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Layout of the lectures

• Transmutation of radioactive waste, ADS
& Nuclear Data (F J. Benlliure)

• Neutron capture: theory and practice



Nuclear Waste, Transmutation,
ADS

& Nuclear Data
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Nuclear power plants in the world:

•  441 plants in operation,
32 under construction

   http://www.iaea.org

UE Total: 141
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Nuclear electricity generation:

Total:

• Installed: 359 GW(e)

• Produced: 2574 TWh
(81.7% availability)

Share:

• World average: 17.3%

• EU average: 33.6%
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Nuclear Fission Reactors

Most reactors in use are of
Light Water Reactor type, either
Boiling Water Reactors or
Pressurized Water Reactors:

Fuel: UO2 ,  2- 4% 235U

Moderator-Coolant: H2O

n-spectrum: thermal

PWRn

235U

fission
fragments

n

n

235U

CHAIN REACTION

Reactors operate at CRITICAL POINT
(neutron balance) which must be kept:
REACTOR CONTROL
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Nuclear waste generation:

The loaded fuel is transformed during the energy generation process:

n + 235U  →→  3n + 134I + 99Y;

134I(52min) →→  134Xe.

99Y(1.5s)  →→  99Zr(2s) →→ 99Nb(15s) →→ 99Mo(66h) →→ 99Tc(2.1×105y)

n + 238U →→ 239U;

239U(23.5min) →→ 239Np(2.4d) →→ 239Pu(2.4×104y)

Actually a complex set of reactions will take place…

FFission ission PProductroduct

TRTRans-ans-UUranicsranics

n + 239Pu →→ 240Pu(6.5 ×103y);  n + 240Pu →→ 241Pu(14.4y) →→  241Am(432y)

Minor Actinides

FISSION

CAPTURE
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Partial reaction chain of the U-Pu cycle:



J.L. Tain Neutron Capture and Waste Transmutation 9

As a consequence an inventory of long lived highly radioactive
isotopes builds up in a reactor ∀  High Level Waste

266 kg Pu (156kg 239Pu)

  20 kg MA

946 kg FP ( 63kg long-lived FP)
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0,062%
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A 1GWe (3GWth) Pressurized Water Reactor, producing 7TWh (80% avail.),
burns 1 ton/year fissile material.

Loaded with 27.3 Ton of 3.5% enriched UO2 (954kg 235U) produces after a
burn-up of 33GWd/ton (~1 year):

and still contain 280kg 235U plus
111kg 236U
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The hazard they represent can be measured by the evolution of
their radio-toxicity:
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One possible strategy to reduce the hazard of HLW in the long term is
provided by transmutation (and/or incineration):

Actinides:

• Fission:

n + 243Am(7.4×103y) →→ FF’s + n’s

• Capture (+ Decay) + Fission:

n + 243Am →→ 244Am(10.1h) →→ 244Cm;

n + 244Cm(18.1y) →→ FF’s + n’s

Long-lived FP:

• Capture:

n + 99Tc(2.1×105y) →→ 100Tc(15.8s) →→ 100Ru.

Is it possible to use
the same reactions
that create the waste
to destroy it?

The key point is the
separation of the
different components
from spent fuel (or
partitioning)
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Neutron induced reactions:  strong energy dependence …

235U
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…and isotope dependence:

Fission: Capture:

Therefore there are several possible (from physics point of view)
solutions to the problem of “burning” HLW
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For example, the burning of TRU is
favoured by “fast” n spectrum ...

In any case a
surplus of n
are needed to
transmute …
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The scientific considerations,
together with technological,
military and political
considerations has lead to the
proposal of different schemes
for the management of HLW.

A currently considered
scheme is the double
strata scenario: FF
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Accelerator Driven Systems:

A nuclear reactor with a subcritical core which uses an accelerator to
produce the neutrons necessary to maintain the chain reaction:

For example: a very
high intensity ~1 GeV
proton accelerator
producing neutrons
by spallation on a
molten Pb or Pb/Bi
target which acts also
as the coolant, with
solid actinide fuel.

      Advantage: less
dependence on fuel
composition
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An ADS can also be utilized for energy production and if based on
Th-U fuel cycle, will generate a reduced amount of TRU ...

ThU-cycle

UPu-cycle

fertile

fissile

    Energy Amplifier
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Present in nuclear wastes Thermal and Fast Fission
Medium Half-Life (<100 años) Fast Fissión
Short Half-Life (< 30 dias) Low Fission Cross Section
High A actinides

Av. Flux Intensity (n/cm2/s)
3,00E+15

Cm242 Cm243 Cm244 Cm245 Cm246 Cm247
Second 1 Time Unit α / SF α / EC/ SF α / SF α / SF α / SF α
Hour 3600 31570560 100 / 6.2E-6 9 9 . 7 / 0 . 2 9 /  5 . 3 E - 9 100 / 1.35E-4 100 / 6.1E-7 100 / 3E-2 100

Day 86400 0,446 29,068 18,080 8490,695 4724,813 15582935,494

Year 3E+07 18,130 2,798 6,257 2,922 16,459

64,7% 8,0% 65,2% 11,4% 44,6%  

Am241 Am242 Am242m Am243 Am244
α / SF β− / EC IT / α / SF α / SF β− / EC

100 / 3.77E-10 82.7 / 17.3 9 9 . 5 / 0 . 4 6 / 1 E - 3 100 / 3.7E-9 100 / 4E-2

432,225 0,002 140,846 7361,922 0,001

3,652 17,792 1,844 4,892  

44% : 44% 13,1% 8,4% 87,0%  

Pu238 Pu239 Pu240 Pu241 Pu242 Pu243
α / SF α / SF α / SF β− / α α / SF β−

100 / 1.9E-7 100 / 3.1E-10 100 / 5.7E-6 100 / 2.45E-3 100 / 5.5E-4 100

87,644 24083,608 6556,805 14,334 372891,707 0,001

4,220 3,477 9,033 2,688 11,354 6,775

37,5% 19,4% 54,8% 14,2% 61,1% 30,6%

Np237 Np238 Np239 Pu239 Symbol & Mass
α / SF β− β− α / SF Decay modes

100 / 2E-12 100 100 100 / 3.1E-10 Branching ratios
2137656,095 0,006 0,006 24083,608 Half-Life

4,332 15,928  3,477 Absorption-Half-Life
81,5% 13,1%  19,4% (n,γ)/absoption

TRU Transmutation Scheme
Fast Spectrum

Ln(2)/(σφ)

Transmutation of TRU: set of reactions
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Transmutation of TRU: new fuel compositions
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Challenges in the field of ADS:

• Waste separation (or partitioning) methods

• Design of a high power accelerator, the spallation target
and their coupling

• Study of reactor core behaviour and transmutation rates

Need for new or improved accuracy nuclear data:

• proton spallation reaction: n yield, residues (FF J. Benlliure)

• neutron induced reactions: fission, capture, (n,xn),… on
actinides, fission products and structural materials
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An example of poorly known reaction…
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…another example of not so poorly known
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Neutron radiative capture:
Theory and practice
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Neutron reactions at low energies

A neutron is absorbed to form a “compound
nucleus”:

n + AZ →→ A+1Z*

which lives for a short time and decays:

A+1Z* →→ n + AZ  (elasticelastic)

A+1Z* →→ n + AZ*  (inelasticinelastic)

A+1Z* →→ A+1Z*’ + γγ  (radiativeradiative capture capture)

A+1Z* →→ A1Z1* + A2Z2* + xn (fissionfission)

A+1Z* →→ A+1-xZ* + xn (n multiplicationn multiplication)

…

Other contributions:
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The CN formation probability is higher for certain neutron energies En
corresponding to quasi-bound or virtual states: resonances

ER = Sn +            En Sn : neutron separation energy of CN ( <10MeV )
→→ level separation D0 ~ 1 eV – 100 keV

A

A+1

ΓΓ = ΓΓn + ΓΓγγ + ΓΓf + …

(σσ = σσn + σσγγ + σσf + ...)

Life-time ↔↔ Energy-width: ΓΓ

ΓΓ ~ 1 meV – 100 keV
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log En

1/v resolved unresolved overlapping

lo
g

 σσ

resolution

ΓΓ > D0 : overlapping resonances

ΓΓ < D0,  ΓΓ > ∆∆E: resolved
resonance region (RRR)

ΓΓ < D0,  ΓΓ < ∆∆E: unresolved
resonance region (URR)

1/v: thermal

Shape of neutron cross-section

• In the RRR region,  σσ is described using the R-Matrix formalism, in
one of its usual approximations.

• In the URR region,  average σσ  are described by Hauser-Feshbach
statistical theory

• It is a parametric approach since nuclear theory cannot predict the
values.

• Experimental information is strictly necessary.



J.L. Tain Neutron Capture and Waste Transmutation 28

Single Level Breit-Wigner Formalism: (n,γγ)

σσγγ(E) = ππDD2 gJ

ΓΓn ΓΓγγ

(E-ER’)2 + ¼ΓΓ2

For ll-capture into an isolated spin J resonance at ER:

DD = hh/ √√ 2µµE (neutron wavelength)

gJ =
2J + 1

2(2I + 1)

(spin stat. factor;

|I - ll ± ½| ≤≤ J ≤≤ |I - ll + ½| )

ΓΓ(E) = ΓΓn(E) + ΓγΓγ + …;   (FWHM)

ΓΓn(E) = √√ E/ER  ΓΓn(ER) ,  ll=0

… and the channel radius Rc

n+197Au, ll=0, J=2

ER = 4.9 eV

ΓΓn = 15.2 meV

ΓΓγγ = 122.5 meV

En (eV)

σσ γγ (
b

ar
n

)
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SLBW formalism: elastic and capture cross sections

P0 = ΦΦ0 = k RC = ρρ,   S0 = 0

Pll = ρρ2 Pll-1 / ((ll- Sll-1 )2 + Pll-1
2)

Sll = ρρ2(ll-Sll-1) / ((ll- Sll-1 )2 + Pll-1
2) - ll

ΦΦll = ΦΦll-1 – tan(Pll-1 / (ll -Sll-1))

ER’ = ER +                         ΓΓn(ER)
Sll(ER) - Sll(E)

2Pll(ER)

ξξ =     (E-ER’)
2

ΓΓ
ΓΓn =            ΓΓn(ER)

Pll(E)

Pll(ER)

ΓΓ

ΓΓγγ ΓΓn

1 + ξξ2

1σσγγ  =         gJ
4ππ

k2
k = √√2µµE / hh

σσ =          gJ [ sin2 ΦΦll +                   cos 2ΦΦll +                    sin 2ΦΦll ]
ΓΓn

ΓΓ 1 + ξξ2

1 ΓΓn

ΓΓ

ξξ

1 + ξξ2

4ππ

k2

gJ =
2J + 1

2(2I + 1)

E
L
A
S
T
I
C
C
A
P
T
U
R
E

potential resonant interference

(n,γγ)

(n,n)

238U
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• From the analysis of experimental data on capture, total, fission, …
cross-sections, resonance parameters are obtained for every nucleus.

• All the information is combined, cross-checked for consistency, etc, in
a process called “evaluation” until a recommended set of parameters is
obtained.

• This information is published in a Evaluated Nuclear Data File using an
accepted standard format (ENDF-6)

• There exist several files:

• BROND-2.2 (1993, Russia)

• CENDL-3 (2002, China)

• ENDF/B-VI.8 (2002, US)

• JEFF-3.0 (2002, NEA+EU)

• JENDL-3.3 (2002, Japan)

Neutron Reaction Data
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Measurement of (n,γγ) cross-sections

σσγγ(E) =
Number of capture reactions

Number of target nucleus per unit area x Number of neutrons of energy E

Nγγ

nT [at/barn]·Nn(E)
σσγγ(E) = Nn nT Nγγ

Needs:

• sample of known mass and dimensions

• count the number of incident neutrons
of energy E

• count the number of capture reactions

… but there are a
number of
experimental
complications
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Neutron Beams

• Need to span a huge energy range: 1meV – 100MeV

• Since neutrons cannot be accelerated, they have to be produced
by nuclear reactions at certain energy and eventually decelerated
by nuclear collisions (moderated)

• Energy determination:

• kinematics of two-body reaction

• mechanical selection of velocities (“chopper”)

• Time Of Flight measurement

• Sources:

• Radioactive

• Nuclear detonations

• Reactor

• Light-ion accelerator

• Electron LINACS

• Spallation

En = ½ mn
L2

t2
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ForschungsZentrum Karlsruhe Van de Graaf

• 7Li(p,n)7Be, Q= -1.644MeV

• Ep ~ 2MeV →→ En ~ 5-200keV

• Rate: 250kHz,  ∆∆t = 0.7ns

30keV > Thresh.

7Li-target
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Geel Electron LINear Accelerator

• (γγ,n), (γγ,f) on U (bremsstrahlung)

• Ee ~ 100MeV, Ie ~ 10-100µµA

• Rate: 100-800Hz, ∆∆t ~ 0.6-15ns
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… GELINA

U-TARGET &
H2O MODER.

NEUTRON SPECTRA

H2O MODERATOR

n yield vs. Ee

1 MeV

1 eV

H2O Moder.

Bare U-target

Polyethylene Moder.
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CERN neutron Time Of Flight

n_TOF

• p-spallation on Pb target

• Ep = 20GeV, Ip = 7x1012 ppp

• Rate:  2.4s-1 , ∆∆t = 14ns
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PROTON BEAM LINE

p current monitor

p-intensity
pickup

Entrance to
the target

Water cooled
Pb target

n beam tube

shielding

NEUTRON BEAM LINE

shielding

n_TOF
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Bending magnet

2nd collimator

shielding

EXPERIMENTAL AREA

n monitor

Sample changer

BEAM DUMP

n monitor

… n_TOF
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• The characteristics of the spallation-moderation process and the
collimators in use determine the neutron beam parameters: intensity-
energy distribution, energy resolution and spatial distribution.

TARGET:

80x80x60 cm3 Pb + 5cm H2O

SPALLATION PROCESS: ~600 n/p

MODERATION:

ξ = 〈〈 ln(E i/Ef) 〉〉  ≅≅ 1+            ln

( ξξ(H)=1,   ξξ(Pb)=0.01 )

A-1

A+1

(A-1)2

2A

Intensity distribution

… n_TOF
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The statistical nature of the moderation process produces variations
on the time that a neutron of a given energy exits the target assembly

Resolution
Function

… also important:
time spread of beam

RF

∆∆t beam

Beam energy-
resolution

time vs. energy

RF @ 5eV

RF @ 180keV

∆∆t2

t2

∆∆L2

L2

∆∆En
2

En
2

= 2          + 2

… n_TOF
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The collimation system determines the final number of neutrons
arriving to the sample an its spatial distribution

Neutrons on sample

10-5

Beam profile

4cm ∅∅

… n_TOF
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Neutron Intensity Monitoring:
• Reaction: n + 6Li →→ t + αα

• Si detectors

Si

Si

Si

Si 200µµg/cm2 on
3µµm Mylar

… n_TOF
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Techniques for radiative capture detection:

• Detection of the capture nucleus

• Activation measurements

• Detection of γγ-ray cascade

• Total Absorption Spectrometers

• Total Energy Detectors

• Moxon-Rae Detectors

• Pulse Height Weighting Technique

n

• Irradiation:  A(n,γγ)A+1

• A+1 radioactive with suitable T1/2

• Measurement of characteristic
γγ-ray of known I γγ with Ge detector
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εεγγi : total efficiency for γγ-ray of energy Eγγi

εεp
γγi : peak efficiency for γγ-ray of energy Eγγi

Define:

Then:

εεC = 1 - ΠΠ (1 - εεγγi)
i=1

mγγ

total efficiency for cascade:

εεp
C = ΠΠ εεp

γγi
i=1

mγγ

peak efficiency for cascade:

If εεp
γγi = 1, ∀∀i  ⇒⇒   εεp

C = εεC = 1       Total Absorption Spectrometer

     Total Energy Detector

If εεγγi « 1   &  εεγγi = kEγγi , ∀∀i  ⇒⇒  εεC ≅≅ ΣΣ εεγγi = k ΣΣ Eγγi = k EC
i=1

mγγ

i=1

mγγ

Eγγ1

Eγγ2

Eγγ3

EC
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n_TOF Total Absorption Calorimeter

• 40 BaF2 crystals

• ∆Ω∆Ω/4ππ = 95%

• ∆∆E ≅≅ 6%
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(from Karlsruhe 4ππ BaF2 detector)

BaF2(n,γγ) contamination

εε = 95% BACKGROUND REDUCTION

Deposited energy



J.L. Tain Neutron Capture and Waste Transmutation 47

245Cm(n,γγ)

Deposited Energy

245Cm(n,γγ)

Multiplicity

• The good energy resolution and detector granularity makes
feasble the measurement of fisioning nuclei

n_TOF TAC

(Monte Carlo simulation D. Cano - CIEMAT)
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Total Energy Detectors

• Moxon-Rae type detectors:

The proportionality between efficiency and γγ-ray energy
is obtained by construction:

(γγ,e-) converter + thin scintillator + photomultiplier

γγ e-

Maximum
depth of
escaping
electrons
increases
with Eγγ …

But … proportionality only
approximate (need corrections)

    Not much in use nowadays

Bi-converter

C-converter

Mo-converter

Bi/C-converter

εε γγ
 / 

E
γγ

Eγγ
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• Pulse Height Weighting Technique:

Total Energy Detectors

The proportionality between efficiency and γ-ray energy is obtained by
software manipulation of the detector response (Maier-Leibniz):

If Rij represents the response distribution for
a γ-ray of energy Eγj:

ΣΣ Rij = εε γγj
i=1

imax

ΣΣ Wi Rij = Eγγj
i=1

imax

it is possible to find a set of weighting factors
Wi (dependent on energy deposited i) which
fulfil the proportionality condition (setting k=1):

for every Eγj

Rij

E γγ = 9MeV

E γγ = 2MeV

Wi
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How accurate can be the
weighting function?

     Using GEANT Monte Carlo
generated responses with full
description of setup (including
sample): σσσγσγ ≤≤ 2%

Fix “experimental” WF

sample
dependent←←

1.15keV @56Fe

1.15keV @56Fe
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Detectors: C6D6 liquid scintillators

   Advantage: low neutron sensitivity

Also detector dead material is
important …

Optimized
BICRON

HOME MADE:

• C-fibre cell

• No cell window

• No PMT housing

… and surrounding materials

εεγγ = 3-5%
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Acquiring the data:  full train of detector pulses

• Digitizer: 8bit-500MS/s  FADC + 8MB memory

• On-line “zero” suppression

TOF & EC6D6

from pulse-shape fit

of PMT anode signal

• ∆∆t = 2ns

• En down to 0.6eV

• 0.5 MB/pulse/detector
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  ++  Yield:   Yγγ (E) = Nγγ/Nn(E)

Nγγ

nT ·Nn(E)
σσγγ(E) =

–nT ·σσ(E)
• Self-shielding:   Yγγ (E) = (1 - e           )

σσγγ(E)

σσ(E)

• Multiple scattering correction:
elastic collision(-s) + capture

• Thermal (-Doppler) broadening

Sample effects:

Beam effects:

Analysing the data

• Resolution Function

shielded

Single-
scattering

T = 300K

58Ni(n,γγ)

ER =136.6keV
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Use a R-Matrix code as SAMMY to fit the data and extract the parameters:
ER, ΓΓγγ ,  ΓΓn, …

197Au(n,γγ)

ER= 4.9eV

56Fe(n,γγ)

ER= 1.15keV

RF

T broad. single-
scattering

double
scattering

Y  =
ΓΓγγ

ΓΓ
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Slow neutron capture nucleosynthesis (s-process)

• Pb-Bi isotopes: termination-point of s-process & ADS target-coolant
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800 eV

2.3
keV

3 keV
4.4
keV

5 keV

12 keV

20 keV

209Bi(n,γ)

208Pb (n,γ)

354
keV

527
keV

17820 eV

2310 eV

5112 eV

12098 eV

15510 eV

802 eV

l = 0

9760 eV

4456 eV

6286 eV

6524 eV

9708 eV

3348 eV

l = 1

17440 eV
17820 eV

20860 eV

21050 eV

209Bi(n,γγ)
Preliminary data
on Pb-Bi capture

n_TOF σσγγ
lower for ll=0
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