Quark Nuclear Physics at LEPS/SPring-8

T. Nakano

Colloquium@IFIC, June 2, 2006

Outline

- Introduction
- A(1405) study
- K⁺ photo-production
- Θ^+ study

Research Center for Nuclear Physics, Osaka University : T. Nakano, D.S. Ahn, M. Fujiwara, K. Horie,

T. Hotta, K. Kino, H. Kohri, N. Muramatsu, T. Onuma, T. Sawada, A. Shimizu, M. Uchida, R.G.T. Zegers Department of Physics, Pusan National University : J.K. Ahn, J.Y. Park School of Physics, Seoul National University : H.C. Bhang, K.H. Tshoo Department of Physics, Konan University : H. Akimune Japan Atomic Energy Research Institute / SPring-8 : Y. Asano, A. Titov Institute of Physics, Academia Sinica : W.C. Chang, D.S. Oshuev, Japan Synchrotron Radiation Research Institute (JASRI) / SPring-8 : H. Ejiri, S. Date', N. Kumagai, Y. Ohashi, H. Ohkuma, H. Toyokawa, T. Yorita Department of Physics and Astronomy, Ohio University : K. Hicks, T. Mibe Department of Physics, Kyoto University : K. Imai, H. Fujimura, T. Miwa, M. Miyabe, Y. Nakatsugawa, M. Niiyama, N. Saito, M. Yosoi Department of Physics, Chiba University : H. Kawai, T. Ooba, Y. Shiino Wakayama Medical University : S. Makino Department of Physics and Astrophysics, Nagoya University : S. Fukui Department of Physics, Yamagata University : T. Iwata Department of Physics, Osaka University : S. Ajimura, M. Nomachi, A. Sakaguchi, S. Shimizu, Y. Sugaya Department of Physics and Engineering Physics, University of Saskatchewan : C. Rangacharyulu Department of Physics, Tohoku University : M. Sumihama Laboratory of Nuclear Science, Tohoku University : T. Ishikawa, H. Shimizu Department of Applied Physics, Miyazaki University : T. Matsuda, Y. Toi Institute for Protein Research, Osaka University : M. Yoshimura National Defense Academy in Japan : T. Matsumura

Laser Electron Photon facility at SPring-8

Laser Electron Photon (LEP) Beam

- 8 GeV electrons in SPring-8 + 351nm Ar laser (3.5eV)
 - maximumly 2.4 GeV photons (Backward Compton Scattering)
- E_{γ} measured by tagging a recoil electron $\Rightarrow E_{\gamma} > 1.5 \text{ GeV}, \Delta E_{\gamma} \sim 10 \text{ MeV}$
- Laser Power ~6 W \Rightarrow Photon Flux ~1 Mcps
- Laser linear polarization 95-100% \Rightarrow Highly polarized γ beam
- Most of physics programs including photoproductions of Θ^+ , ϕ , hyperon,
- ... have used this photon beam.

Photon Energy Upgrade

Maximum Energy of LEP beam

 $k_{\max} = \frac{(E_e + P_e) k_{laser}}{E_e - P_e + 2 k_{laser}} \cong \frac{4 E_e^2 k_{laser}}{m_e^2 + 4 E_e k_{laser}}$ $E_e = 7.960 \text{ GeV}, m_e = 0.5110 \text{ MeV/c}^2$ Ar laser (351 nm) $k_{laser} = 3.53 \text{ eV} \Rightarrow k_{max} = 2.40 \text{ GeV}$ Deep UV laser (257 nm) $k_{laser} = 4.82 \text{ eV} \Rightarrow k_{max} = 2.95 \text{ GeV}$ Laser Power ~1.2 W $\Rightarrow \gamma$ Beam Intensity ~200 Kcps

LEPS spectrometer

Charged particle spectrometer with forward acceptance PID from momentum and time-of-flight measurements

Particle Identification

Time Projection Chamber

Geometrical acceptance can be expanded by setting TPC in front of forward spectrometer.

1st TPC for nuclear targets : Physics runs for $\Lambda(1405)$ photoproduction etc 2nd TPC for LH₂/LD₂ targets : Being prepared for Θ^+ photoproduction etc

Summary of Collected Data

Dec. 2000 – June 2001 LH₂ 50 mm ~5×10¹² photons Photoproductions of ϕ , Λ , Σ^0 , ... from proton 5 mm-thick plastic counter \Rightarrow 1st evidence of Θ^+ 2001-2002 Gamma Exp. [w/o forward spectrometer] Nuclear tgt exp. w/ forward spectrometer (A-dep.) May 2002 – Apr. 2003 LH₂ 150 mm ~1.4×10¹² photons Oct. 2002 – June 2003 LD₂ 150 mm ~2×10¹² photons Θ^+ : #neutron×#photons in K⁺K⁻ detection mode $(\gamma n \rightarrow \Theta^+ K^- \rightarrow K^+ n K^-) = 5 \times \text{short } LH_2 \text{ runs}$ K⁻p detection mode ($\gamma d \rightarrow \Theta^+ \Lambda^* \rightarrow \Theta^+ K^- p$) is available. Photoproductions of ϕ , Σ^{-} , ... from deuteron 2003 K⁰ Exp. [AC \rightarrow Gas Cherenkov to accept pions] 2004 1st TPC operated, C / CH₂ / Cu target 2005 3-GeV upgrade, C / CH₂ target w/ spectrometer+TPC₁₁

The Nature of the $\Lambda(1405)$?

• uds g hybrid ? • SU(3) - singlet 3q state ?

$\Lambda(1405)$ photoproduction

- 3-quark state or KN bound state?
 - Chiral unitary model
 - \Rightarrow Different spectrum shapes between $\pi^+\Sigma^-$ & $\pi^-\Sigma^+$ channels.
 - \Rightarrow Modification of invariant mass distribution in nuclear matter.
- $\Lambda(1405)$ and $\Sigma(1385)$ are not separated in MMp(γ ,K⁺).
 - ⇒ Need to detect Σ → π N to select Λ (1405) w/ large acc. TPC

J.C. Nacher, E. Oset, H. Toki and A. Ramos, Phys. Lett. B455 (1999), 55

Setup of TPC experiment

Nuclear Target Data w/ TPC

- $\gamma p \rightarrow K^+ \Lambda (1405) \rightarrow K^+ \Sigma^{\pm} \pi^{\mp} \rightarrow K^+ n \pi^{\pm} \pi^{\mp}$
 - **Spectrometer TPC**
- Different charge combinations $(\Sigma^{\pm}\pi^{\mp})$ will be compared.
- Spectrum from nuclear target will be examined.

SU(3) symmetry considerations

The existence of the three poles in the scattering amplitude with I = 0 can be understood in consideration of the SU(3) flavor structure of the meson baryon scattering.

$\Lambda(1405)$ production in KN channel

- Radiative Capture of K⁻: K⁻ p $\rightarrow \Lambda(1405) \gamma$ (Ramos, Oset,,,) Large background from K⁻ p $\rightarrow \Lambda \pi^0$
- $\overline{\mathbf{K}}^0$ exchange in t channel.
 - $\gamma p \rightarrow \Lambda(1405) \text{ K}^*$

Small momentum transfer \rightarrow Forward peak

K* decays into 3 π with large opening angles.

Photoproducion by linearly polarized photon

Titov, Lee, Toki Phys.Rev C59(1999) 2993

Data from: SLAC('73), Bonn('74),DESY('78)

P₂: 2nd pomeron ~ 0⁺ glueball (Nakano, Toki (1998))

Decay asymmetry

$$\Sigma_{\phi} = \frac{\sigma_{//} - \sigma_{\perp}}{\sigma_{//} + \sigma_{\perp}} \cong \frac{\sigma_n - \sigma_{un}}{\sigma_n + \sigma_{un}}$$

helps to disentangle relative contributions

Differential cross section at t=-|t|_{min}

Phys. Rev. Lett. 95, 182001 (2005)

Polarization observables with linearly polarized photon

Decay Plane // $\vec{\gamma}$ natural parity exchange (-1)^J (Pomeron, Scalar Glueball, Scalar mesons)

Decay Plane γ unnatural parity exchange -(-1)^J (Pseudoscalar mesons π,η)

Relative contributions from natural, unnatural parity exchanges

The same technique will be used to study $\Lambda(1405)$.

Decay angular distribution

No energy dependence, except for ϕ distribution. Natural parity exchange is dominant.

24

Natural parity exchange is dominant for N(γ , ϕ)N and d(γ , ϕ)d. Decay asymmetries of p and quasi-free components are consistent. Decay asymmetry of coherent component is higher than that of nucleon.

photoproduction from nuclei

Phys. Lett. B 608, 215 (2005)

OZI rule \rightarrow Total ϕ -*N* cross section $\sigma B_{\phi NB}$ should be small.

If $\sigma B_{\phi NB}$ is small, the cross section from a nucleus, $\sigma_{B_{A^{PB}}}^{inc_{P}}$, is approximately proportional to the target mass number *A*.

(a) $P_{\mathsf{B}_{\text{out}^{\mathsf{B}}}} = \sigma_{\mathsf{B}_{A^{\mathsf{B}}}} / (A \sigma_{\mathsf{B}_{N^{\mathsf{B}}}})$ (b) $P_{\mathsf{B}_{\text{out}^{\mathsf{B}}}} / P_{\mathsf{B}_{\text{out}^{\mathsf{B}}}}$ (Li)

The data indicates large $\sigma B_{\phi NB}$ and/or large inmedium modification of/f meson.

Study of $p(\gamma, K^+)\Lambda, \Sigma^0$ reactions

•Available data is not sufficient to fix models and draw conclusions on the reaction process and presence of 'missing' nucleon resonances e.g. D₁₃(1900)

Measurement of additional observables is needed: At LEPS/SPring-8:

•Single polarization observables

•Photon polarization asymmetry (Σ)

$$\frac{d\sigma}{d\Omega}_{POL} = \frac{d\sigma}{d\Omega} \left[1 + \Sigma P \cos(2\phi) \right]$$

Recoil polarization

•Double Polarization observables •Beam-recoil asymmetry

•Cross sections:

•Forward angles (t_{max}>t>-0.6) (t-channel K/K* interference)

Differential cross sections [LH₂ target]

- Resonance structure at W=1.96 GeV in $\gamma p \rightarrow K^+\Lambda$: D₁₃(1900)
- Large contribution of t-channel K/K* exchange in $\gamma p \rightarrow K^+ \Lambda$
- Small enhancement at W=2.05 GeV in $\gamma p \rightarrow K^+\Sigma^0$: P₃₁(1910) Δ^* ?

Beam Asymmetry [LH₂ target]

 $\mathsf{P}_{\gamma}\Sigma\cos(2\Phi) = [\mathsf{N}_{\vee} - \mathsf{N}_{\mathsf{H}}]/[\mathsf{N}_{\vee} + \mathsf{N}_{\mathsf{H}}]$

Positive Asymmetries observed ⇒ K⁺Y tends to go to the direction in parallel to polarization vector.

Smaller asymmetries than Regge model

 \Rightarrow s-channel resonance effect ?

K + K* exchange (Regge model)

Isobar + Regge model (incl. resonance)

R.G.T. Zeggers et. al., PRL 91 (2003), 092001 M. Sumihama et. al., PRC 73 (2006), 035214

Ground-State Λ and Σ Photoproduction from Proton / Deuteron

- Hyperons are identified by K⁺ missing mass
- Differential cross sections & photon beam asymmetry
 ⇒ Missing baryon resonance which couples to KY (D₁₃, ...) Meson exchange in t-channel (K, K*, ...)

Pentaquark

The antiquark has a different flavor than the other 4 quarks.

Theory

- •DPP predicted the Θ^+ with M=1530MeV, Γ <15MeV, and J^p=1/2⁺.
- •Naïve QM (and many Lattice calc.) gives M=1700~1900MeV with J^p=1/2⁻.

•But the negative parity state must have very wide width (~1 GeV) due to "fall apart" decay.

First evidence from LEPS

$\gamma n \rightarrow K^+K^-n$

Low statistics:
$$\frac{S}{\sqrt{B}} = 4.6$$
 but $\frac{S}{\sqrt{S+B}} = 3.2$

Tight cut: 85% of events are rejected by the ϕ exclusion cut.

Unknown background: BG shape is not well understood. Events from a LH2 target were used to estimate it. Possible kinematical reflections.

Correction: Fermi motion correction is necessary.

Phys.Rev.Lett. 91 (2003) 012002

hep-ex/0301020

Time dependent experimental status of Θ^+

γ+d(n) reactions		LEPS	-C		\bigcirc	CLA	S-d1				\bigcirc	LEP	S-d		LEI	PS-d2	2	CL	AS-d	2
γ + p \rightarrow p K ⁰ _s						\bigcirc	SAP	HIR									CLA	5 g1 :	1	
γ + p → n K⁺ K⁻ p⁺								\bigcirc	CLAS	5-р								BEI	LE	
K + (N) → p K _s ⁰					IANA				Z	EUS	νBC								BaBa	ar
lepton + D, A \rightarrow p K ⁰ _s							nerm c		\mathbf{r}	\bigcirc		SPH	INX	Lluna			C			
$p + A \rightarrow pK_s^0 + X$								102			Á			пуре	ICP		5	VDZ	\bigcirc	
$p + p \rightarrow pK_s^0 + \Sigma^+$									\bigcirc	COSY	r-to	F HE	RA-B							
Other ⊕+ Upper Limits							BES	J,Ψ		CI	DF 🧲				FOCI	JS	V	/A89		
	2002)	2	00	3			2	2004	4			2	005	5					

2003 2004 2005

: Positive result

From Carl Carlson's talk at Hawaii pentaquark workshop

Don't give up so easily...

Θ^+ searches with LD₂ target

•Search in $\gamma d \rightarrow K^+ K^- X$ •Search in $\gamma d \rightarrow \Lambda(1520) X$ •Search in $\gamma d \rightarrow \Lambda(1116) X$ •Near-term plan

LEPS LD₂ runs

- Collected Data (LH₂ and LD₂ runs)
 Dec.2000 June 2001 LH₂ 50 mm ~5×10¹² photons published data

 May 2002 Apr 2003 LH₂ 150 mm ~1.4×10¹² photons Oct. 2002 June 2003 LD₂ 150 mm ~2×10¹² photons
- #neutrons × #photons in K⁺K⁻ detection mode
 LD₂ runs = 5mm-thick STC in short LH₂ runs × ~5

Θ⁺ and Λ(1520) production from deuteron

40

Search for Θ^+ in $\gamma n \rightarrow K^+K^-n$

- •A proton is a spectator (undetected).
- Fermi motion is corrected to get the missing mass spectra.
- •Tight ϕ exclusion cut is essential.
- •Background is estimated by mixed events.

Θ^+ search in $\gamma d \rightarrow \Lambda(1520)$ KN reaction

 Θ^+ is identified by K⁻ p missing mass from deuteron. \Rightarrow No Fermi correction is needed.

K⁻ n and pn final state interactions are suppressed. If $s\overline{s}(I=0)$ component of a γ is dominant in the reaction, the final state KN has I=0. (Lipkin)

A possible reaction mechanism

- Θ^+ can be produced by re-scattering of K⁺.
- K momentum spectrum is soft for forward going $\Lambda(1520)$.

LEPS acceptance has little overlap with CLAS acceptance.
Exchanged kaon can be onshell.

Event selection

Background process

- Quasi-free Λ(1520) production must be the major background.
- The effect can be estimated from the LH2 data.

 The other background processes which do not have a strong pK⁻ invariant mass dependence can be removed by sideband subtraction.

Sideband subtraction to remove nonresonant background

Eγ > 1.75 **GeV** Λ(1520) Λ(1520) 300 LD2 LH2 120 250 100 200 80 150 60 100 40 50 20 0 0 1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.46 1.48 1.5 1.52 1.54 1.56 1.58 M(K⁻p) GeV/c²

- 0.4

 $1.50 < M(K^{-}p) < 1.54$

 $1.45 < M(K^{-}p) < 1.50 \text{ or } 1.54 < M(K^{-}p) < 1.59$

S =

BG estimation with two independent sideband regions Counts/5 MeV 300 250 50 200 150 30 100 20 correction for 50 contributio 10 1.48 1.52 1.54 1.56 1 58 1.46 1.5 1.45 1.55 1.6 1.65 1.7 1.75 1.8 M(K⁻p) GeV/c² MMd(γ,K⁻p) GeV/c² •Validity of the sideband method with $E\gamma$ 4 smearing was checked by using two independent regions of the sideband. 2 0 •Channel-to-channel comparison gives -2 mean=-0.04 and RMS=2.0. -4 -6

47

1.6 1.65

1.7 1.75

MMd(y,K⁻p) GeV/c²

1.8 1.85

1.45

1.4

1.5 1.55

K ⁻ p missing mass spectrum

Normalization of Λ^* is obtained by fit in the region of MMd < 1.52 GeV.

K⁻p missing mass in sideband regions

away

Θ⁺ formation cross-section by simple kaon re-scattering is small.

A theoretical estimation by Titov is small (nucl-th/0506072).

Search for $\gamma d \rightarrow \Lambda(1116) \Theta^+$

1.5 GeV < E γ < 2.4 GeV

$\gamma d \rightarrow \Lambda$ (1116) X

3000

K* LD_2 2500 **K**+ 2000 1500 1000 500 0 0.2 0.4 0.6 0.8 1.2 1.4 1 $MMp(\gamma,\pi^{-}p) \text{ GeV/c}^{2}$ Λ(1116) γ K+/K* 51

• ~100k Λ events are identified in the deuteron data.

•The missing mass was calculated by assuming a nucleon at rest.

MMd(γ , π ⁻**p**) spectra

Normalization factor for LH2 data (green line) is 2.6.
→ No large p/n asymmetry.

• No excess at 1.53 GeV nor 1.6 GeV.

•Quasi-free process can be reproduced by free process.
→ small effect from Fermi motion.

•Large cross-section compared with $\Lambda(1520)$.

•Missing Mass resolution is worse.

Remove φ background by rejecting events with P_p<0.55 GeV/c

Remove high frequency fluctuations by 10-MeV Eγ smearing

LD₂ spectrum after ϕ exclusion

The Θ^+ peak and the bump at 1.6 GeV are robust. and they are not associated with ϕ events.

K ⁻ p missing mass spectrum (smeared)

Near-Future Prospects on Θ^+

- Take another data set with LD₂ target and the forward spectrometer (exactly same as the previous setup) this year. Photon beam intensity will be twice by injecting two lasers. Basic test was succeeded.
- 2nd Time Projection Chamber is being prepared to increase acceptance coverage. CLAS region can be covered.

Near-term plan

- MC based BG study and cross-section estimation are in progress.
- Re-measurement with the same setup and improved beam intensity was just started in June, 2006.
- •Experiment with improved acceptance will start in 2007 after installing a new TPC.

New beamline at SPring-8

Motivation :

- Better kinematical coverage w/ better resolutions and energy extension are desired for Θ^+ studies.
- glueball, hybrids and many other physics possibilities can be explored.
- Higher intensities for precise measurements and exotics searches (vs. LEPS intensity ~10⁶ /sec)
 - Multi-laser injection (≥2 lasers w/ large apperture)
 - Round electron beam
- Higher energies for heavier hadrons (vs. LEPS energy ≤2.4 or 3.0 GeV)
- x-ray injection by undulator

Moving BNL-E949 detector

- Large volume 4π detector to cover both charged particles and photons. (vs. LEPS forward spectrometer. Gamma experiments were separated.)
- E949 detector → SPring-8 (Basic consensus has been obtained.) In future, → J-PARC hadron physics and kaon rare decay

A Possibility of Schedule

- Gathering collaborators in addition to LEPS group
- Now we are requesting budget.
- LOI will be submitted soon.
- If budget is approved, 2007-2008 Construction & Developments of Beamline, Exp. Hutches, Laser Injection System, Forward Spectrometer, High Speed DAQ, ... Moving E949 detector
 2009 Hopefully starting the new experiment Preparations for higher energy option