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Abstract. One of the goals of the EU CrossGrid project is to provide a basis for 
supporting the efficient execution of parallel and interactive applications on 
Grid environments. CrossGrid jobs typically consist of computationally 
intensive simulations that are often programmed using a parallel programming 
model and a parallel programming library (MPI). This paper describes the key 
components that we have included in our resource management system in order 
to provide effective and reliable execution of parallel applications on a Grid 
environment. The general architecture of our resource management system is 
briefly introduced first and we focus afterwards on the description of the main 
components of our system. We provide support for executing parallel 
applications written in MPI either in a single cluster or over multiple clusters. 

1. Introduction 

 
Grid technologies and concepts started to appear in the mid-1990s. Much progress 

has been made on the construction of such an infrastructure since then, although some 
key challenge problems remain to be solved.   There are many Grid initiatives that are 
still working in the prototype arena. And only a few attempts have been made to 
demonstrate production-level environments up to now. The Compact Muon Solenoid  
(CMS) Collaboration [1], which is part of several large-scale Grid projects, including 
GriPhyN [2], PPDG [3] and EU DataGrid [4], is a significant example that has 
demonstrated the potential value of a Grid-enabled system for Monte Carlo analysis 
by running a number of large production experiments but not in a continuous way. 

 
Fundamental to any Grid environment is the ability to discover, allocate, monitor 

and manage the use of resources (which traditionally refer to computers, networks, or 
storage). The term resource management  is commonly used to describe all aspects of 
the process of locating various types of resources, arranging these for use, utilizing 
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them and monitoring their state. In traditional computing systems, resource 
management is a well-studied problem and there is a significant number of resource 
managers such as batch schedulers or workflow engines. These resource management 
systems are designed and operate under the assumption that they have complete 
control of a resource and thus can implement mechanisms and policies for the 
effective use of that resource in isolation. Unfortunately, this assumption does not 
apply to Grid environments, in which resources belong to separately administered 
domains.  

 
Resource management in a Grid therefore has to deal with a heterogeneous multi-

site computing environment that in general exhibits different hardware architectures, 
loss of centralized control, and as a result, inevitable differences in policies. 
Additionally, due to the distributed nature of the Grid environment, computers, 
networks and storage devices can fail in various ways. 

 
Most systems described in the literature follow a similar pattern of execution when 

scheduling a job over a Grid. There are typically three main phases, as described in 
[5]: 

- Resource discovery, which generates a list of potential resources that can be 
used by a given application. This phase requires the user to have access to a 
set of resources (i.e. he/she is authorized to use them) and has some 
mechanism to specify a minimal set of application requirements. These 
requirements will be used to filter out the resources that do not meet the 
minimal job requirements.  

- Information gathering on those resources and the selection of a best set. In 
this phase, given a group of possible resources, all of which meet the 
minimum requirement for the job, a single resource must be selected on 
which to schedule the job. The resource selection may be carried out by 
some form of heuristic mechanism that may use additional information about 
the dynamic state of the resources discovered in the first phase. 

- Job execution, which includes file staging and cleanup. Once resources are 
chosen, the application can be submitted to them. However, due to the lack 
of standards for job submission, this phase can be made very complicated 
because it may involve setup of the remote site, staging of files needed by 
the job, monitoring progress of the application and, once the job is 
completed, retrieving of output files from the remote site, and removing 
temporary settings. 

 
The resource management system that we are developing in the CrossGrid project 

follows the same approach to schedule jobs as described above. However, our system 
is targeted to a kind of applications that have received very little attention up to now. 
Most existing systems have focussed on the execution of sequential jobs, the Grid 
being a large multi-site environment where the jobs run in a batch-like way. The CMS 
Collaboration constitutes a remarkable example, in which research on job scheduling 
has also taken into account the location and movement of data, and the coordinated 
execution of multiple jobs with dependencies between them (when a job X depends 
on job Y, this means that X can start only when Y has completed).  



 
CrossGrid jobs are computationally intensive applications that are mostly written 

with the MPI library. Moreover, once the job has been submitted to the Grid and has 
started its execution on remote resources, the user may want to steer its execution in 
an interactive way. This is required to analyze intermediate results produced by the 
application and to react according to them. For instance, in the case where a 
simulation is not converging, the user may kill the current job and submit a new 
simulation with a different set of input parameters. From the scheduling point of view, 
support for parallel and interactive applications introduces the need for some 
mechanisms that are not needed when jobs are sequential or are submitted in a batch 
form. Basically, jobs need more than one resource (machine) and they must start 
immediately, i.e. in a period of time very close to the time of submission. Therefore, 
the scheduler has to search for sets of resources that are all already and wholly 
available at the time of the job submission. On the other hand, if there are no available 
resources, some priority and preemption mechanisms might be used to guarantee, for 
instance, that interactive jobs (which will have the highest priority) will preempt low 
priority jobs and run in their place. 
 

In this paper, we focus on the description of the basic mechanisms used in our 
resource management system that are related to the execution of parallel applications 
on a Grid environment, assuming that free resources are available and no preemption 
is required. Preemption on grid environments is a complex problem and, to the best of 
our knowledge, no attempts have been made to address this problem. We are also 
investigating this issue and have designed certain preliminary mechanisms, which we 
plan to complete and test them in the near future. 
 

The rest of this paper is organized as follows: Section 2 briefly describes the 
overall  architecture of our resource management services, Section 3 describes the 
particular services that support submission of MPI applications on a cluster of a single 
site or on several clusters of multiple sites, and Section 4 summarizes the main 
conclusions to this work. 

2. Overall Architecture of CrossGrid Resource Management 

This section briefly describes the global architecture of our scheduling approach.  
A more detailed explanation can be found in [6]. The scenario that we are targeting 
consists of a user who has a parallel application and wishes to execute it on grid 
resources. When users submit their application, our scheduling services are 
responsible for optimizing scheduling and node allocation decisions on a user basis. 
Specifically, they carry out three main functions: 

 
1. Select the “best” resources that a submitted application can use. This selection 

will take into account the application requirements needed for its execution, as 
well as certain ranking criteria used to sort the available resources in order of 
preference.  



2. Perform a reliable submission of the application onto the selected resources.  

3. Monitor the application execution and report on job termination.  
 
Figure 1 presents the main components that constitute the CrossGrid resource-

management services. A user submits a job to a Scheduling Agent (SA) through a 
web portal. The job is described by a JobAd (Job Advertisement) using the EU-
Datagrid Job Description Language (JDL) [7], which has been conveniently extended 
with additional attributes to reflect the requirements of interactive and parallel 
applications.  

 
The SA asks the Resource Searcher (RS) for resources to run the application. The 

main duty of the RS is to perform the matchmaking between job needs and available 
resources. The RS receives a job description as input, and returns as output a list of 
possible resources within which to execute the job.  The matchmaking process is 
based on the Condor ClassAd library [8], which has been extended with a set 
matchmaking capability, as described in [6]. Currently, set matchmaking is used for 
MPI applications that require a certain number of free CPUs and there is no single 
cluster that can provide such a number of free CPUs. Set matchmaking generates sets 
(groups) of clusters so that the overall number of free CPUs in each set fulfils 
application requirements. 
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Launcher, who is responsible for the actual submission of the job on the specified CE 
or groups of CEs.  

 
The Application Launcher is responsible for providing a reliable submission 

service of parallel applications on the Grid. Currently, two different launchers are 
used for MPI applications, namely MPICH ch-p4 [9] and MPICH Globus2 [10].  

 
In the following section, both launchers are described. 

3. MPI Management  

An MPI application to be executed on a grid can be compiled either with MPICH-
p4 (ch-p4 device) or with MPICH-G2 (Globus2 device) [13], depending both on the 
resources available on the grid and on user-execution needs. 

  
On the one hand, MPICH-p4 allows use of machines in a single cluster. In this 

case, part of the MPICH library must be installed on the executing machines.  On the 
other hand, with MPICH-G2 applications can be submitted to multiple clusters, thus 
using the set matchmaking capability of the Resource Searcher. However, this 
approach is limited to clusters where all their machines have public IP addresses.  
MPICH-G2 applications, unlike MPICH-p4 do not require that the MPICH library is 
installed on the execution machines. 

 
Taking into account the limitations on IP addresses, the Resource Searcher matches 

MPICH-p4 applications with single clusters independently of whether they have 
public or private addresses. The MPICH-G2 application, however, should  be 
matched only with clusters with public IPs. Unfortunately, this information is not 
announced by the clusters and, therefore, the match generated by the Resource 
Searcher may include machines with private IPs. As a consequence, the part of the 
application that is submitted to one of those machines with a private IP will not be 
started successfully, blocking the whole application. As we explain below, detection 
of this kind of problem is left to the Application Launcher, who will be in charge of 
detecting the problem and reacting accordingly. 

 
3.1 MPICH-p4 Management 

 
MPICH-p4 applications will be executed on a single site, as shown in figure 2. 

Once the Scheduling Agent (SA) is notified that an MPICH-p4 application needs to 
be executed, the Matchmaking process is performed in order to determine the site for 
executing the application. When this is complete, the SA launches the application on 
the selected site following 2 steps: 

 
• Using Condor-G [11] a launcher script is submitted to the selected site 

(Arrow A in fig. 2). This script is given to the site job scheduler (for 



example PBS), which reserves as many machines (worker nodes) as 
specified in the Condor submission file.   

• The script is executed on one such machine, for example in WN1.  This 
script is in charge of obtaining the executable code (Arrow B in fig. 2), as 
well as the files specified in the InputSandbox parameter of the jdl file.  
After obtaining such files, the script performs an mpirun call for executing 
the MPICH-p4 code on the required number of workers. 

 
In this approach, it is assumed that all the worker nodes share the part of the file 

system where the users are located (traditionally /home); therefore by transferring the 
executable file to one worker node, it is accessible to the rest of worker nodes. 
Additionally it is worth mentioning that ssh had been configured to not ask for any 
password, therefore the MPICH-p4 subjobs can start their execution automatically on 
the worker nodes. 
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be executed being specified in the app.rsl file.  The globusrun call invokes 
DUROC[12] for subjob synchronization through a barrier mechanism.   But when 
executing jobs with globusrun, the user should be aware of the need to ask for the 
status of his/her application, resubmitting the application again if something has gone 
wrong, and so on.  In order to free the user of such responsibilities, we propose using 
Condor-G for a reliable job execution on multiple sites. Our MIPCH-G2 application 
launcher handles subjob synchronization using the same services provided by 
DUROC, but also obtains the benefits of using Condor-G.   
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• In the first step, all the subjobs are submitted through Condor-G. 
• A second step guarantees that all the subjobs have a machine to be 

executed on, and that they have executed the MPI_Init  call.  This 
MPICH-G2 call invokes DUROC, and synchronization is achieved by a 
barrier released by the MPI-AL. 

 
 After such synchronization, the subjobs will be allowed to run.  Figure 3 depicts 

how the execution over multiple sites is performed.  In this example scenario, we 
have N subjobs that constitute an MPICH-G2 application.  These subjobs will be 
executed on different sites.  For the sake of simplicity, figure 3 only shows 2 sites. 
The A arrows show this two-steps co-allocation phase.  It is important to note that the 
GASS server is contacted to stage executable files to the remote worker nodes, and to 
bring the output files back to the submitting machine.  This is shown by the B arrows.  
Once the subjobs are executing on the worker node machines, the MPI-AL monitors 
their execution and writes an application global log file, providing complete 
information of the jobs’ execution.  This monitoring is shown by the C arrows in 
figure 3, and constitutes the key point for providing reliable execution of the 
applications and robustness. 

 
If the application ends correctly or if there is any problem in the execution of any 

subjob, the MPI-AL records this in a log file that will be checked by the SA, which 
will take the correct action, in accordance with that information, as we will detail 
below. 

 
In  order to guarantee a reliable execution, the SA monitors all the MPI-ALs 

submitted; when one of these finishes, it checks the corresponding application global 
log file written by the finished MPI-AL. 

 
The problems detected can occur at different moments, and can be either 

temporary or permanent problems. Table 1 shows two problems that can appear 
before the two-step commit protocol is finished: 

 
 

Situation detected 
by  

the MPI-AL 
SA Action 

A subjob was not 
executed because a 
Globus resource 
was down. 

Mark such Globus resource as “unavailable” so it will not be 
eligible for executing jobs for a certain amount of time.  Repeat 
the Matchmaking process. 

A subjob did not 
start execution but 
the Globus 
resource was up. 

The same submission will be retried, but if the same situation 
continues it may be due to a firewall problem in the remote 
machine.  The application will repeat the Matchmaking 
process. 

 
Table 1.  Problems reported by the MPI-AL and handled by the Scheduling 

Agent. 



If the MPI-AL crashes, the SA will submit another MPI-AL that will take over the 
identification of the crashed item and will control the subjobs of the application. 

 
If the application ends correctly or if there is an abnormal subjob terminarion 

(program error), the SA will notify the user. 
 

To summarize, the main points as regards the MPI-AL are the following: 
• A once-only reliable execution of the application. 
• A coordinated execution of the application jobs, which means that the 

jobs will be executed when all of them have resources to run on. 
• A good use of the resources: If a subjob cannot be executed, the whole 

application will fail, therefore the machines will not be blocked and will 
be ready to be used by other applications.  

4. Conclusions 

We have described the main components of the resource management system that 
we are developing at the EU-CrossGrid in order to provide automatic and reliable 
support for MPI jobs over grid environments. The system consists of three main 
components: a Scheduling Agent, a Resource Searcher and an Application Launcher.  

 
The Scheduling Agent is the central element that keeps the queue of jobs submitted 

by the user and carries out subsequent actions to effectively run the application on the 
suitable resources. The Resource Searcher has the responsibility of providing groups 
of machines for any MPI job with both of the following qualities: (1) desirable 
individual machine characteristics, and (2) desirable characteristics as an aggregate.  
Finally, the Application Launcher is the module that, in the final stage, is responsible 
for ensuring a reliable execution of the application on the selected resources. Two 
different Application Launchers have been implemented to manage the MPICH 
parallel applications that use the ch-p4 device or the Globus2 device, respectively.  

 
Both launchers take advantage of the basic services provided by Condor-G for 

sequential applications submitted to a Grid. The launchers also extend these services  
in order to provide a reliable submission service for MPI applications. As a 
consequence, our resource management service handles resubmission of failed 
parallel jobs (due to crashes on the remote resources or failures in the network 
connecting the resource manager and the remote resources), reliable co-allocation of 
resources (in the case of MPICH-G2), exactly-once execution (even in the case of a 
machine crash where the resource manager is running).  

 
Our first prototype has been based on the EU-Datagrid Resource Broker (release 

1.4.8). However, this prototype has been mainly used for testing purposes. Our 
subsequent prototype will be compatible with the next CrossGrid testbed deployment, 
which is based on EU-Datagrid release 2.0, and will be integrated with two 



middleware services (namely, a Web Portal and a Migrating Desktop) providing a 
user-friendly interface to interact with the Grid. 
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