
Workflow Management in the CrossGrid Project1

Anna Morajko2, Enol Fernández2, Alvaro Fernández3, Elisa Heymann2, Miquel
Ángel Senar2

2Universitat Autònoma de Barcelona, Barcelona, Spain
{ania,enol}@aomail.uab.es;{elisa.heymann,miquelangel.senar}@uab.es

3Instituto de Física Corpuscular, Valencia, Spain
alvaro.fernandez@ific.uv.es

Abstract. Grid systems offer high computing capabilities that are used in many
scientific research fields and thus many applications are submitted to these
powerful systems. Parallel applications and applications consisting of inter-
dependent jobs may especially be characterized by a complex workflow.
Therefore, Grid systems should be capable of executing and controlling
workflow computations. This document sets out our approach to workflow
management in a Grid environment. It introduces common steps on how to map
an application workflow to the DAG structure, and how to carry out its
execution and control. We present the Workflow Management Service (WFMS)
implemented and integrated as a part of the CrossGrid project. The purpose of
this service is to schedule workflow computations according to user-defined
requirements, also providing a set of mechanisms to deal with failures in Grid.

1 Introduction

The Grid represents distributed and heterogeneous systems and involves coordinating
and sharing computing, application, data, storage, or network resources across
dynamic and geographically dispersed organizations [1]. Grid systems offer high
computing capabilities that are used in many scientific research fields. They facilitate
the determination of the human genome, computing atomic interactions or simulating
the evolution of the universe. Many researchers have therefore become intensive users
of applications with high performance computing characteristics. There are projects
such as GriPhyn [2], DataGrid [3], GridLab [4] or Crossgrid [5] that provide the
middleware infrastructure to simplify application deployment on computational grids.
 The main objective of the CrossGrid project is to incorporate a collection of
machines distributed across Europe, and to provide support especially for parallel and
interactive compute- and data-intensive applications. As a result of this project,
parallel applications compiled with the MPICH library (and using either ch-p4 [6] or
Globus2 [7] device) are executed on Grid resources in a transparent and automatic
way. The workload management system that we have implemented as part of the

1 This work has been partially supported by the European Union through the IST-2001-32243

project “CrossGrid” and partially supported by the Comisión Interministerial de Ciencia y
Tecnología (CICYT) under contract TIC2001-2592.

mailto:emilio.luque}@uab.es

CrossGrid middleware carries out all necessary steps incurred from the time that the
application is submitted by the user until the end of its execution (i.e. potential
resource discovery, selection of the best matched resources and execution tracking).
Our workload management system has been designed to manage Grid-specific details
of the application execution with minimal effort by the user.

In the previous work [8], we described the specific details related to the execution
of MPI applications on the Grid. In this paper, we focus on the additional service that
we have included to support workflow computations. Many applications may consist
of inter-dependent jobs, where information or tasks are passed from one job to
another for action, according to a set of rules. Such applications known as workflows
consists of a collection of jobs that need to be executed in a partial order determined
by control and data dependencies. Workflows are an important class of applications
that can take advantages of the resource power available in Grid infrastructures, as
has been shown in the LIGO [9] pulsar search, several image processing applications
[10] or physics experiment ATLAS [11]. The execution of such an application may be
very difficult. Normally, a user should submit to a Grid system manually, job by job,
following the rules of dependencies that appear between jobs. The manual tracking of
the application workflow may be very ineffective, time consuming and may produce
many errors in application execution. Therefore, we present a solution to the
automatic management of the application workflows applied in the CrossGrid project.

Section 2 briefly presents related work. Section 3 introduces a general overview of
the workload management in the CrossGrid, indicating new features for workflow
support. Section 4 sets out the workflow notation and Section 5 introduces details of
the workflow management. Section 6 shows the results of the probes conducted using
a workflow whose structure is representative of the ATLAS experiment. Finally,
Section 7 presents the conclusions to this study.

2 Related work

A number of studies in Grid systems provide general-purpose workflow management.
The Condor's DAGMan [12] – DAGMan (Directed Acyclic Graph Manager) is a
meta-scheduler for Condor. DAGMan manages dependencies between jobs,
submitting these to Condor according to the order represented by a DAG and
processes the results. The DAG must be described in an input file processed by the
DAGMan and each node (program) in the DAG needs its own Condor submit
description file. DAGMan is responsible for scheduling, recovery, and reporting for
the set of programs submitted to Condor. This scheduler focuses on the execution of
workflows in a local cluster managed by the Condor system.

Pegasus system [13] – Planning for Execution in Grids – was developed as part of
the GriPhyN project. Pegasus can map scientific workflows onto the Grid. It has been
integrated with the GriPhyN Chimera system. Chimera generates an abstract
workflow (AW), Pegasus then receives such a description and produces a concrete
workflow (CW), which specifies the location of the data and the execution platforms.
Finally, Pegasus submits CW to Condor's DAGMan for execution. This system
focuses on the concept of virtual data and workflow reduction. Triana [14] is a

Problem Solving Environment (PSE) that provides a graphical user interface to
compose scientific applications. A component in Triana is the smallest unit of
execution written as Java class. Each component has a definition encoded in XML.
Such created application’s graph can then be executed over Grid network using the
GAP interface. Unicore [15] stands for Uniform Interface to Computing Resources
and allows users to create and manage batch jobs that can be executed on different
systems and different UNICORE sites. The user creates an abstract representation of
the job group (AJO – Abstract Job Object) that is then serialized as a Java object, and
in XML format. UNICORE supports dependencies inside the job group and ensures
the correct order of the execution. Its job model can be described as directed acyclic
graphs. UNICORE maps the user request to system specification, providing job
control. In contrast to our work, Triana, Pegasus and Unicore lack resource brokerage
and scheduling strategies.

GridFlow [16] supports a workflow management system for grid computing. It
includes a user portal in addition to services of global grid workflow management and
local grid sub-workflow scheduling. At the global level, the GridFlow project
provides execution and monitoring functionalities. It also manages the workflow
simulation that takes place before the workflow is actually executed. This approach is
applicable only in the case of having performance information about job execution. At
the local grid sub-workflow level, scheduling service is supported.

3 CrossGrid workload management

This section presents the main components that constitute the Workload Management
System (WMS) applied in the CrossGrid project. A user submits a job to a Scheduling
Agent (SA) through a Migrating Desktop or command line (see Figure 1). The job is
described by a JobAd (Job Advertisement) using the EU-Datagrid Job Description
Language (JDL) [17], which has been extended with additional attributes to support
interactive and parallel applications, as well as workflows.

To support the workflow execution, we have included specific service into the
WMS. Workflows have a special treatment at the beginning as they are passed from
the SA to the Condor’s DAGMan, which is a specialized scheduler module that
submits each individual job to the SA when job dependencies have been satisfied.

For each simple job (submitted directly by the user or by the Condor’s DAGMan),
the SA follows the same steps. It asks the Resource Searcher (RS) for resources to run
the application. The main duty of the RS is to perform the matchmaking between job
needs and available resources. The RS receives a job description as input, and, as
output, returns a list of possible resources within which to execute the job. Computing
resources are available as Computing Elements (CE), which provide the abstraction of
a local farm of Working Nodes (WN). This local farm (or CE) is accessed through a
Gatekeeper. The list of resources returned by the Resource Searcher consists of a
Computing Elements list. Subsequently, the Scheduling Agent selects a CE on which
to run the job. The SA passes the job and the first-selected CE to the Application
Launcher (AL), who is responsible for the submission of that job on the specified CE.
The AL passes the job to Condor_G [18], which manages a queue of jobs and

resources from sites where the job can be executed. Due to the dynamic nature of the
Grid, the job submission may fail on that particular CE. Therefore, the Scheduling
Agent will try the other CEs from the list returned by the Resource Searcher. Finally,
the Scheduling Agent notifies the user of the result.

Fig. 1. Architecture of the Workload Management System.

4 Workflow notation and specification

There are many complex applications that consist of inter-dependent jobs that
cooperate to solve a particular problem. The completion of a particular job is the
condition needed to start the execution of jobs that depend upon it. This kind of
application workflow may be represented in the form of a DAG – a directed acyclic
graph. A DAG is a graph with one-way edges that does not contain cycles. It can be
used to represent a set of programs where the input, output, or execution of one or
more programs is dependent on one or more other programs. The programs are nodes
(vertices) in the graph, and the edges (arcs) identify the dependencies of these
programs. Figure 2 presents an example DAG that consists of 4 nodes lying on 3
levels. The execution of the indicated DAG consists of three successive steps:

Fig. 2. Example DAG.

1. Execution of the node NodeA from the first level.
2. Parallel execution of nodes NodeB1 and NodeB2 from the second level. The

execution can start if and only if the execution of the node NodeA is successful.

Scheduling Agent Resource
Searcher

Migrating Desktop

Resource

Management

CE Gatekeeper

WN WN WN

CE Gatekeeper

WN WN WN

User

User Interface
Command -line

Application Launcher DAGMan

Condor-G

NodeA

NodeB1 NodeB2

NodeC

3. Execution of the node NodeC from the third level. The execution can start if and
only if the execution of all nodes from the level two is successful.

4.1 Workflow specification using JDL

Workflows, similar to a normal job, are specified in a text file using DataGrid JDL
format extended appropriately to support DAG structure and control. The workflow
description has two components: specification of dependencies between computations
(node dependencies) and specification of computation (node description). Below, we
present an example JDL file for a workflow specified as in Figure 2.

[
type = "dag";
nodes = [

dependencies={{NodeA,{NodeB1,NodeB2}},{{NodeB1,NodeB2},NodeC}};
 NodeA = [
 node_type = "edg-jdl";
 description = [
 Executable = "jobA.sh";
 InputSandbox = {" jobA.sh"};
];
];
 NodeB1 = [
 node_type = "edg-jdl";

node_retry_count = 3;
app_exit_code = { 10, 11 };
file = “jobB1.jdl”;

];
 NodeB2 = [

node_type = "edg-jdl";
file = “jobB2.jdl”;

];
 NodeC = [

node_type = "edg-jdl";
file = “jobC.jdl”;

];
];
]

4.2 Dependencies between nodes

Each dependence is specified as a pair of elements positioned between brackets,
where the meaning is that the second element depends on the first. Both elements may
be formed by a set of elements written between brackets. This indicates a dependence
of many-to-one, one-to many or many-to-many elements. Therefore, considering the
example DAG, there are few possibilities to specify the attribute dependencies:
• {{NodeA,NodeB1},{NodeA,NodeB2},{NodeB1,NodeC},{NodeB2,NodeC}}

• {{NodeA,NodeB1},{NodeA,NodeB2},{{NodeB1,NodeB2},NodeC}}

• {{NodeA,{NodeB1,NodeB2}},{{NodeB1,NodeB2},NodeC}}

Job
specification

Node
specification

4.3 Node description

The attribute nodes contains the list of nodes that form the DAG. Each node
represents a job to be executed and contains node-specific attributes, as well as the job
specification. The attributes for a node description are:
• node_type – specifying a type of a node. This attribute is mandatory and must

contain the value “edg-jdl”, as the node is a normal job written in JDL format.
• node_retry_count – specifying how many times a node execution may be retried

in the case of failure. This attribute is optional. If the user specifies this attribute
for a node; hence, if it fails, this particular node will be automatically retried.
Otherwise, this attribute will be set to the default value.

• app_exit_code – specifying the possible exit codes for a job. If a node fails
because of the application failure (e.g. segmentation fault, division by 0, a file
already registered in a Storage Element), then a job should be aborted. However,
when a job fails because given resources fail (e.g. a machine failure, Condor/PBS
queue problems), it should be automatically retried. By default, in both cases, the
node will be retried until node_retry_count. The attribute app_exit_code
provides the possibility to control the job exit code and terminate job execution in
case of failure. If this attribute contains certain values, this means that the job
may return such values and that they are recognized by the user. If the job
execution returns one of the specified values, the node will not be retried.
Otherwise, the job will be retried automatically according to node_retry_count
(if the maximum of retries is not reached) and submitted to other CE.

• description / file – specification of the job; A job can be a normal, single job
or an MPI job. There are two ways to specify a job:
o Via an attribute called description, where a job is specified directly

inside this attribute in JDL:
description = [

Executable = "jobA.sh";
InputSandbox = {" jobA.sh"};
…

];

o Via an attribute file, where a job is specified in the indicated JDL file
file = “jobA.jdl”;

5 Scheduling application workflow

To support application workflows, we have extended the Scheduling Agent with a
new component called Workflow Manager Service (WFMS). The WFMS is executed
within the Resource Broker machine that contains the WMS presented in Section 3.
Specification and implementation of the workflow supported in the CrossGrid project
takes advantages and leverages of a preliminary work presented in [19]. As shown in
Figure 1, workflows are passed from the Scheduler Agent to the Condor’s DAGMan.
DAGMan is an iterator on the DAG, whose main purpose is to navigate through the
graph, determine which nodes are free of dependencies, and follow the execution of
corresponding jobs, submitting these to the SA. While DAGMan provides us with the

automatic graph management, the WFMS is responsible for searching grid resources,
controlling errors and retrying the execution of failed nodes avoiding CEs’ repetition.
A DAGMan process is started for each workflow submitted to the WMS. If there is
more than one DAG to execute, a separate DAGMan process will be started for each
DAG. A set of steps must be performed for each node in the workflow:
1. Initial phase – preparing all necessary information for the node execution. A

suitable resource to run the job is searched by the Resource Searcher and the job
is then passed to Condor-G, which will be responsible for submitting this to the
remote site. If no resources are found, the WFMS will mark the node as failed,
which implies the end of the node execution. This node can be automatically
retried according to the node_retry_count value.

2. Job execution on the remote site.
3. Final phase – checking the job execution return code. If the job was executed

successfully, it is marked as Done. Otherwise, the WFMS compares the return
value to the attribute app_exit_code; if the return value is one of the values
specified by the user, the job is not retried; in any other, case the job is marked as
failed and is retried according to the node_retry_count value.

The WMS also supports the functionality by which to submit a failed workflow
and execute only those nodes that have not yet been successfully executed. This
workflow is automatically produced by the WMS when one or more nodes in the
workflow has resulted in failure, making the application execution impossible to
finish. If any node in the a workflow fails, the remainder of the DAG is continued
until no more forward progress can be made, due to workflow’s dependencies. At this
point, the WFMS produces a file called a Rescue DAG, which is given back to the
user. Such a DAG is the same as the original workflow file, but is annotated with an
indication of successfully completed nodes using the status=done attribute. If the
Rescue DAG is resubmitted using this Rescue DAG input file, the nodes marked as
completed will not be re-executed.

A DAG is considered as a normal, single job unit of work. A DAG execution goes
through a number of states during its lifetime:
• Submitted – The user has submitted the DAG using User Interface but it has not

yet been processed by the Network Server
• Waiting – The DAG has been accepted by the Network Server
• Ready – The DAG has been processed by the Workload Manager that has

decided to run a Condor’s DAGMan
• Running – The DAGMan process is running; the DAG is passed to the DAGMan
• Done – The DAG execution has finished
• Aborted – The DAG execution has been aborted because of an external reason
• Cancelled – The DAG execution has been cancelled by the user
• Cleared – The Output Sandbox of all nodes has been transferred to the UI

5.1 User-level commands for workflow management

A set of user commands is available, allowing users to submit and control the
application workflow execution. The list of commands is as follows:
• edg-dag-submit – this command submits a DAG

• edg-job-status – this command checks the status of the submitted DAG
• edg-job-cancel – this permits a user to cancel the execution of a DAG
• edg-job-get-output – this command obtains output for all jobs of the DAG
• edg-job-get-logging-info – this presents logging info for a DAGMan execution

6 Experimental results

We conducted a number of experiments on parallel/distributed applications to study
how this approach works in practice. We present a DAG whose structure is
representative of the ATLAS (Atlas A Toroidal LHC ApparatuS) experiment [9] – the
largest collaborative effort in the physical sciences. This experiment contains the
following successive steps: event generation (evgen), simulation (sim), digitalization
(digi). The first process does not take any input data, but rather generates certain
output data. The second process processes data generated by the previous step, giving
another data as result. The third process repeats the scheme of the sim step. To
provide an efficient execution of the experiment, each step can be divided into N
parts, where each part processes a subset of data as it is shown in Figure 3 (because of
limits on space, we do not present the JDL specification of this DAG):

Fig. 3. An example DAG that represents the workflow of the ATLAS experiment.

• evgen – this contains N sub-nodes, where each sub-node performs the partial
event generation, and the generated partial result file is copied and registered in
the Crossgrid storage using EDG Replica Manager [20].

• sim – this contains N sub-nodes, where each one copies the partial file generated
by an evgen sub-node; it then performs the simulation on the partial data and
generates a partial file. Finally, it copies and registers this file in the storage.

• digi – this contains N sub-nodes, where each one copies the partial file generated
by a sim sub-node; it then performs digitalization on the partial data and
generates a partial file. Finally, it copies and registers this file in the storage.

evgen1 evgen2 evgen3

M1

sim1

M3

M2

Del2

Del3

sim2 sim3

digi2 digi3

evgen

sim

digi

Del1

digi1

There is, additionally, a need for further steps that merge the temporal files
generated by all parts of the considered step and remove such temporal files:
• Merge – this copies the files generated by all nodes (separately for each level)

and merges them; it saves the results to a file and finally copies and registers this
file in the storage; these merged files will be the result of the experiment.

• Delete – this deletes the files generated by all levels except Merge; this step can
be carried out separately for each level.

Figure 4 presents an example execution of the workflow in the ATLAS
experiment. The horizontal axis represents time, the vertical shows Computing
Elements in which the workflow may be executed (Poland, Spain or Portugal). In this
example, all nodes from the Event Generation level and merge operation have been
successfully finished. During the execution of the simulation nodes, one of these has
failed (sim2). This node has been retried automatically, but has failed again. It has not
been possible to retry it as, e.g., a user specified node_retry_count=1. The workflow
execution has terminated as failed. However, the Rescue DAG, which contains nodes
annotated as already done, is provided for the user, who may therefore submit the
failed workflow executing only those nodes that have not been successfully finished.

Fig. 4. An example execution of the DAG for the ATLAS experiment.

6 Conclusions

The Grid system offers high computing capabilities for users in many scientific
research fields. A great number of applications are made for a set of jobs that depend
on each other. Generally, the execution of such applications in the grid environments
requires users’ intervention and the manual execution of each job, step by step,
simulating their dependencies. It is therefore necessary to provide a good, reliable and
simple service which automatically carries out the task of mapping the application
workflow to the Grid.

In this paper, we have presented the solution to this problem, which has been
applied within the EU-Crossgrid project. To provide workflow execution, we have
represented such a workflow in the form of DAGs. The DAG execution is provided
by the DAG Manager service and is integrated with the CrossGrid’s Workload

DAG execution Rescue DAG execution

fatal
error

time

evgen1

evgen2

evgen3

CE

zeus

aow6grid

lip

sim1
cesga

sim2

sim3

error

sim2

retry

sim2

digi1

digi2

digi3

M1

M2

Del1

Del2

M3

Del3

Management System (WMS). Our implementation is based on the DAGMan
scheduler provided by the Condor group and is targeted to LCG-2 middleware.

Many aspects could be introduced to improve DAG support. For example, support
for DAG in DAG (the possibility of specifying a node as another DAG) or the
integration of DAG into the Migrating Desktop and Web Portal that provides a user-
friendly interface by which to interact with the Grid.

7 References

1. I. Foster, C. Kesselman (Editors), “The GRID Blueprint for a New Computing
Infrastructure”. Morgan Kauffmann Publishers. 1999.

2. GriPhyN: The Grid Physics Network. http://www.griphyn.org
3. The DataGrid Project. http://www.eu-datagrid.org
4. GridLab: A Grid Application Toolkit and Testbed: http://www.gridlab.org
5. The EU-Crossgrid project. http://www.eu-crossgrid.org
6. W. Gropp, E. Lusk, N. Doss, A. Skjellum, “A high-performance, portable implementation of

the MPI message passing interface standard”. Parallel Computing, 22(6), pp.789-828. 1996.
7. N. Karonis, B. Toonen, I. Foster, “MPICH-G2: A Gridenabled implementation of the

message passing interface”. Journal of Parallel and Distributed Computing, to appear. 2003.
8. E. Heymann, M.A. Senar, A. Fernandez, J. Salt, “The Eu-Crossgrid approach for Grid

Application Scheduling”. 1st European Across Grids Conference, LNCS series, pp.17-24.
February, 2003.

9. B. Barish, R. Weiss, “Ligo and detection of gravitational waves”. Physics Today, 52 (10).
1999.

10. S. Hastings, T. Kurc, S. Langella, U. Catalyurek, T. Pan, J. Saltz, “Image processing on the
Grid: a toolkit or building grid-enabled image processing applications”. In 3rd International
Symposium on Cluster Computing and the Grid. 2003.

11. http://atlasexperiment.org/
12. http://www.cs.wisc.edu/condor/dagman/
13. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.H. Su, K. Vahi, M.

Livny, "Pegasus : Mapping Scientific Workflows onto the Grid". Across Grids Conference.
Nicosia, Cyprus, 2004.

14. M. Shields, “Programming Scientific and Distributed Workflow with Triana Services”.
GGF10 Workflow Workshop. Berlin, March, 2004.

15. UNICORE Plus - Final Report (2003). http://www.unicore.org
16. J. Cao, S.A. Jarvis, S. Saini, G.R. Nudd, “GridFlow: Workflow Management for Grid

Computing”. 3rd International Symposium on CCGrid. Japan, May 2003.
17. F. Pazini, “JDL Attributes - DataGrid-01-NOT-0101-0_4.pdf” http://www.infn.it/workload-

grid/docs/DataGrid-01-NOT-0101-0_4-Note.pdf. December, 2001.
18. James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke, "Condor-G:

A Computation Management Agent for Multi-Institutional Grids", Journal of Cluster
Computing, vol. 5, pages 237-246, 2002.

19. Data grid: Definition of the architecture, technical plan and evaluation criteria for the
resource coallocation framework and mechanisms for parallel job partitioning. WP1:
Workload Management. DataGrid-01-D1.4-0127-1_0. Deliverable DataGrid-D1.4. 2002.

20. L. Guy, P. Kunszt, E. Laure, H. Stockinger, K. Stockinger, “Replica Management in Data
Grids”. Technical report, GGF5 Working Draft. July 2002.

http://atlasexperiment.org/
http://www.infn.it/workload-grid/docs/DataGrid-01-NOT-0101-0_4-Note.pdf
http://www.infn.it/workload-grid/docs/DataGrid-01-NOT-0101-0_4-Note.pdf

