
XV JORNADAS DE PARALELISMO—ALMERIA, SEPTIEMBRE 2004 1

Reliable Scheduling of MPI Applications on a
Grid Environment1

Enol Fernández2, Elisa Heymann2, Miquel A. Senar2, Emilio Luque2, Álvaro Fernández3

Abstract— One of the goals of the EU CrossGrid project is
to provide a basis for supporting the efficient execution of
parallel and interactive applications on Grid environments.
CrossGrid jobs typically consist of computationally
intensive simulations that are often programmed using a
parallel programming model and a parallel programming
library (MPI). This paper describes the key components
that we have included in our resource management system
in order to provide effective and reliable execution of
parallel applications on a Grid environment. The general
architecture of our resource management system is briefly
introduced first and we focus afterwards on the description
of the main components of our system. We provide
support for executing parallel applications written in MPI
either in a single cluster or over multiple clusters.

Keywords—Grid Computing, MPI, Scheduling.

I. INTRODUCTION

Grid technologies concepts started to appear in the
mid-1990s. Much progress has been made on the

construction of such an infrastructure since then,
although some key challenge problems remain to be
solved. There are many Grid initiatives that are still
working in the prototype arena. And only a few attempts
have been made to demonstrate production-level
environments up to now. The Compact Muon Solenoid
(CMS) Collaboration [1], which is part of several large-
scale Grid projects, including GriPhyN [2], PPDG [3]
and EU DataGrid [4], is a significant example that has
demonstrated the potential value of a Grid-enabled
system for Monte Carlo analysis by running a number of
large production experiments but not in a continuous
way.

Fundamental to any Grid environment is the ability to
discover, allocate, monitor and manage the use of
resources (which traditionally refer to computers,
networks, or storage). The term resource management

is commonly used to describe all aspects of the process
of locating various types of resources, arranging these
for use, utilizing them and monitoring their state. In
traditional computing systems, resource management is
a well-studied problem and there is a significant number
of resource managers such as batch schedulers or
workflow engines. These resource management systems

are designed and operate under the assumption that they
have complete control of a resource and thus can
implement mechanisms and policies for the effective use
of that resource in isolation. Unfortunately, this
assumption does not apply to Grid environments, in
which resources belong to separately administered
domains.

1 This work has been supported by the MCyT-Spain under contracts
TIC 2001-2592, TIC2002-10430-E, TIC2002-12000-E, the European
Union through the IST-2001-32243 project “CrossGrid” and partially
supported by the Generalitat de Catalunya- Grup de Recerca
Consolidat 2001SGR-00218.
2 Unitat d’Arquitectura d’Ordinadors i Sistemes Operatius, Universitat
Autònoma de Barcelona, Barcelona, Spain.
{elisa.heymann, miquelangel.senar,
enol.fernandez, emilio.luque}@uab.es
3 Instituto de Física Corpuscular, Valencia , Spain. alferca@ific.uv.es.

Resource management in a Grid therefore has to deal
with a heterogeneous multi-site computing environment
that in general exhibits different hardware architectures,
loss of centralized control, and as a result, inevitable
differences in policies. Additionally, due to the
distributed nature of the Grid environment, computers,
networks and storage devices can fail in various ways.
Most systems described in the literature follow a similar
pattern of execution when scheduling a job over a Grid.
There are typically three main phases, as described in
[5]:
• Resource discovery, which generates a list of

potential resources that can be used by a given
application.

• Information gathering on those resources and the
selection of a best set.

• Job execution, which includes file staging and
cleanup.

The resource management system that we are
developing in the CrossGrid project follows the same
approach to schedule jobs as described above. However,
our system is targeted to a kind of applications that have
received very little attention up to now. Most existing
systems have focussed on the execution of sequential
jobs, the Grid being a large multi-site environment
where the jobs run in a batch-like way. CrossGrid jobs
are computationally intensive applications that are
mostly written with the MPI library. Moreover, once the
job has been submitted to the Grid and has started its
execution on remote resources, the user may want to
steer its execution in an interactive way.

From the scheduling point of view, support for parallel
and interactive applications introduces the need for some
mechanisms that are not needed when jobs are
sequential or are submitted in a batch form. Basically,
jobs need more than one resource (machine) and they
must start immediately, i.e. in a period of time very close
to the time of submission. Therefore, the scheduler has
to search for sets of resources that are all already and
wholly available at the time of the job submission. On
the other hand, if there are no available resources, some
priority and preemption mechanisms might be used to
guarantee, for instance, that interactive jobs (which will
have the highest priority) will preempt low priority jobs
and run in their place.

2 E. FERNANDEZ Y COL. RELIABLE MPI APPLICATION SCHEDULING ON A GRID ENVIRONMENT

In this paper, we focus on the description of the basic
mechanisms used in our resource management system
that are related to the execution of parallel applications
on a Grid environment, assuming that free resources are
available and no preemption is required. Preemption on
grid environments is a complex problem that we’re
currently dealing with.

The rest of this paper is organized as follows: Section
II briefly describes the overall architecture of our
resource management services, Section III describes the
particular services that support submission of MPI
applications on a cluster of a single site or on several
clusters of multiple sites, and Section IV summarizes the
main conclusions to this work.

II. GENERAL ARCHITECTURE OF CROSSGRID RESOURCE
MANAGEMENT

This section briefly describes the global architecture of
our scheduling approach. The scenario that we are
targeting consists of a user who has a parallel
application and wishes to execute it on grid resources.
When users submit their application, our scheduling
services are responsible for optimizing scheduling and
node allocation decisions on a user basis. Specifically,
they carry out three main functions:

• Select the “best” resources that a submitted job
can use. This selection will take into account the
application requirements needed for its
execution, as well as certain ranking criteria
used to sort the available resources in order of
preference.

• Perform the necessary steps to guarantee the
effective submission of the job onto the selected
resources. The application is allowed to run to
completion.

• Monitor the application execution and report on
job termination.

Figure 1 presents the main components that constitute

the CrossGrid resource-management services. A user
submits a job to a Scheduling Agent (SA) through a
User Interface (UI)machine. This is a machine
connected to the Resource Broker, and it is in the UI
where the user level basic commands are executed. The
job is described by a JobAd (Job Advertisement) using
the EU-Datagrid Job Description Language (JDL) [6],
which has been conveniently extended with additional
attributes to reflect the requirements of interactive and
parallel applications, which are explained in section III-
A.

The SA asks the Resource Searcher (RS) for resources
to run the application. The main duty of the RS is to
perform the matchmaking between job needs and
available resources. The RS receives a job description as
input, and returns as output a list of possible resources
within which to execute the job. The matchmaking
process is based on the Condor ClassAd library [7],
which has been extended with a set matchmaking
capability, as described in [8]. Currently, set
matchmaking is used for MPI applications that require a
certain number of free CPUs and there is no single

cluster that can provide such a number of free CPUs. Set
matchmaking generates sets (groups) of clusters so that
the overall number of free CPUs in each set fulfils
application requirements.

Fig.

Co
avai
the
This
Gat
Res
list,
subm
cann

Su
grou
the

1

2

Th
grou
resp
spec
job
The
from
job
Sch

Th
jobs
co-a
[9].

S Resource
Searcher

User Interface User

A

W

cheduling
Agent
pplication
Launcher

CrossGrid
Resource Broker
 Condor-G
1. Resource-Management Architecture.

mputing resources in the CrossGrid archit
lable as Computing Elements (CE), whic
abstraction of a local farm of Working Nod
 local farm (or CE) is accessed th

ekeeper. Thus, the list of resources return
ource Searcher consists of a Computing
 which may eventually be grouped into se

itted job is an MPICH-G2 job and its req
ot be fulfilled by a single CE alone.
bsequently, the Scheduling Agent selects
p of CEs on which to run the MPI job, acc

following criteria:
. Groups of CEs with fewer numbers of

CEs will be selected first. This criterion
run MPI on a single cluster, which w
large message latencies between tasks
in different clusters.

. If there is more than one group with
number of CEs, the group having best gl
will be selected first. Ranks are assigne
CE (or groups of CEs) according t
performance metrics (e.g. overall MFLO
memory, etc.).

e SA passes the job and the first-selecte
p of CEs) to the Application Launcher
onsible for the actual submission of the jo
ified CE. Due to the dynamic nature of the
submission may fail on that partic

refore, the Scheduling Agent will try the o
 the list returned by the Resource Searche

submission succeeds or fails. In the later
eduling Agent notifies the user of the failur
e SA will keep permanent information abo
 and it will ensure that all necessary reso
llocated before passing a parallel job to C

The Application Launcher is respon

Gatekeeper CE Gatek

WNWN WN WN
Monitoring
ectur
h pro
es (W
roug

ed by
Elem
ts, i

uirem

a CE
ordin

 diffe
 tend
ill a
alloc

the s
obal
d to
o ce
PS, m

d CE
, wh
b on

 Grid
ular
ther

r unti
case

e.
ut all
urces
ondo

sible

eeper

N
MDS
CE
e are
vide
N).

h a
 the
ents

f the
ents

 or a
g to

rent
s to

void
ated

ame
rank
each
rtain

ain

 (or
o is
 the
, the
CE.
CEs
l the
, the

 user
 are
r_G
for

W

N

XV JORNADAS DE PARALELISMO—ALMERIA, SEPTIEMBRE 2004 3

providing a reliable submission service of parallel
applications on the Grid. Currently, two different
launchers are used for MPI applications, namely MPICH
ch-p4 [10] and MPICH Globus2 [11].

III. RESOURCE MANAGEMENT COMPONENTS
We now describe certain details on the main
components introduced in the previous section, namely,
the Resource Searcher and the Application Launcher.

A. Resource Searcher
The main duty of the Resource Searcher is to perform
the matchmaking between job needs and available
resources. The RS receives a job description as input,
and produces as output a list of possible resources in
which to execute the job. Resources are grouped into
sets. Each set is a combination of Computing Elements
that provide the minimum amount of free resources, as
specified by the JobAd. As we said before, JobAds are
described using the Job Description Language (JDL)
adopted in the EU-Datagrid project. This language is
based on the Condor ClassAd library.

The matchmaking process carried out by the Resource
Searcher is also implemented with the Condor ClassAd
library. With this library, jobs and resources are
expressed as ClassAds; two of these match if each of the
ClassAd attributes evaluate to true in the context of the
other ClassAd. Because the ClassAd language and the
ClassAd matchmaker were designed for selecting a
single machine on which to run a job, we have added
several extensions to be applied when a job requires
multiple resources (i.e. multiple CEs, in CrossGrid
terminology).

With these extensions, a successful match is defined as
occurring between a single ClassAd (the JobAd) and a
ClassAd set (a group of CEs ClassAds). Firstly, the
JobAd is used to place constraints on the collective
properties of an entire group of CEs ClassAd (e.g., the
total number of free CPUs has to be greater than the
minimum number of CPUs required by the job).
Secondly, other attributes of the JobAd are used to place
constraints on the individual properties of each CE
ClassAd (e.g., the OS version of each CE has to be
Linux 2.4).

The selection of resources is carried out according to
the following steps:
- First step: a list is obtained of single CEs that fulfill

all job requirements referring only to required
individual characteristics. Currently, these are the
requirements that are specified in the Requirements
section of the file describing the job using JDL. This
step constitutes a pre-selection phase that generates a
reduced set of resources suitable for executing the
job request in terms of several characteristics such as
processor architecture, OS, etc.

- Second step: from the list mentioned above, groups
of CEs are made to fulfill collective requirements.
For example, an attempt is made to fulfill the total
number of CPUs required by a job by “aggregating”
individual CEs. In the case of the number of CPUs
required by the job, for instance, the Resource
Searcher aggregates CEs to guarantee that the total

number of free CPUs in the groups of CEs is larger
than NumCPU, as described in the JobAd.

Our current search procedure is not exhaustive, as it
does not compute the power set of all CEs. This means
that, in an example such as the one shown in figure 2a,
for four suitable CEs {CE1, CE2, CE3 and CE5}, only
two solutions are provided: {CE2}, {CE1, CE3} {CE1,
CE5}. Other possible solutions, such as {CE1,
CE3,CE5}, are not considered because one subset of the
CEs has already been included in a previous group.

As an example of the functioning of the resource
selection we now show the results obtained when
executing the 'edg-job-list-match' command to get the
list of resources on which to execute the parallel MPI
job described in an .jdl file. When this commands is
issued, the RB contacts the MDS to get the information
about available CEs.

The jdl file shall contain the specifications and
requirements of the job, and also the new fields that we
have established to correctly define the MPI jobs. The
interesting fields related to test this module are:
JobType: Field that defines that is a MPI job. Possible
values are: “normal” - (default) common sequential job.
 “mpich” - defines an MPI job compiled with

the ch_p4 device.
 “mpich-g2” - defines an MPI job compiled

with the G2 device.
NodeNumber Field that defines the required number of
cpus to execute the MPI job.

Fig. 2 depicts an jdl example file that looks for groups
of CEs whose queue type is PBS and that have at least
10 free CPUs in the group, to run the MPICH G2 job
named mpi_app.

Executable = "mpi_app";
JobType = “mpich-g2”;
NodeNumber = 10;
Arguments = "-n";
StdOutput = "std.out";
StdError = "std.err";
Requirements = other.GlueCEInfoLRMSType=="pbs";
Rank = other.GlueHostBenchmarkSI00;
OutputSandbox = {"std.out","std.err"};

Fig 2. JDL example file

Such jdl file is submitted to RB that supports this new
jdl syntax. The command used to get the available CEs
is: edg-job-list-match file.jdl

It has to be noted the utilization of the Glue Schema in
the Rank and Requirement attributes. The StdOutput and
StdError fields specify the files where the standard
output and error will be redirected. The output of the
command contains a list of resources or groups of
resources where to execute the parallel job (see Figure
3). Such list is composed of:
• Groups of elements that contain only 1 CE, so the

job could be submitted to just one CE or cluster.
This is the best desirable situation. For example, the
the CE ce001.grid.ucy.ac.cy:2119 has all 10 free
CPUs and a global rank (based on the SI00 of that
CE) of 650. This resource will be the first selected
by the Application Scheduler.

4 E. FERNANDEZ Y COL. RELIABLE MPI APPLICATION SCHEDULING ON A GRID ENVIRONMENT

F
a

•

•

p
R
o
p
d
C
s
[
o
c
t
t
g

c
S
o

 the EU-DataGrid project, which will be also used
ollect information obtained by different monitoring

ls currently under development in the CrossGrid
ject.

 Application Launcher
s service is responsible for providing a reliable
mission service of parallel applications on the Grid.
pawns the job on the given machines using Condor-G
job management mechanisms. An MPI application to
executed on a grid can be compiled either with
ICH-p4 (ch-p4 device) or with MPICH-G2 (Globus2
ice), depending both on the resources available on
grid and on user-execution needs.
n the one hand, MPICH-p4 allows use of machines

a single cluster. In this case, part of the MPICH
ary must be installed on the executing machines. On
other hand, with MPICH-G2 applications can be

mitted to multiple clusters, thus using the set
chmaking capability of the Resource Searcher.
ICH-G2 applications, unlike MPICH-p4 do not
uire that the MPICH library is installed on the
cution machines. The MPICH-G2 launcher
rdinates the start-up of all MPI tasks in each remote
ter.
n MPI job submitted to the Grid may fail due to
from
to c
too
pro

Connecting to host cg07.ific.uv.es, port
7772
**
 GROUPS OF CE IDs LIST
 The following groups of CE(s) matching your
job requirements have been found:

Groups with 1 CEs *TotalCPUs* *FreeCPUs*

[Rank=650]
 ce001.grid.ucy.ac.cy:2119 10 10
[Rank=630]
 cluster.ui.sav.sk:2119 16 16
[Rank=400]
 zeus24.cyf-kr.edu.pl:2119 58 57

Groups with 2 CEs *TotalCPUs* *FreeCPUs*

[Rank=440 TotalCPUs=12 FreeCPUs=12]
 cagnode45.cs.tcd.ie:2119 4 4
 ce100.fzk.de:2119 8 8
[Rank=498 TotalCPUs=10 FreeCPUs=10]
 ce01.lip.pt:2119 2 2
 ce100.fzk.de:2119 8 8

 Groups with 4 CEs *TotalCPUs* *FreeCPUs*

[Rank=435.6 TotalCPUs=10 FreeCPUs=10]
 cagnode45.cs.tcd.ie:2119 4 4
 ce01.lip.pt:2119 2 2
 cg01.ific.uv.es:2119 2 2
 cgnode00.di.uoa.gr:2119 2 2

B.
Thi
sub
It s
[7]
be
MP
dev
the

 O
in
libr
the
sub
mat
MP
req
exe
coo
clus

A

ig 3. Example of MPI application submission over CrossGrid sites
nd the result obtained by the Resource Selector.

 After single CEs, groups of CEs that fulfill the
requirements are formed. In this case we find 2
groups with 2 CEs suitable for executing our job.
The best one, according with the rank is the group
formed by cagnode45.cs.tcd.ie and
ce100.fzk.de. The computed rank of 440 is
not the average of the ranks of the components (400
and 460, that would be 430) but the weighted rank
calculated considering the number of free cpus of
each component.

 As it can be seen there are no possible groups with
3 CEs that group the required number of cpus that
we are asking for, and that are not taked into
account in the previous groups (with 1, or 2 CEs).
However we can find 4 groups with 4 CEs.

CEs are sorted according to a Rank expression
rovided by the user in the JobAd. According to the
ank expression (e.g., Average Spec Int benchmark in
ur example, as an indication of the computational
ower), the Resource Searcher sorts the suitable CEs in
escending order. This means that the most desirable
Es or groups of CEs will be first. It is worth noting that

election of multiple resources has also been applied in
12]. In contrast to our approach, only the best resource
r group of resources is selected. In our work, several
hoices are generated so that the final decision relies on
he Scheduling Agent, which is able to try alternatives in
he case of failing to actually submit the job in a given
roup of CEs.
The Resource Searcher currently supports information

ollection from the Globus Metacomputing Directory
ervice (MDS). It is also planned to add support for
ther resource-information systems, such as R-GMA,

many different reasons, such as firewalls, machines with
private IP addresses, reboot of machines, etc.).
Therefore it is fundamental to provide fault tolerant
services. Our MPICH-G2 launcher together with
Condor-G guarantees co-allocation, error recovery and
exactly-once execution semantics for MPICH-G2 jobs
and constitutes a reliable submission service that
substitutes the submission services provided by the
Globus toolkit.

1) MPICH-p4 Management

MPICH-p4 applications will be executed on a single
site, as shown in figure 4. Once the Scheduling Agent
(SA) is notified that an MPICH-p4 application needs to
be executed, the Matchmaking process is performed in
order to determine the site for executing the application.
When this is complete, the SA launches the application
on the selected site following 2 steps:
• Using Condor-G a launcher script is submitted to

the selected site (Arrow A in fig. 4). This script is
given to the site job scheduler (for example PBS),
which reserves as many machines (worker nodes) as
specified in the Condor submission file.

• The script is executed on one such machine, for
example in WN1. This script is in charge of
obtaining the executable code (Arrow B in fig. 4),
as well as the files specified in the InputSandbox
parameter of the jdl file. After obtaining such files,
the script performs an mpirun call for executing the
MPICH-p4 code on the required number of
workers.

In this approach, it is assumed that all the worker
nodes share the part of the file system where the users
are located (traditionally /home); therefore by
transferring the executable file to one worker node, it is
accessible to the rest of worker nodes. Additionally it is
worth mentioning that ssh had been configured to not

XV JORNADAS DE PARALELISMO—ALMERIA, SEPTIEMBRE 2004 5

ask for any password, therefore the MPICH-p4 subjobs
can start their execution automatically on the worker
nodes.

Fig 4. MPI execution on a single site.

2) MPICH-G2 Management
When the parallel application needs more machines than
the machines provided by any single site, multi-site
submission is required. By using MPICH-G2, a parallel
application can be executed on machines belonging to
different sites.

An MPICH-G2 application can be executed on
multiple sites using the globusrun command in the
following way: globusrun –s –w –f app.rsl,
the various gatekeepers where the different subjobs of
the MPICH-G2 application are expected to be executed
being specified in the app.rsl file. The globusrun call
invokes DUROC[13] for subjob synchronization
through a barrier mechanism. But when executing jobs
with globusrun, the user should be aware of the need to
ask for the status of his/her application, resubmitting the
application again if something has gone wrong, and so
on. In order to free the user of such responsibilities, we
propose using Condor-G for a reliable job execution on
multiple sites. Our MIPCH-G2 application launcher
handles subjob synchronization using the same services
provided by DUROC, but also obtains the benefits of
using Condor-G. The main benefits offered by the
MPICH-G2 Application Launcher are the following:
• An once-only execution of the application.
• A coordinated execution of the application subjobs,

which means that the subjobs will be executed when
all of them have resources to run on.

• A reliable use of the resources: if a subjob cannot be
executed, the whole application will fail, therefore
the machines will not be blocked and will be ready
to be used by other applications.

Once the Scheduler Agent (SA) detects that an MPI
application is submitted, it launches an MPICH-G2
application launcher (MPI-AL), through Condor-G.
Figure 5 depicts how the execution over multiple sites is
performed. In this example scenario, we have N subjobs
that constitute an MPICH-G2 application. These
subjobs will be executed on different sites. For the sake
of simplicity, figure 5 only shows 2 sites. This MPI-AL
coallocates the different subjobs belonging to the
parallel application, following a two-step commit
protocol:
• In the first step, all the subjobs are submitted

through Condor-G. The A arrows in fig 5 show the
subjobs submission to the remote machines. It is

important to note that the GASS server is contacted
to stage executable files to the remote worker
nodes, and to bring the output files back to the
submitting machine. This is shown by the B arrows
in fig 5.

Resource Manager

• A second step guarantees that all the subjobs have a
machine to be executed on, and that they have
executed the MPI_Init call. This MPICH-G2 call
invokes DUROC, and synchronization is achieved
by a barrier released by the MPI-AL. After such
synchronization, the subjobs will be allowed to run.
Once the subjobs are executing, the MPI-AL
monitors their execution and writes an application
global log file, providing complete information of
the jobs' execution. This monitoring is shown by the
C arrows in figure 5, and constitutes the key point
for providing reliable execution of the applications
and robustness. Either if the application ends
correctly or if there is any problem in the execution
of any subjob, the MPI-AL records this in a log file
that will be checked by the SA.

Scheduling
Agent (A)

Gatekeeper
Condor-G

GridManager

WN 1
MPI

SubJob1

Table 1 shows the problems that can appear and the
corresponding actions taken. By handling adequately all
these problems a reliable MPI execution is guaranteed.

TABLE 1. PROBLEMS REPORTED BY THE MPI-AL AND HANDLED BY

THE SCHEDULING AGENT.

Problem Detected Action

A subjob was not executed
because a Globus resource was
down.

Mark such Globus resource as
“unavailable” so it will not be
eligible for executing jobs for a
certain amount of time. Repeat
the Matchmaking process.

The two-step commit protocol
cannot be completed within a
limited amount of time.

All the subjobs will be killed,
and then the same submission
will be retried. If the submission
continues failing on the same set
of machines, the Matchmaking
process will be repeated.

The MPI-AL crashes.

The SA will submit another
MPI-AL that will take over the
identification of the crashed item
and will control the subjobs of
the application. If the subjobs
are after the two-steps commit
protocol, they will continue their
execution without noticing the
MPI-AL replacement, otherwise
they will be killed and the whole
submission will be repeated.

Abnormal subjob termination. The SA will notify the user.

The user submits jobs from the UI using the command
line tools and jdl files which describe the job. The jdl
file must specify the mpich-g2 jobtype and the number
of nodes needed to execute the application as the one
depicted in Figure 2. The command used to submit such
file is: edg-job-submit file.jdl

The output of the command (see Figure 6) indicates
that the job has been sent to the RB and now the user
must check its status using the edg-job-status command.
The job will pass through three different states: Waiting,
Running and Done.

When the job has finished, the user can get all the
output generated by job using the command edg-job-get-
output.

…

WN M
MPI

SubJobN

Site Job Scheduler

GASS
Server

Condor-G (B)

6 E. FERNANDEZ Y COL. RELIABLE MPI APPLICATION SCHEDULING ON A GRID ENVIRONMENT

SubJobN

Resource Manager (A)
Gatekeeper 1

Site Job Scheduler
WN 1.1

MPI
SubJob1

WN 1.K

MPI
SubJob2

Scheduling
Agent

(B)(B)
(C) Condor-G

GridManager (C)

GASS
Server .

.
Condor-G

(B)

MPI SubJob1 (A)
MPI SubJob2 MPICH-G2

App. Launcher Gatekeeper M MPI SubJob3
(B) Site Job Scheduler

WN M.1
MPI

SubJob3

WN M.P

MP
MPI SubJobN (C)

Fig 5. MPI execution on multiple sites

Connecting to host aow5grid.uab.es, port 7772
Logging to host aow5grid.uab.es, port 9002

 JOB SUBMIT OUTCOME
 The job has been successfully submitted to the Network Server.
 Use edg-job-status command to check job current status. Your job
identifier (edg_jobId) is:

 - https://aow5grid.uab.es:9000/jR0hjTzOlyFkRkpP_i1R8Q

Fig 6. Sample of job submission command.

IV. CONCLUSIONS
We have described the main components of the

resource management system that we are developing at
the EU-CrossGrid in order to provide automatic and
reliable support for MPI jobs over grid environments.
The system consists of three main components: a
Scheduling Agent, a Resource Searcher and an
Application Launcher.

 The Scheduling Agent is the central element that
keeps the queue of jobs submitted by the user and
carries out subsequent actions to effectively run the
application on the suitable resources. The Resource
Searcher has the responsibility of providing groups of
machines for any MPI job with both of the following
qualities: (1) desirable individual machine
characteristics, and (2) desirable characteristics as an
aggregate. Finally, the Application Launcher is the
module that is responsible for ensuring a reliable
execution of the application on the selected resources.
Two different Application Launchers have been
implemented to manage the MPICH parallel
applications that use the ch-p4 device or the Globus2
device, respectively.

Our resource management service handles
resubmission of failed parallel jobs (due to crashes on
the remote resources or failures in the network
connecting the resource manager and the remote
resources), reliable co-allocation of resources (in the

case of MPICH-G2), exactly-once execution (even in
the case of a machine crash where the resource manager
is running).

Our current prototype is part of the CrossGrid release
1.0 and has been deployed at FZK (Germany) at
beginning of June, being the central job manager for the
whole CrossGrid production testbed since then.

V. REFERENCES
[1] K. Holtman. CMS requirements for the Grid. In Proceedings of
International Conference on Computing in High Energy and Nuclear
Physics (CHEP 2001), 2001.
[2] GriPhyN: The Grid Physics Network. http://www.griphyn.org.
[3] PPDG: Particle Physics Data Grid. http://www.ppdg.net.
[4] European DataGrid Project. http://www.eu-datagrid.org.
[5] Jennifer M. Schopf, “Ten Actions When Grid Scheduling”, in Grid
Resource Management – State of the Art and Future Trends (Jarek
Nabryzki, Jennifer Schopf and Jan Weglarz editors), Kluwer
Academic Publishers, 2003.
[6] Fabricio Pazini, JDL Attributes - DataGrid-01-NOT-0101-0_4.pdf,
http://www.infn.it/workload-grid/docs/DataGrid-01-NOT-0101-0_4-
Note.pdf, December 17, 2001.
[7] Rajesh Raman, Miron Livny and Marvin Solomon, “Matchmaking:
Distributed resource management for high throughput computing”, in
Proc. Of the seventh IEEE Int. Symp. On High Perfromance
Distributed Computing (HPDC7), Chicago, IL, July, 1998.
[8] E. Heymann, M.A.Senar, A. Fernandez, J. Salt, “The Eu-Crossgrid
approach for Grid Application Scheduling”, Proc. of the 1st European
Across Grids Conference, LNCS series vol. 2970, 2003.
[9] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and
Steven Tuecke, "Condor-G: A Computation Management Agent for
Multi-Institutional Grids", Journal of Cluster Computing, vol. 5,
pages 237-246, 2002.
[10] W. Gropp and E. Lusk and N. Doss and A. Skjellum, “A high-
performance, portable implementation of the MPI message passing
interface standard”, Parallel Computing, 22(6), pages 789-828, 1996.
[11] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Gridenabled
implementation of the message passing interface. Journal of Parallel
and Distributed Computing, to appear, 2003.
[12] Chuang Liu, Lingyun Yang, Ian Foster, Dave Angulo, “Design
and Evaluation of a Resource Selection Framework for Grid
Applications, Proceedings of IEEE International Symposium on High
Performance Distributed Computing (HPDC-11), Edinburgh,
Scotland, July, 2002.
[13] K. Czajkowsi, I. Foster, C. Kessekman. “Co-allocation services
for computational Grids”. Proceedings of the Eighth IEEE Symposium
on High Performance Distributed Computing, IEEE Computer Society
Press, Silver Spring MD, 1999.

http://www.eu-datagrid.org/
http://www.infn.it/workload-grid/docs/DataGrid-01-NOT-0101-0_4-Note.pdf
http://www.infn.it/workload-grid/docs/DataGrid-01-NOT-0101-0_4-Note.pdf

	Introduction
	General Architecture of CrossGrid Resource Management (
	Resource Management Components
	Resource Searcher
	Application Launcher
	MPICH-p4 Management
	MPICH-G2 Management

	Conclusions
	References

