

Neutron Capture and Waste Transmutation

J.L. Tain

Instituto de Física Corpuscular

C.S.I.C - Univ. Valencia

Euro Summer School on Exotic Beams

Valencia, September 4-12, 2003

Layout of the lectures

- Transmutation of radioactive waste, ADS & Nuclear Data (The J. Benlliure)
- Neutron capture: theory and practice

Nuclear Waste, Transmutation, ADS & Nuclear Data

Nuclear power plants in the world:

J.L. Tain

Nuclear electricity generation:

Total:

- Installed: 359 GW(e)
- Produced: 2574 TWh (81.7% availability)

Share:

- World average: 17.3%
- EU average: 33.6%

Nuclear Share in Electricity Generation in 2002

Nuclear Fission Reactors

Most reactors in use are of Light Water Reactor type, either Boiling Water Reactors or Pressurized Water Reactors: Fuel: UO_2 , 2-4% ²³⁵U

Moderator-Coolant: H₂O

n-spectrum: thermal

Nuclear waste generation:

The loaded fuel is transformed during the energy generation process:

n + ²³⁵U **®** 3n + ¹³⁴I + ⁹⁹Y; **FISSION**

¹³⁴I(52min) ® ¹³⁴Xe.

Fission Product

⁹⁹Y(1.5s) [®] ⁹⁹Zr(2s) [®] ⁹⁹Nb(15s) [®] ⁹⁹Mo(66h) [®] ⁹⁹Tc(2.1×10⁵y)

n + ²³⁸U [®] ²³⁹U; **CAPTURE**

²³⁹U(23.5min) [®] ²³⁹Np(2.4d) [®] ²³⁹Pu(2.4×10⁴y)

TRans-Uranics

n + ²³⁹Pu ® ²⁴⁰Pu(6.5 ×10³y); n + ²⁴⁰Pu ® ²⁴¹Pu(14.4y) ® ²⁴¹Am(432y)

Minor Actinides

Actually a complex set of reactions will take place...

J.L. Tain

Partial reaction chain of the U-Pu cycle:

As a consequence an inventory of long lived highly radioactive isotopes builds up in a reactor \forall High Level Waste

A 1GWe (3GWth) Pressurized Water Reactor, producing 7TWh (80% avail.), burns 1 ton/year fissile material.

Loaded with 27.3 Ton of 3.5% enriched UO2 (954kg ²³⁵U) produces after a burn-up of 33GWd/ton (~1 year):

266 kg Pu (156kg ²³⁹Pu)
20 kg MA
946 kg FP (63kg long-lived FP)

and still contain 280kg ²³⁵U plus 111kg ²³⁶U

J.L. Tain

The hazard they represent can be measured by the evolution of their radio-toxicity:

J.L. Tain

One possible strategy to reduce the hazard of HLW in the long term is provided by transmutation (and/or incineration):

Actinides:

• Fission:

n + ²⁴³Am(7.4×10³y) ® FF's + n's

• Capture (+ Decay) + Fission:

n + ²⁴³Am @ ²⁴⁴Am(10.1h) @ ²⁴⁴Cm;

n + ²⁴⁴Cm(18.1y) ® FF's + n's

Long-lived FP:

• Capture:

n + ⁹⁹Tc(2.1×10⁵y) ® ¹⁰⁰Tc(15.8s) ® ¹⁰⁰Ru.

Is it possible to use the same reactions that create the waste to destroy it?

The key point is the separation of the different components from spent fuel (or partitioning)

Neutron induced reactions: strong energy dependence ...

J.L. Tain

...and isotope dependence:

Fission:

Therefore there are several possible (from physics point of view) solutions to the problem of "burning" HLW

Neutron Capture and Waste Transmutation

The scientific considerations, together with technological, military and political considerations has lead to the proposal of different schemes for the management of HLW.

A currently considered scheme is the double strata scenario:

(B)

Accelerator Driven Systems:

A nuclear reactor with a subcritical core which uses an accelerator to produce the neutrons necessary to maintain the chain reaction:

J.L. Tain

An ADS can also be utilized for energy production and if based on **Th-U fuel cycle**, will generate a reduced amount of TRU ...

J.L. Tain

Transmutation of TRU: new fuel compositions

J.L. Tain

Challenges in the field of ADS:

- Waste separation (or partitioning) methods
- Design of a high power accelerator, the spallation target and their coupling
- Study of reactor core behaviour and transmutation rates

Need for new or improved accuracy nuclear data:

- proton spallation reaction: n yield, residues (@ J. Benlliure)
- neutron induced reactions: fission, capture, (n,xn),... on actinides, fission products and structural materials

An example of poorly known reaction...

J.L. Tain

...another example of not so poorly known

J.L. Tain

OBJECTIVES of the "n_TOF-ND-ADS" EC Project

- Measure with a precision of few % the appropriate capture, fission for elements with relatively well known cross-sections (¹⁹⁷Au, ²⁴⁻²⁶Mg, ²⁰⁷Pb, ⁵⁶Fe, ²³⁵U and ²³⁸U) though their knowledge at high energies is still limited.
- Determine with a precision of few % the capture cross sections for the isotopes, relevant to the Th-cycle: ²³²Th, ²³¹Pa, ²³³U, ²³⁴U, ²³⁶U.
- Determine with a precision of few % the capture cross sections for the transuranic isotopes: ²³⁷Np, ²⁴⁰Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am, ²⁴⁶Cm.
- Determine with a precision of few % the capture cross sections of specific LLFF as ¹⁵¹Sm, ⁹⁹Tc, ¹²⁹I, ⁷⁹Se, ⁹³Zr and further on ^{205,206,207}Pb and ²⁰⁹Bi.
- Determine with a precision of few % the fission cross sections of: 232Th, 231Pa, 233-236U, 237Np, 241Am, 243Am, 244Cm and 245Cm.
- Precise measurement of (n,xn) cross sections using also activation techniques of: 233U, 232Th, 231Pa, 239Pu, 241Pu, 241Am, 243Am, 237Np and 207Pb.
- ✓ Measure the total cross sections of: ²³⁷Np, ¹²⁹I, ²³⁹Pu and ²⁴⁰Pu.
- Measure capture and fission cross sections at given neutron energies with mono-energetic beams of the isotopes: 282Th, 288U, 287Np, 241,248Am and 99Tc, 129I, 79Se, 151Sm, 187Cs.

Neutron radiative capture: Theory and practice

Neutron reactions at low energies

A neutron is absorbed to form a "compound nucleus":

n + ^AZ ® ^{A+1}Z*

which lives for a short time and decays:

A+1Z*
R n + AZ (elastic)

^{A+1}Z* ® ^{A1}Z₁* + ^{A2}Z₂* + xn (<u>fission</u>)

A+1Z* R n + AZ* (inelastic)

. . .

A+1Z*
A+1-xZ* + xn (n multiplication)

J.L. Tain

The CN formation probability is higher for certain neutron energies E_n corresponding to quasi-bound or virtual states: resonances

$$E_{R} = S_{n} + \frac{A}{A+1} E_{n}$$

Life-time « Energy-width: G

$$\mathbf{G} = \mathbf{G}_{n} + \mathbf{G}_{g} + \mathbf{G}_{f} + \dots$$
$$(\mathbf{S} = \mathbf{S}_{n} + \mathbf{S}_{g} + \mathbf{S}_{f} + \dots)$$

G~1 meV – 100 keV

Fig. 1.12 Energy-level diagram for compound nucleus formation. (From Ref. 12; used with permission of Wiley.)

Shape of neutron cross-section

1/v: thermal

G < D0, **G** > **D**E: resolved resonance region (RRR)

G < D0, **G** < **D**E: unresolved resonance region (URR)

 $\mathbf{G} > \mathbf{D}_0$: overlapping resonances

• In the RRR region, s is described using the R-Matrix formalism, in one of its usual approximations.

• In the URR region, average s are described by Hauser-Feshbach statistical theory

• It is a parametric approach since nuclear theory cannot predict the values.

Experimental information is strictly necessary.

Single Level Breit-Wigner Formalism: (n,g)

For ℓ -capture into an isolated spin J resonance at E_R :

J.L. Tain

Neutron Reaction Data

- From the analysis of experimental data on capture, total, fission, ... cross-sections, resonance parameters are obtained for every nucleus.
- All the information is combined, cross-checked for consistency, etc, in a process called "evaluation" until a recommended set of parameters is obtained.
- This information is published in a Evaluated Nuclear Data File using an accepted standard format (ENDF-6)
- There exist several files:
 - BROND-2.2 (1993, Russia)
 - CENDL-3 (2002, China)
 - ENDF/B-VI.8 (2002, US)
 - JEFF-3.0 (2002, NEA+EU)
 - JENDL-3.3 (2002, Japan)

Measurement of (n,g) cross-sections

Needs:

- sample of known mass and dimensions
- count the number of incident neutrons of energy E
- count the number of capture reactions

... but there are a number of experimental complications

Neutron Beams

• Need to span a huge energy range: 1meV – 100MeV

 Since neutrons cannot be accelerated, they have to be produced by nuclear reactions at certain energy and eventually decelerated by nuclear collisions (moderated)

- Energy determination:
 - kinematics of two-body reaction
 - mechanical selection of velocities ("chopper")
 - Time Of Flight measurement
- Sources:
 - Radioactive
 - Nuclear detonations
 - Reactor

 $E_n = \frac{1}{2} m_n \frac{L^2}{t^2}$

- Light-ion accelerator
- Electron LINACS
- Spallation

ForschungsZentrum Karlsruhe Van de Graaf

Geel Electron LINear Accelerator

J.L. Tain

... GELINA

CERN neutron Time Of Flight

Neutron Capture and Waste Transmutation

... n_TOF

• The characteristics of the spallation-moderation process and the collimators in use determine the neutron beam parameters: intensity-energy distribution, energy resolution and spatial distribution.

The statistical nature of the moderation process produces variations on the time that a neutron of a given energy exits the target assembly

... n_TOF

The collimation system determines the final number of neutrons arriving to the sample an its spatial distribution

... n_TOF

Neutron Intensity Monitoring:

- Reaction: n + ⁶Li ® t + a
- Si detectors

J.L. Tain

Techniques for radiative capture detection:

- Detection of the capture nucleus
 - Activation measurements

- Irradiation: A(n,gA+1
- A+1 radioactive with suitable T_{1/2}
- Measurement of characteristic gray of known I with Ge detector

- Detection of gray cascade
 - Total Absorption Spectrometers
 - Total Energy Detectors
 - Moxon-Rae Detectors
 - Pulse Height Weighting Technique

Define:

 $\mathbf{e}_{\mathbf{j}}$: total efficiency for gray of energy $\mathbf{E}_{\mathbf{j}}$ $\mathbf{E}_{\mathbf{C}}$ $\mathbf{e}_{\mathbf{j}}^{\mathbf{p}}$: peak efficiency for gray of energy $\mathbf{E}_{\mathbf{j}}$ Then:total efficiency for cascade: $\mathbf{e}_{\mathbf{C}} = 1 - \frac{\mathbf{p}_{\mathbf{j}}}{\mathbf{p}} (1 - \mathbf{e}_{\mathbf{j}})$ peak efficiency for cascade: $\mathbf{e}_{\mathbf{C}} = \prod_{i=1}^{m_{\mathbf{g}}} \mathbf{e}_{\mathbf{j}}^{\mathbf{p}}$

If $\mathbf{e}_{\mathbf{g}}^{\mathbf{e}} = 1$, "i $\mathbf{P}_{\mathbf{c}}^{\mathbf{e}} = \mathbf{e}_{\mathbf{c}}^{\mathbf{e}} = 1 \Rightarrow$ Total Absorption Spectrometer

If
$$\mathbf{e}_{\mathbf{g}} \ll \mathbf{1} \otimes \mathbf{e}_{\mathbf{g}} = \mathbf{k}\mathbf{E}_{\mathbf{g}}$$
, "i $\mathbf{P} \in \mathbf{e}_{\mathbf{C}} \bigotimes_{i=1}^{m_{\mathbf{g}}} = \mathbf{k} \bigotimes_{i=1}^{m_{\mathbf{g}}} = \mathbf{k} \mathbf{E}_{\mathbf{C}}$
 $\stackrel{i=1}{\longleftrightarrow}$ Total Energy Detector

n_TOF Total Absorption Calorimeter

- 40 BaF₂ crystals
- **DW**4**p** = 95%
- **DE @**6%

Neutron Capture and Waste Transmutation

n_TOF TAC

• The good energy resolution and detector granularity makes feasble the measurement of fisioning nuclei

(Monte Carlo simulation D. Cano - CIEMAT)

J.L. Tain

Total Energy Detectors

• Moxon-Rae type detectors:

The proportionality between efficiency and gray energy is obtained by construction:

(ge) converter + thin scintillator + photomultiplier

But ... proportionality only approximate (need corrections)

⇒Not much in use nowadays

Total Energy Detectors

• Pulse Height Weighting Technique:

The proportionality between efficiency and γ -ray energy is obtained by software manipulation of the detector response (Maier-Leibniz):

If R_{ij} represents the response distribution for a γ -ray of energy $E_{\gamma i}$:

$$\mathbf{S}_{ij}^{\mathsf{R}} = \mathbf{e}_{g}$$

it is possible to find a set of weighting factors W_i (dependent on energy deposited i) which fulfil the proportionality condition (setting k=1):

$$\int_{i_{max}}^{i_{max}} W_i R_{ij} = E_{gi}$$

for every E_{ai}

Detectors: C₆D₆ liquid scintillators → Advantage: low neutron sensitivity

Also detector dead material is important ...

2,5x10^{*} 2,5x10^{*} 2,0x10^{*} 2,0x10^{*} 1,5x10^{*} 5,0x10^{*} 5,0x10^{*} 0,0 10 10 100 100 100 100 1000

J.L. Tain

Acquiring the data: full train of detector pulses

- Digitizer: 8bit-500MS/s FADC + 8MB memory
- On-line "zero" suppression

- **D**t = 2ns
- E_n down to 0.6eV
- 0.5 MB/pulse/detector

Analysing the data

+ Yield: $Y_g(E) = N_g/N_n(E)$

Sample effects:

- Self-shielding: $Y_g(E) = (1 e^{-n_T \cdot s(E)}) \frac{s_g(E)}{s(E)}$
- Multiple scattering correction: elastic collision(-s) + capture

• Thermal (-Doppler) broadening

Beam effects:

Resolution Function

 $\mathbf{s_g}(\mathsf{E}) = \frac{\mathsf{N_g}}{\mathsf{n_T} \cdot \mathsf{N_n}(\mathsf{E})}$

Use a R-Matrix code as SAMMY to fit the data and extract the parameters: $E_R, G_g, G_n, ...$

• Pb-Bi isotopes: termination-point of s-process & ADS target-coolant

Bibliography:

- Nuclear Engineering, R.A. Knief, Taylor & Francis Ltd., 1992
- Hybrid Nuclear Reactors, H. Nifenecker et al., Prog. Part. Nucl. Phys. 43 (1999) 683
- http://www.radwaste.org
- The Elements of Nuclear Interaction Theory, A. Foderaro, MIT Press, 1971
- Neutron Sources for Basic Physics and Applications, Ed. S. Cierjacks, NEA/OECD, Pergamon Press, 1983
- Neutron Radiative Capture, Ed. R.E. Chrien et al., NEA/OECD, Pergamon Press, 1984
- Evaluation and Analysis of Nuclear Resonance Data, F.H. Froehner, NEA-OECD, JEFF Report 18, 2000