Before we start

Warm thanks to the Organizers

- Non-Higgs Physics at LHC is wide
 - Special thanks to the Organizers
 - Warmest thanks to lots of people for valuable discussion & inputs
 - F. Gianotti, M. Cobal, S. Tapprogge, A. Moraes, E. Chierici, T. Lagouri, F. Charles, P. Traczyk, S. Shmatov, P. Eerola, ...

Try to be exhaustive

Hope not to be exhausting

Non-Higgs Physics L. Poggioli, LAPP . Standard Model physics W mass, TGC, TGC, QCD 2. Supersymmetry Inclusive, exclusive, Models 3. Beyond Standard Model Technicolor, Extra-dimensions, New particles

IMFP04 - 2/03/04

Standard Model L. Poggioli, LAPP Introduction W mass **Triple Gauge Boson Couplings Top physics OCD Prospects**

Introduction

IMFP04 - 2/03/04

A A A

What we know from n, u decays from meson decays $G_{F}(1)$ $V_{CKM}(4)$ m_{fermions} (9) from direct SM neasurements predictions (down to 0.1% level) m_{bosons} (2) (17 parameters) m_H not discovered yet No observable directly related to m_H: dependence through radiative corrections Example: w b w δt ∝ m_t² $m_W = m_W(m_t^2, \log(m_H))$ Z/W Z/W Z/W Z/W Z/W $\delta H \propto \ln(m_H/m_W)$ Z/W By making precision measurements - Get information on the missing parameter m_{H} - Test the validity of the Standard Model IMFP04 - 2/03/04 L. Poggioli 5

IMFP04 - 2/03/04

W mass

Method Systematics Reach

IMFP04 - 2/03/04

At LHC

- Issue is turning down Systematics
 - Physics: W width and angular distribution, structure functions
 - **Detector**: lepton momentum, E resolution, recoil spectrum
- Learn from Tevatron
 - Systematics from detector simulation ->
 Use data sample for in-situ calibrations
- Advantages of LHC
 - Huge statistics from control samples (Z -> II)
 - Better detectors (acceptance, resolution)

Detector systematics

- Lepton E/P scale
 - 0.02% needed
 - Use Z->ee, μμ or Y->μμ
- Lepton E,p resolution
 - 1-2% needed

- Use test beam & Z width reconstruction
- Recoil modelling
 - UE + detector
 - From Z->ll data

Physics systematics

 $P_{T}(W)$

- $P_T(Z)/p_T(W)$ to model Monte Carlo
- Use $P_T(Z)$ from Z->II

Uncertainties on parton density funcs

- Compare models, constrain from Z,W data

L. Poggioli

W width- Use<math display="block"> Radiative decays $- From W->l v\gamma$ <math display="block"> Radiative decays

- Checks on Z & W->τν

From LEP

12

After 1 year of LHC

Run IA

Source	$\Delta m_W^{}(\text{CDF})$	Δm_W (ATLAS)	Uncertainties per
Statistics	145 MeV	< 2 MeV	experiment /year
<i>E-p</i> scale	120 MeV	15 MeV	/lepton
Energy resolution	80 MeV	5 MeV	The real improvement
Lepton identificatior	25 MeV	5 MeV	
Recoil model	60 MeV	5 MeV	Internal calibration from
W width	20 MeV	7 MeV	Need excellent control of
Parton distribution functions	50 MeV	10 MeV	energy flow+ momentum scale
Radiative decays	20 MeV	< 10 MeV	
$p_{\overline{1}}W$	45 MeV	5 MeV	
Background	10 MeV	5 MeV	15 MeV LHC combined can then be reached still very
TOTAL	230 MeV	25 MeV	challenging
IMFP04 - 2/03/04		L. Poggioli	13

A A A Triple Gauge Boson Couplings Signal Reach IMFP04 - 2/03/04 L. Poggioli 14

\leq	TGC : Reach				
	Variables used	Paramet	Statistic	Systema	
	$= W\gamma (m_{W\gamma}, \eta_{\gamma}^{*}) \& (p_{T}^{\gamma}, \theta^{*})$	ers	al (at 95% C.L.)	tic (at 95% C.L.)	
	 - WZ (m_{WZ}, η_Z*) & (p_T²,θ*) Operating 	Δg_1^Z	- 0.0064 + 0.010	±0.0058	
~	Kesuits	$\Delta \kappa_{Z}$	- 0.10 + 0.12	±0.024	
<		λ _Z	- 0.0065 + 0.0066	- 0.0032 + 0.0031	
	 Systematics 	$\Delta \kappa_{\gamma}$	- 0.073 + 0.076	- 0.015 + 0.0076	
~	Small from low p _T	Λ_{γ}	±0.0033	±0.0012	
	bckground (physics at high p_T)				
	Arises from pdf & higher order				
-	corrections				
-				1(

Production Mass measurement Couplings Single top production Commissioning

A A A

L. Poggioli

Top

Alternative ways to get m_t High P_T tt events (dedicated analysis) Hemisphere separation (background reduction, less combinatorial) S S S Jets overlapping issue 190 Dedicated algos to be used 180 -UE subtract · Less prone to QCD, FSR, calib. L70 •Stat. & syst. under control Leptonic channel 160 Both W decay leptonically 150 ΔR_{cone} •Cleaner signature but less info. (neutrinos) • Determine m_{t} from $m_{\ell\ell}$ or $m_{\ell b}$ Rely upon correct MC description •Main systematics become b frag. and radiation description •More sophisticated procedure for fitting whole event \checkmark Others (σ_{tt} & exclusive b-> J/ Ψ) 21

Errors per expt	Errors per expts (in GeV) 10 fb ⁻¹ , low lumi 100 fb ⁻¹ , high lu				
	qqbblv	qqbbľv (high p _T)	bblvlv	σ _{tt}	qdpplv (+J/ψ)
statistical	0.10	0.25	0.90?	<0.05	<1.0
light jet E scale	0.20	1.2?			
b-jet E scale	0.60	0.60	0.60		-
ISR/FSR	1.5?	0.2?	1.0	?	0.30?
b-fragmentation	0.25	0.10	0.70		0.60
background	0.15	0.10	0.10?	negl.	0.20
pdfs uncertainty	negl.	negl.	negl.	4.0	0.20
Total	<2.0?	<2.0?	<2.0?	<4.0 ?	<1.3?

1 GeV error should anyway be achievable

IMFP04 - 2/03/04

Couplings and decays

- Top behavior as expected in SM?
 - Yukawa coupling measured at <20% from ttH evts

According to SM

- Br(t →Wb)≈99.9%, Br(t → Ws) ≈0.1%
- Br(t \rightarrow Wd) \approx 0.01% (difficult to measure)
- Many decays outside SM implies anomalous couplings
 - Many channels (ex. FCNC) have clear experimental signatures
 - t->Zq, γq sensitivity $O(10^{-4})$

Commissioning studies

- At LHC startup
 - Detectors not complete, crude calibration
 & alignment
- Why top is important at LHC startup
 - Large statistical sample available
 - Allows to tackle fundamental issues from physics & detector
 - \cdot Study of isolated, high $p_{\rm T}$ electrons and muons
 - ·Jet calibration & energy scale with W \rightarrow jj
 - b-tagging and efficiency studies
 - Major background for most Higgs searches

Parton kinematics Jet physics Photon physics Drell-Yan, W/Z production Heavy flavour production Multiple interaction

QCD

LHC Parton Kine Physics at LHC Connected to q & q 10^{8} interactions (small & large transferred momentum) 10^{7} -> Good understanding 10^{6} of QCD 105 (GeV^2) SM cross-sections 10^{4} Q^2 Accurate measurements 10^{3} Will further constrain the pdf's. 10^{2} (x, Q^2) range 10^{1} •Wide 10-7 Thanks also to large acceptance of LHC detectors ($|\eta| < 5$) L. Poggioli

	Parton I	uminosi	ties and p.d.f.'s		
20	$N_{events}(pp -$	$\rightarrow X) = L_{p-p} \times pdf(x_p)$	$(x_2, Q^2) \times \sigma_{theory}(q, \overline{q}, g \to X)$		
	•Uncertainties in p-p luminosity (\pm 5%) and pdf (\pm 5%) -> \pm 5% uncertainty •Using only relative x-section measurements -> \pm 1% accuracy feasible				
	qq(ud) high-mass DY lepton pairs & other processes dominated by qq	W [±] & Z leptonic decays ±1%	 ✓ precise measurements of mass &couplings ✓ huge cross-sections (~nb); ✓ small background. ✓ x-range: 0.0003 - 0.1 		
	g high-Q ² reactions involving gluons	γ-jet, Z-jet, W±-jet ±1%	 ✓ γ-jet studies: γ p_T > 40 GeV ✓ x-range: 0.0005 - 0.2 ✓ γ-jet events: γ p_T ~ 10-20 GeV ✓ low-x: ~ 0.0001 		
	s,c,b	γc, γb, sg→Wc 5-10% uncertainty for 0.0005 <x< 0.2<="" th=""><th> ✓ quark flavour tagged γ-jet final states; ✓ use inclusive high-p_T µ and b-jet identification (lifetime tagging) for c and b; ✓ use µ to tag c-jets; </th></x<>	 ✓ quark flavour tagged γ-jet final states; ✓ use inclusive high-p_T µ and b-jet identification (lifetime tagging) for c and b; ✓ use µ to tag c-jets; 		
	IMFP04 - 2/03/04	L. Po	oggioli 33		

Basics

- QCD check @ smallest range
 - α_s= 0.118(0.082) @ 0.1(4) TeV

•Can't compete with precision measurements from e⁺e⁻ & DIS (gluon distribution)

Measurement

 $\frac{d\sigma}{dE_T} \sim \alpha_S^{2}(\mu_R)A(E_T) + \alpha_S^{3}(\mu_R)B(E_T)$

• A and B calculated at NLO with input p.d.f.'s. • Fit to measured inclusive cross-section gives $\alpha_{s}(E_{T})$ for each E_{T} bin MFP04 - 2/03/04

Systematics

NLO

- pdf set (±3%),
- A and B parameters
- Renormalization &
- factorization scale $(\pm 7\%)$

Heavy flavour production

 Production & Reach
 Dominant production mechanism for heavy quarks (b and t) is g-g interaction
 -> constraints on g density

c and b quarks

•c(b) $g \rightarrow c(b) \gamma$ •From photon-jet samples •Jet flavour by using inclusive high-p_T muons & b tagging

Process	σ (nb)	Events/year
		$(L = 10 \text{ fb}^{-1})$
bb	5 x 10⁵	~ 10 ¹²
tt	0.8	~ 10 ⁷

Multiple parton interactions • Basics • UA2 &CDF have measured double parton interactions $\int_{p} (p_{T}^{cut}) = m \frac{\sigma_{A} \sigma_{B}}{2\sigma_{eff}} \quad \text{for eff has a geometrical origin} \\ • \sigma_{D} \text{ increases faster with} \\ \bullet \text{ s as compared to } \sigma_{S} \quad \text{intermediation in transverse} \\ \bullet \text{ increases faster with} \\ \bullet \text{ s as compared to } \sigma_{S} \quad \text{intermediation in transverse} \\ \bullet \text{ increases faster with} \\ \bullet \text{ increas$

L. Poggioli

- -> MPI enhanced at LHC
- Source of background
- WH+X \rightarrow (h) bb+X
- W + jets

MFP04 - 2/03/04

• final states with many jets $p_{T}^{min} \sim 20 - 30 \text{ GeV}$

B physics at LHC (1)

Precision measurements of B-hadrons

- CP-violation parameters
- B-hadron parameters: Masses, lifetimes, widths, oscillation parameters, couplings, b-production, etc.
- Search for New Physics effects: very rare decay modes, forbidden decays/couplings, etc.
- LHC: B-factory with $\sigma(bb)=500 \ \mu b$
 - "Old" B-trigger, single 6-GeV muon
 - Event rate is 4 kHz at 2×10^{33} cm⁻²s⁻¹
 - LVL1 trigger-muon also provides a clean flavour tag

B physics at LHC (2)

- Downscoping of LVL1 trigger rate
 - Not enough processing power @ startup
 - Rate limited to 25 kHz
 - -> Increase single-muon threshold
- Strong & Negative impact on
 B-physics @ startup in ATLAS & CMS
- Consequences (at least for startup)
 - ATLAS & CMS will concentrate on high-P $_T$ physics
 - LHCb will cover extensively B-physics

Conclusion

 ✓ LHC will probe unexplored kinematic regions & with huge stat. (W, t, jets)
 ✓ W mass can be measured to ± 15 MeV
 ✓ Top

- Mass can be measured to $\pm\,1\,\text{GeV}$
- Access to couplings
- Single top -> access to V_{tb}
- Anomalous TGC sensitivity
 - Systematics
 - Detector & Physics
 - Being studied with extreme care

