	CrossGrid
	IST-2001-32243
	04/10/2001

WP2 Grid Application Programming Environment
Workpackage leader: Holger Marten, FZK Karlsruhe (CR8)

Objectives

The aim of this workpackage is to specify, develop, integrate and test tools that facilitate the development and tuning of parallel distributed high-performance and high-throughput computing applications on Grid infrastructures
.

Verifying that user applications comply with the MPI standards will reduce the need for debugging sessions on the Grid environment. This workpackage will develop a debugging and verification tool for MPI programs.

Efficiently using the Grid as an environment for large applications requires job performance measurement and analysis [Bubak, 2001]. In this workpackage a tool will be developed that automatically extracts high level performance properties of Grid applications [Fahringer, 2000; Dikaiakos, 1998], and of the Grid itself, as well as on-line monitoring tools to graphically present and analyse extracted performance data.

Using the same performance extraction and measurement tools enable system, network, storage or overall Grid administrators
 to obtain performance models and to detect bottlenecks in the distributed system. Usually this is done by running standardised benchmarks. This workpackage will develop benchmarks that model workloads typical of Grid applications of interest. These benchmarks should capture and isolate performance characteristics of the Grid, with respect to processing power, data throughput, synchronisation, communication and I/O overhead, etc.. Benchmarking, along with run-time monitoring tools, will help application developers to analyse the system at various granularity levels, from the Grid level down to the process level
 wich finally allows them to tune their applications for optimal Grid performance
.

The tools developed in this workpackage will interoperate [Wismueller, 2000] and be integrated into the testbed and will be promoted by and tested with the real end-user applications of WP1.

Relations between code verification, benchmarking, performance measurement, prediction
and analysis, as well as with products of other WPs of the Project is presented in Fig
. WP2 –1.

Fig
. WP2-1
 Relations between tasks of WP2 and other WPs of the CrossGrid Project.

Task descriptions

Task 2.0 Co-ordination and management (Month 1-36)

Task leader: Holger Marten, FZK (CR8)

Co-ordination is required to ensure the seamless integration of the interfaces and software components, the timely flow of information and deliverables between WP partners, other WPs and the CrossGrid Architecture Team. FZK will coordinate this WP2.

Task 2.1 Tools requirements definition (Month 1-3)

Task leader: Roland Wismüller, TUM (AC11)

A full requirements analysis will be performed to evaluate the needs of all program developers in WP1 w.r.t. development tools for interactive Grid applications. A focus will be put on the support for the following activities:

· verifying the correctness of critical applications in e.g. crisis support or medicine,

· prediction of an application’s response time in early development phases,

· detection of performance bottlenecks in applications.

These requirements address the functionality of the tools, their integration, and the programming languages, middleware and hardware to support. They will be determined in close interaction between the WP2 partners, the program developers in WP1, and the CrossGrid Architecture Team.

In addition, a review of existing technologies will be performed. Currently, there are no tools directly comparable to those to be developed in WP2: verification and performance prediction tools do not yet support Grid environments; performance analysis tools for the Grid, e.g. NetLogger, mainly provide low level information on the Grid infrastructure, rather than application related data. However, concepts and data provided by these tools can and will be reused as far as possible. In particular, the DataGrid project plans to provide services that create a directory of static and dynamic information on the Grid infrastructure and a plattform for application instrumentation. We will analyse the types of run time data needed by the tools to be developed in WP2 and examine, which of the needed data is already available via the DataGrid services. Since the access to all run time data will occur through the unified monitoring interface developed in Task 3.3, the results of the analysis will define the major requirements for this interface.

interfaces
.

Task 2.2 MPI code debugging and verification (Month 4-36)

Task leader: Matthias Müller, USTUTT (AC10)

The objective of this Task is to develop a tool that verifies the correctness of parallel, distributed Grid applications using the MPI paradigm. The primary issues are how to make end-user applications portable, reproducible and reliable on any platform of the Grid. Another goal is to enable the debugging of applications executing on hundreds of processors. Simple (NxN) matrix algorithms, benchmarks developed in Task T2.3 as well as applications from Tasks T1.2, T1.3 and T1.4 will be used during the test and refinement phase.

The technical basis of this development is the MPI profiling interface which allows a detailed analysis of the MPI application at runtime. Existing tools like commercial debuggers (e.g. TotalView from Etnus) only cover a very limited subset of the planned functionality
, or they are targeted for shared memory machines (e.g. Assure from KAI, or “umpire” under development at LLNL) and are thus neither portable to distributed memory platforms nor suitable for the Grid
.

The main components of this tools will be developed by USTUTT which is also leading this task. The CSIC team involved in this task will provide Grid-enabled (NxN) matrix algorithms and collaborate analysing and optimising the use of MPI in the most time consuming applications (tasks 1.3 and 1.4), namely data-mining techniques based on Neural Network algorithms. The debugging tools previously cited will be used to verify the adequate performance
 of the distributed algorithms, and trace possible conflicts. New strategies on the use of MPI on the Grid taking into account availability and heterogeneity properties will be proposed. In particular explicit algorithms to optimise the global Grid answer time will be developed, in the framework proposed by the following tasks
.
Task 2.3: Metrics and benchmarks (Month 4-36)

Task leader: Marios Dikaiakos, UCY (AC13)

This task will propose
a set of performance metrics to describe concisely the performance capacity of Grid configurations and application performance, and it will develop and implement benchmarks that are representative of typical Grid workloads. Such benchmarks will be used to estimate the values of performance-metrics for different Grid configurations, to identify important factors that affect end-to-end application performance, and to provide application developers with initial estimates of expected application performance. A suite of benchmarks will be deployed and validated in the CrossGrid testbed
.

The main work of this task will be performed by UCY. TUM will participate in the definition of metrics, which are also important for the assessment component developed in Task 2.4
.

Task 2.4: Interactive and semiautomatic performance evaluation tools (Month 4-36)
Task leader: Włodzimierz Funika, CYFRONET (CO1)

Task 2.4 will develop on-line tools that allow end-users to measure, evaluate, and visualise the performance of Grid applications with respect to data transfer, synchronisation and I/O delay as well as CPU, network and storage utilisation. The tools will support any level of granularity, from the Grid level down to the process level. Acquisition of raw performance data will be based on the monitoring infrastructure developed in WP3. The performance evaluation tools will exhibit four distinctive and novel features:

1. The tools operate on-line. This means that the user can select the performance data to be measured at run-time, based on the results of previous measurements. Thus, the need to acquire, store and transmit large amounts of trace data is avoided.

2. The tools include an automatic component that can extract high-level performance properties from the measured raw performance data. This includes an assessment of the application's performance w.r.t. the performance characteristics of the currently used Grid configuration. The extractable performance properties at the application level, as well as the data model for the raw performance data will be modelled using the APART
specification language. The Grid's performance characteristics will be determined using the benchmark results and metrics delivered by Task 2.3.

3. A tool will be provided to extract the relationships between the application execution features, i.e. the performance of the grid (network speed, CPU speed, memory bandwidth), the problem sizes (vectors and matrices) and the real execution time for some selected kernels in the applications, in a form of an analytical model. After having selected the relevant kernels from the applications of WP1, the above relationships are extracted on a statistical basis, to build an analytical model. When applying the kernels to different Grid configurations, a visualisation module will be used to present the results of the analytical model. They comprise the number of FLOPs, the load balance, the volume of communication, the prediction of the communication times, the amount of memory needed, and the prediction of the total runtime, w.r.t. the grid and problem features.

4. The tools will use a standardised tool/monitor interface, which will be an extension of the OMIS
 specification for Grid applications. This will enable the interoperability of tools, whose simultaneous use is intended to give a synergistic effect for performance analysis of applications.

CYFRONET will define performance measurements as well as develop tool/monitor interface and GUI. TUM will develop the component for automatic extraction of performance properties, and, in addition, it will support CYFRONET in the definition of the tool/monitoring interface. USC will collaborate on the automatic extraction of performance features and on the development of analytical performance models. CSIC will analyse the impact of the underlying network infrastructure on the final performance of the Grid
.

Task 2.5 Integration, testing and refinement (Month 9-36)

Task leader: Roland Wismüller, TUM (AC11)

The components developed in WP2 must be integrated to build a uniform tool environment for Grid programmers. At the beginning of the project, this task will refine the design of this environment, which is sketched in Fig. WP2-1. In particular, the interfaces and interactions between the different components will be fully specified and design rules for the component’s user interfaces will be set up.

In order to guarantee a timely availablilty of the tool environment for its use in WP1, a prototyping approach will be used. For each prototype version created by tasks 2.2, 2.3, and 2.4, this task will handle the integration, testing and refinement of the developed software components. The prototypes will first be installed at the testbed site FZK. Since FZK will have a lot of experience in the field of HEP, the application from task 1.3 will be used for the first real-world tests of the tool prototypes, which will be performed jointly by TUM and FZK. Feedback on errors and problems will immediately be given back to the tool developers in WP2. After successful testing, the tools will be released and distributed to all other testbed sites by FZK and will then be used by the application programmers in WP1. Feedback, lessons learned, necessary software quality improvements, and additional requirements will be collected, evaluated and summarized into a report by TUM. This report will form the basis for the development and implementation of the following prototype versions, which will be handled in the same way.

Resources
Total and (funded) Person Months (PM).

	Task
	Task PM
	CO1

CYF
	CR8

FZK
	AC10

USTU
	AC11

TUM
	AC13

UCY
	CR16

CSIC

	AC18

USC

	2.0
	9 (9)
	
	9 (9)
	
	
	
	
	

	2.1
	32 (19)
	6 (3)
	
	3 (3)
	8 (4)
	6 (3)
	3 (3)
	6 (3)

	2.2
	33 (33)
	
	
	25 (25)
	
	
	8 (8)
	

	2.3
	28 (18)
	
	
	
	6 (3)
	22 (15)
	
	

	2.4
	81 (46)
	24 (12)
	
	
	36 (18)
	
	6 (6)
	15 (10)

	2.5
	51 (32)
	8 (4)
	4 (4)
	 4 (4)
	18 (9)
	8 (4)
	3 (3)
	6 (4)

	Total PM
	234
	38
	13
	32
	68
	36
	20
	27

	Funded PM
	157
	19
	13
	32
	34
	22
	20
	17

Technology required from other CrossGrid WPs

Task 2.1 (requirements definition) needs a strong interaction mainly with WP1, WP3 and with the CrossGrid Architecture Team. The results of this stage will be also a set of requirements to WP3. Tasks 2.3 and 2.4 will use all applications of WP1 for testing and refinement of tools. All tools developed in WP2 need the CrossGrid technical infrastructure (WP4) during the integration, testing and refinement phase of Task 2.5.

Technology required from other EU projects
Technology required from DataGrid will be available through WP3 and WP4. Task 2.3 needs results from the APART working group (design ideas and APART specification language) and then this Task will be in contact with APART2 (started July 2001).

References
[Bubak, 2001]

Bubak, M., Funika, W., Baliś, B., and Wismueller, R.: On-line OCM-based Tool Support for Parallel Applications. In: Yuen Chung Kwong (ed.): Annual Review of Scalable Computing, Vol.3, Chapter 2, pp. 32-62, World Scientific Publishing, Singapore, 2001.

[Fahringer, 2000]

Fahringer, T., Gerndt, M., Riley, G., and Treff, J.L. : Specification of Performance Problems in MPI-Programs with ASL. International Conference on Parallel Processing (ICPP’00), pp 51-58, 2000.

[Dikaiakos, 1998]

Dikaiakos, M., Rogers, A., and Steiglitz, K.: Performance Modeling through Functional Algorithm Simulation. In: Zobrist, G., Bagchi, K., and Trivedi, K. (eds): Advanced Computer System Design, Chapter 3, pp. 43-62, Gordon & Breach Science Publishers, 1998.

[Wismueller, 2000]

Wismueller, R., Ludwig, T.: Interoperable Run-Time Tools for Distributed Systems – A Case Study. The Journal of Supercomputing, 17 (3) pp. 277-289, 2000.

Workflow and Interfaces to other Workpackages
PM 1-3: Requirements Definition Phase

Deliverable for all partners is D2.1 (report) at the end of PM 3.

For all partners: Define the technical infrastructure (hardware and software) necessary for the development of these tools in close collaboration with the CrossGrid Architecture Team. Deliver the information to WP4 for initial infrastructure setup. Define common data sources and needs from the applications in WP1. Review existing technologies on the tools to be developed in this workpackage. Specify details of the overall programming environment architecture (refinement of Fig. WP2-1). Specify interfaces between the different components developed in this workpackage and to Task 3.3.

For Task 2.2 (MPI): Codes to be analysed are: (1) already existing, basic and Grid-enabled (NxN) matrix algorithms formulated with the MPI paradigm and provided by CSIC in Task 2.2, (2) HEP application provided by Task 1.3, (3) Weather forecast & air pollution application provided by Task 1.4, (4) Flooding application provided by Task 1.2, (5) benchmarks provided by Task 2.3 after PM12.

Collect a list of MPI calls used in these codes. They will be implemented with high priority to provide a useful functionality of the tool as soon as possible.

What about the new MPI strategies and code optimisation?
For Task 2.3 (Metrics and benchmarks) Analyse basic blocks of all applications in WP1, concerning e.g. dataflow for input and output, CPU-intensive cores, parallel tasks/threads, communication, as well as basic structures of the (Cross-) Grid. Take into account flow charts, diagrams, basic blocks from the applications and get support by the respective application developers. Basic structures of the (Cross-) Grid configurations may be analysed in close collaboration with the CrossGrid Architecture team and with representatives of the testbed sites of WP4.
For Task 2.4: Performance evaluation
Analyse basic blocks of all applications in WP1, concerning e.g. dataflow for input and output, CPU-intensive cores, parallel tasks/threads, communication, as well as basic structures of the (Cross-) Grid. Take into account flow charts, diagrams, basic blocks from the applications and get support by the respective application developers. Basic structures of the (Cross-) Grid configurations may be analysed in close collaboration with the CrossGrid Architecture team and with representatives of the testbed sites of WP4.
Define high level performance properties to be extracted from the applications in WP1 in close collaboration with the respective application developers. Define interfaces to raw performance data provided by the monitoring system of Task 3.3 in close collaboration with the respective developers. Define an interface to the output of benchmark results from Task 2.3. Review the interface to the performance visualization module.

What about the analytical models?
PM 4-12: 1st development phase

Deliverables for all partners are D2.2 (report) at the end of PM 6 and D2.3 (1st prototypes and reports) at the end of PM 12.

 PM 4 demands:
A first technical infrastructure should be available for code developments of the tools; FZK will provide the necessary infrastructure via Task 4.1 (Testbed)
. At this very first stage it will not necessarily be a complete Grid environment.

 PM 4-6:

Task 2.2 (MPI) Design architecture of the MPI code verification tool and its implementation into the programming environment architecture. Deliverable is D2.2.

Task 2.3 (Metrics and benchmarks) Propose a set of performance metrics to describe the performance capacity of (Cross-)Grid configurations and application performance. Design benchmarks representative for the applications of WP1 and their implementation into the programming environment architecture. Deliverable is D2.2.

Task 2.4: Performance evaluation Design of the performance analysis tool.
 Deliverable is D2.2.

 PM 7 demands:

Grid infrastructure must be available on the FZK testbed site.

 PM 7-12:
Tasks 2.2, 2.3, 2.4: Write first prototypes on a local cluster at the test site. Perform first simple tests during development e.g. with (NxN) algorithms and HEP application. Fix any errors. Write documentation of design, implementation and interfaces. Design test scenarios especially for tests with applications. Deliverable is D2.3.
 PM 9-12:

Task 2.5: 1st Integration, testing and refinement Provide all the tools for installation on the FZK test site. Integrate all tools into the programming environment. Test them with simple test cases and with one of the applications (HEP, Task 1.3).
 Fix any errors. Provide a software package for distribution to other testbed sites. Support installation of the tools on all other testbed clusters. Fix any portability problems. Test the tools with simple test cases on different architectures. Fix any errors. Deliverable is D2.3.

PM 13-24: 2nd development phase

Deliverables for all partners are D2.4 (report) at the end of PM 18 and D2.5 (2nd prototypes and reports) at the end of PM 24.
 PM 13 demands:

Grid Infrastructure (Testbeds of WP4) must be available. Applications of WP1 must be Grid-enabled, application developers must be available to test the tools developed in this WP.

 PM 13-14:

Task 2.5: 2nd Integration, testing and refinement Testing of the tools by – and/or in close collaboration with - application developers from WP1. Compare benchmarks, and performance predictions with applications. Collect feedback on the single tools. Feedback will be taken into account in the next prototype version. Collect feedback on a possible user interface
 to the programming environment, i.e. a common ‘look and feel’ (e.g. GUIs) for the tools developed in this Workpackage.

Refine the programming environment architecture (if still necessary). Define the user interface to the programming environment according to the demands. Deliverable is.

 PM 15-18:
Tasks 2.2, 2.3, 2.4: Refine the architecture design of the tools and their implementation into the programming environment architecture. Design the user interfaces according to the user feedback. Propose strategies for a redesign where benchmarks and performance predictions did not match application performance. Fix bugs found during the 2nd integration, testing and refinement phase. Deliverable is D2.4.

 PM 18 demands:

Full Grid infrastructure must be available on all testbed sites at the end of PM 18.

 PM 19-24:

Task 2.2, 2.3, 2.4: Write second, fully Grid-enabled prototypes, at the test site. Perform simple Grid tests during development e.g. with (NxN) algorithms and HEP applications. Fix any errors. Write documentation of design, implementation and interfaces. Propose test scenarios on the whole Grid. Deliverable is D2.5.

 PM 21-24:

Task 2.5: 3rd Integration, testing and refinement Provide all the tools for installation on the FZK test site. Integrate all tools into the programming environment. Test them with simple test cases and with one of the applications (HEP, Task 1.3). Fix any errors. Provide a software package for distribution to other testbed sites. Support installation of the tools on other testbed clusters. Fix any portability problems. Test the tools with simple test cases on different architectures. Fix any errors. Deliverable is D2.5.
PM 25-33: 3rd development phase

Deliverable for all partners is D2.6 (report) at the end of PM 30. The final version of all codes is not a separate deliverable but a milestone at the end of PM 33.

 PM 25 demands:

Application developers must be available to test the tools developed in this WP on the whole Grid.

 PM 25-26:

Task 2.5: 4th Integration, testing and refinement Testing of the tools by – and/or in close collaboration with - application developers from WP1 on the Grid. Collect feedback on the single tools, on the user interfaces and on the integration of the whole package. Feedback will be taken into account in the final version. Deliverable is.

Fix the programming environment architecture (if still necessary). It should not be changed after these tests any more. Refine the user interfaces to the programming environment according to the requirements.

 PM 27-30:

Task 2.2, 2.3, 2.4: Fix the architecture design of all tools and their implementation into the programming environment architecture. Refine the user interfaces according to the demands. Fix bugs found during the 4th integration, testing and refinement phase. Propose a strategy to implement the full MPI standard.
 Define strategies for a final design where benchmarks and predictions did not match application performance. Deliverable is D2.6.

 PM 30-33:

For all: Write final code versions, perform final tests, prepare final integration of the programming environment into Globus.
 The final version of the programming environment is milestone M2.4 at the end of PM 33.

PM 33-36: Finishing phase

Demonstration and documentation
 on the final versions and on the testing of all WP2 software components. Deliverable for all partners is D2.7 (demo and report) at the end of PM 36.

	
	Workpackage description – Grid Application Programming Environment

	Workpackage number:
	2
	Start date or starting event:
	Project start

	Participant number:
	CO1

CYFRO
	CR8

FZK
	AC10

USTUTT
	AC11

TUM
	AC13

UCY
	CR16

CSIC
	AC18

UCS

	PM per participant:
	38 (19)
	13 (13)
	32
 (32)
	68
 (34)
	36 (22)
	20 (20)
	27 (17)

	Objectives

Specify, develop, integrate and test the tools that facilitate the development and tuning of parallel distributed, compute and data intensive, interactive applications on Grid.

	Description of work

Task 2.0 Co-ordination and management. Ensure the seamless integration of the interfaces and software components

Task 2.1 Tools requirements definition. Define the needs of all classes of users, review existing grid monitoring services and tools

Task 2.2 MPI code debugging and verification. Develop a tool that verifies the correctness of parallel, distributed Grid applications using the MPI paradigm

Task 2.3 Metrics and benchmarks. Develop and implement benchmarks representative for Project applications to estimate values of performance metrics

Task 2.4 Interactive and semiautomatic performance evaluation tools. Develop on-line tools to measure, evaluate and visualise the performance of Grid applications

Task 2.5 Integration, testing and refinement. Implement, test and refine all software components produced by this WP

	Deliverables

D2.1 (Report) Month 3: General requirements and detailed planning for programming environment

a) requirements on the hardware and software infrastructure for tools development and testing,

b) requirements of end user applications,

c) interfaces to Grid monitoring services and definition of a performance data model,

d) specification of performance metrics and benchmarks,

e) review of state-of-the-art and current related techniques,

f) definition of the architecture of the application programming environment

D2.2 (Report) Month 6: WP2 internal progress report

a) design of interfaces between tools,

b) design of MPI code verification tool,

c) design of metrics and benchmarks,

d) design of performance analysis tool

D2.3 (Prototypes and reports) Month 12: Demonstration and report on WP2 1st prototypes

a) test scenarios, evaluation suite,

b) documentation of design, implementation, and interfaces,

c) feedback from applications, new requirements

D2.4 (Report) Month 18: Internal progress report on WP2 software evaluation and testing

a) feedback from applications,

b) detailed integration plan

D2.5 (Prototypes and report) Month 24: Demonstration and report on WP2 2nd prototypes; documentation of design, implementation, and interfaces

D2.6 (Report) Month 30: Internal progress report on WP2 software evaluation and testing; feedback from applications

D2.7 (Demo and report) Month 36: Demonstration and documentation on the final versions and testing of all WP2 software components

	Milestones
 and expected result

 M2.1 Month 3: Definition of requirements

 M2.2 Month 12: 1st prototype – separate tools

 a) of Task 2.2 contains the subset of MPI calls required by the end user applications and is running on a local environment;

 b) of Task 2.3 contains the acquisition of low-level performance data; benchmarks are running on a local environment

 c) of Task 2.4 contains the instrumentation software and local monitoring modules; for homogeneous platform, with few examples of specialized properties automatically extracted, selected visualizers
M2.3 Month 24: 2nd prototype – concurrently running tools, no interactions

 a) of Task 2.2 is running on the Grid environment

 b) of Task 2.3 contains the extraction of high-level performance properties;

2nd prototype of benchmarks running on the Grid

 c) of Task 2.4 includes the upper layer of the monitoring system and the Grid-oriented tools; generic Grid implementation of automatic assessment of selected performance properties
M2.4 Month 33: Final version – fully integrated, interoperable set of tools; full functionality, including analytical model

 a) of Task 2.2 supports the full MPI 1.2 standard and is running on the Grid

 b) of Task 2.3 of performance analysis and benchmarks running on the Grid

 c) of Task 2.4 of performance monitoring tools for applications running on the Grid

(2.4)

Grid

(WP4)

Visualization

Analytical

model

Automatic

analysis

Benchmarks

(2.3)

MPI verification (2.2)

Performance

measurement

Grid monitoring

(3.3)

Application

source code

� Milestones are control points at which decisions are needed; for example concerning which of several technologies will be adopted as the basis for the next phase of the project.

�PAGE \# "'Página: '#'�'" ��We need a more extensive introduction regarding the impact of Globus architecture. Do we accept Globus as the initial strategy? In principle yes, then we should include the famous figure from globus.org with the layered structure.

It includes some of the WP2 elements. Are we along the same spirit? Hopefully yes...

�PAGE \# "'Seite: '#'�'" �� Holger: We don’t want to support Grid administrators.

�PAGE \# "'Página: '#'�'" �� I miss the word latency... and more references to the impact of network infraestructure

�PAGE \# "'Seite: '#'�'" �� Holger: This paragraph must be rewritten.

�PAGE \# "'Seite: '#'�'" �� Performance prediction is not mentioned in the previous text – include a few sentences.

�PAGE \# "'Seite: '#'�'" �� Explain the figure!

�PAGE \# "'Seite: '#'�'" �� The analytical model is not mentioned in the previous text – include a few sentences.

�PAGE \# "'Página: '#'�'" �� Regarding this figure:

	benchmarks should be related to applications (an example: typical NN algorithms adapted to the GRID and MPI-ized , yet in simple enough form that real application complexity doesnt hide the result of the benchmark)

	what is an analytical model? It is not evident from the previous paragraphs, while here it appears as a key concept. If so (and I agree on that) a more specific hint of how it could be should be given. A paragraph with references to other analytical models in similar situations is needed, and how the involved elements are expected to be modellized in an analytical way. The generality of this model is also an interesting question...

�PAGE \# "'Seite: '#'�'" �� Holger: I agree to Jesus. Shouldn’t there be a (dashed) line from application source code to benchmarks?

�PAGE \# "'Página: '#'�'" �� Again in the same line as previous comments, are we going to provide any alternative to Globus? 2.0 is not a complete success and we know it... should we refer even so to the status of the art here? Explore any other possibility?

�PAGE \# "'Seite: '#'�'" �� We would need a few words about the planned extended functionalities.

�PAGE \# "'Seite: '#'�'" �� Important: What are the plans to use MPICH and the Grid-enabled version MPICH-G2 from Globus? MPICH-G2 is only for MPI Standard V1.1 – how does this fit to the plans to support the full MPI 2.0 standard?

�PAGE \# "'Seite: '#'�'" �� Holger: Is this correct? To my understanding, different tools are necessary for debugging on the one hand, and run tme („performance”) analysis on the other hand – compare e.g. TotalView and Vampir from Pallas. – Or does our tool provide both?

�PAGE \# "'Seite: '#'�'" �� Holger: To the last three sentences: how can these activities be fit into our work plan below? Yet, it contains nothing about these plans.

�PAGE \# "'Seite: '#'�'" �� What is the starting point of this work? Is there something already existing? Or is it completely application dependend? If the latter is true – how can we finally provide a tool which is important for the „general Grid-community”?

�PAGE \# "'Seite: '#'�'" �� Three of the applications are parallel code versions, so there should be a word about the connection to the MPI-task.

�PAGE \# "'Página: '#'�'" ��This needs an example...how is the interaction with the real applications? We can provide that for an initial real simple part of the application (see previous task)..

More complicated, we are talking of intensive data-computation applications, what are the plans to split the data-access from the calculus part? I understand this is covered by task 2.4, but I dont see explicitely if this is at file level, object level or database level, and if the access method is direct, two tier or even three tier (replicated like). Again we need references to models or status of art.

�PAGE \# "'Seite: '#'�'" �� Pse give a reference.

�PAGE \# "'Seite: '#'�'" �� Pse give a reference.

�PAGE \# "'Seite: '#'�'" �� I put Jesus’ information about CSIC contribution here. However, where does this work go into our work plan?

�PAGE \# "'Página: '#'�'" ��Relating PM to tasks, as we said:

	2.1, 2.2 and 2.5 (14 PM) will go to a telecomm engineer contract for CSIC at Santander, likely Oscar Ponce. He can take responsabilities as he is backed up by the Computers Architecture Group of our University (contact Jose Angel Gregorio). This 14 PM will be complemented likely with an stay at CERN or in USA in same topics along the project life. He will be in very direct contact with task I.3 and task I.4 people also at CSIC in Santander.

	2.4 (6 PM) will go to a contract at RedIRIS for a person to work with Antonio Fuentes, who already has a permanent position. National grid projects will cover extensions of this other person contract in the future. The idea here is to have a very direct involvement from RedIRIS on what concerns performance issues related to the network.

�PAGE \# "'Seite: '#'�'" �� Holger: PM 12 could be too late for first prototype since time is necessary for integration, testing and refinement – see task 2.5 below. – to be discussed.

�PAGE \# "'Seite: '#'�'" �� Holger: Is it really? for all partners? some of them might want to use their own testbed for first developement?

�PAGE \# "'Seite: '#'�'" �� Holger: Since Task 2.4 contains a lot of modules (raw performance data collection, high level performance extraction, visualization, analytical model), this should be more specific here and in the other phases. It will help to understand the milestone M2.2.

�PAGE \# "'Seite: '#'�'" �� Holger: This phase might me too large and collides with the previous one.

�PAGE \# "'Seite: '#'�'" �� Holger: Very close collaboration with at least one of the applications already in this phase. FZK will support the installation of the HEP application on the FZK-testbed via 6PM in Task 1.3.

�PAGE \# "'Seite: '#'�'" ��Holger: It seems to me that such a testing phase should be implemented homogeneously over all Workpackages. I am afraid that we won’t get any feedback otherwise!

�PAGE \# "'Seite: '#'�'" �� Holger: This „user interface” might also be called „user environment”, „user desktop”,..., maybe somebody else has a good idea?

�PAGE \# "'Seite: '#'�'" �� Holger: Deliverable from the application developers? Own deliverable? - To be discussed!!

�PAGE \# "'Seite: '#'�'" ��Holger: This phase might me too large and collides with the previous one.

�PAGE \# "'Seite: '#'�'" ��Holger: It seems to me that such a testing phase should be implemented homogeneously over all Workpackages. I am afraid that we won’t get any feedback otherwise!

�PAGE \# "'Seite: '#'�'" �� Holger: To be defined !!

�PAGE \# "'Seite: '#'�'" �� Holger: I expect that our applications do not use the full standard. How to test this implementation?

�PAGE \# "'Seite: '#'�'" �� Holger: Into Globus, yes??

�PAGE \# "'Seite: '#'�'" �� Holger: a general question not to be answered now: What happens after the project? Will we all support further bug fixes and developments afterwards?

�PAGE \# "'Seite: '#'�'" �� Holger: I seemed to me that this is essential at the very beginning – to be discussed.

�PAGE \# "'Seite: '#'�'" �� Holger: I think the general architecture (refined Fig. WP2-1) should be fixed before everybody is going to design his/her own tool.

�PAGE \# "'Página: '#'�'" ��My comment: the deliverables and milestones are too general, and we need to establish connections with the applications: we cant wait for MPI to run on the GRID so long... it should be running at the end of the first year, and used in the first real testbed. Optimizing its use , and making it automatic will take then more time, that is ok.

The milestone for MPI use is mandatory at the end of the first year at latest, so this is a milestone. If it doesnt work ok, we could considere other approaches (?) .

1

