SuperSymmetry L. Poggioli, LAPP

Detector requirements Inclusive searches Precision measurements Other models

Why SUSY ?

- The hierarchy problem
 - SM cannot be valid up to M_{GUT} - M_{PI}

H mass

- h New physics O(1TeV) to stabilize masses
- SUSY: Boson-Fermion symmetry
 - Established @ M_{PI} (Superstring theory)
 - Includes Gravity
 - Natural stabilization of masses
 - ~ exact cancellation of HO corrections due to opposite sign contribution of particle/sparticle

SUSY : Pros & Cons

Pros

- EW symmetry breaking included
 - From large top mass
- SUSY fits with GUTs
 - Precise matching of gauge couplings at $M_{\rm GUT}$ fails in SM and works in SUSY
 - Proton decay too fast without SUSY

Cons

- All particle spectrum doubled
- Lack of signal @ LEP + m_h> 114 GeV
 - Problem for Minimal SUSY

IMFP04 - 3/03/04

SUSY models (1)

MSSM

tanβ

- \blacksquare M₁, M₂, M₃ Gaugino SUSY-breaking mass terms (give masses to χ^0 , χ^{\pm} , g)
 - $m_{\tilde{\ell}_R}, m_{\tilde{\ell}_I}, m_{\tilde{\nu}_L}, m_{\tilde{q}_R}, m_{\tilde{q}_L}$ Sfermion SUSY-breaking mass terms

Pseudoscalar Higgs boson mass Ratio of VEV of 2 Higgs doublets 2 Higgs doublets Higgs mixing parameter

Higgs sector 5 final states

A_t, A_b, A_t, Stop/sbottom/stau/... mixing parameters

> 100 parameters \rightarrow not very predictive

✓ CMSSM (Constrained)

Gaugino masses unify to common gaugino mass $m_{1/2}$ at GUT scale • Sfermion masses unify to a common scalar mass m_0 at GUT scale Use RGE to evoluate from GUT scale to EW scale

Parameters: $m_{1/2}$, m_0 , m_A , $tan\beta$, μ , $A_{t,b,\tau,...}$

IMFP04 - 3/03/04

SUSY models (2)

Minimal SuperGravity mSUGRA

•Unify Higgs & sfermion sector @ GUT scale $\rightarrow m_A$ fixed by m_0 •Unify all trilinear couplings @ GUT scale to common A_0 •Radiative EWSB \rightarrow only sign of μ is free

> 5 parameters: $m_{1/2}$, m_0 , $\tan\beta$, $sign(\mu)$, A Lightest SUSY Particle (LSP) = χ_1

- ✓ Gauge mediated SUSY breaking GMSB
- SUSY breaking @ much lower scale
- $LSP \equiv \widetilde{G}$ m(\widetilde{G}) < KeV escapes detection
- R-parity breaking models
 - R_p=(-1)^{3(B-L)+S} conserved -> B&L conserved
 - •Investigate R_p-violation

IMFP04 - 3/03/04

IMFP04 - 3/03/04

Detector requirements

Good Hadronic resolution

- Reduces fake MET from detector resolution in QCD multijet events
- Narrow mass peaks : $W \rightarrow jj$, $h \rightarrow bb$, $t \rightarrow bjj$ from SUSY cascade decays; A/H $\rightarrow \tau\tau$, etc.

Good b-tag & τ-identification

• τ 's and b-jets expected in sparticle and SUSY Higgs decays (especially at large tan β)

IMFP04 - 3/03/04

Full sim of τ's from A → ττ & QCD jets
τ's I D: narrow & low multiplicity jets in calorimeters & tracker

I[±], jet, MET absolute E-scale

✓ For precise measurements of SUSY events, e.g. end-points of kinematic distributions, A/H → µµ mass,;etc. (in many cases statistical error is negligible)
 •Can only be achieved with in situ calibration with

- data samples
- *ℓ*-scale

• Mainly from $Z \rightarrow \ell \ell$ events (1 evt/s per spec. @ 10³³)

 ~ 1 ‰ uncertainty achieved by CDF, DO (dominated by statistics of control samples)

• LHC goal : 0.2 ‰ to measure $m_{\rm W}$ to ~ 15 MeV

So	ource	Requirement	Uncertainty on scale		
Mz	aterial in Inner Detector	Known to 1%	< 0.01%	Δ	ATLAS: full simulation study of uncertainty on $Z \rightarrow ee$ scale
Inr	ner bremsstrahlung	Known to 10%	< 0.01%	, c	
Un	nderlying event	Calibrate and subtract	<< 0.03%	0	
Pil	e-up at low luminosity	Calibrate and subtract	<< 0.01%	0	
Pil	e-up at high luminosity	Calibrate and subtract	<< 0.01%		

Inclusive searches

Inclusive SUSY searches (\tilde{q}, \tilde{g})

Easy, model-independent discovery Analysis

 Topologies studied (from cascade decays) no lepton requirement

no leptons

3 leptons

2 opposite-sign leptons

2 same-sign leptons

1 lepton

- Jets + MET
- $\mathbf{O}\ell$
- 1/
- 210S
- $2\ell SS$
- 31
- Backgrounds
 - tt, W/Z + jets, QCD multijets
- Cuts
- •# & E_{τ} of jets, MET & MET isolation, transverse sphericity Yield

•SUSY scale & x-section, evts properties, exclusive studies

Precise measurements

General strategy

- Inclusive
 - SUSY proof, scale & σ , Model hints
- Go beyond inclusive measurements
 - Measure sparticle (masses, decays)
 - Constrain the theory parameters
- General strategy
 - Select exclusive decay chains
 - χ^{0}_{1} invisible \rightarrow no direct mass peak
 - Constrain masses by measuring mass distributions of visible sparticles decay ~
 - Start from end of the chain, usually χ_2
 - Then go up the chain to primary squark and gluino

	Decay		DIG
\tilde{g}	\rightarrow	$\tilde{q}q$	65 %
		$\tilde{b}b$	25 %
		$\tilde{t}_1 t$	15 %
\tilde{q}_L	\rightarrow	$\tilde{\chi}_{2q}^{0}$	33~%
		$\tilde{\chi}_1^+ q'$	65 %
\tilde{q}_R	\rightarrow	$\tilde{\chi}_{1}^{0}q$	100 %
\tilde{t}_1	\rightarrow	$\tilde{\chi}_{1}^{0}t$	70 %
		$\tilde{\chi}_{2}^{0}t$	9%
		$\tilde{\chi}_1^+ b$	21~%
$ ilde{\chi}^0_2$	\rightarrow	$\tilde{\chi}_{1}^{0}h$	68 %
		$\tilde{\ell}_R l$	27~%
$\tilde{\chi}_1^{\pm}$	\rightarrow	$\tilde{\chi}_{1}^{0}W$	98 %
Ĩ	\rightarrow	$\tilde{\chi}_{1}^{0}l$	100~%
h	\rightarrow	$\bar{b}b$	88 %

DD.

Doow

$$\begin{array}{c} \chi^{0}{}_{2} \rightarrow h \ \chi^{0}{}_{1} \ \rightarrow bb \ \chi^{0}{}_{1} \\ \chi^{0}{}_{2} \ \rightarrow \ \widetilde{\ell}_{R} \ \ell \ \rightarrow \ \ell\ell \ \chi^{0}{}_{1} \end{array}$$

Main source of χ_2^0 : $\widetilde{\mathbf{q}}_{\mathrm{L}} \rightarrow \mathbf{q} \chi_2^0$

 $m(\ell^+\ell^-)$ distribution constrains $m(\chi^0_2), m(\tilde{\ell}_R), m(\chi^0_1)$

Combine $\ell^+\ell^-$ with each of two hardest jets $\rightarrow m(\ell^+\ell^-j)$

- 0 m($\ell^+\ell^-$ j) min smaller than end-point of $\widetilde{q}_{\underline{L}}$ decay chain
- m(ℓ+ℓ- j) max larger than "threshold" of Q̃_L decay chain
 → these mass spectra & edges constrain combination of m(q̃_L), m(χ⁰₂), m(ℓ̃_R), m(χ⁰₁)

3. For smaller $m(\ell^+\ell^-j)$ combination, plot 2 $m(\ell^\pm j)$ combinations \rightarrow distribution constrains (through the "right" combination where ℓ is from χ^0_2) constrains $m(\tilde{q}_L), m(\chi^0_2), m(\tilde{\ell}_R)$

Reconstruction of $pp \rightarrow \tilde{\ell}^+ \tilde{\ell}^- \rightarrow \ell \chi^{o_1} \ell \chi^{o_1}$

L. Poggioli

 $BR(\tilde{\ell} \to \ell \chi^0_{1}) = 100\% \qquad m(\tilde{\ell}_R, \tilde{\ell}_L) = 157,240 \text{GeV}$

 \rightarrow look for 2 acoplanar leptons and no jet activity

Event selection

- •MET > 120 GeV
- 2 OS-SF leptons $p_T > 30 \text{ GeV}$
- $\Delta \phi_{\ell\ell}$ < 2.5 (to reject WW)
- no jets p_T > 40 GeV (to reject tt, SUSY b)

Yield

- •S = 600 B = 280 for 300 fb⁻¹ \rightarrow need ultimate LHC luminosity •Lepton-pair p_T-distribution
 - -> constrain on ℓ_{L}, χ_{0} masses

-If χ^0_1 mass known, slepton left mass measured to few GeV

Hard cuts kill $\tilde{\ell}_{R} \tilde{\ell}_{R}$

Some remarks

Repeated for various set of parameters

- $m_{1/2}$ to few %, m_0 1 to 25%, tanß to few %, Sign(µ) OK, A_0 unconstrained
- Only mass distributions used (cons'tive)
 - Can use x-sections, BR, extra distributions

Set of models

- mSUGRA may be artificially too good
- Situation easier in GMSB (longer chains)
- Allow to assess analysis strategies, detector performance

IMFP04 - 3/03/04

Gauge Mediated SUSY Breaking

- •GMSB LSP $\equiv \widetilde{G}$ escapes detection
- Depends on what is NLSP
 - $\text{NLSP} \equiv \widetilde{\ell} \to \ell \, \widetilde{G}$
- $\begin{array}{ll} c\tau << \ L_{det} & leptons + MET \\ c\tau \ \approx \ L_{det} & kinks \ in \ inner \ detector \\ c\tau >> \ L_{det} & heavy \ stable \ charged \ particles \end{array}$
- •Usually easier than SUGRA •Additional/exotic signatures
 - from NLSP decay
 - Long decay chains
- \rightarrow parameters constrained to ~ %

NLSP $\equiv \widetilde{\tau}_1, c\tau \sim 1 \text{ Km}$

Stable, slow (β < 1) charged particles \rightarrow delayed signal in muon chambers ($\sigma_t \sim 1$ ns)

 $c\tau \ll L_{det}$ two photons + MET

 $c\tau \approx L_{det}$ non-pointing photons

NLSP = $\chi_1^0 \rightarrow \gamma \widetilde{G}$

 $c\tau >> L_{det}$ missing E_{T}

Prospects (1)

- If SUSY at TeV scale, discovery easy
- Ultimate reach m(squark, gluino) ~ 2.5 TeV
 Challenge is assessing SUSY
 - Full spectrum & Precision measurements
 - Tools have been developped
 - Model-independent searches
 - Analysis techniques
 - -> Goal seems reachable
 - Almost granted for h, squarks, gluino

Prospects (2)

- What LHC cannot do
 - Observing H/A/H+- over full parameter space $\mathbb{S}^{500} \xrightarrow{\mathrm{EW} \to \mathrm{RGE} \to \mathrm{GUT}}$
 - Observing full gaugino spectrum (χ[±])
 - Performing measurements
 to < 1%
- Complementarity of LHC & Linear Collider

