Direct detection of particle dark matter: where do we stand, where are we going?

Physics Colloquium IFIC, Valencia University April 26, 2012

Laura Baudis University of Zurich

Matter and Energy Content of our Universe

The Cosmic Food Chain

Matter 1/3

Energy

2/3

ordinary matter: 4% 0.4% stars, hot/cold gas, people 3.6% intergalactic gas

dark matter: 23%

dark energy: 73%

Dark matter in galaxies

- Observations of the movement of stars and interstellar gas at large radii
- The rotation curves are flat, as far out as one can measure
- 10 x more matter as directly visible via radiation

Dark matter in galaxies

Visible galactic disk

Dark matter halo

What could the dark halo be made off?

The standard model of particle physics

- Very successful theory, describing all observations up to $\approx 1 \text{ TeV}$
- However, only an effective low-energy theory, we expect new particles and phenomena as we probe higher and higher energies
- None of the standard model particles is a good dark matter candidate!

Weakly Interacting Massive Particles

• **One good idea:** WIMPs; in thermal equilibrium in the early Universe

$$\chi + \bar{\chi} \leftrightarrow X + X$$

- Decouple from the rest of the particles when M >> T ("cold")
- Their relic density can account for the dark matter if the annihilation cross section is weak (~ picobarn range)

$$\Omega_{\chi} h^2 \simeq 3 \times 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1} \frac{1}{\langle \sigma_A v \rangle}$$

 Such particles are predicted to exist in most Beyond-Standard-Model theories (neutralino, lightest Kaluza-Klein particle, etc)

The WIMP Hypothesis is Testable

We expect to learn a lot from direct detectors, from indirect detectors and from accelerators!

The WIMP Hypothesis is Testable in the Laboratory

- 10⁵ per second through your thumb without being noticed
- 10¹⁵ through a human body each day: only < 10 will interact, the rest is passing unaffected
- If their interaction is so week, how can we possibly detect them?

Direct Detection of WIMPs: Principle

Goodman and Witten, PRD31, 1985

ER

- Elastic collisions with nuclei in ultra-low background detectors
- Energy of recoiling nucleus: few tens of keV

 $E_{R} = \frac{q^{2}}{2m_{N}} = \frac{\mu^{2}v^{2}}{m_{N}}(1 - \cos\theta)$

• q = momentum transfer

- µ = reduced WIMP-nucleus mass
- v = mean WIMP-velocity relative to the target
- θ = scattering angle in the center of mass system

WIMP

WIMP

Expected Rates in a Terrestrial Detector

Astrophysics For now strongly simplified: $R \sim N \frac{\rho_{\chi}}{m_{\gamma}} \sigma_{\chi N} \langle v \rangle$ **Particle physics** N = number of target nuclei in a detector ρ_{χ} = local density of the dark matter in the Milky Way <v> = mean WIMP velocity relative to the target $m_{y} = WIMP-mass$

 σ_{xN} =cross section for WIMP-nucleus elastic scattering

Local Density of WIMPs in the Milky Way $\rho_{halo} = 0.1 - 0.7 \text{GeV cm}^{-3}$ $\rho_{disk} = 2 - 7 \text{GeV cm}^{-3}$

 $0.3 \text{ GeV cm}^{-3} \Rightarrow \sim 3000 \text{ WIMPs m}^{-3}$ $(M_W = 100 \text{ GeV})$

WIMP flux on Earth: ~ 10⁵ cm⁻²s⁻¹ (100 GeV WIMP)

Even though WIMPs are weakly interacting, this flux is large enough so that a potentially measurable fraction will elastically scatter off nuclei

(J. Diemand et all, Nature 454, 2008, 735-738)

The Local Dark Matter Distribution

- The dark matter distribution around the solar position seems very smooth, substructures are far away from the Sun
- The velocity distribution of dark matter at the solar circles is smooth, close to Maxwellian

Aq-A-1

300

450

600

Expected Scattering Cross Sections

- A general WIMP candidate: fermion (Dirac or Majorana), boson or scalar particle
- The most general, Lorentz invariant Lagrangian has 5 types of interactions
- In the extreme NR limit relevant for galactic WIMPs (10⁻³ c) the interactions leading to WIMP-nuclei scattering are classified as (Goodman and Witten, 1985):
 - scalar interactions (WIMPs couple to nuclear mass, from the scalar, vector, tensor part of L)

$$\sigma_{SI} \sim \frac{\mu^2}{m_\chi^2} \left[Z f_p + (A - Z) f_n \right]^2$$

f_p, f_n: effective couplings to protons and neutrons

spin-spin interactions (WIMPs couple to the nuclear spin, from the axial part of L)

$$\sigma_{SD} \sim \mu^2 \frac{J_N + 1}{J_N} \left(a_p \langle S_p \rangle + a_n \langle S_n \rangle \right)^2$$

a_p, a_n: effective couplings to protons and neutrons

$$\langle S_p \rangle$$
 and $\langle S_n \rangle$

expectation values of the p and n spins within the nucleus

WIMP Mass and Cross Section

- Example for recent predictions from supersymmetry:
 - scattering cross sections on nucleons down to ~ 10⁻⁴⁸ cm²(10⁻¹² pb)

WIMP Mass and Cross Section

- Example for recent predictions from supersymmetry:
 - scattering cross sections on nucleons down to ~ 10⁻⁴⁸ cm²(10⁻¹² pb)

Expected Interaction Rates

Differential recoil rate: integrate over WIMP velocity distribution

(Standard halo model with $\rho = 0.3 \text{ GeV/cm}^3$)

Different target nuclei

Vanilla Exclusion Plot

 Assume we have a detector of mass M taking data for a period of time t:

The total exposure will be ε = M × t [kg days]; nuclear recoils are detected above an energy threshold E_{th}, up to a chosen energy E_{max}. The expected number of events n_{exp} will be:

$$n_{exp} = \varepsilon \int_{E_{th}}^{E_{max}} \frac{dR}{dE_R} dE_R$$

 \Rightarrow cross sections for which $n_{exp} \geq 1$ can be probed by the experiment

• If ZERO events are observed, Poisson statistics implies that $n_{exp} \le 2.3$ at 90% CL

=> exclusion plot in the cross section versus mass parameter space (assuming known local density)

Laura Bauc

The Challenge

To observe a signal which is:

- very small (few keV)
- extremely rare (1 per ton per year?)
- embedded in a background that is millions of times higher

Why is it challenging?

- Detection of low-energy particles done!
 ⇒e.g. micro-calorimetry with phonon readout
- Rare event searches with ultra-low backgrounds done!
 ⇒e.g SuperK, Borexino, SNO, etc
- But: can we do both?

20

Baudis, University of Zurich

Physics Colloquium, Oxford Universit

The background noise

Electromagnetic radiation

- natural radioactivity in detector and shield materials
- airborne²²²Rn
- cosmic activation of materials during storage/ transportation at the Earth's surface

Neutrons

- radiogenic from (α, n) and fission reactions
- cosmogenic from spallation of nuclei in materials by cosmic muons
- Alpha particles
 - ²¹⁰Pb decays at the detector surfaces
 - nuclear recoils from the Rn daughters

Cosmic rays: operate deep underground

Direct Dark Matter Detection Techniques

Phonons: Cryogenic Experiments at T~ mK

Detect a temperature increase after a particle interacts in an absorber

T-sensors: superconductor thermistors or superconducting transition sensors

Phonons: Cryogenic Experiments at T~ mK

- Advantages: high sensitivity to nuclear recoils (measure the full energy in the phonon channel); good energy resolution, low energy threshold (keV to sub-keV)
- Ratio of light/phonon or charge/phonon:
 - nuclear versus electronic recoils discrimination -> separation of S and B

Background region

Expected signal region

Phonons: The CDMS Experiment

- 30 Ge/Si detectors operated at 40 mK in a low-background shield at the Soudan mine in northern Minnesota
- Neutron background due to muons: ~ 1 kg⁻¹ year⁻¹

Entrance to the Soudan mine

CDMS cryostat

Phonons: The CDMS Experiment

Final WIMP search runs - 191 kg-d: 2 events passing all cuts

- Expected background: 0.8 ± 0.1 (stat) ± 0.2 (syst) events
- Probability to observe two or more events is 23%

Phonons: CRESST and EDELWEISS

EDELWEISS at Modane

- Ge detectors at 18 mK
- Detect phonons and charge

CRESST at LNGS

- CaWO₃ detectors at 10 mK
- Detect phonons and light

Phonons: CRESST and EDELWEISS

EDELWEISS at Modane

CRESST at LNGS

- Ge detectors at 18 mK
- 5 events (427 kg-day)
- 3 expected from backgrounds
- operates new, 8 x 800 g crystals with improved background rejection

- CaWO₃ detectors at 10 mK
- 67 events observed (730 kg-day)
- ~ 37 expected from backgrounds
- room for a signal?
- focus on reducing backgrounds

Ω

Recent CRESST results

Talk at TAUP 2011, and arXiv:1109.0702

PHYSICAL REVIEW D 85, 021301(R) (2012)

Extending the CRESST-II commissioning run limits to lower masses

47.9 kg-days exposure in CaWO₄

	M1	M2
e/γ events	8.00 ± 0.05	8.00 ± 0.05
α events	$11.5^{+2.6}_{-2.3}$	$11.2^{+2.5}_{-2.3}$
neutron events	$7.5_{-5.5}^{+6.3}$	$9.7^{+6.1}_{-5.1}$
Pb recoils	$15.0^{+5.2}_{-5.1}$	$18.7^{+4.9}_{-4.7}$
signal events	$29.4_{-7.7}^{+8.6}$	$24.2_{-7.2}^{+8.1}$
m_{χ} [GeV]	25.3	11.6
$\sigma_{_{ m WN}}[{ m pb}]$	$1.6 \cdot 10^{-6}$	$3.7 \cdot 10^{-5}$

Future Cryogenic Dark Matter Projects

- US/Canada: SuperCDMS (15 kg to 1.5 tons Ge experiment)
- Larger Ge detectors (650g) with improved readout
- To be located at SnoLab

- Europe: EURECA (100 kg to 1.0 ton cryogenic experiment)
- Multi-target approach;
 EDELWEISS + CRESST
- To be located at the ULISSE Lab (Modane extension) in France

Light: Noble Liquids TPCs

- Large, scalable, homogeneous and self-shielding detectors
- Prompt (S1) light signal after interaction in the active volume
- Charge is drifted, extracted into the gas phase and detected as proportional light (S2)
 - charge/light depends on dE/dx
 good 3D position resolution

=> particle identification=> fiducial volume cuts+ self-shielding

Ar (A = 40); λ = 128 nm Xe (A=131); λ = 178 nm

The XENON Experiment

XENON100

10 m

In conventional shield at LNGS 2008 - 2012; taking science data

In water Cerenkov shield at LNGS 2011-2015; construction to start in second half of 2012

The Gran Sasso National Laboratory

The XENON100 Detector

- 161 kg of ultra-pure liquid xenon (LXe), 62 kg in the active target volume
- 30 cm drift gap TPC with two PMT arrays (242 PMTs) to detect the prompt and proportional scintillation signals

Example of a 9 keV Nuclear Recoil Event

 4 photoelectrons detected from about 100 S1 photons 645 photoelectrons detected from 32 ionization electrons which generated about 3000 S2 photons

Example of a 9 keV Nuclear Recoil Event

Top PMT array

Bottom PMT array

light pattern in top array => x-y position of an event

XENON100 Backgrounds: Data and Predictions

- Data versus Monte Carlo simulations (no MC tuning, input from screening values for U/Th/K/Co/Cs etc of all detector components); no active liquid xenon veto cut
- Background is 100 times lower than in XENON10 (the previous XENON phase)

XENON100 collaboration, arXiv:1101.3866, PRD 83, 082001 (2011)

XENON100: Recent Results

Exposure: ~ 1471 kg-days (48 kg fiducial mass); January - June 2010

Fiducial mass region: 48 kg of liquid xenon 900 events in total Signal region: 3 events are observed

 1.8 ± 0.6 gamma leakage events expected $0.1 \pm 0.08 \pm 0.04$ neutron events expected

XENON100: Recent Results

Phys. Rev. Lett. 107, 131302 (2011)

Green/yellow bands:

1- and 2- σ expectation, based on zero signal

Limit (dark blue):

1.5 - 2 σ worse, given 2 events at high S1

Limit at $M_W = 50$ GeV: 7 x 10⁻⁴⁵ cm² (90% C.L.)

New XENON SD limits

- Analysis of 100.9 days for SD coupling to WIMPs for ¹²⁹Xe and ¹³¹Xe
- Same data and event selection as for the SI analysis
- Two nuclear models

coupling to n

XENON: status and sensitivity

- New dark matter run started in March 2011 (~ 220 live days of data)
- Concentration of ⁸⁵Kr: lower by a factor of 20
- Improved LXe purity and lower trigger threshold
- Analysis in progress; release of results soon
- In parallel: construction of XENON1T @ LNGS

XENON1T at LNGS

1m drift TPC with 2.2 ton (1.1 ton fiducial) LXe
10 m water shield as Cherenkov Muon Veto
100 x less background than XENON100
Approved by INFN & LNGS for Hall B installation
Construction start at LNGS in Fall 2012
Science Data projected to start in 2015
Sensitivity: 2 x 10⁻⁴⁷ cm² after 2 yrs of data

Light: LUX and XMASS

LUX at Homestake

XMASS at Kamioka

• LUX in the US (+ UK groups)

- ⇒ 350 kg LXe TPC, 100 kg fiducial
- ➡ in commissioning above ground at Homestake in South Dakota
- ⇒ to be placed underground in 2012

XMASS in Japan

- 800 kg single phase detector (642 PMTs), 100 kg fiducial, 10x10 m water shield
- ⇒ commissioning run in 2011
- → new results in 2012

Light: Liquid Argon Detectors

• WARP at LNGS

- ➡ 140 kg LAr TPC
- ➡ 8.4 t LAr veto shield
- ➡ technical runs in 2008 and 2010
- ➡ new technical run since June 2011

ArDM at Canfranc

- ➡ 850 kg LAr TPC
- ➡ commissioned at CERN
- ⇒ approved by LSC in Oct 2010
- ➡ to be installed underground by the end of 2012

WARP at LNGS

ArDM at Canfranc

Beyond Current Detectors

- To reconstruct WIMP properties, larger detectors are needed
- Different targets are sensitive to different directions in the $m_{X^-} \sigma_{SI}$ plane

DARk matter WImp search with Noble liquids

- R&D and design study for next-generation noble liquid detector
- Physics goal: build the "ultimate WIMP detector", before the possibly irreducible neutrino background takes over

Sketch of possible layout for LAr and LXe cryostats in large water Cherenkov shields

DARWIN

2vbb: EXO measurement of ¹³⁶Xe T_{1/2} Assumptions: 50% NR acceptance, 99.5% ER discrimination Contribution of 2vbb background can be reduced by depletion

The LHC starts to probe the DM region

http://xxx.lanl.gov/abs/1103.5061

New Constraints on Dark Matter from CMS and ATLAS data

Sujeet Akula,¹ Daniel Feldman,² Zuowei Liu,³ Pran Nath,¹ and Gregory Peim¹ ¹Department of Physics, Northeastern University, Boston, MA 02115, USA ²Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109, USA ³C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794, USA http://arxiv.org/pdf/1104.3572v3

excluded bei LHC

68%, 95%, 99.7% CL preferred regions

Implications of XENON100 and LHC results for Dark Matter models

Marco Farina^a, Mario Kadastik^b, Duccio Pappadopulo^c, Joosep Pata^d, Martti Raidal^b, Alessandro Strumia^{b,e}

Summary and Prospects (I)

- Cold dark matter is still here with us
- It could be made of a new, heavy, neutral, stable and weakly interacting particle
- We have entered the era of data: direct detection, the LHC, indirect detection
- Direct detection experiments have reached unprecedented sensitivity (cross sections down to 10⁻⁸ pb) and can probe WIMP with masses from a few GeV to a few TeV
- "Ultimate" WIMP detectors based on the mK technology and on noble liquids should be able to prove or disprove the WIMP hypothesis and provide complementary information
- However, we should be prepared for surprises!

Summary and Prospects (II)

Direct detection

discover relic particle constrain $(m, \rho \times \sigma)$

with input from LHC determine **P**local

Indirect detection discover relic particle constrain ($m, \sigma \times \rho^2$)

with input from LHC determine PGC/halo

LHC

discover new particles determine physics model and MWIMP predict direct/indirect cross sections