The challenging tail of the Cosmic Ray Spectrum

Enrique Zas University of Santiago de Compostela Alicante Marzo 2004

Today's Summary:

- Cosmic rays
- High energy tail
- Air showers
- The data
- The challenge

General overview Motivation The techniques Facts and fiction Present and future

Tomorrow: Composition and neutrinos

less

Fluxes are related at Production, Transport & Detection

Earth bombarded with particles

particles mostly from seen up to

Ultra High E \Rightarrow 2-fold motivation

- Particle Physics
 - Test interactions at (always) highest energies
 - Test forward region
- Astrophysics
 - Unresolved puzzle
 - Posibility to do astronomy

learn about B fields

The Mystery Tail

• Limitations of acceleration (Fermi)

– Extreme sources [B field and Size]

- Implications of interactions
 - CMB
 B fields
 GZK cutoff
 directionality & clustering
 none established so far

Diffusive propagation in accelerating region

The Greisen-Zatsepin-Kuzmin cutoff γd' _{total} Cross section YP total $n \pi^+$ $p + \gamma_{CMB}$ $\nu_{\mu} \; \mu^{+}$ 10 Δ_{1232} resonance $p \pi^0$ $p+\gamma_{CMB}$ 10 YY total $\gamma\gamma$ 10 10 Center of mass energy (GeV) γp 0.2 1.00 10000 vď 63 100 1000 Laboratory beam momentum (GeWic 107 total loss length hadron prod. e⁺ e⁻ pair prod. 10⁶ (Mpc) on decay length 105 E ds/dE Pair production lower threshold 104 lower cross section energy loss length 10³ 10^{2} 10¹ 100 10²³ 10¹⁸ 10¹⁹ 1021 1022 1020 1022 nucleon energy E (eV) by Ralph Engel

Expect Structure at a well defined energy

We have only detected Extensive Air Showers

spread over several km

The atmosphere is (part of) our detector

The Fluorescence Technique

C.Song et al., Astropart. Phys. 14, 7 (2000)

The particle array Technique

The Ultra High Energy data:

Disagreement between data

(Exagerated by E³ presentation)

- Fluorescence data
 Array data
 - Suggests GZK cutoff
 - No clustering evidence
- - No GZK cutoff seen
 - Marginal clustering?

Both techniques:

Depend on Simulation & Int models

but

-Detect events above 10²⁰ eV

-Agree at UHE at the 2- σ level

Two methods at competiton?

- Flourescence
 - Calorimetric E
 - Acceptance(E)
 - Corrections(t)
 - Absorption
 - Cherenkov
 - Fluor yield(T,p)

- EAS arrays
 - 1 layer calorim
 - Geometric Acc
 - Corrections
 - Fluctuations
 - Sampling

The fluorescence technique is less established

Fluorescence Yield:

Fluorescence exposure grows with Energy

Uncertainty also grows with Energy

Understanding the disagreement

- Statistical fluctuations (2- σ level discrepancies)
 - Shower to shower
 - Sampling
- Calibration problems
 - Attenuation (Mie scattering-aerosol)
 - Fluorescence yield
- Unknown systematics
 - Fluorescence exposure uncertainty grows with energy
 - A 25% systematic in the energy solves the problem
 - Systematics in the simulations
- Flux differences between exposure regions
 - TStanev astro-ph/0303123

Need more statistics and better accuracy

The experimental challenge:

•Very large Acceptance

Improved resolution

Control systematic uncertainties

The present solution:

The Auger Observatories

In each Hemisphere

- 3000 km² EAS array
- 4 Fluorescence eyes
- Hybrid detector

Southern Observatory: Malargüe Mendoza (Argentina)

Preproduction

CHIL

Auger Surface Detectors

Tank signal due to muons similar to e and γ

Needs fluorescence calibration (Auger)

Radio: moon or planets as targets •Cosmic Rays and nuetrinos

Needs radio calibration (EUSO?)

2010-2012

150000 km² 10% duty cycle

From M.Pimenta

Calibration with Auger

From M.Pimenta