moreover, the right
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panel shows a somewhat reduced sensitivity to the leptonic coupling yhl . The SM-like

solution (yhu, y
h
d,l) = (1, 1) lies inside the 90% CL allowed region; however, at 68% CL the

top Yukawa has the sign flipped with respect to the SM, i.e., only the solution (7.24)

remains. Similar results have also been obtained in ref. [24, 53].

The allowed ranges, at the 1σ and 2σ level, for the different Higgs signal strengths

in the fit (7.24) are compared in figure 7.2 with the experimental values. A good agree-

ment with data is obtained in all cases. Previous analyses within the CP-conserving

A2HDM have been performed in refs. [53,54], using a different notation, also finding good

agreement with the data.

bbV WWjj WW ZZ ΓΓ ΓΓjj ΤΤ
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Channels

Μ

Figure 7.2: Allowed ranges for the Higgs signal strengths obtained from the fit (7.24) at 1σ

(black, dark) and 2σ (blue, dark), together with the averaged experimental data from the ATLAS,

CMS, CDF and DØ collaborations with the corresponding 1σ errors (orange, light).

Using the sum rules in eqs. (7.7) and (7.9), we can extract constraints on the heavy

CP-even Higgs couplings from our global fit with Mh = 126 GeV. For the solution (7.24)

we find at 68% CL that the coupling of H to vector bosons is suppressed, sin α̃ < 0.37,

while its coupling to top quarks is very large, |yHu | > 4.6. This region of parameter space

requires a very large value of |ςu| in order to flip the sign of yhu, which is the top Yukawa of

h. Such large values of |ςu| would then imply a significant enhancement of the production

of H via gluon fusion and can give rise to non-perturbative H+t̄b, Ht̄t and At̄t couplings.

This was noted previously within the same context in ref. [53].



162 LHC constraints on 2HDMs

Global fit within Z2 models
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Figure 7.3: Global fit within 2HDMs of types I (upper left), II (upper right), X (lower left) and

Y (lower right), at 68% (orange), 90% (yellow) and 99% (gray) CL. The dashed lines correspond

to constant values of µhγγ.

The usual 2HDMs with natural flavour conservation, based on discrete Z2 symmetries,

are particular cases of the CP-conserving A2HDM, with ςf taking the values given in

table 7.1. Thus, the three alignment factors are determined by a single parameter through

the constraints ςu = ςd = ςl = cot β (type I), ςu = −ς−1
d = −ς−1

l = cot β (type II), ςu =

ςd = −ς−1
l = cot β (type X) and ςu = −ς−1

d = ςl = cot β (type Y), with cot β = v1/v2 ≥ 0.
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This leads to specific relations among the production cross sections and decay rates for

the Higgs bosons that can be tested with the LHC data. The separate measurement

of the various Higgs signal strengths should allow to disentangle the different scalings

of the three Yukawa couplings. In particular, exclusive Higgs production measurements

in the final states τ+τ− and bb̄ will be crucial to test the different Z2 versions of the

2HDM [33,43,53].

Figure 7.3 shows the results of the global fit for the 2HDMs of types I, II, X and Y,

assuming that the lightest neutral Higgs h is the boson observed around 126 GeV. Allowed

regions at 68%, 90% and 99% CL are shown, together with lines of constant µhγγ. The

relevance of the diphoton channel is evident from the figure. In models I and X, an allowed

region around cos α̃ ≈ 1 appears, where there is no sensitivity to ςu since its contribution

to the neutral Yukawa couplings is suppressed by sin α̃; in this region the couplings of h to

vector bosons and fermions are close to the SM ones. Another allowed region appears for

negative values of cos α̃, in which the W± and top-quark loops contribute with the same

sign to the h → γγ decay amplitude, thus allowing for a constructive interference. Both

solutions with cos α̃ ≈ ±1 are present for the inert model (type I with ςu = 0). There

is a third allowed region at large values of the top Yukawa and negative cos α̃, which

approaches cos α̃ = −1 as ςu increases.
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Figure 7.4: Allowed ranges for the Higgs signal strengths in 2HDMs of type I, II, X and Y, at

1σ (black, dark) and 2σ (blue, dark). Other captions as in figure 7.2.

In models II and Y the solutions around cos α̃ ≈ ±1 reduce to two extremely narrow

vertical lines and one small region at low ςu and positive cos α̃, which remain allowed at

99% CL but are not present at 90%. The solution at large values of the top Yukawa and

negative cos α̃ is also present, but in a region much smaller than in models I and X.

Figure 7.4 shows the allowed ranges for the Higgs signal strengths obtained in these

four types of 2HDMs (I, II, X and Y). The agreement with the data is good; however,

as already noted in ref. [43], the preferred region has large values of |ςu|, which are ruled

out from flavour physics constraints for a charged Higgs boson below the TeV scale.

Large values of |ςu| can also make some top-quark Yukawa couplings non-perturbative, as

commented in the previous section.
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A charged Higgs and the diphoton excess

One of the most distinctive features of 2HDMs with respect to other alternative scenarios

of electroweak symmetry breaking is the presence of a charged scalar boson in the spec-

trum. The present experimental lower bound on the H± mass is MH± & 80 GeV (95%

CL) [70], assuming that the charged scalar H+ only decays into the fermionic channels

H+ → cs̄ and H+ → τ+ντ . A slightly softer limit MH± & 72.5 GeV is obtained, allowing

for the decay H+ → W+A→ W+bb̄, with MA > 12 GeV, and assuming a type-I fermionic

structure [70]. A model-independent bound can be extracted from the measured Z width

which constraints the Z decays into non-SM modes, and in particular Z → H+H−, to be

below Γnon−SM
Z < 2.9 MeV (95% CL); this implies MH± & 39.6 GeV (95% CL) [70].

Direct searches for charged Higgs bosons at the Tevatron [71] and the LHC [72] have

also been performed with null results so far.

Current LHC data are sensitive to such charged scalar through the h → γγ decay

channel. The one-loop H± contribution can interfere with the W± and fermionic am-

plitudes, thus being able to enhance or suppress the decay rate. The exact value of the

charged Higgs contribution Ch
H± depends on the cubic Higgs coupling λhH+H− and the

charged Higgs mass MH± . One expects however that |Ch
H±| . O(1) based on perturba-

tivity arguments (see appendix 7.D).

When considering a relatively light charged Higgs boson, one must take into account

constraints from electroweak precision tests and the flavour sector; a light H± would

contribute sizably to loop-induced processes, such as Z → b̄b, b → sγ or B0–B̄0 mixing.

These phenomenological constraints have been analyzed in detail within the framework

of the A2HDM in refs. [27–30], where it has been found that a charged Higgs below the

TeV scale would require |ςu| . 2 to be compatible with present data. This rules out the

hypothetical scenario of a top Yukawa coupling with flipped sign, as found in (7.24) and

also favoured by the fits shown in figure 7.3 within the four types of Z2 models. The

reason is that current h → WW,ZZ, γγ(jj) data require | cos α̃| ∼ 1 (i.e., the gauge

coupling of the new neutral scalar should be close to the SM one). Since the top Yukawa

coupling is given by yhu = cos α̃+ ςu sin α̃, in order to flip the sign of yhu one needs then a

large value for |ςu|, which is excluded by the previous bound.

Including the charged-Higgs contribution, it is no longer necessary to flip the sign of

the top Yukawa in order to enhance the h→ γγ decay width. The best fit region is now
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obtained for Yukawa and gauge couplings close to the SM limit:

cos α̃ = 0.98+0.02
−0.06 , Ch

H± = (−2.8± 1.3) ∪ (16.0± 1.3) ,

yhu = 1.0± 0.2 ,
∣∣yhd ∣∣ = 1.1± 0.3 ,

∣∣yhl ∣∣ = 0.8± 0.5 . (7.25)

The two disjoint Ch
H± solutions correspond to either a constructive interference of the H±

and W± amplitudes or a destructive one but with a charged-Higgs contribution so large

that it reverses the sign of the total h → 2γ amplitude. In both cases, one obtains a

better fit than in the SM and also better than the previous A2HDM fits (except for (7.24)

which is comparable to this one). The presence of the charged Higgs allows one to easily

explain the h → γγ(jj) excess without large modifications of the total decay rate (i.e.,

ρ(h) ≈ 1.1). The fit predictions for the µk ratios and their one and two-sigma statistical

errors are shown in figure 7.5. In all cases, good agreement with the data is obtained.
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Figure 7.5: Allowed ranges for the Higgs signal strengths from the global fit within the CP-

conserving A2HDM, including the charged Higgs contribution to h → γγ, at 1σ (black, dark)

and 2σ (blue, dark). Other captions as in figure 7.2.

In figure 7.6 we show the allowed regions of the (|λhH+H− | ,MH±) plane, correspond-

ing to the two possible fitted values of Ch
H± , at 68% and 90% CL, together with the

perturbativity bounds discussed in appendix 7.D. Clearly, the solution with a very large

contribution to h → γγ from the charged Higgs (Ch
H± ≈ 16) is excluded if one requires

the theory to be perturbative. We obtain an upper bound for the mass of the charged
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Higgs around 300 GeV, at the one-sigma level. However, the bound disappears at the

two-sigma level because the charged-Higgs contribution becomes compatible with zero.

CH±
h = -2.8 ± 1ΣCH±
h = -2.8 ± 1Σ

CH±
h = 16.0 ± 1Σ, 2ΣCH±
h = 16.0 ± 1Σ, 2Σ
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Figure 7.6: Allowed regions of the (|λhH+H− | ,MH±) plane, corresponding to the two possible

fitted values of ChH±, at 68% (orange, dark) and 90% CL (yellow, light). The blue (hashed)

area, between the left vertical axis and the dashed line, is the domain where the theory remains

perturbative.

Inert 2HDM

In the inert 2HDM a Z2 symmetry is imposed, in the Higgs basis (7.2), under which

all SM fields and Φ1 are even while Φ2 → −Φ2. Terms with an odd number of Φ2

fields in the scalar potential (7.31) are then forbidden by the Z2 symmetry, therefore

µ3 = λ6 = λ7 = 0. In this case there is no mixing between the CP-even neutral states h

and H, and the scalars H, A and H± decouple from the fermions. The couplings of the

remaining Higgs field h to fermions and to vector bosons are the same than in the SM

(i.e., cos α̃ = 1 and yhf = 1). Thus, only the diphoton channels can show a deviation from

the SM prediction (assuming that there are no open decay channels other than the SM

ones). From the global fit of this scenario, we find a charged-Higgs contribution to the
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h→ γγ amplitude in the range Ch
H± ∈ [−1.7,−0.89] at 68% CL and Ch

H± ∈ [−2.4,−0.1]

at 90% CL. We have assumed that MH± is greater than Mh/2 ≈ 63 GeV so that Ch
H±

is real; for lower charged-Higgs masses, it would develop and imaginary absorptive part.

The fitted negative sign of Ch
H± causes a constructive interference with the W± amplitude

in the h→ γγ decay width.

Note that in the limit ςf = 0, the charged Higgs does not couple to fermions indepen-

dently of any assumption on the scalar potential, see eq. (7.4). The implications of this

more general case for the neutral Higgs boson phenomenology as well as the possibility of

a very light charged Higgs boson are discussed in section 7.4.2. Detailed analyses of the

inert 2HDM and the possibility of a Dark Matter candidate within this model, in light of

the LHC data, can be found in refs. [39, 73]. An enhancement of the h → γγ decay rate

has also been discussed in ref. [74] within the Quasi-Inert 2HDM in connection with the

top forward-backward asymmetry observed at the Tevatron; the limit on Ch
H± obtained

in this section also applies to this scenario.

A heavy CP-even Higgs at 126 GeV

We have discussed so far the phenomenology of the lightest Higgs boson, but there is

nothing a priori preventing the boson discovered by ATLAS and CMS to be identified

with the heaviest CP-even state H or with the CP-odd Higgs A. These possibilities have

been already discussed in refs. [35, 37, 53]. An analysis in terms of the more general CP-

violating scalar potential, setting limits on the scalar-pseudoscalar mixing, has been done

in ref. [36].

Using the previous fits for h, it is straightforward to analyze the possibility of having

a heavy Higgs with MH = 126 GeV. Assuming that non-SM decays like H → hh are

kinematically forbidden or very suppressed, the constraints on the heavy Higgs boson

couplings can be easily obtained from those of h through an appropriate change of the

mixing angle: α̃→ α̃−π/2. In this case the coupling of the heavy Higgs to vector bosons

is close to the SM limit (sin α̃ ≈ 1), while the light-scalar ghV V couplings are suppressed

by cos α̃ ≈ 0. The absolute values of the Yukawa couplings and all the other parameters

remain unchanged. A solution analogous to the one in eq. (7.24), where a large value

of |ςu| is required to flip the sign of the top Yukawa coupling, is excluded by low energy

flavour constraints for a charged Higgs below the TeV scale (Z → b̄b, B0− B̄0 mixing and
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neutral Kaon mixing [27]).

The LEP searches for neutral Higgs particles could have missed the light scalar h,

since the associated production with a vector boson would be strongly suppressed. More-

over,
∣∣yhd ∣∣ ∼ |ςd| could be small enough to avoid the constraints from the usual h → bb̄

search mode. The OPAL collaboration performed a decay-mode-independent search for

a light neutral scalar and found upper limits for the Higgs-strahlung cross section in

units of the SM: (R11)2 ≡ (ghV V /g
SM
hV V )2 < 0.1 for Mh < 19 GeV, and (R11)2 < 1 for

Mh < 81 GeV [75]. Together with the constraints from electroweak precision tests at the

Z peak, this provides useful information on the allowed mass spectrum for the remaining

scalars. Using the current bounds from the oblique parameters S, T and U [76, 77] (the

corresponding A2HDM formulae are given in appendix 7.E), we show in the left panel of

figure 7.7 the allowed regions in the (MH± ,MA) plane. We have set MH = 126 GeV and

sin α̃ ∈ [0.7, 1]. The constraints shown in the figure turn out to be determined by the T

parameter, since S and U give weaker restrictions. The charged scalar mass is of course

constrained by the direct experimental lower bound discussed before, but its exact value

depends on the assumed decay channels. The region where both MH± and MA become

very heavy corresponds to uncomfortably large values of the quartic couplings λi of the

scalar potential and the theory is no longer perturbative.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

10

20

30

40

50

60

ÈΛHhh È�102

M
h

HGe
V

L

Figure 7.7: Left-panel: Constraint in the (MH± ,MA) plane from the oblique parameters S, T

and U . Right-panel: Constraints from the invisible Higgs decay width in the (|λHhh| ,Mh) plane,

assuming SM couplings of H to fermions and vector bosons. The orange (dark) and yellow

(light) regions are allowed at 68% and 90% CL.
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A light neutral boson h or A below the kinematical threshold of MH/2 ≈ 63 GeV

would have important phenomenological consequences, because the 126 GeV Higgs could

decay into lighter scalars. These decay channels can be included in our fit in terms of

an invisible decay width as long as we neglect possible contributions from cascade decays

into the observed final states.4 In general one would expect in this case a suppression

of the measured Higgs decay rates compared with the SM, due to the larger total width

of the scalar H. Current data for the γγ channel, however, shows a slight enhancement

over the SM prediction, thus placing strong bounds on possible invisible decays of the

126 GeV Higgs boson. Assuming that the heavy-Higgs couplings to fermions and vector

bosons are SM-like (i.e., yHf = 1 and sin α̃ = 1), the best fit point is obtained for a null

invisible H decay width; at 68% CL (90% CL) we obtain an upper bound of 9% (20%)

on the invisible H decay width (in units of the SM total decay width).

Considering the scenario of a very light CP-even Higgs h, the decay width of the

heavier CP-even scalar into hh is given by

Γ(H → hh) =
v2λ2

Hhh

8πMH

(
1− 4M2

h

M2
H

)1/2

, (7.26)

where the cubic scalar coupling λHhh is expressed in units of v and can be obtained from

eq. (7.43). In the right panel of figure 7.7 we show the constraints from our Γ(H → hh)

fit in the (|λHhh|,Mh) plane. Strong bounds are obtained for the cubic Higgs coupling,

|λHhh| . 10−2, as expected.

Recent updates from the ATLAS collaboration in the high-resolution channels report

a significant difference in the mass of the neutral boson as determined from H → ZZ(∗) →
4` (123.5± 0.8± 0.3 GeV) and H → γγ (126.6 ± 0.3 ± 0.7 GeV) events [1]. Here we do

not consider as a possible explanation for this discrepancy, the possibility of having two

quasi-degenerate Higgs bosons, since the current mass value in the H → ZZ(∗) → 4`

channel obtained by CMS, 126.2± 0.6± 0.2 GeV [3], does not support this hypothesis.

Degenerate CP-even and CP-odd Higgs bosons at 126 GeV

A CP-odd scalar does not couple at tree level to two vector bosons; its decay to gauge

bosons starts at the one-loop level and it is therefore very suppressed. For this reason, a

4These effects are beyond the scope of the present work, but they could be relevant. For example, H →
AA→ γγ + γγ could be mistaken by a two-photon signal when the photon pairs are very collimated [78]
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pure CP-odd Higgs boson is already strongly disfavoured by present data as a candidate

for the 126 GeV boson. However, the observed signal could result from two Higgs bosons

with quasi-degenerate masses; this could explain the excess of γγ events observed by

ATLAS and CMS. This possibility was proposed in ref. [79] within the non-minimal

supersymmetric extension of the SM, and has also been considered within the context of

2HDMs, both for Z2 versions [80–82] and with a more general Yukawa structure [53, 55].

Model-independent methods to test experimentally for such possibility have also been

proposed recently in refs. [83, 84].

We consider in this section the possibility of two Higgs bosons with quasi-degenerate

masses around 126 GeV, one of them being CP-even and the other one CP-odd. We per-

form a global fit of the data with Mh = MA ≈ 126 GeV, and comment on the alternative

possibility of quasi-degenerate H and A. The observed Higgs signals strengths will then

receive contributions from both particles:

µ
(h+A)
k = µhk + µAk . (7.27)

Given the presently large experimental uncertainties, we neglect the small AV V coupling

generated at one loop. Therefore, among all the channels considered in this work, the

CP-odd Higgs will only contribute to A→ ττ and A→ γγ. In both cases the dominant

production channel is the gluon-fusion one. The loop-induced decay A → γγ is only

mediated by fermions. In figure 7.8 (left) we show the constraints on MH± and MH

obtained from the oblique parameters. These masses are varied in the ranges MH± ∈
[50, 600] GeV and MH ∈ [126, 600] GeV, while the coupling of h to vector bosons is kept

close to the SM limit (i.e., | cos α̃| ∈ [0.8, 1]), as suggested by the current experimental

data. In the right panel of figure 7.8 we show similar bounds on the plane (MH± ,Mh),

keeping the light scalar mass below MH = MA = 126 GeV and taking sin α̃ ∈ [0.8, 1];

in this case the oblique parameters require the existence of a charged Higgs below the

electroweak symmetry breaking scale v = 246 GeV.
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Figure 7.8: Constraints in the (MH± ,MH) plane for the case Mh = MA = 126 GeV (left) and

in the (MH± ,Mh) plane for the case MH = MA = 126 GeV (right), from the oblique parameters

S, T and U . The orange (dark) and yellow (light) regions are allowed at 68% and 90% CL.

In the scenario Mh = MA = 126 GeV, the best fit region in the A2HDM parameter

space, assuming the charged Higgs contribution to the 2γ channel to be negligible, is given

by:

cos α̃ = 0.98± 0.2 , ςu = −1.1 + 0.5
− 0.4 , |ςd| = 1.2± 1.2 , ςl = −0.2 + 0.6

− 0.4 .

(7.28)

The corresponding allowed ranges for the Higgs signal strengths, at 1σ and 2σ, are shown

in figure 7.9. We obtain a smaller total decay width of the CP-even boson, ρ(h) ≈ 0.7,

which produces a sizeable enhancement of the µhγγjj signal strength (the CP-odd boson

A does not contribute to this channel). On the other hand, the excess in the two photon

channel comes from the decays of both A and h, which give contributions of similar size

(µhγγ ≈ µAγγ ≈ 0.7). The remaining contribution of A is to the τ+τ− decay channel, which

is small (ςl is small). We must also notice that solutions with a flipped relative sign

between the W and top contributions to h → γγ are not allowed because they would

require large values of ςu; this would increase CA
gg and CA

γγ generating a large excess in the

τ+τ− and γγ channels, exceeding the current experimental bounds.

It is important to note that for a light charged Higgs boson, very strong flavour

constraints in the ςu−ςd plane can be obtained from B̄ → Xsγ [27]. The allowed ranges at

68% CL shown in eq. (7.28) were obtained assuming that the charged Higgs contribution to

the diphoton channel is negligible (this is true even for a light charged Higgs if λhH+H− '
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0). Including the charged Higgs contribution to the 2γ channel in the fit one obtains

at 68% CL that Ch
H± = −3.0 ± 1.4, while the alignment parameters ςf remain weakly

constrained and compatible with zero. In the limit ςf = 0, the stringent flavour constraints

for a light charged Higgs, in particular B̄ → Xsγ, are avoided since the charged Higgs

decouples from the fermions. These constraints would be particularly relevant in the

scenario MH = MA = 126 GeV for which the charged Higgs mass is bounded to lie below

the electroweak scale, see figure 7.8 (right).
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Figure 7.9: Allowed ranges for the Higgs signal strengths from the global fit within the CP-

conserving A2HDM for the case of degenerate Higgs bosons with Mh = MA = 126 GeV, at 1σ

(black, dark) and 2σ (blue, dark). Other captions as in figure 7.2.

7.4.2 The CP-violating A2HDM

In the A2HDM the up and down-quark as well as the leptonic Yukawa couplings are

all independent complex parameters. Thus, one can expect a very rich phenomenology

associated to the Higgs sector responsible for the breaking of the electroweak symmetry.

Moreover, if one considers the most general scalar potential, the neutral scalars h, H and

A are not CP eigenstates but rather a mixture of CP-even and CP-odd fields, parametrized

by the general orthogonal matrixR introduced in section 7.2. Thus, there are new sources

of CP violation, both from the Yukawa sector and the scalar potential, which could lead

to interesting phenomenological predictions.

The study of CP-violating observables is beyond the scope of the present work and we
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will defer it to future publications.5 Nevertheless, we shall investigate next, the sensitivity

of the different (CP-conserving) Higgs signal strengths to the CP-violating phases. Since

the present data are consistent with the SM within rather large uncertainties, we will

consider separately the different CP-odd possibilities, by fitting some complex coupling

constants to the Higgs-signal-strength data while setting the remaining parameters to their

SM-like values. A similar analysis has also been performed within a model independent

framework in ref. [24].

Complex Yukawa couplings

Let us consider ϕ0
i to be the observed boson with a mass of 126 GeV. We will analyze

three simple scenarios that will serve to determine the sensitivity to its complex Yukawa

couplings and to what extent the SM limit is preferred by present data. We will set

two Yukawa couplings to their SM values (y
ϕ0
i

f = 1), and find the preferred values for the

remaining Yukawa coupling by minimizing the χ2 function. Figure 7.10 shows the resulting

allowed regions for the top, bottom and tau Yukawa couplings when the coupling of ϕ0
i to

vector bosons is fixed to Ri1 = 0.95; this value lies well within the 90% CL allowed band

obtained from our previous fits.

Since all the observables considered are CP-even, the bounds obtained are symmetric

under Im(y
ϕ0
i

f ) → −Im(y
ϕ0
i

f ). Moreover, the real and imaginary parts of the Yukawa

couplings do not interfere. The sensitivity to Im(y
ϕ0
i

f ) is similar to that obtained previously,

when considering only real couplings. For tree-level decays this is obvious from eq. (7.14),

given that the parameter βf is very close to one for f = b, τ . For loop-induced decays

this can be understood by observing that the loop functions (7.18) are closely related,

F(τ) = 2τ + τ2

2
f(τ)+K(τ). For b quarks and τ leptons, F(τf ) ≈ K(τf ); for the top quark

there is a small but sizable difference between the contributions of its real and imaginary

Yukawa parts. Note that in the limit Ri1 = 1 the Yukawa couplings of ϕ0
i become SM-like

(y
ϕ0
i

f = 1) due to the orthogonality of R; thus, there is no sensitivity to the ςf parameters

when considering the neutral Higgs couplings. The charged Higgs couplings on the other

hand are proportional to ςf and do not depend on the mixing matrix R.

In the left upper panel of figure 7.10 we show the results of the fit for a complex

5 For theoretical studies about the CP-properties of extended Higgs sectors at the LHC and in possible

future colliders see ref. [85] and references therein.
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top Yukawa coupling, while setting y
ϕ0
i

d = y
ϕ0
i

l = 1. The dashed lines show contours of

constant value for µ
ϕ0
i
γγ. The SM-like point (Re(y

ϕ0
i

u ), Im(y
ϕ0
i

u )) = (1, 0) lies outside the

90% CL region, but becomes allowed at 99% CL.

Figure 7.10: Allowed regions at 68% (orange), 90% (yellow) and 99% (grey) CL for the complex

top (upper-left), bottom (upper-right) and tau (lower) Yukawa couplings. In each plot the two

Yukawa couplings not shown are set to their SM value and the coupling to vector bosons is taken

to be Ri1 = 0.95. The dashed lines show contours of constant values for µ
ϕ0
i
γγ (top plot), µ

ϕ0
i
bbV

(bottom plot) and µ
ϕ0
i
ττV (tau plot).

It can be seen that the allowed region at 90% CL accommodates an enhanced γγ rate

between one and two times that of the SM. Within this 90% CL region, ρ(ϕ0
i ) = 1.00±0.03
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as expected, since the dominant decay channel is b̄b; the gluon fusion cross section is

slightly reduced compared with the SM (C
ϕ0
i

gg = 0.87 ± 0.28), while the γγ partial decay

width is enhanced (C
ϕ0
i

γγ = 1.67±0.56). The preferred allowed region is that for which the

top Yukawa coupling has opposite sign to Ri1, thus, creating a constructive interference

with the vector boson contribution for the ϕ0
i → γγ amplitude. The other option would

be to have a significant imaginary component Im(y
ϕ0
i

u ), which would also enhance the γγ

rate. Similar results were obtained in ref. [24].

The right upper panel of figure 7.10 shows the fitted values for the complex bottom

coupling, with the top and tau Yukawa couplings set to their SM values. The dashed lines

indicate contours of constant value for µ
ϕ0
i
bbV . In this case the SM limit (Re(y

ϕ0
i

d ), Im(y
ϕ0
i

d )) =

(1, 0) lies inside the 90% CL allowed region, which accommodates 0.7 < µ
ϕ0
i
bbV < 1.2. In

this 90% CL region, the total decay width is rescaled by ρ(ϕ0
i ) = 1.11± 0.67; the gluon-

fusion cross section ratio is C
ϕ0
i

gg = 1.15 ± 0.10, while the γγ partial decay width turns

out to be slightly suppressed with respect to the SM, C
ϕ0
i

γγ = 0.89± 0.10. Since the total

decay width depends strongly on the value of |yϕ
0
i

d |2, a large variation range is obtained

for ρ(ϕ0
i ).

In the lower panel of figure 7.10, we show the fitted values of the complex τ Yukawa

coupling assuming y
ϕ0
i

u = y
ϕ0
i

d = 1. Contours of constant value for µ
ϕ0
i
ττV are also shown

as dashed lines. We obtain that the signal strength µ
ϕ0
i
ττV < 1.5 lies within the 68% CL

allowed region. The total Higgs decay width and the gluon-fusion cross section are equal

in this case to the SM ones, while some suppression is observed in the γγ partial decay

width: at 90% CL, C
ϕ0
i

γγ = 0.90± 0.11 is obtained. This scenario is therefore disfavoured

by the observed excess in the two-photon channel.

A fermiophobic charged Higgs

In the limit ςf → 0 the charged Higgs does not couple to fermions, independently of

any assumption about the scalar potential. Such fermiophobic charged Higgs could have

avoided detection at LEP while being very light. Current LHC searches, as well as searches

at the Tevatron, would have also missed such particle since it can neither be produced

via top decay nor decay into fermions. Flavour constraints on this charged Higgs are also

avoided trivially. Detecting such particle in an experiment is therefore quite challenging,

since it can only be produced in processes involving vector bosons and/or neutral Higgs
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particles; the same occurs for its decay channels.

The case of a fermiophobic charged Higgs is however highly predictive in the neutral

Higgs sector, since all the channels which do not involve the γγ (γZ) final state only

depend on one free parameter, Ri1. The rescaling of the Higgs coupling to vector bosons

in this case is the same as that of the neutral Yukawa ones, y
ϕ0
i

f = gϕ0
i V V

/gSM
ϕ0
i V V

= Ri1,

which implies that all Higgs signal strengths are rescaled by a factor R2
i1 with respect

to the SM, meaning that µ
ϕ0
i
bb = µ

ϕ0
i
ττ = µ

ϕ0
i
WW,ZZ = ρ(ϕ0

i )
−1R4

i1 = R2
i1, in any of the

relevant production mechanisms. Therefore, in this scenario the signal strengths of the

three neutral scalars are correlated:∑
ϕ0
i=h,H,A

µ
ϕ0
i
ff =

∑
ϕ0
i=h,H,A

µ
ϕ0
i
WW,ZZ = 1 . (7.29)

Present data on the neutral Higgs boson are sensitive to a fermiophobic charged

Higgs through the loop-induced decay ϕ0
i → γγ. The charged-scalar contribution to this

decay can be sizeable for a light H±, and this is a quite interesting situation in view of

the possibility to detect such particle in the future. Assuming that the scalar with a mass

of 126 GeV does not decay into lighter scalars, we show in figure 7.11 the allowed region

in the parameter space (Ri1, Cϕ
0
i

H±). For the χ2 fit we have only considered real values of

Cϕ
0
i

H± , which is true above the kinematical threshold MH± > Mϕ0
i
/2 ≈ 63 GeV, as we have

mentioned before. In the figure we also show dashed contour lines of constant µ
ϕ0
i
γγ. It

can be observed that the preferred relative sign between the charged Higgs and the W±

contributions to the γγ decay rate is such that it causes a constructive interference, thus

enhancing slightly the γγ decay rate. The fit prefers a gauge coupling close to the SM

one (χ2
min is obtained for Ri1 ≈ 0.95) and puts the 90% CL lower bound |Ri1| > 0.79.

The SM-like point (Ri1, Cϕ
0
i

H±) = (1, 0) lies outside the 68% CL region, but is allowed at

90% CL (although close to the boundary). The presence of a non-zero (and negative)

Cϕ
0
i

H± contribution is clearly favoured, while the preference for a slightly reduced gauge

coupling implies a small suppression of the total decay width compared with the SM (i.e.,

ρ(ϕ0
i ) = 0.85±0.19, at 90% CL). From the global fit, µ

ϕ0
i
γγ = µ

ϕ0
i
γγjj = 1.45±0.49 is obtained

at 90% CL; all the other Higgs signal strengths that are not affected by the charged Higgs

contribution are equal to µ = 0.8± 0.2.
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Figure 7.11: Allowed regions at 68% (orange), 90% (yellow) and 99% CL (gray) for a fermio-

phobic charged Higgs on the parameter space (Ri1, Cϕ
0
i

H±); dashed lines denote contours of constant

µ
ϕ0
i
γγ (left). The right plot shows the corresponding 68% and 90% CL regions in the parameters

λϕ0
iH

+H− and MH±, setting the value of Ri1 at its best fit point. The region where perturbation

theory remains valid is indicated in blue (hashed).

The right panel in figure 7.11 shows the corresponding allowed regions in terms of

the variables λϕ0
iH

+H− and MH± . The value of Ri1 has been set to its best fit point. Also

shown in the figure, is the region satisfying the perturbativity constraints discussed in

appendix 7.D.

For the previous discussion we have not made any assumptions on the quantum

numbers of the scalar field ϕ0
i ; we have only assumed that Mϕ0

i
= 126 GeV and that its

decay into lighter scalars is not allowed. Thus, the obtained results are general and apply

both to a CP-conserving and to a CP-violating scalar potential. It must be noted that

in the limit |Ri1| = 1 the phenomenology of ϕ0
i becomes identical to that of the SM in

every channel, except for γγ and γZ which are affected by the H± contribution. For a

fermiophobic charged Higgs lighter than Mϕ0
i
/2 ≈ 63 GeV, Cϕ

0
i

H± develops an imaginary

absorptive part. If kinematically open, the channel ϕ0
i → H+H− would increase the total

width of the Higgs boson; furthermore, in this scenario the production cross section is

always less or equal to the SM. Therefore, the signal strengths would be reduced in every

channel, with respect to the SM. This is in clear contradiction with the data, specially
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with the measurements for the two-photon channel.

CP-even and CP-odd neutral scalar mixing

A CP-violating scalar potential generates mixings among the three neutral scalars, which

are no longer CP eigenstates. Here, we are interested in exploring the possibility that the

observed 126 GeV state could be the CP-odd scalar with a small CP admixture of the CP-

even ones. A similar analysis within 2HDMs of types I and II, with explicit CP violation

and soft breaking of the Z2 symmetry has been done in ref. [36], placing numerical bounds

on the size of a possible CP-odd component for the scalar particle with 126 GeV of mass.

In the presence of CP violation, the admixture between the three neutral scalar fields

is described by the 3-dimensional orthogonal matrix R which diagonalizes their mass

matrix. This diagonalization can be done numerically, once the parameters of the scalar

potential are known, but a simple analytical solution is not available for the most general

case. It is well known, on the other hand, that in the CP-conserving limit the mass-

matrix simplifies and it is possible to give explicit expressions for the masses and physical

states in terms of the scalar potential parameters. A reasonable assumption when dealing

with the general 2HDM scalar potential, is that the CP-violating terms are small; this

makes a perturbative expansion in these parameters a valid approximation in principle.

In appendix 7.A we provide explicit analytical expressions for the neutral scalar masses

and the corresponding eigenstates to leading order in the CP-violating parameters of the

scalar potential λI
5,6. The corrections to the masses are quadratic in λI

5,6, while the mixing

between the CP-even and CP-odd states is only suppressed by one power of λI
5,6, making

this effect the dominant one.

Let us assume that the discovered boson is the state A = S3+R31S1+R32S2, withR31

and R32 the small CP-even admixture coefficients. To simplify the discussion, we consider

a simple scenario in which we set the parameters ςu,d,l = 0. The Yukawa couplings, as

well as the coupling to vector bosons, are equal in this case, yAf = R31. From a global fit

to the data, we find a lower bound on the admixture coefficient: R31 > 0.83, at 99% CL.

This result is mainly driven by the measurements in the W+W−, ZZ and γγ channels,

which are SM-like to a good degree.

We can analyze whether such large values for the correction R31 can be obtained for
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natural values of the scalar potential parameters. From eq. (7.48), one has:

R31 ≈
v4
(
2λR

5 λ
I
6 − λR

6 λ
I
5

)(
M̄2

A − M̄2
h

) (
M̄2

A − M̄2
H

) . (7.30)

Thus, large mass differences between the scalar states suppress the effect of mixing due

to CP violation in the scalar potential; on the other hand if the scalar bosons have very

similar masses these effects could be considerably enhanced. Assuming that |λI,R5,6 | . 10−1

we obtain R31 .
[(
M̄2

A − M̄2
H

) (
M̄2

A − M̄2
h

)]−1
108 GeV4, which implies that |R31| . 10−2

for M̄H > M̄h & 300 GeV. Of course, when either M̄h ∼ M̄A or M̄H ∼ M̄A the coefficient

R31 diverges and the approximations used in appendix 7.A are no longer valid. The general

formalism to describe the dynamics of CP violation near degenerate neutral Higgs bosons

has been developed in refs. [86,87]. In ref. [88] the effect of resonant enhancement of H and

A mixing was studied for the CP-violating 2HDM in the decoupling limit, M̄2
A � |λi| v2.

In this case the heavy states H, H± and A are nearly mass degenerate and decouple from

the light state h.

In figure 7.12 we show the allowed values at 90% CL for (Ri1,Ri2,Ri3) for a general

scalar state ϕ0
i with mϕ0

i
= 126 GeV, assuming that the alignment parameters ςf (f =

u, d, l) are real. We have imposed |ςu| < 2, in order to satisfy the flavour constraints for a

charged Higgs below the TeV scale, and moreover we have set |ςd,l| < 10. It is seen that

the CP-odd admixture in the 126 GeV state has an upper bound Ri3 . 0.7, similar to

that obtained in ref. [36] within 2HDMs of types I and II, with explicit CP violation and

soft breaking of the Z2 symmetry.
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Figure 7.12: Allowed regions at 90% CL (yellow) on the parameter space (Ri1,Ri3), for real

alignment parameters in the ranges |ςu| < 2 and |ςd,l| < 10 (left). The right plot shows the

corresponding 90% CL region for the parameters (Ri2,Ri3).

7.5 Summary

The recent LHC discovery of a new neutral boson, with mass close to 126 GeV, provides for

the first time direct information on the electroweak symmetry breaking mechanism. The

current data are so far compatible with the SM Higgs hypothesis, although a slight excess

in the diphoton channel has been observed by the ATLAS and CMS collaborations. This

channel is particularly interesting since the decay of the Higgs into two photons occurs at

the one-loop level and is therefore sensitive to new charged particles that couple directly

to the Higgs.

As new and more precise data become available, we shall test whether the properties

of the 126 GeV particle correspond indeed to the SM Higgs boson or they manifest

evidences for new phenomena, perhaps signalling the existence of a much richer scalar

sector. Present experimental errors are still large but, nevertheless, they already allow us

to extract useful constraints on alternative scenarios of electroweak symmetry breaking.

2HDMs constitute the simplest extension of the SM scalar sector, satisfying the elec-

troweak precision tests, and give rise to interesting new phenomena through their enlarged

scalar spectrum containing five physical scalars. In order to avoid dangerous FCNCs, the
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2HDM phenomenology has been usually particularized to a few specific implementations,

based on discrete Z2 symmetries, which severely restrict the fermionic couplings of the

scalar bosons. The most widely used scenario is the so-called type II 2HDM, since it

corresponds to the tree-level scalar sector of the minimal supersymmetric SM. However,

the phenomenological FCNC requirements can be easily satisfied imposing a much softer

alignment condition on the Yukawa couplings. The resulting A2HDM provides a general

framework to describe an extended scalar sector with two Higgs doublets and no FCNCs at

tree level, which includes as particular cases all previously considered 2HDM variants. It

has a much larger parameter space with plenty of new phenomenological possibilities, such

as new sources of CP violation and tunable strengths of the (family universal) Yukawas.

Thus, it is the appropriate framework to perform an unbiased phenomenological analysis

of the Higgs data.

In this paper, we have analyzed the present data on the Higgs signal strengths from

the ATLAS, CMS, CDF and DØ collaborations, within the framework of the A2HDM.

Even with the currently large experimental uncertainties, interesting conclusions can be

obtained regarding the preferred regions in the parameter space of the model. We have

considered a variety of possible departures from the SM predictions, within this frame-

work, including the effects from new CP-violating phases. In particular, we have searched

for possible ways to enhance the diphoton channel while being compatible with the rest

of the data.

The measured WW , ZZ and γγ decay channels of the new boson suggest that its

coupling to the weak vector bosons (W+W−, ZZ) is close to the SM one. This rules

out the possibility of a pure CP-odd assignment for the quantum numbers of the new

Higgs-like boson. A CP-even scalar, either pure or with a CP-odd admixture arising from

CP-violating terms in the scalar potential, however, can accommodate the data rather

well.

By flipping the relative sign of the top Yukawa coupling, the top-quark contribution

to the Higgs decay amplitude into 2γ interferes constructively with the dominant W±

contribution. This can only be realized in the A2HDM for large values of |ςu|, given that

gϕ0
i V V

≈ gSM
hV V . However, flavour constraints on a charged Higgs below the TeV scale

(from Z → b̄b, b→ sγ and B0–B̄0 mixing) require that |ςu| < 2, even in the most general

CP-violating A2HDM. Thus, a 2γ enhancement through a constructive interference of

the top and W± contributions could only be possible in a decoupling scenario with an
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enormously large H± mass.

Including the charged scalar contribution to the Higgs decay amplitude into two

photons, one can explain the observed excess without significant deviations of the neutral

scalar couplings from the SM limit, and satisfying at the same time the flavour constraints.

This appears to be the most natural and likely possibility to accommodate current data

within the A2HDM framework. The confirmation by future data of a significatively

enhanced 2γ decay width could be a strong indication that a light charged scalar is

around the corner, within the LHC reach.

The possibility that a CP-even and a CP-odd Higgs bosons have quasi-degenerate

masses near 126 GeV was also analyzed. An excess in the γγ channel can occur in this case

due to the contributions from both scalars (when signal strengths are added incoherently).

We have also considered the most general A2HDM with complex Yukawa couplings. Since

the Higgs signal strengths are CP-even observables, there is no interference between the

contributions from the real and imaginary parts of the Yukawa couplings. It is then

possible to enhance the γγ decay rate with a complex Yukawa coupling which has its real

part close to the SM-like limit.

Future improvements of the present bounds on neutral and charged Higgs bosons, or

perhaps their direct discovery, as well as more precise measurements of the current Higgs

signal strengths are expected from the LHC in the next years. The complementarity

between flavour constraints and collider searches for new scalar resonances will be crucial

for the understanding of the mechanism of electroweak symmetry breaking. We have

shown different alternative scenarios within the A2HDM that can accommodate present

data very well, placing bounds on the relevant parameter space and discussing possible

consequences that could be tested in the near future.

Note added: After the submission of this work for publication, updated experimental

analyses of the LHC data have been made public [89,90]. While an enhanced diphoton rate

is still present in the ATLAS results, the CMS collaboration finds now a 2γ rate compatible

with the SM prediction. The new CMS results would favour a SM-like scenario, similar

to that obtained in eq. (7.23), without any need for a charged scalar contribution to the

2γ decay mode. More data are needed to clarify this issue.
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Appendix

7.A Scalar Potential

In the Higgs basis, the most general scalar potential takes the form

V = µ1 Φ†1Φ1 + µ2 Φ†2Φ2 +
[
µ3 Φ†1Φ2 + µ∗3 Φ†2Φ1

]
+ λ1

(
Φ†1Φ1

)2

+ λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[(
λ5 Φ†1Φ2 + λ6 Φ†1Φ1 + λ7 Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

]
. (7.31)

The Hermiticity of the potential requires all parameters to be real except µ3, λ5, λ6 and

λ7; thus, there are 14 real parameters.

The minimization conditions 〈0|ΦT
1 (x)|0〉 = 1√

2
(0, v) and 〈0|ΦT

2 (x)|0〉 = 1√
2

(0, 0)

impose the relations

µ1 = −λ1 v
2 , µ3 = −1

2
λ6 v

2 . (7.32)

The potential can then be decomposed into a quadratic term plus cubic and quartic

interactions

V = −1

4
λ1 v

4 + V2 + V3 + V4 . (7.33)

The mass terms take the form

V2 = M2
H± H

+H− +
1

2
(S1, S2, S3) M

 S1

S2

S3


= M2

H± H
+H− +

1

2
M2

h h
2 +

1

2
M2

H H
2 +

1

2
M2

AA
2 , (7.34)
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with

M2
H± = µ2 +

1

2
λ3 v

2 (7.35)

and

M =

 2λ1v
2 v2 λR

6 −v2 λI
6

v2 λR
6 M2

H± + v2
(
λ4
2

+ λR
5

)
−v2 λI

5

−v2 λI
6 −v2 λI

5 M2
H± + v2

(
λ4
2
− λR

5

)
 , (7.36)

where λR
i ≡ Re(λi) and λI

i ≡ Im(λi). The symmetric mass matrix M is diagonalized by

an orthogonal matrix R, which defines the neutral mass eigenstates:

M = RT

 M2
h 0 0

0 M2
H 0

0 0 M2
A

 R ,
 h

H

A

 = R

 S1

S2

S3

 . (7.37)

Since the trace remains invariant, the masses satisfy the relation

M2
h + M2

H + M2
A = 2M2

H± + v2 (2λ1 + λ4) . (7.38)

The minimization conditions allow us to trade the parameters µ1 and µ3 by v and

λ6. The freedom to rephase the field Φ2 implies, moreover, that only the relative phases

among λ5, λ6 and λ7 are physical; but only two of them are independent. Therefore,

we can fully characterize the potential with 11 parameters: v, µ2, |λ1,...,7|, arg(λ5λ
∗
6) and

arg(λ5λ
∗
7). Four parameters can be determined through the physical scalar masses.

In the CP conserving limit λI
5 = λI

6 = λI
7 = 0 and S3 does not mix with the other

neutral fields. The scalar spectrum contains then a CP-odd field A = S3 and two CP-even

scalars h and H which mix through the rotation matrix (7.3). In this case, the scalar

masses are given by

M̄2
h =

1

2
(Σ−∆) , M̄2

H =
1

2
(Σ + ∆) , M̄2

A = M2
H± + v2

(
λ4

2
− λR

5

)
,

(7.39)

where

Σ = M2
H± + v2

(
2λ1 +

λ4

2
+ λR

5

)
, (7.40)

∆ =

√[
M2

H± + v2

(
−2λ1 +

λ4

2
+ λR

5

)]2

+ 4v4(λR
6 )2 , (7.41)
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and the mixing angle is determined through

tan α̃ =
M̄2

h − 2λ1v
2

v2λR
6

. (7.42)

We use the notation M̄ϕ0
i

to emphasize that these are the neutral scalar masses in the

CP-conserving limit. The cubic and quartic Higgs couplings involving the charged and

the neutral physical scalars (without Goldstone boson couplings) take the form,

V3 = v H+H−
(
λ3 S1 + λR

7 S2 − λI
7 S3

)
− 1

2
v λI

7 S
3
3 −

1

2
v λI

7 S
2
2S3 −

3

2
v λI

6 S
2
1S3

+ λ1 v S
3
1 +

1

2
v λR

7 S
3
2 +

3

2
v λR

6 S
2
1S2 +

1

2
v
(
2λR

5 + λ3 + λ4

)
S1S

2
2

− 1

2
v
(
2λR

5 − λ3 − λ4

)
S1S

2
3 +

1

2
v λR

7 S2S
2
3 − 2 v λI5 S1S2S3 , (7.43)

V4 = H+H−
(
λ2H

+H− +
λ3

2
S2

1 + λ2 S
2
3 + λ2 S

2
2 − λI

7 S1S3 + λR
7 S1S2

)
+

1

4

(
λ3 + λ4 + 2λR

5

)
(S1S2)2 +

1

4

(
λ3 + λ4 − 2λR

5

)
(S1S3)2 +

λ2

2
(S2S3)2

− 1

2
λI

6 S
3
1S3 − λI5 S2

1S2S3 −
λI

7

2
S1S

2
2S3 −

λI
7

2
S1S

3
3 +

λR
6

2
S3

1S2 +
λR

7

2
S1S

3
2 +

λR
7

2
S1S2S

2
3

+
λ1

4
S4

1 +
λ2

4
S4

2 +
λ2

4
S4

3 . (7.44)

In the CP-conserving limit all vertices involving an odd number of S3 fields vanish. A

basis-independent discussion of the 2HDM scalar sector can be found in ref. [91].

7.A.1 Neutral scalar mass matrix to lowest order in CP viola-

tion

Assuming that λI
5 and λI

6 are small, we can diagonalize the mass matrix (7.36) perturba-

tively as an expansion in powers of these CP-violating parameters. The leading corrections

to the neutral scalar masses are quadratic in λI
5,6:

M2
ϕ0
i

= M̄2
ϕ0
i

+ α
ϕ0
i

1 (λI5)2 + α
ϕ0
i

2 (λI6)2 + α
ϕ0
i

3 (λI5λ
I
6) , (7.45)
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where M̄ϕ0
i

denote the corresponding masses in the CP-conserving limit given in (7.39)

and

α
ϕ0
i

1 =
v4
(
M̄2

ϕ0
i
− 2λ1v

2
)

∏
j 6=i

(
M̄2

ϕ0
j
− M̄2

ϕ0
i

) ,

α
ϕ0
i

2 =
v4
(

2λ1v
2 + M̄2

ϕ0
i
− M̄2

H − M̄2
h

)
∏

j 6=i

(
M̄2

ϕ0
j
− M̄2

ϕ0
i

) ,

α
ϕ0
i

3 =
2v6λR6∏

j 6=i

(
M̄2

ϕ0
j
− M̄2

ϕ0
i

) . (7.46)

The physical states ϕ0
i = {h,H,A} receive corrections at first order in λI

5,6, which are

given by  h

H

A

 =

 cos α̃ sin α̃ ε13

− sin α̃ cos α̃ ε23

ε31 ε32 1


 S1

S2

S3

 , (7.47)

where

ε13 =
v2(

M̄2
A − M̄2

h

) (sin α̃ λI
5 + cos α̃ λI

6

)
, ε23 =

v2(
M̄2

A − M̄2
H

) (cos α̃ λI
5 − sin α̃ λI

6

)
,

ε31 = − 1

2v2

(
αA3 λ

I
5 + 2αA2 λ

I
6

)
, ε32 = − 1

2v2

(
2αA1 λ

I
5 + αA3 λ

I
6

)
. (7.48)

Note that for the case of a scalar potential with a softly-broken Z2 symmetry in the Higgs

basis we have λ6 = λ7 = 0 and, therefore, ε31 = 0.

7.B Scalar Couplings to the Gauge Bosons

The scalar doublets couple to the gauge bosons through the covariant derivative and

gauge-fixing terms:

LK +
2∑
i=1

(DµΦa)
†DµΦa + LGF = LV 2 + Lφ2 + LφV + Lφ2V + LφV 2 + Lφ2V 2 , (7.49)
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where LK is the usual gauge-boson kinetic term and the covariant derivative is given by6

Dµ = ∂µ + ieQAµ + i
g

cos θW
Zµ(T3 −Q sin2 θW ) + ig

[
T+W

†
µ + T−Wµ

]
. It is convenient to

adopt the following Rξ gauge-fixing term (ξ = 1),

LGF = −1

2
(∂µA

µ)2 − 1

2

(
∂µZ

µ +MZG
0
)2 −

(
∂µW †

µ + iMWG
+
) (
∂νW

ν − iMWG
−) ,
(7.50)

which cancels exactly the quadratic mixing terms between the gauge and Goldstone bosons

generated by the covariant derivatives, so that LφV = 0, and provides the Goldstone

bosons with the masses MG± = MW = gv/2 and MG0 = MZ = MW/ cos θW . Then,

LV 2 = −1

2
(∂µA

µ)2 − 1

2
(∂µZ

µ)2 +
1

2
M2

Z ZµZ
µ −

(
∂µW †

µ

)
(∂νW

ν) +M2
W W †

µW
µ , (7.51)

while

Lφ2 =
1

2
[∂µh ∂

µh+ ∂µH ∂µH + ∂µA∂
µA] + ∂µH

+∂µH−

+
1

2
∂µG

0 ∂µG0 − 1

2
M2

Z (G0)2 + ∂µG
+ ∂µG− −M2

W G+G− . (7.52)

The interaction terms between the scalar and gauge bosons are given by:

Lφ2V = ie [Aµ + cot (2θW )Zµ]
[
(H+

↔
∂µH

−) + (G+
↔
∂µG

−)
]

+
e

sin (2θW )
Zµ
[
(G0

↔
∂µS1) + (S3

↔
∂µS2)

]
+

g

2
W µ†

[
(H−

↔
∂µS3)− i (H−

↔
∂µS2) + (G−

↔
∂µG

0)− i (G−
↔
∂µS1)

]
+

g

2
W µ

[
(H+

↔
∂µS3) + i (H+

↔
∂µS2) + (G+

↔
∂µG

0) + i (G+
↔
∂µS1)

]
, (7.53)

LφV 2 =
2

v
S1

[
1

2
M2

Z ZµZ
µ +M2

W W †
µW

µ

]
+

(
eMW Aµ − gMZ sin2 θW Zµ

) (
G+Wµ +G−W †

µ

)
, (7.54)

6The weak mixing angle θW is defined through the relation g sin θW = g′ cos θW = e. The operators

T± = 1√
2
(T1 ± T2) and T3 can be expressed in terms of the Pauli matrices by Ti =

σi
2

.
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Lφ2V 2 =
1

v2

[
1

2
M2

Z ZµZ
µ +M2

W W †
µW

µ

] [
H2 + h2 + A2 + (G0)2

]
+

{
e2 [Aµ + cot (2θW )Zµ]2 +

g2

2
W †
µW

µ

} (
G+G− +H+H−

)
+

eg

2
(Aµ − tan θW Zµ)

[
S1

(
G+Wµ +G−W †

µ

)
+ S2

(
H+Wµ +H−W †

µ

)
+ i S3

(
H−W †

µ −H+Wµ

)
+ i G0

(
G−W †

µ −G+Wµ

)]
,

(7.55)

with Si = Rjiϕ
0
j (ϕ0

j = {h,H,A}) and the usual notation A
↔
∂µ B ≡ A(∂µB)− (∂µA)B.

7.C Statistical treatment and data

To obtain the preferred values for the parameters of the A2HDM we build a global χ2

function

χ2 =
∑
k

(µk − µ̂k)2

σ2
k

, (7.56)

where σi is the experimental error extracted from the data at 1 σ. Errors on the reported

Higgs signal strengths µ̂k are symmetrized using

δµ̂k =

√
(δµ̂+)2 + (δµ̂−)2

2
, (7.57)

where δµ̂± are the one-sided errors given by the experimental collaborations. We use the

latest data available after the “Hadron Collider Physics Symposium 2012 (HCP2012)”,

including the latest update from ATLAS of the high-resolution channels γγ, ZZ(∗) [1].

For the diphoton channels we use the data given by ATLAS and CMS at 7 and 8 TeV,

provided in refs. [1, 2, 13, 14]. For the rest of the channels we use the averages listed in

table 7.2, which include the 7⊕ 8 TeV data reported by ATLAS and CMS together with

CDF and DØ data [10–12] at
√
s = 1.96 TeV.

For a general channel with inclusive production we have (neglecting the subdominant

production channels)

µ
ϕ0
i
k =

σgg
σSM
gg

· Br(ϕ0
i → k)

Br(ϕ0
i → k)SM

. (7.58)
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Table 7.2: Higgs signal strengths in each of the channels considered in this work. Averages

obtained from ATLAS and CMS data at 7 ⊕ 8 TeV together with CDF and DØ data at
√
s =

1.96 TeV. (*) We do not consider non-inclusive measurements in the ττ channel. Due to the

large current errors associated with these measurements, our conclusions would not be modified

at this level.

Channel µ̂k Comment

bb̄V 1.1± 0.44 ATLAS, CMS, CDF and DØ [1,2, 11,12] (our average)

WWjj −0.2± 1.56 ATLAS and CMS [1,2, 14] (our average)

WW 0.76± 0.21 ATLAS, CMS, CDF and DØ [1,2, 10,11,13] (our average)

ZZ 0.96± 0.26 ATLAS and CMS [1,2] (our average)

ττ (incl.) (*) 0.89± 0.86 ATLAS and CMS [1,2] (our average)

γγ 1.66± 0.32 ATLAS and CMS [1,2] (our average)

γγjj 2.18± 0.84 ATLAS and CMS [1,2] (our average)

For the Higgs searches in the γγ channel, the ATLAS and CMS collaborations have

established different categories. To take this into account, we write the Higgs signal

strength in a given γγ channel as

µ
ϕ0
i
γγ =

εggF σggF + εVBF σV BF + εVH σVH

εggF σSM
ggF + εVBF σSM

VBF + εVH σSM
VH

· Br(ϕ0
i → γγ)

Br(ϕ0
i → γγ)SM

, (7.59)

where the coefficients ε(ggF,VBF,VH) accounting for the relative weight of each production

channel have been provided by ATLAS and CMS [5,6]. The top-quark-fusion contribution

could be added in a similar way. In eq. (7.59), the SM production cross sections and decay

widths are taken from the web page of the LHC Higgs Cross Section Working Group [92].

For the gluon-fusion production mechanism we have

σ(gg → ϕ0
i ) ≡ σggF = C

ϕ0
i

gg σ
SM
ggF , (7.60)

where the scaling of the gluon-fusion cross section C
ϕ0
i

gg was defined in section 7.3. Vector-

boson fusion scales with the coefficient Ri1 as

σ(qq′ → qq′ϕ0
i ) ≡ σVBF = (Ri1)2 σSM

VBF , (7.61)
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and similarly for the associated production with a vector boson

σ(qq̄ → V ϕ0
i ) ≡ σVH = (Ri1)2 σSM

VH . (7.62)

7.D Perturbativity Constraints

The charged Higgs boson contribution to ϕ0
i → γγ depends crucially on the value of the

neutral scalar coupling to a pair of charged Higgs bosons. To assure the validity of per-

turbation theory, upper bounds on the quartic Higgs self-couplings are usually imposed

requiring these to be smaller than 8π (see [31, 32] and references therein). The cubic

Higgs self-couplings are also bounded indirectly in this way. In this work we consider an

alternative perturbativity bound on the relevant Higgs cubic coupling which is more re-

strictive for light charged Higgs masses. Consider the ϕ0
iH

+H− one-loop vertex correction

given by figure 7.13. The contribution of this diagram is finite and can give us an idea

about the allowed magnitude of the cubic coupling in order not to spoil the perturbative

convergence.

ϕ0
i

ϕ0
i

H+

H−

H−

H+

Figure 7.13: Diagram contributing to the one-loop ϕ0
iH

+H− vertex correction.

We obtain:

(λϕ0
iH

+H−)eff = λϕ0
iH

+H−

[
1 +

v2λ2
ϕ0
iH

+H−

16π2M2
H±
Z
(
M2

ϕ0
i

M2
H±

)]
≡ λϕ0

iH
+H− (1 + ∆) , (7.63)

where

Z(X) =

∫ 1

0

dy

∫ 1−y

0

dz
[
(y + z)2 +X (1− y − z − yz)

]−1
. (7.64)

Allowing the correction to be at most 50% (∆ 6 0.5) constraints the allowed parameter

space in the (λϕ0
iH

+H− ,MH±) plane to be within the blue (hashed) region indicated in

figure 7.6.
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7.E Oblique Parameters

Possible deviations from the SM in the gauge-boson self-energies are usually characterized

through the oblique parameters S, T and U [93]. Taking as a reference SM Higgs mass

Mh,ref = 126 GeV, the most recent global fit to electroweak precision observables quotes

the values [76,77]:

S = 0.03± 0.10 , T = 0.05± 0.12 , U = 0.03± 0.10 . (7.65)

The expressions for the oblique parameters in the CP conserving A2HDM are adapted

from ref. [94]:

S =
1

πM2
Z

{
cos2 α̃

[
B22(M2

Z ;M2
Z ,M

2
h)−M2

Z B0(M2
Z ;M2

Z ,M
2
h) + B22(M2

Z ;M2
H ,M

2
A)

]
+ sin2 α̃

[
B22(M2

Z ;M2
Z ,M

2
H)−M2

Z B0(M2
Z ;M2

Z ,M
2
H) + B22(M2

Z ;M2
h ,M

2
A)

]
− B22(M2

Z ;M2
H± ,M

2
H±)− B22(M2

Z ;M2
Z ,M

2
h,ref) +M2

Z B0(M2
Z ;M2

Z ,M
2
h,ref)

}
,

(7.66)

T =
1

16πM2
W s

2
W

{
cos2 α̃

[
F(M2

H± ,M
2
H)−F(M2

H ,M
2
A) + 3F(M2

Z ,M
2
h)− 3F(M2

W ,M
2
h)

]
+ sin2 α̃

[
F(M2

H± ,M
2
h)−F(M2

h ,M
2
A) + 3F(M2

Z ,M
2
H)− 3F(M2

W ,M
2
H)

]
+ F(M2

H± ,M
2
A)− 3F(M2

Z ,M
2
h,ref) + 3F(M2

W ,M
2
h,ref)

}
, (7.67)
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U = H(M2
W )−H(M2

Z) +
1

πM2
W

{
sin2 α̃ B22(M2

W ;M2
H± ,M

2
h) + cos2 α̃ B22(M2

W ;M2
H± ,M

2
H)

+ B22(M2
W ;M2

H± ,M
2
A)− 2B22(M2

W ;M2
H± ,M

2
H±)

}

− 1

πM2
Z

{
sin2 α̃ B22(M2

Z ;M2
h ,M

2
A) + cos2 α̃ B22(M2

Z ;M2
H ,M

2
A)

− B22(M2
Z ;M2

H± ,M
2
H±)

}
, (7.68)

where

H(M2
V ) ≡ 1

πM2
V

{
cos2 α̃

[
B22(M2

V ;M2
V ,M

2
h)−M2

V B0(M2
V ;M2

V ,M
2
h)

]
+ sin2 α̃

[
B22(M2

V ;M2
V ,M

2
H)−M2

V B0(M2
V ;M2

V ,M
2
H)

]
− B22(M2

V ;M2
V ,M

2
h,ref) +M2

V B0(M2
V ;M2

V ,M
2
h,ref)

}
. (7.69)

The loop functions are given by

B22(q2;m2
1,m

2
2) =

1

4
(∆ + 1) [m2

1 +m2
2 −

1

3
q2]− 1

2

∫ 1

0

dx X log (X − iε) , (7.70)

B0(q2;m2
1,m

2
2) = ∆−

∫ 1

0

dx log (X − iε) , (7.71)

F(m2
1,m

2
2) =

1

2
(m2

1 +m2
2)− m2

1m
2
2

m2
1 −m2

2

log

(
m2

1

m2
2

)
, (7.72)

with

X ≡ m2
1 x+m2

2 (1− x)− q2 x(1− x) , ∆ ≡ 2

4− d + ln 4π − γE , (7.73)

in d space-time dimensions, where γE is the Euler-Mascheroni constant, and where we

have defined:

B22(q2;m2
1,m

2
2) ≡ B22(q2;m2

1,m
2
2)−B22(0;m2

1,m
2
2) , (7.74)

B0(q2;m2
1,m

2
2) ≡ B0(q2;m2

1,m
2
2)−B0(0;m2

1,m
2
2) . (7.75)



Bibliography

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214

[hep-ex]]; ATLAS-CONF-2012-170 (December 13, 2012).

[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716 (2012) 30

[arXiv:1207.7235 [hep-ex]]; CMS-PAS-HIG-12-045 (November 16, 2012).

[3] S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. Lett. 108 (2012) 111804

[arXiv:1202.1997 [hep-ex]]; Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639

[hep-ex]].

[4] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415

[hep-ex]]; ATLAS-CONF-2012-169 (December 13, 2012).

[5] G. Aad et al. [ATLAS Collaboration], Phys. Rev. Lett. 108 (2012) 111803

[arXiv:1202.1414 [hep-ex]]; ATLAS-CONF-2012-168 (December 13, 2012).

[6] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 710 (2012) 403

[arXiv:1202.1487 [hep-ex]]; CMS-PAS-HIG-12-015 (July 8, 2012).

[7] T. Aaltonen et al. [CDF and D0 Collaborations], Phys. Rev. Lett. 109 (2012) 071804

[arXiv:1207.6436 [hep-ex]].

[8] R. Barate et al. [LEP Working Group for Higgs boson searches and ALEPH and

DELPHI and L3 and OPAL Collaborations], Phys. Lett. B 565 (2003) 61 [hep-

ex/0306033].

194



195 BIBLIOGRAPHY

[9] T. Aaltonen et al. [CDF and D0 Collaboration], Phys. Rev. Lett. 104 (2010) 061802

[arXiv:1001.4162 [hep-ex]]; V. M. Abazov et al. [D0 Collaboration], arXiv:1301.6122

[hep-ex].

[10] Tevatron New Physics Higgs Working Group and CDF and D0 Collaborations,

arXiv:1207.0449 [hep-ex]. V. M. Abazov et al. [D0 Collaboration], arXiv:1301.5358

[hep-ex].

[11] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 109 (2012) 111802

[arXiv:1207.1707 [hep-ex]]; arXiv:1301.4440 [hep-ex]; arXiv:1301.6668 [hep-ex].

[12] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 109 (2012) 121802

[arXiv:1207.6631 [hep-ex]]. Yuji Enari talk at the Hadron Collider Physics Sym-

posium, Kyoto (November, 2012).

[13] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 86 (2012) 032003

[arXiv:1207.0319 [hep-ex]].

[14] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 710 (2012) 26

[arXiv:1202.1488 [hep-ex]].

[15] J. R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, JHEP 1212 (2012)

045 [arXiv:1207.1717 [hep-ph]]; JHEP 1205 (2012) 097 [arXiv:1202.3697 [hep-ph]];

JHEP 1209 (2012) 126 [arXiv:1205.6790 [hep-ph]].

[16] M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Phys. Rev. Lett. 109

(2012) 101801 [arXiv:1205.2699 [hep-ph]].

[17] D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, JHEP 1207 (2012) 136

[arXiv:1202.3144 [hep-ph]].

[18] A. Azatov, R. Contino and J. Galloway, JHEP 1204 (2012) 127 [arXiv:1202.3415

[hep-ph]].

[19] A. Azatov et. al., JHEP 1206 (2012) 134 [arXiv:1204.4817 [hep-ph]].

[20] P. P. Giardino, K. Kannike, M. Raidal and A. Strumia, Phys. Lett. B 718 (2012)

469 [arXiv:1207.1347 [hep-ph]].



196 BIBLIOGRAPHY

[21] T. Corbett, O. J. P. Eboli, J. González-Fraile and M. C. González-Garćıa, Phys.
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The data accumulated so far confirm the Higgs-like nature of the new boson discovered at

the LHC. The Standard Model Higgs hypothesis is compatible with the collider results and no

significant deviations from the Standard Model have been observed neither in the flavour sector

nor in electroweak precision observables. We update the LHC and Tevatron constraints on

CP-conserving two-Higgs-doublet models without tree-level flavour-changing neutral currents.

While the relative sign between the top Yukawa and the gauge coupling of the 126 GeV Higgs

is found be the same as in the SM, at 90% CL, there is a sign degeneracy in the determination

of its bottom and tau Yukawa couplings. This results in several disjoint allowed regions in the

parameter space. We show how generic sum rules governing the scalar couplings determine the

properties of the additional Higgs bosons in the different allowed regions. The role of electroweak

precision observables, low-energy flavour constraints and LHC searches for additional scalars to

further restrict the available parameter space is also discussed.
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8.1 Introduction

Experimental data from the ATLAS [1, 2], CMS [3, 4], DØ and CDF [5] collabora-

tions confirm that the new boson discovered at the LHC is related to the mechanism

of electroweak symmetry breaking. The masses of the new boson measured by ATLAS

(125.5±0.2 +0.5
−0.6 GeV) and CMS (125.7±0.3±0.3 GeV) are in good agreement, giving the

average value Mh = 125.64± 0.35 GeV, and its spin/parity is compatible with the Stan-

dard Model (SM) Higgs boson hypothesis, JP = 0+ [6–8]. Global analyses of current data

find to a good accuracy that the new h(126) boson couples to the vector bosons (W±, Z)

with the required strength to restore perturbative unitarity in vector boson scattering

amplitudes. The h(126) couplings to fermions of the third generation are also found to

be compatible with the SM Higgs scenario [9, 10].

A complex scalar field transforming as a doublet under SU(2)L seems at present the

most elegant and simple explanation for elementary particle masses. None of the funda-

mental principles of the SM, however, forbids the possibility that a richer scalar sector is

responsible for the electroweak symmetry breaking. Unlike the addition of new fermion

generations or new gauge bosons, an enlarged scalar sector remains in general much

more elusive to experimental constraints. Two-Higgs-doublet models (2HDMs) provide a

minimal extension of the SM scalar sector that naturally accommodates the electroweak

precision tests, giving rise at the same time to many interesting phenomenological ef-

fects [11]. The scalar spectrum of a two-Higgs-doublet model consists of three neutral

and one charged Higgs bosons. The direct search for additional scalar states at the LHC

or indirectly via precision flavour experiments will therefore continue being an important

task in the following years.

Many analyses of LHC and Tevatron data have been performed recently within the

framework of CP-conserving 2HDMs with natural flavour conservation (NFC) [12–27].

These works have focused on different versions of the 2HDM in which a discrete Z2

symmetry is imposed in the Lagrangian to eliminate tree-level flavour-changing neutral

currents (FCNCs). A more general alternative is to assume the alignment in flavour space

of the Yukawa matrices for each type of right-handed fermion [28]. The so-called aligned

two-Higgs-doublet model (A2HDM) contains as particular cases the different versions of

the 2HDM with NFC, while at the same time introduces new sources of CP violation

beyond the CKM phase. First studies of the h(126) boson data within the A2HDM, in
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the CP-conserving limit, were performed in refs. [29–32] and more recently in refs. [33–

35]. The implications of new sources of CP violation within this model for the h(126)

phenomenology were also analyzed in ref. [32].

In this work we extend the analysis of ref. [32] and update the bounds that current

LHC and Tevatron data impose on the CP-conserving A2HDM, taking into account the

latest results released by the experimental collaborations after the first LHC shutdown.

We also discuss the role of electroweak precision observables and flavour constraints to

further restrict the parameter space. The allowed regions are classified according to the

sign of the bottom and tau Yukawa couplings of the h(126) boson, relative to its coupling

to vector bosons. Due to generic sum rules governing the scalar couplings [32,36–38], the

properties of the additional scalar fields of the model are very different in each of these

allowed regions. We consider also current limits from the search of additional scalars at

the LHC and its impact on our knowledge of the h(126) properties. The possibility of a

fermiophobic charged Higgs [32] is also analyzed in light of the latest LHC data. A study

of CP-violating effects in the 2HDM along the lines of ref. [32] will be deferred to a future

work.

This paper is organized as follows. The present bounds from LHC and Tevatron

data are analyzed in section 8.2, discussing also the role of the loop-induced processes

Z → b̄b and B̄ → Xsγ to further constrain the available parameter space. In section 8.3

we consider the search for additional Higgs bosons at the LHC. The particular case of a

fermiophobic charged Higgs is analyzed in section 8.4. A comparison of our findings with

those of related works is done in section 8.5 and a summary of our results is finally given

in section 8.6.

8.2 A2HDM fit in the CP-conserving limit

Let us consider the scalar sector of the CP-conserving 2HDM. In the so-called Higgs basis

where only one of the doublets acquires a vacuum expectation value, the two doublets are

parametrized as [32]

Φ1 =

[
G+

1√
2

(v + S1 + iG0)

]
, Φ2 =

[
H+

1√
2

(S2 + iS3)

]
. (8.1)
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Thus, Φ1 plays the role of the SM scalar doublet with v = (
√

2GF )−1/2 ' 246 GeV. The

physical scalar spectrum consists of five degrees of freedom: two charged fields H±(x)

and three neutral scalars ϕ0
i (x) = {h(x), H(x), A(x)}. The later are related with the Si

fields through an orthogonal transformation ϕ0
i (x) = RijSj(x), which is determined by the

scalar potential [32]. In the most general case, the CP-odd component S3 mixes with the

CP-even fields S1,2 and the resulting mass eigenstates do not have definite CP quantum

numbers. For a CP-conserving potential this admixture disappears, giving A(x) = S3(x)

and1 (
h

H

)
=

[
cos α̃ sin α̃

− sin α̃ cos α̃

] (
S1

S2

)
. (8.2)

Performing a phase redefinition of the neutral CP-even fields, it is possible to fix the sign

of sin α̃. In this work we adopt the conventions Mh ≤ MH and 0 ≤ α̃ ≤ π, so that sin α̃

is always positive. To avoid FCNCs, we assume the alignment in flavour space of the

Yukawa matrices. In terms of the fermion mass-eigenstate fields, the Yukawa interactions

of the A2HDM read [28]

LY = −
√

2

v
H+ {ū [ςd VMdPR − ςuMuV PL] d + ςl ν̄MlPRl}

− 1

v

∑
ϕ0
i ,f

y
ϕ0
i

f ϕ0
i

[
f̄ MfPRf

]
+ h.c. , (8.3)

where PR,L ≡ 1±γ5
2

are the right-handed and left-handed chirality projectors, Mf the diag-

onal fermion mass matrices and ςf (f = u, d, l) the family-universal alignment parameters.

The only source of flavour-changing phenomena is the CKM matrix V . The well-known

versions of the 2HDM with NFC are recovered as particular limits of this parametrization,

given in table 8.1.

In the present analysis we neglect possible CP-violating effects; i.e., we consider a

CP-conserving scalar potential and real alignment parameters ςf . The couplings of the

1In a generic scalar basis φa(x) (a = 1, 2) in which both doublets acquire vacuum expectation values:

〈0|φTa (x)|0〉 = 1√
2

(0, va eiθa), we have α̃ = α−β in the usually adopted notation. The angle α determines

h and H in terms of the CP-even fields and tanβ = v2/v1 is the ratio of vacuum expectation values.

Given that the choice of basis is arbitrary, the parameters α and β are in general unphysical. These angles

are meaningful only in particular models in which a specific basis is singled out (through a symmetry for

example) [39].
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Table 8.1: CP-conserving 2HDMs based on discrete Z2 symmetries.

Model ςd ςu ςl

Type I cot β cot β cot β

Type II − tan β cot β − tan β

Type X (lepton-specific) cot β cot β − tan β

Type Y (flipped) − tan β cot β cot β

Inert 0 0 0

neutral scalar fields are then given, in units of the SM Higgs couplings, by

yhf = cos α̃ + ςf sin α̃ , yAd,l = i ςd,l ,

yHf = − sin α̃ + ςf cos α̃ , yAu = −i ςu , (8.4)

for the fermionic couplings and (κ
ϕ0
i
V ≡ gϕ0

i V V
/gSM

hV V , V = W,Z)

κhV = cos α̃ , κHV = − sin α̃ , κAV = 0 , (8.5)

for the gauge couplings. The CP symmetry implies a vanishing gauge coupling of the

CP-odd scalar. In the limit α̃→ 0, the h couplings are identical to those of the SM Higgs

field and the heavy CP-even scalar H decouples from the gauge bosons.2

8.2.1 Implications of LHC and Tevatron data for the h(126) bo-

son

We assume that the h(126) boson corresponds to the lightest CP-even scalar h of the

CP-conserving A2HDM. Current experimental data require its gauge coupling to have

a magnitude close to the SM one; i.e., | cos α̃| ∼ 1 [32]. A global fit of the parameters

(cos α̃, ςu, ςd, ςl) to the latest LHC and Tevatron data gives (χ2
min/dof ' 0.73)

| cos α̃| > 0.90 (0.80) , (8.6)

2 The scalar mixing is often parametrized in terms of α′ = α̃ + π
2 , so that κhV = sinα′ and the SM

limit corresponds to α′ = π/2 [11]. We prefer to describe small deviations from the SM limit with α̃ ' 0.
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Figure 8.1: Allowed regions in the planes yhd − yhl (top-right), yhu− yhd (bottom-left) and yhu− yhl
(bottom-right) at 68% (orange, dark) and 90% (yellow, light) CL from a global fit of LHC and

Tevatron data, within the CP-conserving A2HDM. The particular case of the discrete Z2 model

of type II is also indicated at 90% CL (black). Top-left panel: Allowed region in the space

(yhu, y
h
d , y

h
l ) with cos α̃ > 0 at 68% CL (orange).

or equivalently sin α̃ < 0.44 (0.60), at 68% CL (90% CL). The resulting constraints on

the Yukawa couplings of h are shown in figure 8.1. The charged Higgs contribution to the
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h→ γγ amplitude has been assumed to be negligible in this fit. The global fit determines

the relative sign between yhu and ghV V to be the same as in the SM. The flipped sign

solution for the top Yukawa coupling, which was preferred before Moriond 2013 due to

the observed excess in the γγ channel [32], is ruled out by current data at 90% CL.

The partial decay widths of the Higgs decaying into a pair of fermions are not sensitive

to the sign of the Yukawa couplings, Γ(h → f̄f) ∝ |yhf |2. The loop-induced processes

h→ γγ and gg → h, on the other hand, are sensitive in principle to the yhf=u,d,l signs. The

decay widths, normalized to the SM prediction, can be written in terms of the modified

Higgs couplings as,

Γ(h→ γγ)

Γ(h→ γγ)SM
'
(
0.28 yhu − 0.004 yhd − 0.0035 yhl − 1.27κhV

)2
+
(
0.006 yhd + 0.003 yhl

)2
,

(8.7)

where we have neglected a possible charged Higgs contribution to h→ 2γ, and

Γ(h→ gg)

Γ(h→ gg)SM
'
(
1.06 yhu − 0.06 yhd

)2
+
(
0.09 yhd

)2
. (8.8)

The last terms in (8.7) and (8.8) are the absorptive contributions from τ+τ− and bb̄ loops.

Neglecting the charged Higgs contribution to h→ γγ is well justified if the charged Higgs

is very heavy and/or if the cubic Higgs self-coupling hH+H− is very small. Due to

their small masses, the tau and bottom contributions are very suppressed and, therefore,

flipping the sign of yhd,l has only a very small effect on the relevant partial widths.

The top-left panel in figure 8.1 shows the 68% CL allowed regions in the space

(yhu, y
h
d , y

h
l ) with cos α̃ > 0. Four disjoint possibilities can be observed, which can be char-

acterized by the relative signs of yhd,l to that of κhV ; four additional, equivalent, solutions

are found flipping simultaneously the signs of yhf and cos α̃. We restrict in the rest of this

work to the solutions with cos α̃ > 0. The other panels show the projections in the planes

yhd − yhl (top-right), yhu − yhd (bottom-left) and yhu − yhl (bottom-right), at 68% (orange,

dark) and 90% (yellow, light) CL. The sign degeneracy in the determination of the bottom

and tau Yukawa couplings from current data is clearly observed. At 90% CL, the leptonic

Yukawa coupling yhl is found to be compatible with zero and therefore only two disjoint

islands remain (yhd < 0 and yhd > 0).

Figure 8.1 shows also (small black areas, χ2
min/dof ' 0.65) the constraints in the

particular case of the type II model (ςd,l = −1/ςu = − tan β), usually assumed in the
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literature and realized in minimal supersymmetric scenarios. The allowed regions get

considerably reduced in this case. This illustrates that there is a much wider range of

open phenomenological possibilities waiting to be explored. The only allowed regions in

the type II model are those with identical yhd and yhl couplings, making a straight line

with slope +1 in the yhd −yhl plane. The yhd,l < 0 region with cos α̃ > 0 requires a relatively

large value of tan β to flip the sign of yhd,l. Similar arguments can be made for the other

types of 2HDMs with NFC. For instance, in the type I model (ςu,d,l = cot β) the allowed

regions are straight lines with slope +1 in the three yhf − yhf ′ planes.

In the following we will keep the discussion within the more general framework pro-

vided by the A2HDM. In case any of the versions of the 2HDM with NFC turns out to be

(approximately) realized in Nature, an analysis of experimental data within the A2HDM

would reveal it.

Figures 8.2, 8.3 and 8.4 show the allowed values for the alignment parameters ςf , at

68% (orange, dark) and 90% (yellow, light) CL, as function of sin α̃. Since yhu has the

same positive sign as cos α̃ and a similar magnitude, the product |ςu| sin α̃ cannot be large.

Therefore, |ςu| gets tightly bounded at large values of sin α̃ as indicated in figure 8.2. On

the other hand, as sin α̃ approaches zero, all information on ςu is lost since in this limit

the h couplings are SM-like. The same behaviour is observed in figure 8.3, which shows

the allowed values for the alignment parameters ςd (left panel) and ςl (right panel), in the

regions with yhd > 0 or yhl > 0, respectively. Important bounds on the magnitudes of ςd

and ςl are obtained, again, as long as sin α̃ 6= 0.

A quite different result is obtained in those regions where the Yukawa couplings are

negative (again, with cos α̃ > 0). Figure 8.4 shows the allowed values for the alignment

parameters ςd,l when yhd < 0 (left panel) or yhl < 0 (right panel). A relatively large and

negative value for ςd,l is needed to flip the sign in yhd,l, given that cos α̃ ' 1. Within the

90% CL allowed region, yhd < 0 requires ςd . −2.3, while yhl < 0 implies ςl . −2.7. When

sin α̃ . 0.1, the corresponding values for |ςd,l| become very large: ςd,l . −24.

8.2.2 SM-like gauge coupling, κhV ∼ 1, without decoupling

If it is the case that Nature posses an elementary scalar sector composed of two-Higgs

doublets, the fact that no large deviations of the h(126) boson properties from the SM have

been observed could be pointing towards a decoupling scenario. In the decoupling limit
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Figure 8.2: Allowed values for ςu, at 68% CL (orange) and 90% CL (yellow) CL, when cos α̃ >

0.

one of the Higgs doublets can be integrated out, leaving an effective low-energy theory

with a SM-like Higgs doublet. The lightest CP-even Higgs appears with a mass around

the electroweak scale and SM-like couplings, while the other scalars are much heavier

and degenerate, up to corrections of O(v2), M2
H ' M2

A ' M2
H± � v2. The decoupling

limit implies that |κhV | → 1, the opposite however is not true. In the limit |κhV | → 1, the

masses of the additional scalars, H, A and H±, can still be of the order of the electroweak

scale [40].3

The decoupling regime is very elusive to experimental tests, leaving a low-energy

theory with a light SM-like Higgs, while putting the additional scalars beyond the reach

of direct searches at colliders. Flavour physics constraints are naturally evaded in this case

also due to the heaviness of the additional scalars. Distinguishing signatures of a 2HDM

near the decoupling limit would require high-precision measurements of the h(126) boson

properties, for example at a future Higgs factory [40]. In this work, we are interested in

the more testable case in which the scalar sector is not in the decoupling regime and all

the additional scalars lie around the electroweak scale. We will assume in particular that

3 In the Higgs basis [32], the decoupling limit occurs for µ2 � v2, where µ2 is the coefficient of

the quadratic Φ†2Φ2 term in the scalar potential, while keeping perturbative quartic scalar couplings

|λi/4π| . 1. The limit |κhV | → 1 without decoupling arises when µ3, λ6 → 0; i.e., for vanishing Φ†1Φ2 and

Φ†1Φ1Φ†1Φ2 terms. For a recent discussion see also refs. [34, 41,42].
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Figure 8.3: Allowed values for ςd,l at 68% CL (orange, dark) and 90% CL (yellow, light) in

the regions where yhd > 0 (left) or yhl > 0 (right), keeping only solutions with cos α̃ > 0.

the charged Higgs lies in the mass range MH± ∈ [80, 500] GeV.

Deviations from the SM in the gauge-boson self-energies constrain the mass split-

tings between the additional physical scalars of the 2HDM. The induced corrections to

the oblique parameters have been calculated in ref. [43] and summarized for the con-

ventions adopted here in ref. [32]. To satisfy the precision electroweak constraints, the

mass differences |MH± −MH | and |MH± −MA| cannot be both large (� v) at the same

time. If there is a light charged Higgs below the TeV scale, an additional neutral bo-

son should be around and vice versa. Figure 8.5 shows the 1σ oblique constraints on

the MH − MA plane, taking MH± = 200 GeV (yellow, light) and 500 GeV (orange,

dark), while varying cos α̃ ∈ [0.9, 1]. The bounds on the mass splittings from the oblique

parameters, together with the perturbativity and perturbative unitarity bounds on the

quartic-Higgs couplings [44], imply that both H and A should have masses below the TeV

if MH± < 500 GeV. This is the scenario we will be interested in the following, where a

rich interplay between precision flavour physics and direct Higgs searches at the LHC can

be explored.

Interesting constraints are obtained in this case from flavour physics, specially from

loop-induced processes with virtual charged Higgs and top quark contributions. The

measured B̄0−B0 mixing and the Z → b̄b decay width require for example that |ςu| . 1.5,
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Figure 8.4: Allowed values for the alignment parameters ςd,l, at 68% CL (orange) and 90% CL

(yellow), in the regions where yhd < 0 (left) or yhl < 0 (right), keeping only solutions with

cos α̃ > 0.

for a charged Higgs below 500 GeV [45]. A more subtle condition can be derived from

the radiative decay B̄ → Xsγ. The relevant Wilson coefficients for this process take the

form Ceff
i = Ci,SM + |ςu|2Ci,uu − (ς∗uςd)Ci,ud, where Ci,uu and Ci,ud contain the dominant

virtual top contributions. Thus, their combined effect can be very different for different

values of the ratio ςd/ςu [45–47]. For real values of the alignment parameters, this provides

a very strong bound. For instance, in the type II model, where the two terms interfere

constructively, the B̄ → Xsγ rate excludes a charged Higgs mass below 380 GeV [48] at

95% CL for any value of tan β. In the more general A2HDM framework, a much lighter

charged Higgs is still allowed, but in a very restricted region of the parameter space

ςu − ςd [45–47].

Semileptonic and leptonic meson decays (B → τντ , D(s) → τντ (µνµ), B → D(∗)τντ ),

have been analyzed in detail within the A2HDM in refs. [45, 49]. These processes put

bounds on the combinations ςuςl/M
2
H± and ςdςl/M

2
H± , but the (tree-level) charged Higgs

contribution decouples very fast. Given that we allow the possibility of a relatively heavy

charged Higgs, MH± < 500 GeV, semileptonic and leptonic decays will not provide com-

plementary information in our analysis. If one were to focus the discussion to a very light

charged Higgs boson, these processes would certainly need to be taken into account.4

4The current excess observed by the BaBar collaboration in exclusive b→ cτν transitions can only be
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Figure 8.5: Constraints (68% CL) on the masses of the H and A bosons from the oblique

parameters while varying cos α̃ ∈ [0.9, 1]. The charged Higgs mass is fixed at MH± = 200 GeV

(yellow, light) and 500 GeV (orange, dark).

In figure 8.6 we show the effect of including B̄ → Xsγ and Rb = Γ(Z → b̄b)/Γ(Z →
hadrons) in the fit of (cos α̃, ςu, ςd, ςl) while varying MH± ∈ [80, 500] GeV and, as usual,

keeping only solutions with cos α̃ > 0. The down-quark and leptonic alignment parameters

are varied within |ςd,l| ≤ 50 to maintain perturbative scalar interactions for bottom quarks

and tau leptons. The charged Higgs contribution to the 2γ channel is also neglected in

this fit; therefore, MH± only enters in the fit through the flavour observables considered.

Strictly, the analysis is then only valid in those regions of the parameter space in which

the charged Higgs is reasonably heavy and/or the cubic Higgs self-coupling hH+H− is

very small. The results, however, would not change significantly if the H± contribution

to h→ 2γ were included in the fit, since it would be compatible with zero, see section 8.4.

In the yhu − yhd plane, it can be observed that a significant part of the previously allowed

region is excluded by flavour observables when compared to figure 8.1. This is due to the

effect of Br(B̄ → Xsγ) which induces severe constraints in the plane ςu − ςd, as shown in

accommodated within the framework of 2HDMs if one allows for a departure of the Yukawa alignment

hypothesis [49, 50]. More theoretical studies on the relevant hadronic matrix elements as well as an

update of these modes from the Belle collaboration using the full dataset, are needed to further asses the

significance of this excess.
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Figure 8.6: Allowed 90% CL regions in the planes sin α̃ − ςu (top-left), yhd − yhl (top-right),

yhu − yhd (bottom-left), and yhu − yhl (bottom-right), from a global fit of LHC and Tevatron data

together with Rb and Br(B̄ → Xsγ), within the CP-conserving A2HDM. The mass of the charged

Higgs is varied within MH± ∈ [80, 500] GeV and cos α̃ > 0.

figure 8.7.

For the case yhd > 0, collider data do not put any bound on ςu,d in the limit sin α̃→ 0;

the only constraint that appears in figure 8.7 (right-panel) is therefore coming from Z → b̄b

and B̄ → Xsγ. For yhd < 0, LHC and Tevatron data determine that ςd . −2 in order

to flip the Yukawa sign, thus excluding a large region that would otherwise be allowed

by flavour observables alone. Compared with figure 8.2, the value of |ςu| is slightly more

constrained by Rb; when MH± < 500 GeV, one finds |ςu| . 1.5 for sin α̃ ' 0 while a
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Figure 8.7: Allowed 90% CL region in the plane ςu− ςd, from LHC and Tevatron data together

with Rb and Br(B̄ → Xsγ), for yhd < 0 (left) or yhd > 0 (right), with MH± ∈ [80, 500] GeV and

cos α̃ > 0.

stronger limit is obtained for larger values of sin α̃ due to LHC and Tevatron data. The

corresponding allowed regions shown in figures 8.3 and 8.4 remain almost identical after

adding the flavour observables and, therefore, are not shown here.

8.3 Searches for additional Higgs bosons

The search for additional Higgs bosons is one of the most important tasks for the next

LHC run. The current information on the h(126) properties puts relevant constraints on

the couplings of the other scalars. In particular, eqs. (8.4) and (8.5) imply the sum rules∣∣κHV ∣∣2 = 1−
∣∣κhV ∣∣2 , (8.9)∣∣yHf ∣∣2 − ∣∣yAf ∣∣2 = 1−
∣∣yhf ∣∣2 , (8.10)

κHV y
H
f = 1− κhV yhf . (8.11)

The first one is just the trivial trigonometric relation between sin α̃ and cos α̃, which

implies that the gauge coupling gHV V goes to zero when ghV V approaches the SM value.

The lower bound on | cos α̃| in eq. (8.6) gives a direct limit on the coupling of the heavy

CP-even scalar H to two gauge bosons, with important implications for searches in the

H → V V channels. The relation (8.10) constrains the difference of the magnitudes of
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the H and A Yukawa couplings. When the mixing angle α̃ becomes zero, yhf = 1 and∣∣yHf ∣∣ =
∣∣yAf ∣∣ = ςf . Relation (8.11) shows that whenever h has a flipped sign Yukawa (κhV ∼

1, yhf ∼ −1), the corresponding Yukawa coupling of H must be very large yHf κ
H
V ∼ 2. This

sum rule plays a crucial rule in the restoration of perturbative unitarity in W+
LW

−
L → ff̄

scattering and is behind the particular shape of the allowed regions in figure 8.4. The

allowed values for κhV and yhf , obtained in section 8.2.2 from h(126) collider data and

flavour constraints, imply, due to the sum rules, the following 90% CL bounds:

|yHu |2 − |yAu |2 ∈ [−0.6, 0.5] , κHV y
H
u ∈ [−0.17, 0.5] ,

|yHd |2 − |yAd |2 ∈ [−1.2, 0.9] , κHV y
H
d ∈ [−0.3, 0.7] ∪ [1.3, 2.5] ,

|yHl |2 − |yAl |2 ∈ [−1.3, 1.0] , κHV y
H
l ∈ [−0.5, 2.5] . (8.12)

A generic h(126) boson with modified couplings to fermions and gauge bosons would

violate perturbative unitarity at high energies, in certain physical processes. Partial-wave

unitarity bounds would be violated for example in W+
LW

−
L → ff̄ inelastic scattering at a

scale
√
s ' Λ = 16πv2/(mf |1− yhf κhV |) [51]. For flipped-sign Yukawa couplings, κhV ' 1

and yhf ' −1, we obtain an approximate value of Λ ∼ 9 TeV for the top quark, while

Λ ∼ 400 TeV is obtained for the bottom quark and tau lepton due to the fact that they

have smaller masses. A modified hV V coupling would also lead to a violation of pertur-

bative unitarity in W−
LW

+
L → W−

LW
+
L elastic scattering; for κhV = 0.89 (0.95) this occurs

at a scale
√
s = 2.7 (3.8) TeV respectively [52]. The scalar couplings in the 2HDM satisfy

generic sum rules which ensure that perturbative unitarity is restored, provided the addi-

tional scalar states are light enough. In the processes considered previously, W+
LW

−
L → ff̄

and W−
LW

+
L → W−

LW
+
L , the heavier CP-even Higgs enters with the required couplings

to cancel the bad high-energy behavior of the amplitudes. It must be noted that a given

physical state needed to restore perturbative unitarity can appear well below the scale at

which the partial-wave unitarity bounds are violated. This is well known in the SM where

the Higgs mass is only weekly bounded by perturbative unitarity: Mh . 1 TeV [53].

The possibility of flipped-sign bottom and/or tau Yukawa couplings has important

implications for the properties of the additional Higgs bosons but only subtle effects in

the h(126) phenomenology. Relatively large values for the alignment parameters ςd,l are

needed to flip the sign of yhd,l given that |κhV | ' 1, implying that the additional Higgs

bosons H±, H and A should posses very large couplings to bottom and/or tau leptons.
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The couplings of the missing Higgs bosons H±, H and A, and therefore their phe-

nomenology, are very different in each of the allowed regions shown in figure 8.1. It thus

seems appropriate to discuss the search strategy for additional scalar states and the ex-

perimental constraints in each allowed island separately. An obvious question to address

is how future Higgs searches at the LHC, combined with low-energy precision experi-

ments at the intensity frontier, can be used to exclude some of the allowed islands and/or

determine the right solution chosen by Nature.

The SM-like region with yhf > 0 (f = u, d, l) includes the trivial solution ςf = 0.

Moreover, the Yukawa couplings yHf are also compatible with zero. Therefore, one has

to face the possibility of a SM-like scalar h plus a fermiophobic scalar doublet including

the H, A and H± fields. This is a very difficult experimental scenario where the missing

scalars decouple from the fermionic sector and also the coupling gHV V = 0. In this

case, the production of the additional scalars can occur for example through the ZHA,

ZH±H∓, W±H∓H and W±H∓A couplings or through the scalar potential. In the limit

sin α̃ = 0, the h(126) data does not provide any constraints on the alignment parameters ςf

(see figures 8.2 and 8.3). This opens a more interesting possibility with
∣∣yHf ∣∣ =

∣∣yAf ∣∣ = ςf ;

the H and A bosons could then be produced through the gluon-fusion mechanism or in

associated production with a heavy-quark pair. Moreover, since ςd and ςl are only weekly

constrained by flavour observables, the couplings to bottom quarks and tau leptons could

be very sizeable, generating interesting phenomenological signals. For a very large |ςd|
for example, b-quark associated Higgs production bb̄ → Φ or gb → Φb can become the

dominant production mechanism of the heavy scalars H and A at the LHC. Similarly,

charged Higgs production in association with top and bottom quarks, gg → tb̄H− or

qq̄ → tb̄H−, can be considerably enhanced in this case. If on the other hand |ςl| is very

large, heavy neutral scalars would probably decay dominantly into leptons, opening the

interesting possibility of discovery in the very clean Φ → µ+µ− channel. The charged

Higgs also, would be expected to decay dominantly into a τντ pair in this case.

The situation is rather different in the other three regions with flipped-sign Yukawas:

(a) yhd < 0 and yhl > 0, (b) yhd > 0 and yhl < 0, and (c) yhd,l < 0. As shown in figure 8.4,

the alignment parameters are tightly constrained in these regions and the missing Higgs

bosons could have a relatively large coupling to the bottom and/or tau fermions. In all

four allowed regions the alignment parameter ςu is compatible with zero, therefore there

exists the possibility that all production mechanisms of the remaining scalars involving



217 Towards a general analysis of LHC data within 2HDMs

the coupling with top-quarks could be greatly suppressed.

8.3.1 Charged Higgs searches

There are already important exclusion limits coming from charged Higgs searches at

colliders, but most of them depend on the assumed Yukawa structure or some hypothesis

about the scalar spectrum. In some cases, however, it is possible to set more general

limits. For instance, a very light charged Higgs would modify the Z boson decay width if

the channel Z → H+H− is open. Since the coupling ZH+H− is completely fixed by the

gauge symmetry and does not depend on any free parameter of the model, the constraint

Γnon-SM
Z < 2.9 MeV (95% CL) on non-SM decays of the Z boson implies MH± & 39.6 GeV

(95% CL) [54]. A much stronger lower bound on the H± mass, MH± & 80 GeV (95%

CL) [54], was set at LEP, assuming that the charged Higgs only decays into τν or cs final

states. A softer limit would be obtained on the other hand if the H+ → W+A decay is

kinematically allowed. Assuming that MA > 12 GeV and a type-I Yukawa structure, the

limit MH± & 72.5 GeV was obtained in H+ → W+A→ W+bb̄ searches [54].

In this section, we consider the LHC searches for a light charged Higgs produced

via t → H+b, in the decay channels H+ → τ+ντ [55, 56] and H+ → cs̄ [57], which

are kinematically limited to MH± < mt −mb. We focus on the constraints that can be

extracted on the A2HDM from direct charged Higgs searches and flavour observables; the

only parameters entering in this analysis are therefore (MH± , ςu, ςd, ςl). A full scan of the

A2HDM parameter space, taking into account electroweak precision data, perturbativity

and perturbative unitarity bounds, would give as a result that the neutral scalars H and

A cannot be arbitrarily heavy and strong correlations in the MH −MA plane will appear

as those shown in figure 8.5. We refer the reader to appendix 8.A for relevant formulae

used here. To a good approximation, the branching ratio for t→ H+b is given by

Br(t→ H+b) ' Γ(t→ H+b)

Γ(t→ W+b) + Γ(t→ H+b)
, (8.13)

where we have neglected CKM-suppressed channels in the total top width. We do not

consider the possibility of a very light CP-odd Higgs boson which could open decay chan-

nels like H+ → W+A; therefore, the charged Higgs decays only into fermions. Searches

into the final state τ+ντ put bounds on the combination Br(t→ H+b)×Br(H+ → τ+ν),

while current searches for quark decay modes are usually interpreted as limits on Br(t→



218 Towards a general analysis of LHC data within 2HDMs

H+b)×Br(H+ → cs̄). This is due to the expected dominant decay modes of the charged

Higgs in the MSSM scenario or in the type-II 2HDM. In general, these searches really put

bounds on Br(t → H+b) ×
[
Br(H+ → cs̄) + Br(H+ → cb̄)

]
. Other final states involving

light quarks are neglected as they bring much smaller contributions.

For the next discussion it is useful to write down the following approximate formulae

Γ(H+ → cb̄)

Γ(H+ → cs̄)
' |Vcb|2
|Vcs|2

(|ςd|2m2
b + |ςu|2m2

c)

(|ςd|2m2
s + |ςu|2m2

c)
,

Γ(H+ → cb̄)

Γ(H+ → τ+ντ )
' NC |Vcb|2 (|ςd|2m2

b + |ςu|2m2
c)

m2
τ |ςl|2

. (8.14)

We can observe that the decay channel H+ → cb̄ can be important, compared with

H+ → cs̄, in certain regions of the A2HDM parameter space in which the strong CKM

suppression (|Vcb| � |Vcs|) is compensated by a hierarchy of the alignment parameters [58].

Indeed, for |ςd| � |ςu|, |ςl| the decay channel H+ → cb̄ becomes significant compared with

H+ → cs̄, τ+ντ , as shown in eq. (8.14). This does not occur in the 2HDMs of types

I, II and X, due to correlations between the parameters ςf=u,d,l, see table 8.1. In the

type-Y 2HDM, on the other hand, the limit |ςd| � |ςu|, |ςl| is achieved for large tan β; in

this case, however, the Br(B̄ → Xsγ) constraints forbid a light charged Higgs because

ςu = −1/ςd [58]. It has been shown in ref. [58] that a dedicated search for H+ → cb̄

decays, implementing a b tag on one of the jets coming from H±, could provide important

constraints on the parameter space region with |ςd| � |ςu|, |ςl| where this channel becomes

important.

In figure 8.8 we show the bounds on the A2HDM parameter space from direct searches

of a light charged Higgs at the LHC. Note that the present upper bounds on Br(t →
H+b)×

[
Br(H+ → cs̄) + Br(H+ → cb̄)

]
and Br(t→ H+b)×Br(H+ → τ+ν) set an upper

limit on |ςuςl|/M2
H± of O(. 10−3) GeV−2. Leptonic B, D and Ds meson decays put weaker

constraints on this combination, ςuςl/M
2
H± ∈ [−0.006, 0.037] ∪ [0.511, 0.535] GeV−2 at

95% CL [45]. Moreover an upper bound on the combination |ςuςd| is obtained from direct

charged Higgs searches. Semileptonic and leptonic meson decays, on the other hand,

only constrain the combinations ςuςl and ςdςl [45]. For both decay rates: Γ(t → H+b)

and Γ(H+ → uid̄j, τ
+ν), see eqs. (8.18) and (8.19), terms proportional to ςuςd or ςuςl are

negligible. Thus, no information on the relative sign between ςu and ςd,l is obtained.

Allowed values at 90% CL from the loop-induced process B̄ → Xsγ [46, 47] on the
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Figure 8.8: Left-panel: Allowed values for ςuςd as a function of the charged Higgs mass

(yellow-light) obtained from the experimental 95% CL upper bounds on Br(t → H+b) ×[
Br(H+ → cs̄) + Br(H+ → cb̄)

]
and Br(t → H+b) × Br(H+ → τ+ν). Allowed values for ςuςd

from Br(B̄ → Xsγ) are shown in blue-dark. Right-panel: Similar constraints on the combina-

tion |ςuςl| from direct charged Higgs searches. The alignment parameters have been varied in the

range |ςu| ≤ 1 and |ςd,l| ≤ 50.

(MH± , ςuςd) plane are also shown in figure 8.8. They are given by the two narrow (blue,

dark) horizontal strips. We observe that, with the exception of the small region for

which MH± ∼ [140, 150] GeV, the upper strip is already excluded by direct H± searches.

B̄ → Xsγ impose no additional constraints on the combination (MH± , |ςuςl|). For all

given points in figure 8.8 we find that |ςu| ≤ 0.5, which is fully compatible with the

flavour constraints given by Rb and neutral meson mixing [45].

In the A2HDM, the three-body decay H+ → t∗b̄→ W+bb̄ can also play an important

role for a light charged Higgs when MH± > MW + 2mb, see appendix 8.A. This decay is

normally very suppressed for a large region of the parameter space. It has been previously

analyzed in refs. [59–63] and it was found that it can bring a sizeable contribution to the

total charged Higgs decay rate in the Z2 models or in the MSSM when MH± > 135–

145 GeV, depending on the model and on the chosen value of tan β. In the A2HDM

it can bring sizeable contributions to the branching fraction, of the order of 10–20%,

already when MH±
>∼ 110 GeV. Figure 8.9 shows the regions satisfying the condition
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Figure 8.9: Region in the MH± − ςuςd (left) and MH± − |ςuςl| (right) planes which satisfy the

condition Br(H+ → W+bb̄) > 10% (yellow, light) and Br(H+ → W+bb̄) > 20% (red, dark).

The alignment parameters have been varied in the range |ςu| ≤ 1 and |ςd,l| ≤ 50.

Br(H+ → W+bb̄) > 10% (20%), in the planes MH± − ςuςd and MH± − |ςuςl|. There are

wide regions that can bring potentially large contributions to the decay rate, and that

partially overlap with the allowed regions shown in figure 8.8. If we reanalyze the previous

experimental constraints from the direct charged Higgs searches by adding this channel

to the total decay rate, the allowed regions stay roughly the same, however, the allowed

points concentrate in the region |ςuςd| . 1.5. Thus, we conclude that experimental direct

searches for a charged Higgs should be enlarged by also including this channel.

It is also worth noticing that for a fermiophobic charged Higgs, for which ςf=u,d,l = 0

and hence, H± does not couple to fermions at tree-level, all experimental constraints are

trivially satisfied. Other production mechanisms and decay channels would have to be

considered in this case to experimentally probe such scenario.

8.3.2 Neutral Higgs searches

The ATLAS and CMS collaborations have searched for additional neutral Higgs bosons

up to masses of 1 TeV in the ϕ→ ZZ and ϕ→ WW channels [64,65]. These searches are

sensitive in principle to the heavy CP-even Higgs H, given that the CP-odd Higgs does not

couple at tree-level with vector bosons. Having observed no signal, they have set upper
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bounds on the relevant cross section σ(pp→ ϕ→ V V ), using ∼ 5 fb−1 and ∼ 20 fb−1 of

collected data at
√
s = 7 TeV and

√
s = 8 TeV respectively. Searches for neutral bosons

in the leptonic final state τ+τ− with masses up to 500 GeV have been performed by the

ATLAS collaboration, using ∼ 5 fb−1 of collected data at
√
s = 7 TeV [66]. Bounds in

the τ+τ− channel have also been presented recently by the CMS collaboration, using the

full 2011 + 2012 dataset, for Higgs masses up to 1 TeV [67]. These searches are sensitive

to both CP-even and CP-odd Higgs bosons. Since the CP-odd Higgs does not couple at

tree-level with vector bosons, its decay branching ratios into fermions are expected to be

large. We assume in this section that the heavy scalars H and A cannot decay in non-SM

decay channels like H/A→ hh; the bounds obtained here would be weaker if these decay

channels were relevant. This assumption is well justified only in certain regions of the

parameter space, namely, when MH < 2Mh or if the relevant cubic Higgs self-couplings

are very small.

At present, searches for heavy scalars in the H → ZZ channel are the most sensitive,

reaching σ(pp → H → ZZ)/σ(pp → H → ZZ)SM ∼ 10−1 for MH . 600 GeV. Generic

constraints on the properties of the missing 2HDM scalars can also be obtained from

h(126) collider data and flavour observables due to the sum rules governing the scalar

couplings. Bounds on the combination κHV y
H
u , as determined in eq. (8.12), are shown in

figure 8.10 (yellow-light). Current experimental limits on σ(pp → H → ZZ) are also

included in figure 8.10, reducing the allowed parameter space to the purple-dark area. It

can be observed that for heavier Higgs masses the bounds become weaker as expected.

To assess the impact of direct searches for additional scalars to further restrict the

available parameter space of the 2HDM, we take the heavy CP-even and CP-odd Higgses

to lie in the mass ranges: MH ∈ [200, 600] GeV and MA ∈ [150, 600] GeV. Of course, a

similar analysis could be performed in any other mass ranges for H and A, or by also

including constraints from collider searches of a charged Higgs. Here, we have varied the

masses of the CP-even and CP-odd scalars independently. Electroweak precision data

gives rise to correlations in the MH −MA plane depending on the value of the charged

Higgs mass, as shown in figure 8.5. At this point however, this does not have any impact

on the allowed regions found in figures 8.10 and 8.11.

In figure 8.11 we show the allowed regions (yellow-light) obtained in section 8.2.2,

considering the h(126) collider data together with the flavour observables Rb and Br(B̄ →
Xsγ). The allowed regions get reduced when taking into account the limits from direct



222 Towards a general analysis of LHC data within 2HDMs

Figure 8.10: Allowed values (90% CL) for the combination κHV y
H
u due to generic sum rules,

taking into account h(126) collider data and flavour constraints (yellow-light). Experimental

limits on σ(pp → H → ZZ) are also included, shrinking the allowed region to the purple-dark

area.

searches of additional scalars at the LHC (purple-dark). The most important effects

are a lower bound on yhu and a smaller allowed area in the ςu − sin α̃ plane, which are

mainly due to the present experimental upper limits on σ(pp → H → ZZ); current

searches in the τ+τ− and W+W− channels put weaker constraints. The production cross

section via gluon fusion scales as σ(gg → H) ∝ |yHu |2 = | sin α̃ − ςu cos α̃|2 (neglecting

the contributions from other quarks which are in general subdominant). When sin α̃ is

far from zero, the decay channels H → V V (V = ZZ,W+W−) are the dominating ones,

given that the fermionic couplings are not very large as the LHC and Tevatron data seem

to suggest. The production cross section σ(gg → H) will then grow for negative values

of ςu, giving rise to a significant total cross section that becomes excluded by the present

upper limits on σ(pp→ H → ZZ).

8.4 The fermiophobic charged Higgs scenario

In the limit ςf=u,d,l = 0 the charged Higgs does not couple to fermions at tree level. A

very light fermiophobic charged Higgs, even below 80 GeV, is perfectly allowed by data.

All bounds coming from flavour physics or direct charged Higgs searches that involve
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Figure 8.11: Allowed regions in the planes sin α̃ − ςu (top-left), yhd − yhl (top-right), yhu − yhd
(bottom-left), and yhu − yhl (bottom-right) at 90% CL, from a global fit of h(126) collider data

together with Rb and Br(B̄ → Xsγ), within the CP-conserving A2HDM, are shown in yellow-

light. Constraints from neutral Higgs searches at the LHC have also been included taking MH ∈
[200, 600] GeV and MA ∈ [150, 600] GeV, shrinking the allowed region to the purple-dark area,

see text for details.

the H± couplings to fermions are naturally evaded in this case. It is also known that

when |κhV | = | cos α̃| ' 1 (which is presently favoured by LHC and Tevatron data), the

process h → 2γ provides a unique place were non-decoupling effects can be manifest if

MH± ∼ O(v) [40]. This motivates a dedicated analysis of this scenario in light of the

latest collider data. Here we assume that the lightest CP-even state h is the 126 GeV

boson and that CP is a good symmetry of the scalar sector, as in the previous section.

The scaling of the neutral Higgs couplings to vector bosons and fermions becomes equal

in this limit, yhf = κhV , which makes this scenario very predictive in the neutral scalar



224 Towards a general analysis of LHC data within 2HDMs

sector. The h→ 2γ decay width is approximately given in this case by

Γ(h→ γγ)

Γ(h→ γγ)SM
'
(
κhV − 0.15Ch

H±

)2
, (8.15)

where Ch
H± encodes the charged Higgs contribution to the h → 2γ decay width. More

specifically, ChH± = v2/(2M2
H±)λhH+H− A(xH±) with xH± = 4M2

H±/M
2
h , the cubic Higgs

coupling is defined through LhH+H− = −v λhH+H− hH
+H− and the loop function A(x) is

given by

A(x) = −x− x2

4
f(x) , f(x) = −4 arcsin2(1/

√
x) . (8.16)

Here we have assumed that MH± > Mh/2 ' 63 GeV so that ChH± does not contain an

imaginary absorptive part. The cubic Higgs self coupling λhH+H− can be expressed as a

linear combination of quartic couplings of the scalar potential in the Higgs basis, see for

example ref. [32]. To reduce the number of parameters to a minimal set, we perform a fit

to (cos α̃, Ch
H±), treating Ch

H± as a free real variable. A full scan of the scalar parameter

space, taking into account electroweak precision data, vacuum stability of the potential,

perturbativity and perturbative unitarity bounds, would of course give rise to non-trivial

correlations between the relevant Higgs self couplings and the scalar masses.

The best fit to the data is obtained for (cos α̃, Ch
H±) = (0.99,−0.58) with χ2

min/dof '
0.65. In figure 8.12 (left) we show the allowed regions at 68% (orange), 90% (yellow)

and 99% (gray) CL in the variables (sin α̃, Ch
H±). In the right panel of figure 8.12, the

resulting constraint on Ch
H± at 68% CL is shown in terms of the cubic Higgs coupling

λhH+H− and the charged Higgs mass MH± . The perturbativity limits on the cubic Higgs

coupling hH+H−, discussed in ref. [32], are also indicated (light-blue). The allowed region

in the plane (λhH+H− ,MH±) is slightly tilted towards negative λhH+H− values, since the

best fit point prefers a small negative charged Higgs contribution to the h → 2γ decay

amplitude.

At 90% CL, we find for the Higgs signal strengths:5 µh
b̄b

= µhτ̄τ = µh
W̄W,ZZ

= cos2 α̃ ∈
[0.74, 1] and µhγγ = 1.13 ± 0.48. These relations between the Higgs signal strengths hold

in any of the relevant Higgs production mechanisms [32].

Heavy Higgs boson searches in the channels W+W− and ZZ are sensitive to the gauge

coupling κHV and to cubic scalar couplings relevant to describe possible non-SM decay

5Higgs signal strengths refer to Higgs cross sections normalized by the SM prediction, µϕX = σ(pp →
ϕ→ X)/σ(pp→ ϕ→ X)SM.
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Figure 8.12: Allowed regions at 68% (orange), 90% (yellow) and 99% CL (grey) for a fermio-

phobic charged Higgs in the plane sin α̃ − ChH± (left). The right plot shows the corresponding

68% CL (orange) region in the parameters λhH+H− and MH±. The region where perturbation

theory remains valid is indicated in light-blue.

channels like H → hh. In the following we assume that the later can be neglected, this

implies that the analysis presented here is only valid in certain regions of the parameter

space. We find then that µHWW,ZZ = sin2 α̃ ≤ 0.26 at 90% CL. Considering the current

experimental limits on µHWW,ZZ [64,65], one can rule out a heavy CP-even Higgs in the mass

range MH ∈ [130, 630] GeV when sin2 α̃ = 0.26; this bound disappears of course when

sin α̃→ 0, since H decouples from the vector bosons and the fermions. Associated charged

Higgs production with a W± boson via neutral Higgs decays, ϕ0
j → H±W∓, with the

charged Higgs decaying later to lighter neutral Higgs bosons, is a possible channel to probe

the fermiophobic charged Higgs scenario. Sum rules among the couplings gϕ0
jH
±W∓ imply

that |ghH±W∓/gHH±W∓ | = | sin α̃/ cos α̃| < 0.6 at 90% CL, while gAH±W∓ is completely

fixed by the gauge symmetry [32]. Since the charged Higgs does not decay into fermions

at tree level, branching fractions for H± → ϕ0
j W

± decays can be particularly large.

An even more restricted scenario in which the charged Higgs decouples from the

fermions is given by the Inert 2HDM. In this case a Z2 symmetry is imposed in the
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Higgs basis so that all SM fields and Φ1 are even under this symmetry while Φ2 →
−Φ2. Therefore, there is no mixing between the CP-even neutral Higgs bosons h and

H. Assuming that the h(126) boson corresponds to the lightest CP-even Higgs, we then

have that yhf = 1 and cos α̃ = 1. If furthermore one assumes that there are no open

decay channels other than the SM ones, only the diphoton channel can show a deviation

from the SM due to the charged Higgs contribution. From a global fit of this scenario to

LHC and Tevatron data we obtain Ch
H± ∈ [−1.9, 1.2] at 90% CL (χ2

min/dof ' 0.6). This

can be compared with the situation before Moriond 2013 in which Ch
H± ∈ [−2.4,−0.1]

at 90% CL, driven by the excess in the diphoton signal observed at the moment [32].

Detailed studies of the Inert 2HDM, discussing the possibility to account for the Dark

Matter in the Universe, can be found in refs. [20–22] and references therein.

8.5 Comparison with other works

Following the discovery of the h(126) boson, a large number of works have appeared, ana-

lyzing the implications of collider data within the framework of 2HDMs. The majority of

these analyses have been performed assuming NFC [12–27], thus restricting considerably

the Yukawa structure of the model and the phenomenological possibilities. The ATLAS

and CMS collaborations were initially observing a significant excess in the diphoton chan-

nel. The most natural explanation for such excess was a large charged Higgs contribution

to the h → γγ decay amplitude, other alternatives being usually in conflict with flavour

constraints or perturbativity bounds, see ref. [32] and references therein. The situation

has changed drastically after Moriond 2013, given that the CMS collaboration now reports

a diphoton signal that is no longer enhanced. The main message that can be extracted

from recent analyses is that current collider data can be accommodated very well in the

SM; the addition of a second Higgs doublet does not improve in a significant way the

agreement with the data. Important constraints start to appear for 2HDMs with NFC,

restricting them to lie closer to the SM-limit.

Considerable work has also been done recently to analyze the future prospects at

the LHC, as well as in possible future machines, to detect additional Higgs bosons within

2HDMs. Compared with the vast literature on the subject before the h(126) discovery,

information about the h(126) boson properties is now being included in these analyses.
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Phenomenological studies within 2HDMs with NFC, relevant for the search of additional

scalars, have been done in refs. [13–16, 19, 24, 25, 41, 68–70]. Promising production mech-

anisms and decay channels have been pointed out in these works. In particular, if the

h(126) couplings are found to be very close to those of the SM, searches for heavy neutral

Higgs bosons in the channels γγ or τ+τ− become particularly relevant [16]. It could also

be possible that heavy Higgs bosons decay mostly into the lightest state h, assumed to

be the h(126) boson. In this case, h production via heavy Higgs decays could be the

way to detect these heavy states [70]. Some possibilities for this scenario are H → hh,

A → Zh, and H± → W±h. In any case, the non-observation of additional Higgs bosons

will provide complementary information, together with direct measurements of the h(126)

boson properties, to restrict the parameter space of 2HDMs.

The experimental collaborations have also shown interest to search for signatures of

extended Higgs sectors at the LHC, beyond the usually tested minimal supersymmetric

scenarios. The ATLAS collaboration, for example, has released a search for a heavy

CP-even Higgs boson in the H → WW → eνµν channel within the types I and II

2HDMs, in the mass range [135, 300] GeV, using 13 fb−1 of data at
√
s = 8 TeV center

of mass energy [71]. The CMS collaboration, on the other hand, has analyzed the future

prospects in the search for heavy neutral Higgs bosons at the LHC. The analysis was

performed in the channels H → ZZ → 4` (` = e, µ) and A → Zh → ``bb, assuming

an integrated luminosity of 3000 fb−1 at
√
s = 14 TeV center of mass energy [72]. On

the experimental side, the main challenge seems to account for the large number of free

parameters present in the 2HDM, even in the more restricted versions with NFC. On the

theoretical side there is still a lot of work to be done to be able to start a precision study

of these more general extended Higgs sectors. Theoretical predictions for cross-sections

and branching ratios, taking into account relevant electroweak and QCD corrections, as

well as its implementation in standard tools will be of utmost importance as experimental

data becomes more precise, see for example refs. [73–76] for some relevant works in this

direction.

In this work, we have focused on the possibility of performing a more general analysis

of collider data within the framework of 2HDMs, without resorting to any symmetry in

the Yukawa sector as is done in the different scenarios with NFC. The A2HDM provides

a rich Yukawa structure that includes all the different 2HDMs with a Z2 symmetry as

particular limits while, at the same time, suppresses flavour changing transitions in low-
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energy systems to acceptable levels [28, 45–47]. First studies of the h(126) boson data

within the A2HDM, in the CP-conserving limit, were performed in refs. [29–32] and more

recently in refs. [33,34]. The role of new sources of CP-violation beyond the CKM-phase

present in the A2HDM were also discussed in ref. [32]; we will consider this possibility in

more detail in a future work. The main problem one has to face in this approach is the

larger number of free parameters, compared with the NFC models. On the other hand,

one is able to perform in this way non-biased analyses of the scalar sector of the 2HDM,

without imposing symmetries which at first hand might seem ad-hoc. We have shown for

example how generic sum-rules governing the scalar couplings provide a direct connection

between the h(126) properties and those of the missing scalars, see eq. (8.12).

A comprehensive analysis of current h(126) data within extended Higgs sectors has

been recently performed in ref. [34], including comparisons between the A2HDM and

different Z2 2HDMs. Also of relevance in this work, is a discussion of the effect of quan-

tum corrections in relation to high-precision studies of the Higgs sector. In ref. [33],

emphasis was given on an estimation of the future sensitivity that can be achieved at a

high-luminosity LHC, a linear electron-positron collider and a muon collider, making the

relevant comparisons between the A2HDM and the different NFC scenarios. A discussion

of possible phenomenological strategies to test the 2HDM has been done recently in the

Higgs basis [41], following the basis independent methods developed in ref. [39].

Information about the h(126) boson properties is crucial for making simplifying as-

sumptions and reducing the number of relevant variables, in order to perform a viable

scan of the 2HDM parameter space at the LHC or at future colliders. In this work, we

have analyzed the current data, keeping only a minimal set of parameters that are of

relevance while capturing the rich phenomenology provided by the Yukawa structure of

the A2HDM.

8.6 Summary

We have studied the implications of LHC and Tevatron data, after the first LHC shutdown,

for CP-conserving 2HDMs, assuming that the h(126) boson corresponds to the lightest

CP-even state of the scalar spectrum. The phenomenological analysis has been done

within the general framework of the A2HDM, which contains as particular limits all
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different 2HDMs based on Z2 symmetries. Interesting bounds on the properties of the

additional Higgs bosons of the model can be extracted, due to the existence of sum rules

relating the different scalar couplings.

The h(126) coupling to vector bosons is found to be very close to the SM limit,

implying an upper bound on the heavy CP-even Higgs coupling to vector bosons: |κHV | <
0.6 at 90% CL. Other bounds on the couplings of the missing neutral scalars have been

summarized in eq. (8.12). The flipped-sign solution for the top-quark Yukawa coupling,

which was preferred by the fit before Moriond 2013 in order to explain the excess in

the 2γ channel [32], is now found to be excluded at 90% CL. A sign degeneracy in the

determination of the bottom and tau Yukawa couplings however remains.

We have discussed the role of flavour physics constraints, electroweak precision ob-

servables and LHC searches for additional scalars to further restrict the parameter space.

Some results of our analysis can be pointed out. Loop-induced processes (Z → b̄b and

B̄ → Xsγ) set important constraints on the quark Yukawa couplings, yhu and yhd , for

charged Higgs masses below 500 GeV. Also, heavy Higgs searches in the ZZ channel put

significant limits on the up-type quark Yukawa coupling yhu. Regarding direct charged

Higgs searches at colliders, decays of the charged Higgs into a cb̄ pair and three-body

decays H+ → t∗b̄ → W+bb̄, can have sizable decay rates in some regions of the allowed

parameter space. Future searches for a light charged Higgs at the LHC in hadronic final

states should take these possibilities into account, perhaps through the implementation

of b-tagging techniques as suggested in ref. [58].

The fermiophobic charged-Higgs scenario has been discussed in light of current ex-

perimental data. Though this is a particular limit of the A2HDM, it deserved a separate

analysis for different reasons. A very light fermiophobic charged Higgs boson can give

unusually large contributions to the h → γγ amplitude. Another reason is that in this

case many simple relations arise between the properties of the neutral Higgs bosons, mak-

ing this scenario particularly predictive when analyzing the searches for additional Higgs

bosons at the LHC. We find that current data still allow for very light charged scalars

and sizable contributions from a charged Higgs to the h→ 2γ amplitude.



230 Towards a general analysis of LHC data within 2HDMs

Appendix

8.A Useful formulae for a light charged Higgs

A light charged Higgs with MH± < mt + mb can be produced at the LHC via top-quark

decays. The relevant partial decay widths are given by

Γ(t→ W+b) =
g2 |Vtb|2
64πm3

t

λ1/2(m2
t ,m

2
b ,M

2
W )

(
m2
t +m2

b +
(m2

t −m2
b)

2

M2
W

− 2M2
W

)
,

(8.17)

Γ(t→ H+b) =
|Vtb|2

16πm3
tv

2
λ1/2(m2
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2
b ,M

2
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[
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2
t Re(ςdς

∗
u)
]
, (8.18)

with λ(x, y, z) = x2 +y2 +z2−2(xy+xz+yz) and g = 2MW/v. QCD vertex corrections to

t→ H±b and t→ W±b cancel to a large extent in Br(t→ H±b) [77]. The charged Higgs

decays into quarks and leptons are described in the A2HDM by the following expressions:

Γ(H+ → l+νl) =
m2
l

8πv2

(
1− m2

l

M2
H±

)2

MH± |ςl|2 ,
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(8.19)

where NC is the number of colours. Running MS quark masses entering in these expres-

sions are evaluated at the scale MH± , and the leading QCD vertex correction to H+ → ud̄

has been taken into account [78].

When the charged Higgs mass satisfies MH± > MW + 2mb, three-body decays of the

charged Higgs mediated by a virtual top quark can be relevant, see figure 8.13. The decay

width for H+ → t∗b̄→ W+bb̄ is given in the A2HDM by

Γ(H± → t∗b̄→ W+bb̄) =
NC g2|Vtb|4

128π3M3
H±M

2
Wv

2

∫
ds23

∫
ds13

G(s23, s13)

[s23 −m2
t ]

2
, (8.20)
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H+(p)

b̄(p1)

W+(p2)

b(p3)

t∗(k)

Figure 8.13: Feynman diagram for the three-body charged Higgs decay H+ → t∗b̄→W+bb̄.

where

G(s23, s13) =
[
M2
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with:

k = p2 + p3 , k2 = s23 , (p1p3) =
1

2
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2
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The integration limits are:

smin
23 =

1

4s13

{
(M2

H± −M2
W )2 −

[
λ1/2(M2

H± , s13,M
2
W ) + λ1/2(s13,m

2
b ,m

2
b)
]2}

,

smax
23 =

1

4s13

{
(M2

H± −M2
W )2 −

[
λ1/2(M2

H± , s13,M
2
W )− λ1/2(s13,m

2
b ,m

2
b)
]2}

, (8.23)

with

4m2
b 6 s13 6 (MH± −MW )2 . (8.24)

8.B Statistical treatment and experimental data

The experimental h(126) data used in the fit can be found in tables 8.2 and 8.3; experi-

mental uncertainties are assumed to be Gaussian. To obtain the preferred values for the

parameters of the A2HDM we build a global χ2 function. For some channels the correla-

tion coefficient ρ between different production modes can be estimated from the 68% CL
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Table 8.2: Experimental data from the ATLAS and CMS collaborations at
√
s = 7 + 8 TeV.

Channel µ̂ (ATLAS) Comment µ̂ (CMS) Comment

bb(VH) 0.25± 0.65 ref. [2] 1.0± 0.5 ref. [4]

ττ(ggF) 2.19± 2.2 ρ = −0.50 0.68± 1.05 ρ = −0.5

ττ(VBF + VH) −0.31± 1.25 ref. [2] 1.57± 1.13 ref. [4]

WW (ggF) 0.79± 0.52 ρ = −0.2 0.76± 0.35 ρ = −0.3

WW (VBF+VH) 1.6± 1.25 ref. [2] 0.24± 1.14 ref. [4]

ZZ(incl.) 1.5± 0.4 ref. [2] 0.92± 0.28 ref. [4]

γγ(ggF) 1.6± 0.6 ρ = −0.3 0.47± 0.49 ρ = −0.6

γγ(VBF+VH) 1.76± 1.28 ref. [2] 1.6± 1.14 ref. [4]

Table 8.3: Experimental data from CDF and DØ at
√
s = 1.96 TeV.

Channel µ̂ Comment

bb(VH) 1.59± 0.71 ref. [5]

ττ(incl.) 1.7± 2.0 ref. [5]

WW (incl.) 0.94± 0.84 ref. [5]

γγ(incl.) 5.97± 3.25 ref. [5]

contours provided by the experimental collaborations, assuming that the ∆χ2 = χ2−χ2
min

is well described by a bivariate normal distribution. This information is taken into ac-

count in the fit. The 68% and 90% one-dimensional confidence level (CL) intervals are

given by ∆χ2 = 1 and 2.71, respectively. Two-dimensional 68% and 90% CL intervals are

given by ∆χ2 = 2.30 and 4.31, respectively.

Regarding the flavour observables considered in this work, we use the latest B̄ → Xsγ

experimental measurement, Br(B̄ → Xsγ)E0>1.6 GeV = (3.41 ± 0.22) × 10−4 [79]. The

theoretical prediction of this quantity is obtained following ref. [80]. The calculation

of Rb within 2HDMs was detailed in ref. [81]; the experimental value is Rb = Γ(Z →
b̄b)/Γ(Z → hadrons) = 0.21629± 0.00066 [82].
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Chapter 9
Conclusions

With the discovery of a new boson around 126 GeV with properties so far compatible

with the SM Higgs boson, a new era for our understanding of the electroweak symmetry

breaking mechanism has started. Many extensions of the SM electroweak sector involve

extended scalar sectors, the 126 GeV boson could then be just one out of many scalar

bosons present in Nature. Since the properties of the recently discovered Higgs boson are

compatible with the SM Higgs, we already know that any viable alternative explanation

for electroweak symmetry breaking should resemble the SM in some limit.

Adding additional scalar singlets and/or doublets to the SM field content is a minimal

extension of the SM that gives rise to an interesting phenomenology. One can also be

interested in studying such simple NP scenarios because they might represent a low-energy

effective theory of a more fundamental NP theory. While scalar singlets do not couple to

fermions directly due to gauge invariance, scalar doublets couple to fermions in the same

way than the SM Higgs and lead to tree-level FCNCs in general. Low-energy constraints

require the non-diagonal scalar couplings to be very small (specially for light quarks). To

explain why non-diagonal Higgs couplings in flavour space are so suppressed or absent,

one needs to postulate that some symmetry or unknown flavour dynamics is restricting

the Yukawa structure. Another possibility is that the scalar sector of the multi-Higgs

doublet model is close to the large-mass decoupling regime, in this case flavour violating

phenomena are naturally suppressed by the large scalar masses. This last possibility is

however less interesting from the phenomenological point of view since the additional

scalars lie beyond the reach of high energy colliders and leave no imprint on low-energy
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phenomena.

Within the scenario of the 2HDM without large-mass decoupling, that is, consid-

ering a rich scalar sector at the electroweak scale; we performed in this thesis different

phenomenological analyses that can be summarized by:

• Possible violations of lepton flavour universality in B and D meson decays due to

the presence of a charged scalar.

• Higgs mediated lepton flavour violating τ decays and interplay with searches at the

LHC via Higgs decays.

• Analyses of LHC and Tevatron data for the 126 GeV boson and complementarity

with electroweak precision data, flavour constraints, and, searches for additional

scalars.

A very concise summary of the most relevant findings or results described in this

thesis is:

• The excess observed recently by the BaBar collaboration in B → D(∗)τν transi-

tions cannot be accommodated within the framework of the A2HDM because one

encounters tensions with present limits on B → τν and D(s) leptonic decays.

• Improvements on the hadronic form factors relevant to describe Higgs mediated τ →
`ππ (` = e, µ) decays have a significant impact on the bounds that can be extracted

on possible LFV Higgs couplings. Semileptonic τ decays offer an important handle

to scrutinize any possible LFV signal at the LHC.

• Studies of the Higgs sector within the 2HDM can be performed without assuming

a priori a Yukawa sector with natural flavour conservation, concrete results are ob-

tained in this case despite the larger number of free parameters. Tree-level unitarity

sum-rules encode the structure of the 2HDM scalar sector and provide a very useful

way to frame the discussion of LHC Higgs data within the framework of 2HDMs.
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