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Abstract. Grid systems offer high computing capabilities that are used in many 
scientific research fields and thus many applications are submitted to these 
powerful systems. Parallel applications and applications consisting of inter-
dependent jobs may especially be characterized by a complex workflow. 
Therefore, Grid systems should be capable of executing and controlling 
workflow computations. This document sets out our approach to workflow 
management in a Grid environment. It introduces common steps on how to map 
an application workflow to the DAG structure, and how to carry out its 
execution and control. We present the Workflow Management Service (WFMS) 
implemented and integrated as a part of the CrossGrid project. The purpose of 
this service is to schedule workflow computations according to user-defined 
requirements, also providing a set of mechanisms to deal with failures in Grid. 

1 Introduction 

The Grid represents distributed and heterogeneous systems and involves coordinating 
and sharing computing, application, data, storage, or network resources across 
dynamic and geographically dispersed organizations [1]. Grid systems offer high 
computing capabilities that are used in many scientific research fields. They facilitate 
the determination of the human genome, computing atomic interactions or simulating 
the evolution of the universe. Many researchers have therefore become intensive users 
of applications with high performance computing characteristics. There are projects 
such as GriPhyn [2], DataGrid [3], GridLab [4] or Crossgrid [5] that provide the 
middleware infrastructure to simplify application deployment on computational grids. 
      The main objective of the CrossGrid project is to incorporate a collection of 
machines distributed across Europe, and to provide support especially for parallel and 
interactive compute- and data-intensive applications. As a result of this project, 
parallel applications compiled with the MPICH library (and using either ch-p4 [6] or 
Globus2 [7] device) are executed on Grid resources in a transparent and automatic 
way. The workload management system that we have implemented as part of the 
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CrossGrid middleware carries out all necessary steps incurred from the time that the 
application is submitted by the user until the end of its execution (i.e. potential 
resource discovery, selection of the best matched resources and execution tracking). 
Our workload management system has been designed to manage Grid-specific details 
of the application execution with minimal effort by the user. 

In the previous work [8], we described the specific details related to the execution 
of MPI applications on the Grid. In this paper, we focus on the additional service that 
we have included to support workflow computations. Many applications may consist 
of inter-dependent jobs, where information or tasks are passed from one job to 
another for action, according to a set of rules. Such applications known as workflows 
consists of a collection of jobs that need to be executed in a partial order determined 
by control and data dependencies. Workflows are an important class of applications 
that can take advantages of the resource power available in Grid infrastructures, as 
has been shown in the LIGO [9] pulsar search, several image processing applications 
[10] or physics experiment ATLAS [11]. The execution of such an application may be 
very difficult. Normally, a user should submit to a Grid system manually, job by job, 
following the rules of dependencies that appear between jobs. The manual tracking of 
the application workflow may be very ineffective, time consuming and may produce 
many errors in application execution. Therefore, we present a solution to the 
automatic management of the application workflows applied in the CrossGrid project.  

Section 2 briefly presents related work. Section 3 introduces a general overview of 
the workload management in the CrossGrid, indicating new features for workflow 
support. Section 4 sets out the workflow notation and Section 5 introduces details of 
the workflow management. Section 6 shows the results of the probes conducted using 
a workflow whose structure is representative of the ATLAS experiment. Finally, 
Section 7 presents the conclusions to this study. 

2 Related work 

A number of studies in Grid systems provide general-purpose workflow management. 
The Condor's DAGMan [12] – DAGMan (Directed Acyclic Graph Manager) is a 
meta-scheduler for Condor. DAGMan manages dependencies between jobs, 
submitting these to Condor according to the order represented by a DAG and 
processes the results. The DAG must be described in an input file processed by the 
DAGMan and each node (program) in the DAG needs its own Condor submit 
description file. DAGMan is responsible for scheduling, recovery, and reporting for 
the set of programs submitted to Condor. This scheduler focuses on the execution of 
workflows in a local cluster managed by the Condor system. 

Pegasus system [13] – Planning for Execution in Grids – was developed as part of 
the GriPhyN project. Pegasus can map scientific workflows onto the Grid. It has been 
integrated with the GriPhyN Chimera system. Chimera generates an abstract 
workflow (AW), Pegasus then receives such a description and produces a concrete 
workflow (CW), which specifies the location of the data and the execution platforms. 
Finally, Pegasus submits CW to Condor's DAGMan for execution. This system 
focuses on the concept of virtual data and workflow reduction. Triana [14] is a 



Problem Solving Environment (PSE) that provides a graphical user interface to 
compose scientific applications. A component in Triana is the smallest unit of 
execution written as Java class. Each component has a definition encoded in XML. 
Such created application’s  graph can then be executed over Grid network using the 
GAP interface. Unicore [15] stands for Uniform Interface to Computing Resources 
and allows users to create and manage batch jobs that can be executed on different 
systems and different UNICORE sites. The user creates an abstract representation of 
the job group (AJO – Abstract Job Object) that is then serialized as a Java object, and 
in XML format. UNICORE supports dependencies inside the job group and ensures 
the correct order of the execution. Its job model can be described as directed acyclic 
graphs. UNICORE maps the user request to system specification, providing job 
control. In contrast to our work, Triana, Pegasus and Unicore lack resource brokerage 
and scheduling strategies. 

GridFlow [16] supports a workflow management system for grid computing. It 
includes a user portal in addition to services of global grid workflow management and 
local grid sub-workflow scheduling. At the global level, the GridFlow project 
provides execution and monitoring functionalities. It also manages the workflow 
simulation that takes place before the workflow is actually executed. This approach is 
applicable only in the case of having performance information about job execution. At 
the local grid sub-workflow level, scheduling service is supported. 

3 CrossGrid workload management 

This section presents the main components that constitute the Workload Management 
System (WMS) applied in the CrossGrid project. A user submits a job to a Scheduling 
Agent (SA) through a Migrating Desktop or command line (see Figure 1). The job is 
described by a JobAd (Job Advertisement) using the EU-Datagrid Job Description 
Language (JDL) [17], which has been extended with additional attributes to support 
interactive and parallel applications, as well as workflows.  

To support the workflow execution, we have included specific service into the 
WMS. Workflows have a special treatment at the beginning as they are passed from 
the SA to the Condor’s DAGMan, which is a specialized scheduler module that 
submits each individual job to the SA when job dependencies have been satisfied.  

For each simple job (submitted directly by the user or by the Condor’s DAGMan), 
the SA follows the same steps. It asks the Resource Searcher (RS) for resources to run 
the application. The main duty of the RS is to perform the matchmaking between job 
needs and available resources. The RS receives a job description as input, and, as 
output, returns a list of possible resources within which to execute the job. Computing 
resources are available as Computing Elements (CE), which provide the abstraction of 
a local farm of Working Nodes (WN). This local farm (or CE) is accessed through a 
Gatekeeper. The list of resources returned by the Resource Searcher consists of a 
Computing Elements list. Subsequently, the Scheduling Agent selects a CE on which 
to run the job. The SA passes the job and the first-selected CE to the Application 
Launcher (AL), who is responsible for the submission of that job on the specified CE. 
The AL passes the job to Condor_G [18], which manages a queue of jobs and 



resources from sites where the job can be executed. Due to the dynamic nature of the 
Grid, the job submission may fail on that particular CE. Therefore, the Scheduling 
Agent will try the other CEs from the list returned by the Resource Searcher. Finally, 
the Scheduling Agent notifies the user of the result.  

  
Fig. 1.  Architecture of the Workload Management System. 

4 Workflow notation and specification 

There are many complex applications that consist of inter-dependent jobs that 
cooperate to solve a particular problem. The completion of a particular job is the 
condition needed to start the execution of jobs that depend upon it. This kind of 
application workflow may be represented in the form of a DAG – a directed acyclic 
graph. A DAG is a graph with one-way edges that does not contain cycles. It can be 
used to represent a set of programs where the input, output, or execution of one or 
more programs is dependent on one or more other programs. The programs are nodes 
(vertices) in the graph, and the edges (arcs) identify the dependencies of these 
programs. Figure 2 presents an example DAG that consists of 4 nodes lying on 3 
levels. The execution of the indicated DAG consists of three successive steps: 

Fig. 2. Example DAG. 

1. Execution of the node NodeA from the first level.  
2. Parallel execution of nodes NodeB1 and NodeB2 from the second level. The 

execution can start if and only if the execution of the node NodeA is successful.  
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3. Execution of the node NodeC from the third level. The execution can start if and 
only if the execution of all nodes from the level two is successful. 

4.1 Workflow specification using JDL 

Workflows, similar to a normal job, are specified in a text file using DataGrid JDL 
format extended appropriately to support DAG structure and control. The workflow 
description has two components: specification of dependencies between computations 
(node dependencies) and specification of computation (node description). Below, we 
present an example JDL file for a workflow specified as in Figure 2. 

[ 
type = "dag"; 
nodes = [  

dependencies={{NodeA,{NodeB1,NodeB2}},{{NodeB1,NodeB2},NodeC}}; 
 NodeA = [ 
  node_type = "edg-jdl"; 
  description = [ 
   Executable = "jobA.sh"; 
   InputSandbox = {" jobA.sh"}; 
  ]; 
 ]; 
 NodeB1 = [ 
  node_type = "edg-jdl"; 

node_retry_count = 3; 
app_exit_code = { 10, 11 }; 
file = “jobB1.jdl”; 

 ]; 
 NodeB2 = [ 

node_type = "edg-jdl"; 
file = “jobB2.jdl”;  

 ]; 
 NodeC = [ 

node_type = "edg-jdl"; 
file = “jobC.jdl”; 

 ]; 
]; 
]  

4.2 Dependencies between nodes 

Each dependence is specified as a pair of elements positioned between brackets, 
where the meaning is that the second element depends on the first. Both elements may 
be formed by a set of elements written between brackets. This indicates a dependence 
of many-to-one, one-to many or many-to-many elements. Therefore, considering the 
example DAG, there are few possibilities to specify the attribute dependencies:  
• {{NodeA,NodeB1},{NodeA,NodeB2},{NodeB1,NodeC},{NodeB2,NodeC}} 

• {{NodeA,NodeB1},{NodeA,NodeB2},{{NodeB1,NodeB2},NodeC}} 

• {{NodeA,{NodeB1,NodeB2}},{{NodeB1,NodeB2},NodeC}} 

Job 
specification 

Node 
specification 



4.3 Node description 

The attribute nodes contains the list of nodes that form the DAG. Each node 
represents a job to be executed and contains node-specific attributes, as well as the job 
specification. The attributes for a node description are: 
• node_type – specifying a type of a node. This attribute is mandatory and must 

contain the value “edg-jdl”, as the node is a normal job written in JDL format. 
• node_retry_count – specifying how many times a node execution may be retried 

in the case of failure. This attribute is optional. If the user specifies this attribute 
for a node; hence, if it fails, this particular node will be automatically retried. 
Otherwise, this attribute will be set to the default value.  

• app_exit_code – specifying the possible exit codes for a job. If a node fails 
because of the application failure (e.g. segmentation fault, division by 0, a file 
already registered in a Storage Element), then a job should be aborted. However, 
when a job fails because given resources fail (e.g. a machine failure, Condor/PBS 
queue problems), it should be automatically retried. By default, in both cases, the 
node will be retried until node_retry_count. The attribute app_exit_code 
provides the possibility to control the job exit code and terminate job execution in 
case of failure. If this attribute contains certain values, this means that the job 
may return such values and that they are recognized by the user. If the job 
execution returns one of the specified values, the node will not be retried. 
Otherwise, the job will be retried automatically according to node_retry_count 
(if the maximum of retries is not reached) and submitted to other CE.  

• description / file – specification of the job; A job can be a normal, single job 
or an MPI job. There are two ways to specify a job:  
o Via an attribute called description, where a job is specified directly 

inside this attribute in JDL: 
description = [ 

Executable = "jobA.sh"; 
InputSandbox = {" jobA.sh"}; 
… 

]; 

o Via an attribute file, where a job is specified in the indicated JDL file 
file = “jobA.jdl”; 

5 Scheduling application workflow  

To support application workflows, we have extended the Scheduling Agent with a 
new component called Workflow Manager Service (WFMS). The WFMS is executed 
within the Resource Broker machine that contains the WMS presented in Section 3. 
Specification and implementation of the workflow supported in the CrossGrid project 
takes advantages and leverages of a preliminary work presented in [19]. As shown in 
Figure 1, workflows are passed from the Scheduler Agent to the Condor’s DAGMan. 
DAGMan is an iterator on the DAG, whose main purpose is to navigate through the 
graph, determine which nodes are free of dependencies, and follow the execution of 
corresponding jobs, submitting these to the SA. While DAGMan provides us with the 



automatic graph management, the WFMS is responsible for searching grid resources, 
controlling errors and retrying the execution of failed nodes avoiding CEs’ repetition. 
A DAGMan process is started for each workflow submitted to the WMS. If there is 
more than one DAG to execute, a separate DAGMan process will be started for each 
DAG. A set of steps must be performed for each node in the workflow:  
1. Initial phase – preparing all necessary information for the node execution. A 

suitable resource to run the job is searched by the Resource Searcher and the job 
is then passed to Condor-G, which will be responsible for submitting this to the 
remote site. If no resources are found, the WFMS will mark the node as failed, 
which implies the end of the node execution. This node can be automatically 
retried according to the node_retry_count value. 

2. Job execution on the remote site.  
3. Final phase – checking the job execution return code. If the job was executed 

successfully, it is marked as Done. Otherwise, the WFMS compares the return 
value to the attribute app_exit_code; if the return value is one of the values 
specified by the user, the job is not retried; in any other, case the job is marked as 
failed and is retried according to the node_retry_count value.  

The WMS also supports the functionality by which to submit a failed workflow 
and execute only those nodes that have not yet been successfully executed. This 
workflow is automatically produced by the WMS when one or more nodes in the 
workflow has resulted in failure, making the application execution impossible to 
finish. If any node in the a workflow fails, the remainder of the DAG is continued 
until no more forward progress can be made, due to workflow’s dependencies. At this 
point, the WFMS produces a file called a Rescue DAG, which is given back to the 
user. Such a DAG is the same as the original workflow file, but is annotated with an 
indication of successfully completed nodes using the status=done attribute. If the 
Rescue DAG is resubmitted using this Rescue DAG input file, the nodes marked as 
completed will not be re-executed. 

A DAG is considered as a normal, single job unit of work. A DAG execution goes 
through a number of states during its lifetime: 
• Submitted – The user has submitted the DAG using User Interface but it has not 

yet been processed by the Network Server 
• Waiting – The DAG has been accepted by the Network Server  
• Ready – The DAG has been processed by the Workload Manager that has 

decided to run a Condor’s DAGMan  
• Running – The DAGMan process is running; the DAG is passed to the DAGMan 
• Done – The DAG execution has finished 
• Aborted – The DAG execution has been aborted because of an external reason 
• Cancelled – The DAG execution has been cancelled by the user 
• Cleared – The Output Sandbox of all nodes has been transferred to the UI 

5.1 User-level commands for workflow management 

A set of user commands is available, allowing users to submit and control the 
application workflow execution. The list of commands is as follows:  
• edg-dag-submit – this command submits a DAG 



• edg-job-status – this command checks the status of the submitted DAG 
• edg-job-cancel – this permits a user to cancel the execution of a DAG 
• edg-job-get-output – this command obtains output for all jobs of the DAG 
• edg-job-get-logging-info – this presents logging info for a DAGMan execution 

6 Experimental results 

We conducted a number of experiments on parallel/distributed applications to study 
how this approach works in practice. We present a DAG whose structure is 
representative of the ATLAS (Atlas A Toroidal LHC ApparatuS) experiment [9] – the 
largest collaborative effort in the physical sciences. This experiment contains the 
following successive steps: event generation (evgen), simulation (sim), digitalization 
(digi). The first process does not take any input data, but rather generates certain 
output data. The second process processes data generated by the previous step, giving 
another data as result. The third process repeats the scheme of the sim step. To 
provide an efficient execution of the experiment, each step can be divided into N 
parts, where each part processes a subset of data as it is shown in Figure 3 (because of 
limits on space, we do not present the JDL specification of this DAG): 

Fig. 3. An example DAG that represents the workflow of the ATLAS experiment. 

• evgen – this contains N sub-nodes, where each sub-node performs the partial 
event generation, and the generated partial result file is copied and registered in 
the Crossgrid storage using EDG Replica Manager [20]. 

• sim – this contains N sub-nodes, where each one copies the partial file generated 
by an evgen sub-node; it then performs the simulation on the partial data and 
generates a partial file. Finally, it copies and registers this file in the storage. 

• digi – this contains N sub-nodes, where each one copies the partial file generated 
by a sim sub-node; it then performs digitalization on the partial data and 
generates a partial file. Finally, it copies and registers this file in the storage. 
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There is, additionally, a need for further steps that merge the temporal files 
generated by all parts of the considered step and remove such temporal files:  
• Merge – this copies the files generated by all nodes (separately for each level) 

and merges them; it saves the results to a file and finally copies and registers this 
file in the storage; these merged files will be the result of the experiment. 

• Delete – this deletes the files generated by all levels except Merge; this step can 
be carried out separately for each level. 

Figure 4 presents an example execution of the workflow in the ATLAS 
experiment. The horizontal axis represents time, the vertical shows Computing 
Elements in which the workflow may be executed (Poland, Spain or Portugal). In this 
example, all nodes from the Event Generation level and merge operation have been 
successfully finished. During the execution of the simulation nodes, one of these has 
failed (sim2). This node has been retried automatically, but has failed again. It has not 
been possible to retry it as, e.g., a user specified node_retry_count=1. The workflow 
execution has terminated as failed. However, the Rescue DAG, which contains nodes 
annotated as already done, is provided for the user, who may therefore submit the 
failed workflow executing only those nodes that have not been successfully finished. 

Fig. 4. An example execution of the DAG for the ATLAS experiment. 

6 Conclusions 

The Grid system offers high computing capabilities for users in many scientific 
research fields. A great number of applications are made for a set of jobs that depend 
on each other. Generally, the execution of such applications in the grid environments 
requires users’ intervention and the manual execution of each job, step by step, 
simulating their dependencies. It is therefore necessary to provide a good, reliable and 
simple service which automatically carries out the task of mapping the application 
workflow to the Grid.  

In this paper, we have presented the solution to this problem, which has been 
applied within the EU-Crossgrid project. To provide workflow execution, we have 
represented such a workflow in the form of DAGs. The DAG execution is provided 
by the DAG Manager service and is integrated with the CrossGrid’s Workload 
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Management System (WMS). Our implementation is based on the DAGMan 
scheduler provided by the Condor group and is targeted to LCG-2 middleware. 

Many aspects could be introduced to improve DAG support. For example, support 
for DAG in DAG (the possibility of specifying a node as another DAG) or the 
integration of DAG into the Migrating Desktop and Web Portal that provides a user-
friendly interface by which to interact with the Grid. 
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